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“The best that most of us can hope to achieve in physics is simply to misunderstand at
a deeper level.”

Wolfgang Pauli
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Abstract

Abstract This thesis presents the first analysis of the hadronic amplitudes in
the decay B0

s→ ψ(2S)π+π−. The pions originate from the ss quark system of
the weak B0

s decay, which removes contributions from Isospin 1 resonances.
This allows to test a novel dispersive approach for a process-independent
description of the dipion isoscalar S-wave. Additionally, the tetraquark candi-
date Z(4430)− is known to contribute to ψ(2S)π− in B0→ ψ(2S)K+π−. An
observation of this state in the ψ(2S)π± systems in B0

s→ ψ(2S)π+π− would
give insights into its production mechanism and internal structure. The search
for this state among the intermediate hadronic states of the B0

s→ ψ(2S)π+π−

decay is thus also part of the thesis.
Using proton-proton collision data collected by the LHCb experiment in

the years 2011, 2012, 2015-2018 at 7, 8, and 13 TeV corresponding to integrated
luminosities of 1, 2, and 5 fb−1, the fit fractions of S-wave and the individual f2

states are determined and the process-independence of the S-wave parametri-
sation is shown. Furthermore, a search for the exotic tetraquark candidate
Z(4430)± in B0

s→ Z(4430)±π∓ with Z(4430)±→ ψ(2S)π± is performed. No
significant exotic contribution is measured and an upper limit on the frac-
tion of decays proceeding via Z(4430)± is found to be FZ < 1.0 % at 95 %
confidence level.
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Zusammenfassung Diese Dissertation stellt die erste Analyse der hadroni-
schen Amplituden im Zerfall von B0

s→ ψ(2S)π+π− dar. Die Pionen entstam-
men einem ss Zustand aus dem schwachen Zerfall von B0

s→ ψ(2S)π+π−,
wodurch Beiträge von Isospin 1 Resonanzen verhindert werden. Dies er-
möglicht das Testen eines neuartigen dispersiven Ansatzes für die prozessun-
abhängige Beschreibung der isoskalaren Pion-Pion S-Welle. Außerdem ist
bekannt, dass der Tetraquark Kandidat Z(4430)− zur ψ(2S)π− Verteilung von
B0→ ψ(2S)K+π− beiträgt. Ein Nachweis dieses Zustandes in den ψ(2S)π±

Verteilungen von B0
s→ ψ(2S)π+π− würde Rückschlüsse auf seinen Produk-

tionsmechanismus und Aufbau erlauben. Die Suche nach diesem exotischen
Zustand innerhalb der hadronischen Zwischenzustände im B0

s→ ψ(2S)π+π−

Zerfall ist deshalb auch Teil dieser Dissertation.
Es werden Daten aus Proton-Proton Kollisionen verwendet, die in den

Jahren 2011, 2012 und 2015 bis 2018 am LHCb Detektor aufgezeichnet wur-
den. Sie entsprechen einer integrierten Luminosität von 1, 2 und 5 fb−1 bei
Kollisionsenergien von 7, 8 und 13 TeV. Die Anteile der S-Welle und der
einzelnen f2 Resonanzen werden bestimmt und die Prozessunabhängigkeit
der S-Wellenparametrisierung überprüft. Desweiteren wird eine Suche nach
dem exotischen Tetraquark Kandidaten Z(4430)± in B0

s→ Z(4430)±π∓ mit
Z(4430)±→ ψ(2S)π± durchgeführt. Es werden keine signifikanten exotis-
chen Beiträge beobachtet und das 95 % Konfidenzintervall für den Anteil der
Zerfälle über Z(4430)± zu < 1.0 % bestimmt.
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Preface

The measurement presented in this work is not yet published in a peer-
reviewed journal. It is currently undergoing the internal review process
of the LHCb collaboration, before it can be submitted to a journal.

The author of this work is the main person responsible for the analysis
work presented here and all presented analysis steps were performed by him.
The measurement has been carried out within the LHCb collaboration, which
consists of more than 1400 scientists and engineers from various countries.
The data used in this work was collected at the LHCb detector at the LHC and
reconstructed and analysed using software tools provided by the collaboration.
Both detector and software tools are the product of the work of many current
and former collaboration members.

The description of the dipion spectrum using a dispersive approach de-
veloped in [1] was carried out in collaboration with the theorists Christoph
Hanhart and Bastian Kubis, who were affiliated to the LHCb collaboration in
order to share data and analysis software.

Parts of the limit-setting procedure described in Sec. 10 were developed by
an intern under the supervision of the author.

A more technical description of the analysis is available as internal LHCb
note in [2].

Besides the analysis presented in this work, the author was also the main
contributor to another publication, which resulted from work during his mas-
ter project and the beginning of his PhD. This measurement of the branching
fraction and CP asymmetry in B+→ J/ψ ρ+ decays was published in Ref. [3].
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1 Introduction

One of the major triumphs of modern physics is the unification of three of the
four known fundamental forces of nature into the so-called Standard Model
(SM) of Particle Physics during the 1960s.1 Since then the model withstood
essentially all tests of its predictions.

But since its conception it is also clear that the SM needs to be extended:
Not only does it not account for the gravitational force, it is not able to describe
the observed baryon asymmetry in the universe [6, 7] or those 95 % of its
energy content, which are attributed to dark matter and dark energy. Another
shortcoming is its lack of justifications for e.g. the number of fundamental
fermion generations or the fact that no CP violation is observed in the strong
interaction. Over the decades different expansions have sprung up, but new
experimental results have driven them since into less favoured regions of
parameter space, diminishing their popularity again.

In recent years apparent experimental discrepancies in the lepton sector
have been observed, e.g. in the value of g − 2 of muons [8] or the lepton
universality parameter RK [9] with increasing significances too, but it remains
to be seen, whether they prove to be the guiding light to a unified model of
fundamental particle physics.

But even within the region of its validity, some processes are very hard to
access both from the experimental and the theoretical side: The 5 % of hadronic
matter in the universe consist of quarks bound together by gluons, both of
which carry the colour charge of strong interaction. Due to confinement,
no coloured objects can exist freely though, therefore measurements of the
strong interaction (at low energies) cannot probe the individual constituents
of hadrons directly, but rather measure the properties of bound states and
their interactions. From the theory perspective the non-Abelian structure of
the theory does not allow a perturbative approach to describe the interactions
of quarks and gluons either.

Despite these difficulties, the theory of strong interaction has come far in
describing the spectrum of the bound states of hadrons and their interactions.

1With the later addition of neutrino masses after the observation of neutrino oscillations
[4, 5].
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But much is still to be learned about e.g. the formation process of these states
and their internal structure. Open questions include the nature of the recently
observed pentaquark candidates [10, 11], tetraquark candidates with two
bottom [12], two charm [13–15] or even four charm quarks [16, 17] and the
existence of the predicted glueball and hybrid states consisting solely or partly
of excited gluons.

The description of the strong interaction is not only an interesting subject
in itself though, it also has consequences on other fields as well. For example
the precision achieved for the theoretical prediction in tests of other sectors of
the SM like the electroweak sector are often limited by the current knowledge
of the hadronic part of the interactions. The aforementioned value of g− 2
of the muon is an example. The hadronic vacuum polarisation and hadronic
light-by-light scattering are the largest sources of uncertainty for the standard
model prediction [18] of g− 2.

In close cooperation between experiment and theory techniques have been
refined to identify observables that are accessible from both theoretical and
experimental side. This work tests one of these techniques, which uses a
dispersive formalism to describe the strong interaction between two pions in
the low-energy region, as detailed in Sec. 2 (from here on referred to as Bonn-
Jülich model). It is better motivated theoretically than other parametrisations
conventionally used in experiments and should have the advantage that most
of its parameters are process independent.

This independence is tested in this thesis on the dipion spectrum of
B0

s→ ψ(2S)π+π−2 decays against a less sophisticated, but commonly used,
model. The decays were measured with the LHCb experiment in the years
2011-2018 at the LHC collider at CERN, which is introduced in Sec. 3. Since
the data is collected inclusively on the signature of ψ(2S)→ µ+µ−, it also
contains a large fraction of background and the signal events first need to be
selected from it, as described in Sec. 4.

Another goal of this thesis is the search for exotic contributions from the
tetraquark candidate Z(4430)± to the spectra of ψ(2S)π+ and ψ(2S)π− in
B0

s→ ψ(2S)π+π−. Their occurrence in this decay would contradict a popular
model describing these structures as triangle singularities and favour true
resonant descriptions via tetraquark or molecular compositions.

2The charge conjugated process is implied as well throughout this thesis, unless stated
otherwise.
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Section 5 introduces the helicity amplitude model, which is used to de-
scribe the full decay chain. This also includes the descriptions of the differ-
ent parametrisations of the dipion spectrum and the treatment of possible
Z(4430)± contribution.

The practical application of the helicity amplitude framework in an ex-
tended unbinned maximum likelihood amplitude fit to the data is shown in
Sec. 6, while the test of the process independence of the Bonn-Jülich model is
given in Sec. 7. The corresponding statistical and systematic uncertainties are
addressed in Sec. 8 and 9.

The search for decays via exotic intermediate states B0
s→ Z(4430)−π+

and B0
s→ Z(4430)+π− in B0

s→ ψ(2S)π+π− is documented in Sec. 10 and
concluding remarks are given in Sec. 11.
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2 Theoretical Background

After a short introduction into the structure of the SM in Sec. 2.1 and a sketch
of the relevant phenomena of weak B-meson decays in Sec. 2.2, some aspects
of the strong interaction are given in Sec. 2.3. In Sec. 2.5 the signal decay
channel B0

s→ ψ(2S)π+π− is introduced. The hadronic phenomena, which
can be studied in this channel, are then detailed in the following sections:
Exotic hadronic states are described in Sec. 2.6 with special attention to the
tetraquark candidate Z(4430)± that could occur as intermediate state in the
ψ(2S)π+ or ψ(2S)π− mass spectra. Its observation in this channel can give
new insights into its nature. A dispersive ansatz for low-energy description
of QCD is outlined in Sec. 2.4, while Sec. 2.4.2 details a specific extension first
introduced in [1], which is tested in this work using the π+π− mass spectrum
of B0

s→ ψ(2S)π+π−.

2.1 Standard Model of Particle Physics

A brief overview of the fundamental particles and interactions of the SM is
given, a more detailed introduction from an experimental perspective can
be found in textbooks, e.g. [19], while more involved concepts can be found
in [20].

2.1.1 Particles

All visible matter in the universe is composed of the 12 fundamental spin-1
2

particles of the SM. Their properties are shown in Tab. 2.11. They can be
grouped into quarks, which are subject to the strong force, and leptons, which
are not. The quarks can have electric charges of either +2

3 e (up-type) or
−1

3 e (down-type), where e denotes the elementary charge. Leptons can have
electric charge −1 e (e−, µ−, τ−) or 0 e (neutrinos). Each charged lepton is
paired with one neutrino, while each down-type quark is paired with one
up-type quark. These pairs are grouped into three generations with ascending
mass, which is the only difference between the generations.

1Natural units are used throughout the thesis, implying h̄ = c = 1.
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Leptons Quarks
Particle Q mass/ GeV Particle Q mass/ GeV

First electron (e−) −1 0.0005 down (d) −1/3 0.003
generation neutrino (ve) 0 < 10−9 up (u) +2/3 0.005

Second muon (µ−) −1 0.106 strange (s) −1/3 0.1
generation neutrino (vµ) 0 < 0.2× 10−3 charm (c) +2/3 1.3

Third tau (τ−) −1 1.78 bottom (b) −1/3 4.5
generation neutrino (vτ) 0 < 20× 10−3 top (t) +2/3 174.

Table 2.1: Fundamental fermions of the SM model with their
masses and electric charges. Values taken from [21].

2.1.2 Interactions

The interactions of the SM particles are described via a SU(3)c × SU(2)L ×
U(1)Y gauge theory (U(i) and SU(i) stand for the i-dimensional unitary and
special unitary group respectively). The strong interaction corresponds to
the SU(3)c color group, while the electroweak interaction stems from its
SU(2)L ×U(1)Y part. Similar to the Noether theorem of classical physics, the
symmetries of these groups introduce conserved charges into the SM: The
electrical charge (Ward–Takahashi [22, 23]), the 3 color charges, and the weak
isospin (Slavnov–Taylor [24]).

The group structure also gives rise to the spin-1 gauge bosons, which me-
diate the interactions between particles that carry the corresponding charges:
The photon (electric), 8 gluons (color), the W± and Z (weak isospin).

Unlike the photon and the gluons, the W± and Z bosons are massive,
but their mass terms would violate the underlying SU(2) symmetry. This is
avoided via the Higgs mechanism, which generates their masses dynamically.
It starts with a high-energy theory with massless particles and with an addi-
tional scalar field, whose symmetry is spontaneously broken at lower energies,
the "electroweak symmetry breaking" (EWSB), giving rise to the mass terms of
the W± and Z and a massive scalar particle called Higgs-boson [25, 26]. This
Higgs field can also explain the mass terms of the quarks and the charged
leptons via Yukawa couplings [27, 28]. From neutrino oscillation measure-
ments it is established that neutrinos of different generations have non-zero
mass differences, implying a non-zero mass for at least two of the neutrino
species. Since possible right-handed neutrinos would be singlets under all
SM interactions, it is not possible to generate neutrino mass terms inside the
SM. The origin and first direct measurement of the neutrino masses are still
open tasks for theory and experiment.
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2.2 Weak Interaction and Quark Flavour Transi-

tions

For quarks the mass eigenstates and the eigenstates of the weak charged
current aren’t the same. By convention the rotation between them is described
via the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix VCKM [29,30]. The
components Vij describe the transition of a quark of type i into a quark of type
j. The corresponding weak charged-current vertices for quarks are given by

− i
gW√

2
(u, c, t)γµ 1

2

(
1− γ5

) Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 d

s
b

 , (2.1)

where gW is the weak coupling constant, γµ are the gamma matrices and
1
2(1− γ5) is the left-handed chiral projection operator (which is the reason for
the parity violation in the weak interaction). d, s, b are the down-type quark
spinors and u, c, t are the adjoint representations of the up-type quark spinors.
If instead up-type quarks enter the interaction as spinors and the down-type
quarks as adjoint spinors, the complex conjugate of the matrix is used.

The matrix is unitary, reducing the number of free parameters to three
rotation angles and a complex phase. Since transitions between quark gen-
erations are suppressed, VCKM is almost diagonal, which can be exploited in
the Wolfenstein parametrisation [31], where the elements are expanded in the
small parameter λ ≈ 0.23. In addition the real parameters A ≈ 0.8, ρ ≈ 0.13,
and η ≈ 0.35 are needed to describe the degrees of freedom of the rotation: Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O
(

λ4
)

(2.2)
The complex phase introduced by iη is the source of CP violation in the SM 2,
since it changes sign under CP transformations, while the phases introduced
in the strong and electromagnetic interaction do not.

2with the possible exception of CP violation in the neutrino sector, where a similar matrix
VPMNS governs the transition between neutrinos of different generations allowing for a sepa-
rate CP violating phase [32]. Within the current experimental precision it is still compatible
with 0 [33]. There is no symmetry in the SM, which prohibits a CP violating term in the strong
sector. Nevertheless it is experimentally constrained to negligible values. This is referred to
as strong CP problem.
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αs(MZ
2) = 0.1179 ± 0.0010

α
s(

Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 2.1: Left: Running coupling of QCD as function of mo-
mentum transfer Q in data (points) and from theory (line). Taken
from [21]. Right: Nonet of pseudo-scalar mesons with spin 0
grouped via strangeness S and electric charge Q. Taken from [36]

2.3 QCD

Quantum Chromodynamics (QCD) is the theory underlying the strong inter-
action [34, 35]. It describes the action of the fields of quarks q f , antiquarks q f

and 8 gluons Ac
µ (c = 1...8) in the Lagrange density

LQCD = ∑
f=u,d,s,c,b,t

qa
f

(
iDab

µ γµ −m f δab
)

qb
f −

1
4
(
Ga)

µν

(
Ga)µν , (2.3)

where
Dab

µ = ∂µδab − igsλ
ab
c Ac

µ (2.4)

is the covariant derivative with λab
c (a, b = 1...3 running over the three colour

charges) the adjoint representations of the generators of the SU(3) algebra.
The gluonic field strength tensor is given by

(
Ga)

µν
= ∂µ Aa

ν − ∂ν Aa
µ + gs f abc Ab

µ Ac
ν. (2.5)

Here f abc are the structure constants defined as

[λa, λb] = i f abcλc (2.6)

and gs is the strong gauge coupling constant related to the coupling strength
of the strong interaction

αs =
g2

s

4π2 . (2.7)
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The value of αs at a scale Q2 can be inferred from its value at a renormali-
sation scale Λ via

αs(Q
2) =

αs(Λ
2)

1 + Bαs(Λ
2) log

(
Q2

Λ2

) , (2.8)

where B depends on the numbers of fermionic (quarks) and bosonic (gluons)
objects with colour charge N f and Nc in the theory

B =
11Nc − 2N f

12π
. (2.9)

This so-called running of the coupling strength is an effect of higher order quan-
tum corrections to the interaction. It is closely related to the renormalisation of
the theory, which is necessary to treat singularities related to self-interactions
of quarks and gluons.

Fig. 2.1 shows the measured values for αs at different momentum transfers.
It decreases with growing Q, approaching 0 for large momenta (small distance
scales, weak coupling regime), where quarks and gluons act like free parti-
cles. This phenomenon is known as asymptotic freedom and allows to study
individual quarks and gluons in high-energy processes. In this regime it is
also possible to describe the strong interaction perturbatively via Feynman
diagrams, which expand the interaction in powers of αs.

The figure also shows that for low energies αs becomes very large (strong
coupling regime), which makes it impossible to describe the strong inter-
action with the usual perturbative approaches. The energy scale, at which
perturbation theory breaks down in QCD, is ΛQCD ≈ 200− 400 MeV.

Another phenomenon is colour confinement, which means that no free
coloured object is found in nature. Although no mathematical proof for
this behaviour of QCD has been given yet, decades of observations have
confirmed this property. A conventional graphical explanation is that the
gluon field between two coloured objects forms a flux tube, which grows
longer as the two objects are moved further apart. In this picture the force
between them does not decrease with distance (like it would in the case of
electrically charged objects) so the energy content of the system increases until
it becomes energetically favourable to form a qq pair with matching colour
and anti-colour in between. The new quark and antiquark pair up with each
of the initial objects creating two uncoloured hadronic objects. This process is
called hadronisation.
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The combinations of 3 quarks qq′q′′ into a hadron are called baryons, while
combinations of quark-antiquark qq′ are called mesons.

2.3.1 Chiral Theory

As shown in the previous section, low-energy QCD processes like the descrip-
tion of the hadronic bound states are hard to access at the quark-level, both
from the theoretical side, due to the running of the strong coupling αs, and
from the experimental side, due to the confinement of quarks and gluons. In
the following, chiral theory is briefly introduced, which provides an effective
description of low-energy QCD phenomena like the observed spectrum of
the light hadronic states, which lie at the center of this thesis. A detailed
introduction to the application of chiral symmetry in nuclear physics is given
in [37].

Since strong interactions behave very differently above and below ΛQCD,
the quarks in Tab. 2.1 can be grouped into heavy quarks with masses above (c,
b, t) and light quarks with masses below ΛQCD (u, d, s). In the following we
only focus on the light quarks and the hadronic states that are made up from
them.

At energies below ΛQCD the mass terms of the light quarks in eq. 2.3 can be
ignored. This massless LQCD then exhibits a global SU(3) f flavour symmetry
for the left-handed and right-handed quarks separately, corresponding to a
SU(3)L × SU(3)R symmetry group.

This symmetry is spontaneously broken through a non-zero vacuum ex-
pectation value for the scalar quark condensate 〈qq〉 6= 0, which reduces the
symmetry of the Lagrangian to the SU(3)V flavour symmetry. This process
generates mass terms for all hadrons consisting of light quarks, except for the
resulting eight Nambu-Goldstone bosons from the generators of the broken
symmetries, which correspond to the pseudoscalar meson multiplet shown in
Fig. 2.1 (except for the η′, which corresponds to a SU(3)V singlet state).

Since the chiral symmetry is explicitly broken by the small quark mass
terms, the pseudoscalar mesons are only pseudo Nambu-Goldstone bosons
and therefore not massless. Instead the pions (π+, π−, π0) acquire a mass of
≈ 130 MeV, while the Kaons (K+, K−, K0) and the η have masses of about
500 MeV3. This difference can be explained by the strange quark mass being
much larger than the up- and down-quark mass ms � (md + mu)/2. The

3The η′, which is not protected by the symmetry has a mass of 957 MeV.
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chiral symmetry is therefore broken to a larger degree for mesons with a
significant strange quark contribution to their wavefunction.

The so-called isospin symmetry holds to a much better degree, because its
SU(2) f group leaves out the strange quark and the masses of u and d quarks
are much smaller than ΛQCD. Here u and d quarks have an isospin quantum
number of I = 1/2, while the third component I3 is +1/2 for u quark and
−1/2 for d quark. For u and d the I3 component switches sign. Other quarks
have I = 0 and therefore I3 = 0.

Note that for high enough densities and temperatures the chiral symmetry
is restored in this model and the masses of the pseudoscalar mesons should
increase to values similar to those of their scalar counterparts like the f0(500).

In chiral theory the scalar mesons also form a nonet of states, but unlike
the pseudoscalars they are much harder to access due to their large widths
and the opening of additional decay channels near to their pole positions.
This makes a description and interpretation of their dynamics in scattering ex-
periments very challenging both experimentally and theoretically. Describing
the dynamics of these scalar mesons in their coupling to two pions is a central
part of this work.

An additional complication in the classification of these states lies outside
of the simple chiral theory. Exotic hadronic states (introduced in Sec. 2.6) with
the same quantum numbers are predicted for the same energy region. The
observed states could even be superpositions of classical qq configurations
with significant exotic contributions. Therefore, establishing the quark (and
gluon) content of the scalar mesons is still an active field of research (an
overview can be found in the review on scalar mesons in Ref. [21]).

2.4 Dispersion Theory

A brief overview of the properties of the low-energy dispersive scattering
theory are given following the review on resonances in [21] and descriptions
in [38, 39], where further information about the subject is available. Even
though it can be applied to other interactions and the high-energy regime as
well, the focus lies on the description of hadronic phenomena.

It was shown in Sec. 2.3 that the strong coupling constant grows towards
lower energy scales making a perturbative description impossible. S-matrix
theory represents a valid alternative in these energy regions.
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Its center is the Lorentz-invariant unitary operator called S-matrix S, which
describes the transition amplitude from an initial state |i〉 to the final state 〈 f |:

S f i = 〈 f |S|i〉 (2.10)

with
SS† = S†S = I. (2.11)

The T matrix corresponds to those transitions, where an interaction has taken
place:

S = I + iT. (2.12)

Since PT, the combined application of the parity operator P and time operator
T, is an exact symmetry in the strong interaction,

〈i|S| f 〉 = 〈 f |S|i〉. (2.13)

Eq. 2.13 can be combined with the unitarity condition in eq. 2.11 and after
some algebra ( see Ref. [38]) results in

=〈 f |T|i〉 = 1
2

∫
∑
m
(2π)4δ4 (pi − pm) 〈 f |T|m〉

?〈m|T|i〉, (2.14)

where =(x) corresponds to the imaginary part of x, the sum over m runs over
all intermediate states, which are allowed by symmetries and kinematic con-
straints. The delta function (2π)4δ4 (pi − pm) enforces properly normalised
4-momentum conservation. For 〈 f | = 〈i| eq. 2.14 results in the optical theorem

= 〈i|T|i〉 =1
2

∫
∑
m
(2π)4δ4 (pi − pm) |〈m|T|i〉|

2,

⇒ σelastic|forward =σtot

(2.15)

which relates the imaginary part of the elastic forward scattering amplitude
to the total cross section of the process.

Further relations can be explored exemplarily using 2 by 2 scattering of
scalar particles with momenta pi and masses mi

φ1(p1) + φ2(p2)→ φ3(p3) + φ4(p4). (2.16)
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Since the particles are spinless, the process can be fully described with the
Mandelstam [40] variables

s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2, (2.17)

of which only two variables are independent, since

s + t + u = m2
1 + m2

2 + m2
3 + m2

4. (2.18)

Alternatively the scattering process can be described using only s and the
scattering angle θs, which describes the angle between ~p1 and ~p3 in the center
of mass system (cms). This makes it possible to write the transition amplitude
as partial-wave projection

〈 f |T|i〉 = T f i(s, t, u) = T f i(s, cos θs) = 16π
∞

∑
`=0

(2`+ 1)P`(cos θs)t
f i
` (s),

(2.19)
where P`(cos θs) denote the Legendre-polynomials and t f i

` (s) the partial wave
amplitude. This result is very powerful: Since the Legendre polynomials are
orthogonal, transitions corresponding to different angular momenta ` can be
treated separately. This is one of the cornerstones of the helicity formalism
used in Sec. 5.2. A thorough description of the method – also for states with
spin – can be found in [41, 42].

Combining eq. 2.19 with eq. 2.14 and considering only two-particle inter-
mediate states a and b for simplicity, results in

= t f i
` = ∑

m={ma,mb}
(t f m

` (s))∗σ(s, ma, mb)t
mi
` (s), (2.20)

where {ma, mb} stands for the intermediate state with particle a and particle b
and σ(s, ma, mb) is the two-body phase space

σ(s, ma, mb) =

√
λ(s, m2

a, m2
b)

s
θ(s− (ma + mb)

2), (2.21)

where λ(s, m2
a, m2

b) is the Källen function

λ(a, b, c) =
(

a−
(√

b +
√

c
)2
)(

a−
(√

b−
√

c
)2
)

(2.22)

and θ(s, ma, mb) is the Heaviside step function.
CPT invariance allows to relate the 2 by 2 scattering described above (the
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Figure 2.2: Sketch of imaginary part of a single channel ampli-
tude in the complex s-plane. Solid dots on unphysical sheet
show allowed positions for resonance poles, the cross on the
physical sheet the position for a bound state. The red solid line
denotes the physical axis (shifted into the physical sheet). The
two sheets are connected smoothly along their discontinuities.

Taken from review on resonances in [43].

so called s-channel) to other processes via replacing particles with momentum
p with antiparticles with momentum −p

φ1(p1) + φ3(−p3)→ φ2(−p2) + φ4(p4),

φ1(p1) + φ4(−p4)→ φ3(−p3) + φ2(p2),
(2.23)

which are called t-channel and u-channel respectively. The corresponding
Mandelstam variables are related as well. The Mandelstam variables st, tt,
and ut of the t-channel process are given by

st = (p1 − p3)
2 = t,

tt = (p1 + p2)
2 = s,

ut = (p1 − p4)
2 = u.

(2.24)

This behaviour is called crossing symmetry. The s, t, and u-channels are all
described by the same amplitude T(s, t, u), just in different regions of the
(s, t− u)-plane.

Because of energy conservation the right hand side of eq. 2.14 only eval-
uates to non-zero values above the energy threshold for the initial and final
state particles. In the two-body scattering case this corresponds to

s > max{(m1 + m2)
2, (m3 + m4)

2} = sthr. (2.25)

The effect of the onset of an imaginary part is shown in Fig. 2.2.
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Above sthr the scattering amplitude has an imaginary part from eq. 2.14.
The point sthr is called a branch point, because the two solutions of the root
function in eq. 2.21 branch off from this point, while below there is only one
solution. The two solutions correspond to a so-called right-hand cut along
the real axis of the complex s-plane [21], which separates the two solutions
of the root function. It is called right-hand, because it starts at a finite value
sthr and extends to +∞. The two solutions define two Riemann surfaces in
the complex plane, which are called physical sheet and unphysical sheet.
Branch points appear, whenever a channel opens up. This means that at each
threshold for massive particles, the number of Riemann sheets doubles [21].

Due to the crossing symmetry, channel openings in the crossed channels t
and u also introduce cuts, e.g. for

t > max{(m1 + m3)
2, (m2 + m4)

2} = tthr. (2.26)

the t-channel gets imaginary contributions (see eq. 2.24). This leads to a so-
called left-hand cut in the s-channel, because this channel is only kinematically
allowed for large values of t and kinematically large values of t coincide with
low values of s. The physical region for s-channel interactions therefore
corresponds to the region, where the amplitude has a right hand cut, while
the physical region for t-channel interactions lies, where the s-channel has a
right-hand cut. This is illustrated in Fig. 2.3

Bound states of the interaction are defined as poles, which lie on the physi-
cal axis below sthr, while resonances are defined as poles on the unphysical
sheet (see Fig. 2.2, noting that the physical axis does not extend below sthr in
the unphysical sheet.) [21].

Using Sba = δba + 2i fba, where fba = tba
` (s)/σ(s, ma, mb) (the index ` was

dropped for convenience here) one can use the unitarity of the S-matrix to get

fbb = (η exp(2iδb)− 1)/2i, (2.27)

where δb denotes the phase shift for scattering of channel b to b, and η the
elasticity parameter (also called inelasticity) [21]. For η = 1, the scattering is
purely elastic, while in general 0 ≤ η ≤ 1. The trajectory of fbb for varying s is
displayed in a so-called Argand plot (see Fig. 2.3 on the right for an example).

Often the scattering amplitude T is decomposed into two parts. One which
contains all the poles, called Tpole, and Tbg, the background part, which does
not contain any poles.
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Figure 2.3: Left: Sketch of Mandelstam plane for an arbitrary
scattering process. The shaded regions are the physically al-
lowed regions for interactions. Since one of the particles is
heavy enough to decay to the three others, a decay region is also
included. Taken from [1]. Right: Argand plot showing diagonal
element of partial-wave amplitude as function of energy. For
elastic processes, the trajectory follows the unit circle, but leaves
it as soon as inelasticity sets in and η < 1, e.g. at a threshold,
where an additional decay channel opens up. Taken from [21].

T = Tbg + Tpole. (2.28)

This choice is not unique, but the position of the poles in the complex s-plane
is independent of it. One usually assumes that Tbg is unitary and that its
phase motion is much smaller than that of Tpole.

The poles are defined through their mass MR and width ΓR as

√
sR = MR ± iΓR/2. (2.29)

Note that these values generally do not correspond to the mass and width
parameters M0 and Γ0 of the Breit-Wigner parametrization of resonances
introduced in Sec. 2.4.1.

For N resonances in a particular channel the pole part can be written in
the general form

Tpole
f i (s) = Ω f (s)

[
1−VR(s)Σ(s)

]−1

f c
VR

ci (s)Ωi(s), (2.30)

where Ωi, Σ(s)ij and VR
ij (s) are matrices in channel space. Ωi is the normalized

vertex function and Σ(s)ij corresponds to the self-energy. The resonance
scattering kernel VR

ij (s) is defined as



2.4. Dispersion Theory 17

VR
f i(s) = −

N

∑
n=1

gn f gn i

s−M2
n

, (2.31)

where gna denotes the coupling of resonance Rn to channel a and Mn is its
mass parameter (not necessarily the real part of the pole position).

From the experimental point of view the coupling to a channel f of a
resonance produced in channel i is defined via the residue R f i of the corre-
sponding pole, which can be calculated from a contour integral around that
pole in the transition amplitude

R f i =
1

2πi

∮
dsT f i. (2.32)

It can be corrected for the coupling to the production channel i via defining
the pole coupling

g̃ f = R
f i/
√
Rii. (2.33)

Using g̃ f a partial width can be defined as

Γ f =
|g̃ f |

2

MR
σf (M2

R), (2.34)

where σ is the phase space of the channel f [43].
The pole positions and their pole couplings are process independent and

fully describe a resonance. Process independence means here, that these
values are the same for a given resonance, independent, whether they are
measured in a channel a or a channel b, via a scattering experiment or in a
particle decay.

The physical quantities of interest for amplitude analyses for hadron spec-
troscopy are therefore the pole parameters. In order to extract the correct
values for these, a solution for S needs to be found, which fulfils unitarity
and analyticity and describes the data, which is measured on the real axis.
Then the pole positions and their residues are determined by analytic continu-
ation of the amplitudes measured on the physical sheet, to the corresponding
unphysical sheet, where the the pole lies.4

4This last step is beyond the scope of this thesis and. More on this can be found e.g. in [38].
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2.4.1 Breit-Wigner Model

Unfortunately, fully model-independent dispersive approaches can not be
used for all energy regions and processes, e.g. with the onset of inelasticities
at high energies, an explicit model needs to be introduced to describe them
effectively.

All phenomena, which cannot be described purely dispersively, therefore
need to be modelled with some assumptions. One popular simplification is
the Breit-Wigner parametrisation. In the following its derivation is shown.
Afterwards it is explained, why this parametrisation in general does not fulfil
the unitarity requirement on amplitudes and cannot be used to extract pole
parameters or couplings, unless the corresponding pole is well separated from
other poles and thresholds.

For a single resonance eq. 2.30 can be simplified to [43]

Tpole
ba (s) = Ωb(s)

gbga

s− T̂R(s)2 + i
√

sΓR(s)tot

Ωa(s), (2.35)

with mass function T̂R(s) = M2 + ∑c g2
c<(Σc(s)), where the sum runs over all

channels c. The total width is related to the imaginary part of the self energy
via

ΓR(s)tot = ∑
c

ΓR
c (s) (2.36)

with

ΓR
c (s) =

(2π)4

2
√

s
g2

c Disc Σc(s), (2.37)

and the discontinuity of the self energy

Disc Σa(s) = [Σa(s)− Σ∗a(s)] = 2i ∑
c

σc(s)Ω
∗
ca(s)Ωca(s). (2.38)

If all relevant thresholds are far away from the observed mass region
(2(M2 − sthr) � ΓR

tot), then ΓR(s)tot ≈ Γ0 can be considered constant. In
this case also <(Σ) is constant and T̂R can be replaced with M0 [43]. For
narrow resonances also

√
s ≈ M0 can be used, which simplifies eq. 2.35 to the

Breit-Wigner parametrisation

Tpole
ba = − gb ga

s−M2
0 + iM0Γ0

. (2.39)

This description contains an additional simplification: For Tbg = 0, the vertex
functions can be written as
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Ωa(s) = p`a
a F`a

(pa, p0), (2.40)

where pa is the momentum of one of the particles in state a in their cms and `a

is the angular momentum of the particles in channel a. Usually F`a
is included

in form of the Blatt-Weisskopf phenomenological form factor [44], which
depends also on an intrinsic scale p0, which could be the value of pa at M0

for Breit-Wigner parametrisations. The form factors scale with p−`a
a for large

energies. This counteracts the contribution of the threshold terms p`a
a to the

amplitude, which diverge for large energies, making the combined amplitude
normalisable.

In eq. 2.39 an ` = 0 (S-wave) partial wave is assumed, which reduces the
vertex functions to Ωa(s) = 1.

Only if all these conditions are met, the parameters M0 and Γ0 of eq. 2.39
correspond to the pole parameters MR and ΓR.

Even if only one resonance is present in the studied partial wave, its
parameters can be different from the real pole parameters, if it lies too close to
a threshold, where additional coupling channels open up. Depending on the
coupling strength to the opening channel, the width can change drastically at
the threshold. In that case the width parameter is energy-dependent and has
to be described with eq. 2.36. This is done for the so-called Flatté amplitude
introduced in Sec. 5.5, which is able to describe the f0(980) shape correctly,
even though this resonance lies in the direct vicinity of the KK̄ threshold.

The sum of two Breit-Wigner amplitudes is generally not an adequate
description of two resonances, if they are not well separated: Consider a
single channel with two poles, that are supposed to be described with two
Breit-Wigner amplitudes from eq. 2.39

T(s) = − g̃1

s−M2
1 + iM1Γ1

− g̃2

s−M2
2 + iM2Γ2

. (2.41)

A mass dependence of the width Γ(s) does not change the outcome, but is
left out for simplicity. Setting i to f in eq. 2.20 results in the two-body version
of the optical theorem from eq. 2.15

= T = σ|T|2, (2.42)

where σ is the two-body phase space defined in eq. 2.21. This results directly
from the unitarity condition on the S-matrix. If it is not fulfilled, this means
the unitarity condition is violated. Using now eq. 2.41 one can rewrite the left
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side of eq. 2.42 to

= T =
g̃2

1Γ1M1

(s−M2
1)

2 + iM2
1Γ2

1
+

g̃2
2Γ2M2

(s−M2
2)

2 + iM2
2Γ2

2
. (2.43)

Using eq. 2.34 the right side of eq.2.42 can be evaluated to

|T|2 =
g̃2

1Γ1M1

(s−M2
1)

2 + iM2
1Γ2

1
+

g̃2
2Γ2M2

(s−M2
2)

2 + iM2
2Γ2

2

+ 2σRe

[
g̃1

s−M2
1 + iM1Γ1

g̃2

s−M2
2 + iM2Γ2

]
.

(2.44)

Eq. 2.42 holds only (and therefore unitarity is only conserved), when the
interference term is zero. This is only the case, if the two resonances are
sufficiently narrow and separated so that they have no significant overlap.
But this is e.g. not the case for the f0(980) and f0(1500) resonances observed
in the decay B0

s→ ψ(2S)π+π−.
It might still be possible to describe the experimental data with high

precision using sums of overlapping Breit-Wigner amplitudes, even if not all
conditions above are met. But due to unitarity violation, the corresponding
Breit-Wigner parameters are process dependent, which means that, while they
are able to describe one process, they cannot be used to adequately describe
a different process. A Breit-Wigner parametrisation of a resonance extracted
from a decay measurement is then not be suitable to adequately describe
the same resonance in a scattering experiment. This is different for the pole
parameters of resonances, which are fixed values on the complex s-plane,
independent of the involved processes.

2.4.2 Bonn-Jülich Model

The Flatté parametrisation of the f0(980) describes the dipion spectrum at
the KK̄ threshold correctly. If the studied mass region is extended to higher
values though, the presence of further, overlapping S-wave states, mostly the
f0(1500), results in a combined amplitude, which does not fulfil the analyticity
and unitarity requirements. Ultimately this means that the extracted pole
positions from the fit are not universal and are process-dependent. Also the
couplings, fit fractions and relative phases are not reliable, even if the fit can
describe the data well.
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This calls for a more sophisticated approach to describe the dipion spec-
trum beyond the KK̄ threshold correctly. The presented analysis tests a specific
model for the scalar dipion S-wave component in B0

s→ ψ(2S)π+π−, which
was described in [1, 45, 46]. The model was implemented into the analysis
of B0

s→ ψ(2S)π+π− in close collaboration with the authors of these publica-
tions.

The model provides a robust, process independent parametrisation of
the isoscalar S-wave of the dipion system. Its parameters were determined
from low-energy pion-pion scattering data and data from B0

s→ J/ψ π+π− and
B0

s→ J/ψ K+K− decays (note that here the 1S charmonium state and not the
2S state was used). The model can be used to describe the dipion S-wave
spectrum in other decay processes, where a direct determination of the dipion
S-wave component would increase the uncertainties on the actual parameters
of interest. An example would be measurements of time-dependent CP vio-
lating phase differences, where the uncertainty of the model of the hadronic
interactions can make up a large fraction of the total systematic uncertainty.
These analyses sometimes use simple models for the parametrisation of the
S-wave component, which do not obey unitarity and analyticity constraints.
As shown in Sec. 2.4.1, these parametrisations are process-dependent and can
therefore not easily be transferred from one measurement to another. Conse-
quently, the description of the strong phase motion of the amplitude is not
necessarily determined correctly by this approach either. Several solutions
might exist for naive parametrisations. Since the extracted CP violating pa-
rameters depend on both strong and weak phases, the large uncertainty on
the strong phase motions directly degrades the accuracy of the measurement
of the CP violating parameters.

One such case is the decay B0
s→ J/ψ π+π−, where two S-wave resonances

f0(980) and f0(1500) were found to overlap significantly in the dipion spec-
trum [47]. A process-independent description of the dipion S-wave com-
ponent could be used as external input to the amplitude fit and reduce the
uncertainty on the extracted CP parameters.

In the following only the main points of the method are touched upon; fur-
ther information can be found in [1, 45, 46] and a more thorough introduction
is given in [39].

The method builds upon precise measurements available for the low-
energy scattering behaviour of light mesons, which has been measured ex-
perimentally over the last decades. These measurements were implemented
into an S-matrix description in a fully model-independent, dispersive way.
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This scattering amplitude is able to describe the ππ scattering data excellently
up to energies of 1 GeV, including the non-Breit-Wigner shapes of the f0(500)
and the f0(980) resonances. Above this value additional inelastic channels
open up making a model-dependent approach necessary. Since couplings
of the additional channels are dominated by resonances, this high-energy
part is described via resonance exchange [48]. It is known from scattering
experiments that 3 channels are open and coupling to the resonances: ππ,
KK, and ππππ, where the latter is modelled via either ρρ or σσ resonance
exchange.

The scattering matrix is modelled with a recursive Bethe-Salpeter equation
[49], which correctly implements unitarity and analyticity

Ti f = Vi f + VimGmmTm f , (2.45)

where Vi f is the scattering kernel of the channel i into channel f . Multiply oc-
curring indices are being summed over. G is the diagonal loop operator, which
describes the free propagation of the particles in channel m ∈ {ππ, KK, 4π}.
The finite width of ρρ and σσ are taken care of with an effective description in
the propagator. More details on this can be found in [39].

The two-potential decomposition introduced in eq. 2.28 is used to separate
the well-described low-energy part of the scattering amplitude, which is taken
as external input, from the high-energy part, which is dominated by resonance
exchange [48]. This is achieved via splitting the scattering kernel V = V0 + VR

and the scattering matrix T = T0 + TR. The term V0 is fixed from the external
input from the low-energy part including the effects of the f0(980) resonance,
while heavier resonances enter the amplitude via VR.

Since V0 cannot be assumed constant (in contrast to the case for the
derivation for the Breit-Wigner amplitude in eq. 2.39), the vertex function
Ω = 1 + T0G is introduced, which can be identified as an Omnes matrix and
dispersively calculated [38].

The full solution for the scattering matrix can be found from eq. 2.45 [39]

T(s) = T0 + Ω[1−VRΣ]−1VRΩt, (2.46)

where Σ is the self-energy matrix Σ = GΩ with a discontinuity

disc Σij(s) = 2iΩ†
im(s)disc Gmm(s)Ωmj(s). (2.47)
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It is possible to write Σ as once-subtracted dispersion integral [39]

Σij(s) = Σij(0) +
s
π

∫ dz
z

disc Σij(z)
z− s− iε

, (2.48)

The subtraction constants Σij(0) are an artefact of so-called subtractions, which
divide the amplitude Σij(z) by a polynomial of order n Pn(z), if the simple
dispersion integral diverges. The polynomial does not contain any disconti-
nuities, which means that the analytic structure of

g(z) = Σij(z)/Pn(z), (2.49)

is the same as that of the original Σij(z). The subtraction constants contain
information about the low-energy regime, which cannot be constrained by the
dispersion integral. In the case of the Bonn-Jülich model they are absorbed
into VR in eq. 2.46 [39].

After some algebra, eq. 2.48 can be used to calculate the form factors for
the three channels

Γs
i = Ωim[1−VRΣ]−1

mnMn (2.50)

VR does not have a strong impact for low energies, where the dispersive
results contained in T0 (which itself contributes to Ωim(z) and Σij(z)) describe
the data very well. This is why the subtraction constant in eq. 2.48 can be
absorbed into VR leading to

(VR)ij = ∑
R

gR
i

s

m2
R(m

2
R − s)

gR
j , (2.51)

where the subtraction constants were already absorbed into T0 in eq. 2.46. The
sum runs over the additional resonances above the f0(980).

The bare resonance-channel couplings gR
i and bare resonance masses mR

are free parameters, which need to be determined from data. They do not
coincide with the physical values for couplings and masses, but they were
related with each other in [39] via the method of Padé approximants [50–52].

The transition matrix Mi from source to channel i uses the following
parametrisation in [39]

Mi = ci + lis + ...−∑
R

gR
i

s

m2
R − s

αR. (2.52)

The bare masses and resonance-channel couplings are the same as in eq. 2.51.
The Mi and therefore the form factors Γi are fixed up to a real polynomial in s,
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where the 0th order are the ci, which are the normalisations of the contributing
form factors at s = 0. Its 1st order is denoted by the li. They are not constrained
by theory considerations, but in practice these linear coefficients turn out to be
small. The real parameters αR denote the resonance-source couplings, where
R are the high-energy resonances.

The analysis in [1, 39] determined the form factors from eq. 2.50 and
the physical couplings and pole parameters in a fit to B0

s→ J/ψ π+π− and
B0

s→ J/ψ K+K− data from LHCb. They use one source (B0
s ) and the three

channels defined above (ππ, KK, and 4π). Two high-energy resonances were
found to be sufficient to describe the data. Their poles were determined and
identified with the f0(1500) and the f0(2020) resonances.

The full dipion form factor is the sum of the three factors described in
eq. 2.50 and can be be rewritten to separate the the external inputs more clearly
from the process-dependent parameters:

Fπ(s) = ∑
i=ππ,KK,4π

F̃i(s)(ci + lis) + ∑
R= f0(1500), f0(2020)

F̄R(s)αR, (2.53)

where

F̄R(s) = F̃i(s)gR
i

s

m2
R − s

(2.54)

and F̃i(s) corresponds to the remaining terms of Γs
i from eq. 2.50.

Since the weak decay of B0
s→ ψ(2S)π+π− contains to leading order a

pure pure ss source (see Fig. 2.4) cπ and c4π are negligibly small and only cK

is non-zero. The value of ck is process-dependent and can therefore not be
transferred to different processes. The same is true for the parameters αR and
li. All other parameters of the model, including the bare masses and couplings
of eq. 2.54 can be simply taken from the high-statistics results in [1].

The only process-dependent parameters in this model are therefore real
and linear. This means that the shape and phase motion of the S-wave is fully
fixed by the Bonn-Jülich model and only the relative contributions of the base
functions F̃i(s) and F̄R(s) need to be fitted, if it is applied in a different pro-
cess. This is an advantage over a parametrisation with sums of Breit-Wigner
amplitudes, where phases and shape parameters need to be determined for
every process separately.

The corresponding line-shape in s = M2
π+π− is then given by

R(M2
π+π−) = pψmBFπ(M2

π+π−), (2.55)
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with pψ being the ψ(2S) momentum in the B0
s rest frame, and mB the B0

s mass.
This analysis tests the Bonn-Jülich approach by fitting eq. 2.53 to the S-

wave in the decay B0
s→ ψ(2S)π+π−.

2.5 The Decay B0
s→ ψ(2S)π

+
π
−

The phenomena and methods described in the previous sections were tailored
to the properties of the signal decay of this analysis, B0

s→ ψ(2S)π+π−. The
two-pion system in the final state almost always has angular momentum
` = 0 and positive parity, which only allows scalar intermediate hadronic
resonances in the decay. These can be studied here without background from
pseudoscalar or vector states. In addition, the exotic tetraquark candidate
Z(4430)± could couple to the ψ(2S)π± systems in this channel.

The branching ratio of B0
s→ ψ(2S)π+π− has already been measured to

B = (6.87± 0.81± 0.65± 0.39)× 10−5 in [53], where the uncertainties are
statistical, systematic and due to the normalisation. The latter includes both
the uncertainty due to fs/ fd (the ratio of B0

s mesons over B0 mesons produced
inside the LHCb acceptance), and due to the branching fraction of the nor-
malisation channel. The subsequent decay of ψ(2S) into two muons has a
branching ratio of B = (0.77 ± 0.08)% [21]. The leading order Feynman

b

s s

s

c
c

W
B0

s ⇒
intermediate

hadronic
state

⇒ π−π+

ψ(2S)

Vcs
∗Vcb

Figure 2.4: Leading Order Feynman diagram of the process
B0

s→ ψ(2S)π+π−.

diagram of B0
s→ ψ(2S)π+π− is shown in Fig. 2.4. The b quark in the initial

state transforms via the weak charged-current introduced in eq. 2.1 into a cc,
(which then form a ψ(2S) resonance) and an s quark, which pairs up with
the s spectator quark. This ss configuration cannot directly form two pions
(their production would be OZI suppressed [54, 55]). Instead they form an
intermediate hadronic state, which then strongly decays into two charged
pions. However, due to symmetry considerations only specific states are
possible:
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Because the ss pair does not contain u and d quarks, it is in an isospin
singlet configuration with I = 0. Isospin is conserved in strong interactions
(only broken by the current quark masses of u and d), so the isospin of the
intermediate state needs to be 0 as well. Under isospin the three pion states
π+, π0 and π− form a triplet with I = 1 and I3 = 1(π+), 0(π0),−1)(π−). All
strong interactions are therefore invariant under rotations in isospin space
(e.g. replacing a π+ with a π−).

Another symmetry that is conserved in the strong interaction is parity. In
this case the parity of the hadronic state has to match that of the two-pion
system

P(π+π−) = (−1)`π P(π+)P(π−) = (−1)`π , (2.56)

since the parity of pions is −1. `π is the relative angular momentum between
the two pions. Since the two pions are spinless, `π has to match the spin J of
the intermediate hadronic state to conserve angular momentum.

The full wave-function of the two-pion system is

ψ = φisospinηspace, (2.57)

and the symmetry of the spatial wave-function ηspace corresponds to the parity
of the system. From eq. 2.56 one sees that it is determined from `. For even `π,
ηspace is symmetric, otherwise it is antisymmetric.

The only relevant interaction in the decays of the intermediate hadronic
states is the strong interaction, which conserves isospin. The two pions can
therefore be considered indistinguishable and, because they are bosons, their
combined wave-function ψ needs to be symmetric under exchange of the two.

The isospin wave-function φisospin is symmetric (antisymmetric), if I is
even (uneven). Because I = 0 in the initial state and isospin is conserved in
strong interactions, φisospin is symmetric. This only leaves a positive parity for
the hadronic state, which is only possible for even `π = J.

In summary, only states with JP = 0+, 2+, 4+,... are allowed due to the
symmetry constraints of the strong interaction.

This scheme applies to the decay B0
s→ J/ψ π+π− as well: It has the same

leading order Feynman diagram as B0
s→ ψ(2S)π+π−, only the cc form a

different charmonium resonance. Its π+π− spectrum is therefore expected
to consist of the same partial waves and the same resonances should occur
there. Its resonance content was established in a previous analysis [56] to be
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f0(980), f0(1500), f0(2020)5, f2(1270), and f2(1525). They all belong to the
allowed JP assignments derived above and are expected to contribute to the
decay B0

s→ ψ(2S)π+π− as well.

2.6 Exotic Hadronic Resonances

Apart from the configurations introduced in Sec. 2.3.1 (baryons and mesons),
QCD in principal also allows for hadrons that are built from different con-
stituents. Since these configurations could not be established in experiments
for decades, they are called "exotic" nowadays. The review on non-qq mesons
and the review on pentaquarks in [21] give a detailed overview of the current
status, while here only some aspects are introduced.

Since gluons can couple not only to quarks, but also to themselves, a bound
state formed purely from excited gluons, a so-called glueball, should be possi-
ble. The f0(1500) state that is observed in the studied decay B0

s→ ψ(2S)π+π−

is actually a long-standing candidate for a glueball configuration [57]. Also
configurations, where an excited gluonic component forms a bound state with
a qq pair is possible. In this case, the quantum numbers of the combined state
can have different values than for a classical meson.

As long as the states are colour singlets, it is also possible to combine more
than qq or qqq into a hadron. This allows for qqqq states, which can either form
compact diquark-diantiquark states (tetraquarks), or molecules, where two
mesons are bound together. A first confirmed example of this species is the
χc(3872), which was first observed by the Belle collaboration in 2003 [58] and
whose quantum numbers were later established by the LHCb collaboration to
be 1++ [59]. Its exotic quark content is determined from its mass and decay
properties, that cannot be explained with conventional quark configurations.

For baryons the exotic combination qqqqq has been observed in the form of
the pentaquark states decaying into J/ψ p in the Λ0

b→ J/ψ pK− channel by the
LHCb experiment in 2015 [11, 60]. Since the pentaquark states are electrically
charged, but also decay strongly to charmonia, their quark content has to be
ccuud.

5The other I = 0, JP = 0+ state f0(500) (the sigma meson mentioned in Sec. 2.3.1) has a
negligible ss content and therefore does not contribute significantly to that decay.
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2.6.1 Z(4430)+

The Z(4430)+ state is another tetraquark candidate, which has first been
observed by the Belle collaboration in the ψ(2S)π+ mass spectrum of
B0→ ψ(2S)K+π− decays [61, 62] and was later confirmed and its quantum
numbers measured to 1+ by the LHCb collaboration [63–65]. Due to its large
width of 172 MeV (see Fig. 2.5 left) and electric charge, it is considered a
smoking gun signal for a state with quark content ccud. Its measured phase
motion is shown to be compatible with a Breit-Wigner resonance on the right
side of Fig. 2.5, which further substantiates its resonant character. A simple
Breit-Wigner parametrisation creates a circle in the Argand diagram, since
it does not account for any inelasticities (see the introduction of the Argand
diagram in Sec. 2.4).
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Figure 2.5: Left: m2
ψπ+ distribution of B0→ ψ(2S)K+π− data

from LHCb Run I data inside m2
K−π+ mass range, where no

strong K∗0 contribution is expected. The green (red) curve is
the projection of a 4-dimensional amplitude fit to the data in-
cluding the known K∗ resonances and one (two) additional Z−

resonances. The blue curves show the Z− contributions from
the fit with two additional resonances, where the high-mass one
corresponds to the Z(4430)+. Taken from [63]. Right: Argand
diagram of the fitted values of Z(4430)+ amplitude in six bins of
M(ψ(2S)π) increasing counter-clockwise shown as connected
error bars. Breit-Wigner prediction for masses and widths as
extracted for the Z(4430)+ shown as red circle. Taken from [63].

Its interpretations range from hadrocharmonium (cc core with ud "shell")
to a D1D∗ molecule or compact tetraquark. Another approach explains it with
a non-resonant cross-channel effect of triangle singularities from open charm
states [66] or a triangle with K∗π+ and Y(4260) (see Fig. 2.6 left) [67].

Triangle singularities occur in a reaction, if all three intermediate particles
are on-shell. Even though the shape and phase motion of the corresponding
amplitude can mimic that of a resonance (see Fig. 2.6 right), in the triangle
scenario the observed peak in the ψ(2S)π+ mass would not correspond to a
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genuine resonance, but a kinematic effect: While real resonances are related
to poles of the S-matrix, the singularity from a triangle diagram is logarithmic
[68]. By definition it is therefore only a kinematic effect and not a genuine
resonance. More on resonances can be found in Sec. 2.4.

Figure 2.6: Left: Triangle diagram generating a singular-
ity, which could be responsible for the observed shape
and phase motion of the tetraquark candidate Z(4430)+ in
B0→ ψ(2S)K+π−. Taken from [67]. Right: Argand diagram
of triangle singularity from [67]. The points with error bars cor-
respond to the phase motion measure by the LHCb collaboration
in [63]. The coloured lines show the phase motion of the triangle
singularity through the ψ(2S)π+ mass. The full dots show the
average values of the line segment of the same colour. Taken

from [67].

The triangle singularities are very sensitive to the masses of the interme-
diate states in the triangle and also rely on strong couplings between the
intermediate and outgoing states. The diagram in Fig. 2.6 does not correspond
to a usual Feynman diagram, it merely depicts the effective hadronic inter-
actions taking place. It merely depicts a rescattering process, where the B0

decays into a K∗ and Y(4260), which then decay further, K∗0→ K−π+ and
Y(4260)→ ψ(2S)π+π− exchanging one pion between them. The masses of
the involved particles make it possible that all intermediate particles are on-
shell, which leads to a logarithmic singularity in the scattering amplitude. The
size of this effect depends on the values of the couplings at each vertex though.
Their values are not well constrained currently, which makes it impossible to
predict the effect size accurately.

Since this kinematical singularity only occurs for this process, where the
masses have exactly the correct values, the triangle hypothesis can be tested by
searching for a peak in the ψ(2S)π+ spectrum in other channels and processes,
where no triangle singularity can occur.

This is the case in B0
s→ ψ(2S)π+π−, since there is no K− in the final

state and K∗ does not couple to π+π−. Exchanging the K− and π+ in the



30 Chapter 2. Theoretical Background

diagram of Fig. 2.6 does not work either, since the Y(4260) does not couple to
ψ(2S)K−π+. Even if other triangle diagrams with different intermediate states
were possible, the shape in the ψ(2S)π+ spectrum would not coincide with the
one in B0→ ψ(2S)K+π−. An observation of Z(4430)+ in B0

s→ ψ(2S)π+π−

would therefore be a strong sign against the triangle interpretation and in
favour of a genuine resonant state.

A non-observation of the Z(4430)+ in the decay B0
s→ ψ(2S)π+π− on

the other hand could not exclude a particular model, because the necessary
hadronisation of the ss into an isoscalar resonance (see Fig. 2.4 in Sec. 2.5) could
also suppress the coupling to the Z(4430)+. Figuratively the π+ and the ψ(2S)
can only form a resonance after the hadronic intermediate state formed from
the ss source has decayed into two pions. Before that the necessary valence
quark content for the Z(4430)+ is just not available. A re-scattering into
π− + Z(4430)+ could then be suppressed significantly with respect to the
conventional ψ(2S) + isoscalar modes and it would be hard to detect given
the current data sample size.

Due to the complicated production process, no explicit predictions exist
for the expected fractions of Z(4430)+ in B0

s→ ψ(2S)π+π− so far for the
molecular or tetraquark models. There are ongoing efforts on the theory side
though, which should result in publications on the expected fraction in the
near future.
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3 The LHCb experiment

This chapter introduces the LHCb detector at the Large Hadron Collider (LHC)
located at the research facility CERN. In Sec. 3.1 the proton collider ring is
introduced, while the LHCb detector and its subcomponents are described in
Sec. 3.2. The chapter focuses on the components relevant for the analysis of
the B mesons that are studied in this work.

3.1 The LHC Machine

The LHC is the most powerful proton collider ring to date with a circum-
ference of 27 km located 50 to 175 m underground in the Geneva area. It
receives protons with energies of 450 GeV from the SPS pre-accelerator and
accelerates them to up to 6.5 TeV, while bending them inside the ring using
1232 superconducting dipole magnets. The protons are travelling in (up to)
2× 2808 bunches with 1.15× 1011 particles each, one half travelling clockwise,
the other counter-clockwise in the ring. They can collide in 4 interaction
regions, where detectors are situated in order to measure the particles that
were produced in the collisions [69].

The ATLAS [70], CMS [71], ALICE [72] and LHCb [73] experiments are
located directly around these interaction points, while other, smaller experi-
ments lie further away from them (LHCf [74], MOEDAL [75], TOTEM [76],
FASER [77]). These specialised experiments try to measure those particles,
that were produced almost collinear with the beam or those hypothetical,
weakly interacting particles, which only decay after a certain distance into
particles that can actually interact with the detector.

The machine is also used to accelerate bunches of lead ions to collide them
with either protons or other lead ions.

The collider is currently upgraded and will resume collisions in 2022 with
an increased luminosity and a possible increase in proton energy to 7 TeV.
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3.2 The LHCb Detector

The LHCb detector is a single arm forward spectrometer specifically designed
to reconstruct decays of hadrons with heavy quarks with a high precision [73].
At the pp collision energies of the LHC these particles are mainly produced
via gluon-gluon fusion, where the two gluons usually carry largely different
fractions of the proton momentum. Due to this asymmetry the newly formed
particles are usually boosted along the beam direction. The LHCb detector is
therefore built to cover exactly this region. A quarter of the bb pairs created
in the interaction are produced within its acceptance of 1.8 < η < 4.9, which
only corresponds to 4 % of solid angle.

Fig. 3.1 shows a schematic of the detector. Even though it covers a small
solid angle, it follows the structure of general purpose particle detectors: A
vertex detector sits around the interaction region of the beams to reconstruct
the interaction vertex via the tracks of charged particles produced in the
collision (VELO). These fly further into the detector, where they are bent hori-
zontally with a strong magnet. Their paths are reconstructed with tracking
detectors (TT, T1-T3) and from the kink they get from the magnetic field, their
momenta are inferred. The particle hypotheses of the tracks are determined
with Cherenkov detectors (RICH1, RICH2). Further outside are the electro-
magnetic calorimeter (ECAL), which measures the energy of electrons and
photons (stopping photons and electrons in the process), then the hadronic
calorimeter, which measures the energy of all hadronically interacting parti-
cles (HCAL), which were not stopped in the ECAL. The remaining particles
behind the calorimeters are then neutrinos and muons. The former have
negligible interaction probability with the detector and traverse it unseen. The
latter are measured with dedicated muon chambers (M1-M5).

In each proton-proton collision at
√

s = 13 TeV hundreds of charged
particles are produced inside the LHCb acceptance. With the maximum
luminosity the LHC can provide, tens of collisions take place at each bunch
crossing. The resulting flux of particles would lead to large occupancies in the
detector components and degrade the performance of the track reconstruction.
The instantaneous luminosity L in the LHCb interaction region is therefore 20
times lower than the maximum luminosity the LHC can achieve. This reduces
the average number of simultaneous interactions at each bunch crossing to
approximately 1.6 in typical running conditions.

The reduced L has an additional advantage: During the≈12 h that the pro-
ton bunches circulate in the LHC, the peak L decreases, because the bunches
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Figure 3.1: Schematic of the LHCb detector. Taken from [78].

become smaller and their shape gets distorted from the repeated interactions.
A detector measuring at peak L has therefore a large occupancy at the begin-
ning of fills, when freshly prepared bunches circulate in the LHC, and a much
lower towards the end. With the reduced instantaneous luminosity in the
LHCb interaction region, it is possible to keep the measurement conditions
constant throughout the full fill, which makes the data easier to calibrate.

3.2.1 Vertexing and Tracking Detectors

B-mesons have a lifetime of around 10−12s before they decay weakly. Due
to their large boost inside the LHCb acceptance, this means that most of
them travel a measurable distance of a few mm inside the detector. Since
lifetime measurements are a core part of the physics programme at LHCb,
the distance between the primary vertex and the secondary vertex (where the
B-meson decayed) need to be determined very precisely. The decay time of
the B-meson can then be determined from the measured flight distance and
the reconstructed 4-momentum.

The VELO depicted in Fig. 3.2 is a silicon detector in R − φ geometry
installed in 2× 21 half-circle segments around the interaction point. Charged
particles flying through silicon detectors create electron-hole pairs, which
are amplified and read out. Since the position of each detector channel is
known, the flight path of each particle can be reconstructed from the channels
that measured a signal. After the beam is ramped up to the full energy and
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Figure 3.2: Schematic of the VELO detector. Taken from [73].

stable, the segments are moved within 8 mm of the beam lines in a staggered
configuration to measure the trajectory of the charged particles close to the
primary vertex (PV) and decay vertices. The sensors are 220 µm thin to
reduce scattering inside the detector material, which would deteriorate the
momentum measurement.

The spatial resolution on the measurement of the PV transverse (parallel)
to the beam direction varies from 35 (270)µm for interactions with 5 tracks to
10 (60)µm for those with 40 tracks. The resolution in beam-direction is worse,
because the detector layout makes it insensitive to particles emitted under a
large angle relative to the beam direction.

The Silicon Tracker (ST) consists of the Tracker Turicensis (TT) and the
Inner Tracker (IT). Their sensors use the same silicon microstrip technology
to reconstruct track stubs near the beam-pipe, where the particle density is
high and a high granularity is needed. Their strips are 183µm wide and only
300µm thick to reduce multiple scattering.

The TT consists of four layers of sensors as shown in Fig. 3.3. The two
outer ones are vertically orientated, while the middle ones are tilted ±5 to
achieve resolution in the vertical direction as well. This subdetector allows to
reconstruct low-momentum tracks (pT < 2 GeV), which are bent out of the ac-
ceptance by the magnetic field, before they reach the tracking stations further
downstream. Additionally it makes reconstruction of long-lived particles like
the K0

S possible (τ = (8.954± 0.004)× 10−11s), which are boosted enough so
that a large portion of them just traverse the VELO, leaving no reconstructible
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Figure 3.3: Schematic of a TT detector layer. Taken from [73].

trace, before they decay into pions.
The last part of the tracking system consists of three tracking stations

behind the magnet shown in Fig. 3.4. Each of the stations consists of 4 layers
in the same geometry as the TT. The IT covers the inner part of these layers,
while the outer part, where particle fluxes are lower, is covered with a straw
gas tube detector called Outer Tracker (OT). It is made up from cylindrical
tubes with diameters of 4.9 mm and a concentric anode wire inside. Each
tube acts as drift tube: A high voltage is put between wire and the tube’s
inner surface. When a charged particle flies through, it produces ions and
electrons in the gas mixture, which get accelerated in the electric field. From
the electron drift time towards the anode the hit position in a circle around
the wire can be determined with a precision of 200µm and ambiguities are
resolved by combination of multiple hits.

The magnetic field for the measurement of the particle momenta is pro-
vided by a normal-conducting dipole magnet with an integrated field strength∫
~Bd~s = 4Tm bending charged particles in the horizontal plane. Inhomo-

geneities in the detector material and the magnetic field could create asym-
metries in the track reconstruction efficiency that mimic asymmetries in the
measured particle decays. To determine these artificial asymmetries, the
magnet polarity is switched regularly.

If a charged particle leaves hits in all sub-detectors of the tracking system
(LHCb jargon: Long Track) the momenta are determined using a Kalman filter
approach, which achieves a relative uncertainty between 0.5 % for momenta
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Figure 3.4: Schematic of the tracking stations with the TT in
front. Purple for the silicon detectors TT and IT, cyan for OT.

Taken from [73].

below 20 GeV and 1.0 % for momenta around 200 GeV. All tracks used in this
analysis belong to this category.

3.2.2 Particle Identification

Particle identification (PID) information is provided by several sub-detectors
at LHCb: Two Ring Imaging Cherenkov (RICH) detectors are in front and
behind the magnet. They use the Cherenkov light emitted by charged particles
that travel in a gas mixture of refractive index n with a velocity v above the
local light speed. From the the angle θc under which the photons are emitted,
the speed of the particle is calculated from

cos(θc) =
1

nv/c
, (3.1)

where c stands for the speed of light. Together with the momentum of the
corresponding track, a mass hypothesis is deduced. If the velocity is too
small, no Cherenkov light is emitted, if it is too large, the angles for different
mass hypotheses do not differ enough to be distinguishable. To provide
good separation between particle species over a large momentum range, the
refractive index in RICH1 is 1.0015 for low momentum particle separation
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Figure 3.5: Left: Schematic of the RICH1 detector. The aerogel
depicted here was only used during Run 1 of the LHC. Right:

Schematic of the RICH2 detector. Taken from [73].

with 2 GeV < p < 60 GeV, while in RICH2 n = 1.0005, which covers particles
with momenta 15 GeV < p < 100 GeV [79]. The photons are reflected by a
mirror system and detected with arrays of Pixel Hybrid Photon Detectors
(HPDs) as shown in Fig. 3.5.

The calorimetry system is used to distinguish between high-pT hadrons,
photons and electrons and to measure their energy. It consists of three parts:
The Scintillating Pad and Preshower detectors (SPD/PS), which consist of
scintillators and lead absorbers, the Electromagnetic Calorimeter (ECAL)
and the Hadronic Calorimeter (HCAL). All are segmented into regions with
higher granularity towards the beam-pipe, where the particle flux is two
orders of magnitude larger than at the outskirts of the LHCb acceptance.

The SPD is used to discriminate charged particles against photons, because
only charged particles deposit energy in it. The PS detector, which lies behind
a layer of lead that induces electromagnetic showers, uses the fact that shower
shapes for electrons and light hadrons differ.

The ECAL uses a shashlik structure of 2 mm lead and 4 mm plastic
scintillator layers corresponding to 25 radiation lengths. The scintillator
photons from electromagnetic showers are detected with photomultiplier
tubes and the shower energies are measured with a resolution of σ(E)/E =

10%/
√

E[GeV⊕ 1%.
The HCAL measures the hadronic showers of the remaining particles

using 16 mm iron layers interleaved with 4 mm of scintillators summing up
to 5.6 nuclear interaction lengths. The energy resolution for hadronic showers
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Figure 3.6: Left: Schematic of the Muon stations. Middle: Sketch
of MWPC. Right: Sketch of GEM. Taken from [73].

is σ(E)/E = 69%/
√

E/ GeV⊕ 9%.
The muon identification is done with 5 Muon Stations, one in front of

the calorimeters, the others behind. M2-M5 are separated by 80 cm thick
iron walls, which are supposed to absorb all particles, that are not minimum
ionizing muons (see Fig. 3.6 left). Additionally, M1-M3 can measure pT of
muon candidates to 20 % resolution without using the tracking system. This
forms the basis of the L0 muon trigger described in Sec. 3.2.3.

The stations are instrumented with multi-wire proportional chambers
(MWPC), where charged particles ionize the gas mixture around anode wires.
Due to high electric fields this sets off a cascade of charged particles, which
are collected on the nearest wire (see Fig. 3.6 middle). In the most central
region of M1 triple gas electron multiplier (GEM) detectors are used to cope
with the large particle flux of 500 kHz/ cm2. A GEM uses planar anode and
cathode layers with 3 separated layers of copper-clad dielectric Kapton foils
in between. Small holes are etched into the Kapton and the inside of the
detector is filled with a mixture of Argon, CO2 and CF4 (see Fig. 3.6 right).
Electrons from ionisation of the gas are accelerated by the strong fields inside
the Kapton foil leading to a localized avalanche that is amplified through the
next foils and can be read out on the anode.

3.2.3 Trigger System

The full detector cannot be read out at the 40 MHz bunch crossing rate of
the LHC. In order to select interesting events (e.g. those containing decays of
heavy quarks), a hardware trigger (L0) prompts the readout for those events
with either high transverse momentum tracks in the muon stations or tracks
that deposit large transverse energy in the calorimeters indicating decays of
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heavy hadrons, where large pT is expected. This reduces the data rate to about
1 MHz, which is analysed further in the two stages of the software trigger
HLT1 and HLT2 [80].

HLT1 performs a partial event reconstruction and selects events based on
displaced tracks and vertices, which can come from the weak decay of heavy
particles. Additionally events with dimuons are triggered, because they often
originate from heavy neutral resonances and have very little background from
misidentified pions. Since Run 2 the full detector information for these events
is buffered to 10 PB of disk space. The buffer is used to perform an online
detector calibration and alignment between LHC fills, so that in the HLT2
stage an offline-like resolution is available [80]. Here hundreds of exclusive as
well as inclusive lines are selecting e.g. prompt or detached muons or generic
n-body decays into charged particles. Its output was 3.5 kHz in Run 1 and
was extended to 12.5 kHz in Run 2. The data of this output are recorded.

3.2.4 LHCb Data Sample

The LHC operated at
√

s of 7 TeV, 8 TeV, and 13 TeV in 2011, 2012, and 2015-
2018 respectively. At these energies the LHCb experiment accumulated pp
collision data corresponding to integrated luminosities of 1 fb−1, 2 fb−1 and
6 fb−1.

The data reconstruction software is based on the GAUDI software [81],
which was developed as general purpose data processing framework for HEP
experiments. It steers all reconstruction steps that reside as individual projects
within the LHCb software.

Simulated samples for the channels B0
s→ ψ(2S)π+π− and

B0→ ψ(2S)K+π− are needed to describe the efficiency of the selection
and the effects of the detector resolution on the measured data. The
proton-proton collisions are simulated for each beam condition using
PYTHIA [82], [83]. EVTGEN [84] describes the decay of the B-mesons from the
collision, while PHOTOS [85] adds the final state radiation of the daughter
particles. GEANT4 [86], [87] describes the response of the detector to the
simulated particles, which is then digitized using BOOLE [88]. After this step
the simulated data resembles the output of the real LHCb detector and is
processed from the trigger step onwards just like real data. The simulated
data samples do not describe the data accurately in all important variables
though. In particular the overall event multiplicity is underestimated in
simulated events. In order to decrease the discrepancy between data and
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simulation, the latter is therefore weighted in the per-event track multiplicity
and the transverse momentum of the B0

s meson using data from the channel
B0→ ψ(2S)K+π−. Additional weights are applied in order to correct the
mismodelling of the tracking efficiency [89] and the PID response is corrected
with a data-driven approach [90]. After these steps simulated events can
directly be used for the estimation of efficiency and acceptance effects.
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4 Selection of B0
s→ ψ(2S)π

+
π
−

decays

This chapter describes the selection steps that were applied to the
reconstructed LHCb data (see Sec. 3.2.4) to select the signal decays
B0

s→ ψ(2S)π+π− and the decays of B0→ ψ(2S)K+π−, which serves as con-
trol channel. The absolute values for the cuts are listed in App. A.

4.1 Trigger Selection

The ψ(2S) in the signal decay B0
s→ ψ(2S)π+π− is reconstructed from its

decay into two muons, which has a branching ratio of B = (0.77± 0.08)% [21].
Even though it is much smaller than e.g. for the decay into χcγ, the final state
with just two muons is superior, because the muons leave a clean signature
in the detector, which can be easily reconstructed and distinguished from
possible backgrounds.

This muon signature is also the center of the trigger strategy. The Muon
chambers introduced in Sec. 3.2.2 can almost exclusively be reached by min-
imum ionizing muons. If they detect a particle with a large transverse mo-
mentum pT > 1.5 GeV (single muon), or two particles with at least 1.3 GeV
<
√

pT1 × pT2 (double muon), the full detector is read out. The exact values
for the thresholds were changed throughout the years depending on the LHC
running conditions and free capacity of the disk buffer.

The lifetimes of B0
s and B0 are approximately 1.5× 10−12 s each [21]. They

are produced with a large boost in beam direction, which allows them to
travel an average distance of 1-10 mm inside the VELO, before they decay.
On the other hand each proton-proton collision produces dozens of particles
in strong and electromagnetic interactions, which can decay promptly into
muons. These muons need to be filtered out in order to keep the output rate
of the detector low enough to process the events before the disk buffer fills up
(see Sec. 3.2.3). The selection exploits the different origins of the muons at the
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HLT1 stage via requiring that the muon tracks have a significant separation
from the PV.

At the HLT2 level the full reconstruction can be run and the trigger has
access to higher level features from the fits of secondary vertices. At this stage
the two muons are combined into a ψ(2S) candidate. The event is kept, if they
form a good vertex, that is well separated from the PV and if additionally the
invariant mass of the ψ(2S) candidate is within 100 MeV of the PDG average.

4.2 Cut Based Selection

In the next stage, ψ(2S) candidates are combined with two additional tracks
and the quality of the combined vertex is tested. Each of these tracks needs
to have a low probability to be constructed from a combination of random
hits in the detector. This is done with a cut on the output of a shallow neural
network1, which was trained with variables related to the quality of the track
fit. Additionally they need to be separated from the PV to avoid combinations
of randomly associated tracks coming directly from the proton-proton interac-
tion. This is accomplished with a cut on the impact parameter significance
IP

χ2 . IP is the closest distance from the track to the PV and for IP
χ2 that value

is divided by the χ2 of a fit of the PV with the track included. For tracks that
originate from the PV this ratio is typically small.

The two non-muonic tracks need to have signals in the RICH detectors and
their signatures in the detector need to be compatible with pions. Pions from
the underlying event have on average low transverse momenta, because they
are produced in strong interactions, whose cross sections decrease rapidly
for large momentum transfers (see Sec. 2.3). The final state particles of B
meson decays on the other hand have on average a larger pT due to the large
rest-mass of the B meson of around 5 GeV. This is exploited allowing only
pion candidates with pT > 200 MeV in the further selection.

The decay vertex position (secondary vertex SV) is extracted from a fit of
the intersection of the four tracks and only candidates with a good fit quality
are kept. The so-formed B meson candidate must have a momentum vector,
which agrees within 1.4◦ to the vector from the PV to the SV, and a fit for the

1A shallow network only has a few layers between input and output layers. Usually the
nodes are fully connected in this case. The term is used to distinguish them from the deep
neural networks used e.g. in image recognition or fast simulation approaches.
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intersection of the PV with the 4 signal candidate tracks must have a large
χ22. Additionally, the IP

χ2 of the B candidate is required to be small.
Its invariant mass must lie between 5150 and 5500 MeV (the PDG average

for the B0
s meson mass is 5368 MeV). The invariant mass of the B candidate

M(ψ(2S)π+π−) is not calculated directly from the 4-momenta of the final
state particles, instead the full decay chain is fitted to improve the resolution
[91]. The fit recalculates the 4-momenta of the final state tracks with external
constraints from the position of the primary vertex and secondary vertex, and
the mass hypothesis for the narrow ψ(2S).

4.3 Vetos for Physical Backgrounds

Several known B decays have a topology similar to the signal decay.
If e.g. a Kaon is misidentified as a pion K+ → π+, then the decay

B0→ ψ(2S)K+π− can be reconstructed as B0
s→ ψ(2S)π+π−. Both decays

have similar branching ratios, but B0→ ψ(2S)K+π− is much more abundant
than the signal decay (the chance of a B0

s being produced in the pp colli-
sion is about 1/4 of a B0). This background can therefore obscure the signal
component in data, even if the misidentification probability is small.

Another physical background comes from B+→ ψ(2S)π+, where the three
tracks by chance form a good vertex with a random pion from the underlying
event (everything produced in the pp collision that is not part of the decay
chain in question). This decay is Cabibbo suppressed (its leading order Feyn-
man diagram contains the off-diagonal VCKM matrix elements Vcd and Vcb),
but due to the larger production rate of B+ mesons it needs to be addressed.

The third background in this category comes from B+→ ψ(2S)K+, where
an unrelated pion is added like for B+→ ψ(2S)π+, but additionally the Kaon
is misidentified as a pion K+ → π+. This decay is Cabibbo favoured (it
only contains one off-diagonal VCKM element from the b-quark decay), which
outweighs the suppression from the misidentification.

No backgrounds from muon misidentification are considered, because
very few other particles can penetrate the detector into the muon stations and
create a muon-like signal 3. The additional cut on the dimuon candidate mass
around the ψ(2S) mass reduces these backgrounds to a negligible level.

2This cut is correlated to the aforementioned angular cut for signal decays, but not so much
for combinatoric background making the combination of both in the MVA very efficient.

3Decays of pions and kaons in flight into muons are the most dangerous ones, but most of
them are vetoed by the signature they have left in the RICH detectors before their decay.
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The physical backgrounds from misidentified pions are vetoed explicitly
via recalculating the invariant mass of the track combinations under the hy-
pothesis that they actually come from the wrong decay channel. To veto
B0→ ψ(2S)K+π− decays, the invariant mass of the B candidate is recalcu-
lated with a Kaon mass hypothesis for the track associated to a π+. If the
B candidate mass lies within 25 MeV of the nominal B0 mass for one of the
hypotheses, the event is vetoed. Fig. 4.1 shows the mass distribution of the B
candidate under the K− and π− hypotheses. It shows the data sample after
the full selection including the MVA cut introduced in Sec. 4.4 to make the
effect of the veto more visible.

The same procedure is applied for B+→ ψ(2S)K+: The mass hypothesis
of the π+ track is changed to K+ and the invariant mass of the ψ(2S) and the
K+ candidate is calculated. If the mass lies within 30 MeV of the B+ nominal
mass, a veto is applied. To veto B+→ ψ(2S)π+, the invariant mass of ψ(2S)
and π+ is calculated events within a 30 MeV region around the B+ nominal
mass removed. The same vetos are applied to the charge-conjugated modes
as well.
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Figure 4.1: Data after full selection. Left: invariant mass of
B candidate under ψ(2S)K+π−-hypothesis. Right: invariant
mass of B candidate under ψ(2S)π+π−-hypothesis. The two
peaks in the black histogram correspond to B0→ ψ(2S)π+π−

(left) and B0
s→ ψ(2S)π+π− (right). Red Histograms: Events,

which are vetoed to suppress contributions from the decay
B0→ ψ(2S)K+π−. Black Histograms: Remaining events after
veto. The red peak consists mainly of B0→ ψ(2S)K+π− events.

4.4 Multivariate Selection

After the trigger stage and the suppression of physical backgrounds, the
remaining background events in the data sample are mainly combinatoric



4.4. Multivariate Selection 45

background consisting of a real ψ(2S) decay into two muons that is associ-
ated with two unrelated tracks identified as pions. The final selection step
discriminates the signal decay B0

s→ ψ(2S)π+π− from these events with a
multivariate analysis (MVA) classifier. This classifier "learns" the multidi-
mensional distribution of input features for signal and background events
and transforms a point in feature-space into a single output value, which
represents, how signal-like that point is. In contrast to a simple cut-based
selection, MVA classifiers can exploit nonlinear correlations between variables
to achieve a better separation of signal and background.

A Boosted Decision Tree (BDT) [92] from the TMVA package [93] is cho-
sen for this step, because it is a well-tested method in HEP, provides good
classification performance without extensive tuning of modelling parameters,
and can exploit non-linear correlations of input parameters. Two flavours of
boosting are tested: Adaptive Boosting [94] and Gradient Boosting [95]. A
shallow artificial neural network (ANN) is also tested, but its performance is
slightly worse.

A BDT consists of an ensemble of decision trees. Each of these trees is
a set of nodes, each of which represents a rectangular cut in one variable.
For each node the optimal cut value is determined with a metric, often the
Gini-index [96], which measures the separation p(1− p) for p the purity of the
partition after the cut. Ideally this is purely signal or purely background. Since
each node is optimized separately, it only optimizes the classification locally,
making it a "weak learner". In order to create a "strong learner", so-called
boosting can be applied. First a decision tree is optimized (vulgo "trained")
on a labelled data set, where for each event it is known, whether it belongs to
the signal or background category. The events are given weights according
to the correctness of their classification by the initial tree and misidentified
events are given a larger weight in the optimisation of the next tree. Repeat-
edly misidentified events get larger and larger weights making their correct
classification more favourable for the minimisation of the separation metric.
This approach is taken for the BDT with Adaptive boost. Outlying events
are problematic in this approach, because their weights can grow very large,
which can lead to a reduced performance of the general classification, because
the classifier focuses on the outliers.

The other method used here extends this approach to a gradient method,
which is less affected by outliers in training data [97]. It uses a different loss
function and applies a stochastic gradient descent algorithm to optimize the
loss for each tree. In order to reduce overfitting of the classifier, a different



46 Chapter 4. Selection of B0
s→ ψ(2S)π+π− decays

random subsample of the training events is used at each iteration.
The MVA methods are trained with simulated B0

s→ ψ(2S)π+π− and
B0→ ψ(2S)π+π− events as signal proxy. The two decay channels have the
same final state and very similar kinematic distributions, since the mass dif-
ference between B0

s and B0 is only around 87 MeV. Using both simulated
samples doubles the number of training events and makes the outcome of
the classifier more stable. The background proxy consists of measured events
from the upper sideband, where M(ψ(2S)π+π−) ∈ [5450, 6000]. This region
is chosen, because it does not contain real B hadron decays, but only combina-
toric background. In addition it does not overlap with the mass range, that
is later used in the fit to extract the signal component in Sec. 6. This avoids
possible biases in the MVA output cut optimisation 4.

The variables, which are used as input for the MVA are:

• pT (B): The transverse component of the momentum of the B candidate.
Combinatoric background events are mostly random combinations of
ψ(2S) decays with tracks from soft processes in the pp interaction. The
reconstructed pT of these combinations averages out due to their miss-
ing correlation with each other. It is therefore smaller than for signal,
where all tracks come from the same B-meson that has momentum in a
particular direction.

• FD χ2(B0
(s)): The flight distance (FD) χ2 is the significance of a non-zero

separation between the PV and SV: FDχ2(B0
(s)) = FD/σ(FD). Combi-

natoric background comes mainly from tracks created in the PV, while
the B mesons fly on average a few mm before they decay and produce
charged tracks.

• Vertex χ2: The χ2 of the fit of the combined vertex of the 4 tracks is larger
for randomly combined tracks than it is for signal, where they really
come from the same spot

• IPχ2(B): IPχ2 is the significance of the impact parameter of the B flight
direction with the PV. Since the B meson comes from the PV, it peaks
around 0 for signal, while for combinatoric background events the com-
bined track momenta do not point somewhere particular

4In the training the classifier could "learn" the statistical fluctuations in the distributions
of its input variables and show a better separation power on those events (this effect is
called overtraining/overfitting). It would distort the shape of the combinatoric background
distribution in the later fit to M(ψ(2S)π+π−), which could bias the extracted signal sample.
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• min(IP
χ2(X+), IP

χ2(X−)): IP
χ2(X) is the significance of a non-zero

value of IP for a track X. In combinatoric background typically at least
one particle originates from the V and not from the B decay vertex and
has therefore a small value for the impact parameter IP.

• DTFχ2: A fit to the full decay chain is performed. It uses the final
state tracks as input to reconstruct the B candidate mass, decay vertex
and momentum. In addition it also constrains the mass of the dimuon
combination to the ψ(2S) mass and the origin of the B candidate to the
V in the event5. The additional constraints increase the precision on
the reconstructed quantities. The fit is done with the Decay Tree Fit
approach first described in [91]. The χ2 of this fit is smaller for signal
than for random track combinations, because the B candidates from
combinations of random tracks rarely form a good vertex or have flight
directions compatible with a V.

• vertex ∆χ2(AddTrack): The vertex fit is repeated with additional tracks
from the event. An additional track always increases the χ2 of the
vertex fit. Vertex ∆χ2(AddTrack) corresponds to the vertex fit with the
smallest increase. In signal it is usually large, because no additional track
is nearby, while for partially reconstructed background it tends to lower
values, if the missing particle created a track that was reconstructed.
Combinatoric background comes from near the PV where the density
of tracks is large. An additional track can be found more easily in these
regions. Signal decays are less correlated to this high-density region.

• DIRA: cosine of the angle between the reconstructed B candidate momen-
tum and the direction from PV to the reconstructed decay vertex. For
signal the two vectors should be aligned and DIRA should be 1. For back-
ground with random track combinations (or where daughter particles
are not reconstructed), the two vectors are not aligned.

The distributions of these variables for background and signal proxy are
shown in Fig. 4.2 for Run 1. Since the the input variable distributions show
large spikes and their values range over several decades, they are transformed
using log x and log(1− x) to smooth out their distributions. This reduces the
number of trees that are needed in the BDTs to achieve a good classification.
Due to slightly different input variable distributions in Run 1 and Run 2
separate BDTs are trained for the two data-taking periods.

5If several V are present in the event, that V is chosen, for which DTFχ2 is minimal.
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Figure 4.2: Input variables for the MVA for Run 2. Simu-
lated truthmatched events from B0

s→ ψ(2S)π+π− decays from
Run 2 conditions in Blue and Run 2 data from the uppper
sideband in red. First Row: FDχ2, DTFχ2, vertex χ2. Sec-
ond Row: pT (B), IPχ2, min(IP

χ2(µ+), IP
χ2(µ−)). Third Row:

min(IP
χ2(π+), IP

χ2(π−)), ∆χ2(AddTrack), DIRA. Some vari-
ables are transformed using log x and log(1− x) to smoothen

them.
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Figure 4.3: Linear correlation coefficients of Run 2 MVA input
variables for signal (left) and background (right). The variables

have the same order as in Fig. 4.2.

In Fig. 4.3 the linear correlation coefficients are shown for signal and back-
ground samples of the MVA trained for Run 2. The coefficients differ between
signal and background samples, which justifies the use of BDTs and ANN,
which can exploit these correlations for the classification.

The background rejection and signal efficiencies are compared in Fig. 4.4.
The gradient BDT shows the largest background rejection in the region of
interest above 50 % signal efficiency. Its output distribution is shown there
as well. It shows much larger separation power than the individual input
variables.

4.4.1 Cut Optimisation

The particle identification (PID) variables are correlated to the multiplicity
of the underlying event, the position of the track inside the detector and the
kinematic of the particles (see Sec. 3.2). These correlations are not perfectly
described in the simulated samples, even after a correction step that corrects
their dependence on momenta and the track multiplicity in the event.

Since the MVA should not be trained on these potentially mismodelled
correlations, the PID variables are not used as inputs. They show good back-
ground rejection nevertheless, since a sizeable fraction of the pion candidates
in the combinatoric background consists of misidentified Kaons. As a com-
promise the MVA output and the PID cuts are varied independently, but are
optimised simultaneously in a grid search.

For each cut combination the data set is fitted in the B candidate mass
M(ψ(2S)π+π−) from 5150 to 5450 MeV. In this range 3 processes contribute
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to the data: The decays B0
s→ ψ(2S)π+π−, B0→ ψ(2S)π+π− and combina-

toric background6.
The combinatoric background component in the data sample is approxi-

mately exponentially distributed in this mass range [98]. The decay constant
and yield of the background pdf is left free in the fit.

The B0
s component is not Gaussian distributed in M(ψ(2S)π+π−), because

its charged daughter particles emit bremsstrahlung, when they traverse the
detector and thereby lose energy. The invariant mass calculated from the
measured 4-momenta of the 4 final state tracks therefore has a tail towards
lower energies. This effect is partially compensated in the invariant mass that
results from the fit of the full decay tree [91] using the external constraints
on the vertices and the ψ(2S) mass (see Sec. 4). The constraints lead to a
reduced low-mass tail of the distribution and also reduce the width of the
core-component. This does not work for every event though: The decay tree
fit results in too large mass values for some events, which create a small
contribution at higher masses.

The Crystal ball (CB) probability density function (pdf) [99] consists of a
Gaussian core with mean x̄ and width σ and a power-law tail on one side

6There is also a contribution from B0→ ψ(2S)K0, where K0→ π+π−, which peaks at the
same position as B0→ ψ(2S)π+π−. These additional events would be wrongly attributed to
the yield of B0→ ψ(2S)π+π− in the fit. Since that would bias the estimate for the signal yield,
events are removed in this study, if their dipion mass lies around the K0 mass. The s-weights
for the amplitude fit are extracted in a reduced mass window, which does not contain events
from B0→ ψ(2S)K0. They are therefore not listed in Sec. 4.3.
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with power n that starts at a distance α from the peak of the Gaussian. Its
functional form is given in the following

f (x; α, n, x̄, σ) = N ·

exp(− (x−x̄)2

2σ2 ), for x−x̄
σ > −α

A · (B− x−x̄
σ )−n, for x−x̄

σ 6 −α
, (4.1)

where

A =

(
n
|α|

)n
· exp

(
−|α|

2

2

)
,

B =
n
|α| − |α| ,

N =
1

σ(C + D)
,

C =
n
|α| ·

1
n− 1

· exp

(
−|α|

2

2

)
,

D =

√
π

2

(
1 + erf

(
|α|√

2

))
.

(4.2)

The sum of two Crystal ball pdfs is chosen to describe B0
s in

M(ψ(2S)π+π−), one with a tail to the left, one with a tail to the right. Since
the core of the distribution is not perfectly Gaussian-shaped due to the use
of external constraints in the fit, the two pdfs only share their parameter x̄,
but all other parameters, including the widths and the scale of the pdfs are
allowed to differ.

Since the resolution is slightly too small in simulation, the total width of
the Gaussian core is allowed to float in the fit to data. All other shape parame-
ters (the tail parameters, the relative widths, and the relative yields of the two
CB) are fixed to the values extracted from a fit to simulated B0

s→ ψ(2S)π+π−

events shown in Fig. 4.5. The tails differ significantly for the two sides, ad-
ditionally a small bump can be seen below 5200 MeV, where the mass vetos
introduced in Sec. 4.3 cut also some signal component away. This effect is
negligibly small (note the logarithmic y-scale), and has little influence on the
cut optimisation step. The actual fit for the signal extraction in Sec. 4.6 is
performed in a smaller mass window, in order to avoid this bias.

The considerations for B0
s apply for the B0 peak as well. It is therefore

also fitted with a sum of two Crystal Ball functions with common mode
position and its tail parameters are extracted from a fit to simulated events.
The corresponding distribution in the simulated sample together with the fit
is shown in Fig. 4.5.
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Figure 4.5: Fits to M(ψ(2S)π+π−) after full selection. Left: Sim-
ulated B0

s→ ψ(2S)π+π− events for RunII conditions. Fit model
in black. Right: Simulated B0→ ψ(2S)π+π− events for RunII

conditions. Fit model in black.
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Figure 4.6: Left: Measured events from RunII data taking after
all selection cuts. Full fit pdf in black, B0

s→ ψ(2S)π+π− com-
ponent in violet, B0→ ψ(2S)π+π− component in red, combina-
toric background component in cyan. Right: FoM on RunII data
for B0

s→ ψ(2S)π+π− for different cuts in MVA output (x-axis)
and PID on the pion candidates (y-axis).

The fit to data is shown in Fig. 4.6. It uses data where the optimized cut
values for the MVA output and the PID are already applied. Where these
values come from is explained in the following.

If the shapes of all fit components are fixed in the fit, the fit reduces to
the description of Poisson counting experiment. In this case the optimal cut
with the highest significance for the signal yield S is found, if S/

√
S + B is

maximized, where B stands for the background yield inside the signal region
(for this see e.g. the review on statistics in [21]). This is not the case for the
fit that is performed on the data sample described in Sec. 4.6, because the
signal and background shape parameters are partly left free in the fit. The
additional uncertainty introduced by the free shape parameters reduce the
signal significance for a given cut. This not only increases the statistical uncer-
tainty on the results on the final amplitude model, the increased uncertainty
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Run 1 Run 2
NB0

s
737± 31 3062± 68

NB0 816± 33 3631± 62
Nbackground 780± 36 2786± 71

Table 4.1: Yields from fit to M(ψ(2S)π+π−) in range
[5150, 5450] MeV.

on the background component’s yield and shape can also lead to larger sys-
tematic uncertainties. In order to remedy this, the "classical" figure of merit
is multiplied with an empirical penalty factor corresponding to the signal
purity:

FoM =
S

S + B
S√

S + B
. (4.3)

This is a common choice for amplitude analyses a LHCb, e.g. [10].
In order to avoid a bias from optimizing the cut on the data itself, the

FoM is not calculated with the signal yield directly. The branching ratios B
(B0

s→ ψ(2S)π+π−) and B (B0→ ψ(2S)π+π−) are known, as well as the ratio
of fragmentation fractions fs/ fd, which describes how many B0

s are produced
for every B0 in the pp collision. Also acceptance effects and efficiencies are
almost identical for both channels. This allows to easily calculate the expected
B0

s yield for a given cut from the fit result for the B0 yield, since efficiencies
and acceptances mostly cancel in the ratio:

NB0
s
= fs/ fd ×

B(B0
s→ ψ(2S)π+π−)

B(B0→ ψ(2S)π+π−)
× NB0 (4.4)

The 2D FoM distribution as function of the cut values on PID and BDT
output is shown in Fig. 4.6 on the right. The final cuts are chosen to lie
on the plateau with the largest values for the FoM: BDT(> 0.1(−0.2) and
PID> 0.25(0.25) for Run 1 (Run 2). For these cuts the fitted yields are given in
Tab. 4.1.

4.5 Removal of Multiple Candidates

For some events two or more signal candidates are found that fulfil all the
selection requirements. Since the branching ratio of the decay is very small, it
is statistically unlikely that both come from signal decays. These additional
candidates can lead to biased estimates of efficiencies [100] and are therefore
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removed from the sample: From each event with multiple candidates, only
one candidate is kept at random. This additional cut removes around 0.7 %
of candidates on simulated B0

s→ ψ(2S)π+π− events after all other selection
steps. Since its effect on the FoM is small, the removal was not applied in the
cut optimisation.

4.6 Signal Extraction

In the next step a "pure" B0
s→ ψ(2S)π+π− sample is statistically extracted

from the dataset via the sPlot technique [101], which calculates event-wise
weights from a fit to the data. The weighted data set can then be used like a
pure signal sample for all those distributions, which are not correlated to the
fitted ones.

The sPlot corresponds to an optimized sideband subtraction technique. If
the distribution for all components in a discriminant variable m are known
(in this analysis these are the components of the fit to M(ψ(2S)π+π−)) the
approach can be used to obtain the signal distributions in a control variable t
(in this analysis the variables of the amplitude fit), if the pdfs of the individual
components are not correlated between discriminant and control variable.

The s-weights wsig(m) are implemented as orthogonal functions on signal
and background via [101]∫

dmwsig(m)Psig(m) = 1∫
dmwsig(m)Pbg(m) = 0,

(4.5)

where Psig and Pbg stand for the signal or background pdf respectively.
To obtain the s-weights, a fit of the mass distribution in M(ψ(2S)π+π−) is

used. The amplitude fit in Sec. 5 then uses the weighted data set and does not
need to contain an explicit background component, because this component
vanishes with application of the weights according to eq. 4.5. In order to
remove possible remaining physical backgrounds, which could bias the the
amplitude fit distributions due to their correlation to M(ψ(2S)π+π−), the fit
introduced in Sec. 4.4.1 is repeated in a narrower mass range around the B0

s

peak. It is shown in Fig. 4.7 for simulated events and measured data from
Run 2. This narrower range also excludes the bump from the mass vetos
that is visible in Fig. 4.5. The narrower range also excludes the region, where
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Figure 4.7: Fits to M(ψ(2S)π+π−) in 5320, 5450] after full
selection. Left: Simulated B0

s→ ψ(2S)π+π− events for Run
2 conditions. Fit model in black. Right: Measured events
from Run 2 data taking after all selection cuts. Full fit pdf
in black, B0

s→ ψ(2S)π+π− component in violet, combinatoric
background component in cyan.

B0→ ψ(2S)π+π− decays make a measurable contribution to the sample, al-
lowing to fit the mass distribution with just the signal component and the
combinatoric background.

In order to simplify the further analysis steps, the two data samples of
Run 1 and Run 2 are combined in the fit to extract the s-weights. It has been
tested, that the fit parameters are compatible between the data samples. In
addition the systematic uncertainty from this choice is estimated in Sec. 9. The
fitted yields are NB0

s
= 3683± 70 and Nbackground = 1164± 49. The signal

yield does not add up with the numbers obtained in Sec. 4.4.1, because 2 % of
signal events lie outside the narrow mass window and multiple candidates
are removed only after the MVA cut optimisation step.
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5 Amplitude Model

One goal of this analysis is the test of the Bonn-Jülich parametrisation of
the S-wave of the di-pion system [1, 46, 102] in B0

s→ ψ(2S)π+π− using an
amplitude fit to the data. It is tested against a more naive model using
Flattè and Breit-Wigner (see PDG review on resonances in [21]) amplitudes
to describe the S-wave. The amplitudes are implemented in the so-called
helicity framework [41, 42], where they factorize into an angular part and a
mass-dependent part. In the following, first the kinematic observables are
introduced, then the helicity formalism is

described in Sec. 5.2. Its angular description and the necessary rotations
for the application to B0

s→ ψ(2S)π+π− are given in Sec.5.3. The different
models for the invariant mass distribution of the mass-dependent dynamic
part are given in Sec. 5.4 and 5.6. The full amplitude squared as a combination
of all decay chains is derived in Sec. 5.7. Possible effects from mixing between
the decays of B0

s and B0
s are also covered there.

5.1 Kinematic Variables

Kinematic variables used in the fit follow the angular analyses of
B0→ ψ(2S)K+π− and B0

s→ J/ψ π+π− in Belle and LHCb [14, 15, 103]. The
decay amplitudes are constructed from subsequent two-body decays in the
isobar model: The default decay chain is B0

s→ ψ(2S) fk with ψ(2S)→ µ+µ+

and the intermediate hadronic state fk decays further via fk→ π+π−. Since
the ψ(2S) intermediate state is very narrow (it decays predominantly elec-
tromagnetically), its mass can be assumed to be constant in the amplitude
fit. Since a narrow state cannot interfere significantly with other states, this
reduces the number of degrees of freedom that need to be described in the
fit: For a full description of the B0

s→ ψ(2S)π+π− decay chain the following 4
variables are sufficient1:

• Mππ: Invariant mass of the di-pion system
1Four final state particles have 16 degrees of freedom (dof) from their 4-vector compo-

nents, but 4-momentum conservation removes 4 dof from that. Since the B0
s is spinless, the

orientation in space is arbitrary in its center of mass system, which removes 3 dof. The masses
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Figure 5.1: Definition of the helicity angles for the fk chain.

• cos θπ: cosine of the ππ helicity angle, which is the angle between the the
π+ momentum and the negative B0

s direction in the π+π− rest frame.

• cos θψ: cosine of the ψ(2S) helicity angle, which is the angle between the
µ+ direction and the negative B0

s direction in the ψ(2S) rest frame

• φ: angle between the decay planes of fk→ π+π− and the ψ(2S)→ µ+µ−

in the B0
s rest frame2

The angles θπ,θψ and φ are sketched in Fig. 5.1.
For the parametrisation of a decay via a possible Z(4430)± resonance,

where B0
s→ Z(4430)±π∓ with Z(4430)±→ ψ(2S)π±, the following four vari-

ables are chosen

• M(ψ(2S)π+), M(ψ(2S)π−): the invariant mass of the ψ(2S)π+ and
ψ(2S)π− system respectively

of the 4 final state particles and ψ(2S) are fixed, which removes another 5 dof and brings the
total number of dof down to 4.

2Alternatively it can be defined as the sum of the azimuthal angles of π+ and µ+ in the
B0

s rest frame: φ = φ
π+ + φ

µ+ , which is used in the derivation of the angular description in

eq. 5.13. For this to work, the coordinate systems of fk and ψ(2S) in the B0
s frame need to be

chosen properly, which is achieved by aligning their x- and z-axes.
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Figure 5.2: Definition of the helicity angles for the Z− chain.

• cos θZ+ , cos θZ− : cosine of the Z(4430)+ and Z(4430)− helicity angle
respectively. θZ+ is the angle between the ψ(2S) and the negative B0

s

direction in the Z(4430)+ rest frame, while θZ− is defined accordingly
in the Z(4430)− rest frame.

• cos θ+ψ ,cos θ−ψ : cosine of the ψ(2S) helicity angle, which is the angle
between the µ+ (µ−) direction and the negative Z(4430)+ (Z(4430)−)
direction in the ψ(2S) rest frame

• φ+,φ−: angle between the decay planes of the Z(4430)+ (Z(4430)−) and
that of the ψ(2S) in the B0

s rest frame

They are sketched in Fig. 5.2.
In order to correctly describe the interference between the amplitudes

of the the decay via intermediate π+π− resonances and that of decays via
intermediate ψ(2S)π+ resonances, an additional rotation is needed, which
correctly aligns the helicity quantisation axis of the muons for the two decay
chains. This angle α± does not represent an additional degree of freedom,
but depends on the other introduced kinematic variables. It is defined as
the angle between the planes spanned by (µ+,π+) and (µ+, π+π−) momenta
in the ψ(2S) rest frame for α+. For the angle α− the (µ+,π−) plane is used
instead. It is depicted in Fig. 5.3.
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Figure 5.3: Definition of the angle α−.

There is a one-to-one correspondence between the 4 variables used in
the π+π− decay chain and those of the Z(4430)+ and the Z(4430)− chain.
The mapping between the frames is detailed in the appendix of [15]. A
different, more generic, approach is derived in [104]. It is shown there that
both approaches give identical results.

5.2 Helicity Formalism

Different frameworks exist for the description of the decay amplitudes of
relativistic particles with spin. Among others are the helicity, canonical or
transversity basis, as well as different tensor formalisms (Zemach, covariant
or Lorentz-invariant), see e.g. [105, 106]. Depending on the studied process,
one is preferred over the other.

In contrast to the amplitudes in the tensor formalism, the helicity ampli-
tudes have only dynamical singularities, which makes them favourable for
the study of resonance properties, as explained in [107]. If a formalism has
additional singularities, these can mimic a resonant behaviour in the ampli-
tude and much care is needed to distinguish these from the real resonances
and their extracted pole parameters. [107] also finds that the common co-
variant tensor approaches violate crossing symmetry introduced in eq. 2.23:
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It is then possible that resonance parameters extracted from scattering ex-
periments do not correspond to those extracted from decays, making these
approaches less favourable for eventual future coupled channel approaches.
It was therefore decided against a tensor formalism for the description of the
decay amplitudes.

The available non-tensor formalisms can easily be transformed into each
other via orthogonal functions. Against popular belief they all are relativistic
in the sense that they transform correctly under Lorentz boosts, even though
the involved wave functions include both covariant and non-covariant indices
[107].

Since parity conservation can be introduced straightforwardly in the canon-
ical basis using partial waves with fixed angular momenta `s (these partial
waves with fixed spin and angular momentum being parity eigenstates), this
formalism is chosen as basis for this work. In the descriptions of the imple-
mentations of the individual decay chains both helicity couplings H J

λaλb
and

`s couplings and their translation to `s couplings BJ
`s are introduced, since

some relations might be more familiar in the helicity framework.
In the following the derivation of the angular description of the decay is

sketched following [42].
A spin state in the helicity basis |jλ〉 with spin j and helicity λ of a particle

A in its rest frame~rA can be expressed in a different basis~rB with momentum
~p = (p, θ, φ) by application of a rotation R(φ, θ, 0) and a Lorentz boost L(~p) 3 :

|~p, jλ〉B = |φ, θ, p, jλ〉 = L(~p)R(φ, θ, 0)|~0, jλ〉A. (5.1)

From eq. 5.1 two-particle states can be built from the helicity basis vectors
|~p, jλ〉

|φθλ1λ2〉 = aR(φ, θ, 0) {Lz(p)|s1λ1〉L−z(p)|s2 − λ2〉}
= R(φ, θ, 0)|00λ1λ2〉),

(5.2)

where |siλi〉 are the rest states of the individual particles and a is a normal-
isation. L±z is a Lorentz boost along the positive and negative z direction
respectively.

3The helicity in the particle rest frame is 0, but is meant here as the helicity of the particle
having an infinitesimal boost in the direction of ~p.
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A state with definite angular momentum J and z-component M can be
derived from eq. 5.2 after some algebra, which is omitted here.

|JMλ1λ2〉 =
√

2J + 1
4π

∫
d cos θ dφ D J∗

Mλ(φ, θ, 0)|φθλ1λ2〉, (5.3)

where θ, φ are taken from particle-state 1 by convention. λ = λ1 − λ2 and
D J∗

Mλ is the Wigner D-matrix

D J∗
Mλ(φ, θ, 0) = e−iMφdJ

Mλ(θ), (5.4)

where dJ
Mλ are the Wigner (small) d-matrices, which are tabulated.

Expanding the state |JMλ1λ2〉 in partial waves then gives

|JMλ1λ2〉 = ∑
`s

(
2`+ 1
2J + 1

) 1
2

(`0sλ|Jλ)(s1λ1s2 − λ2|sλ)|JM`s〉, (5.5)

where (`0sλ|Jλ)(s1λ1s2 − λ2|sλ) are the two Clebsch-Gordan coefficients,
which project out the spin states. ∑s runs over all allowed values for the total
spin ~s1 + ~s2 = |s1− s2|, ..., s1 + s2, while ∑` runs over ~s1 +~s = |s1− s|, ..., s1 + s.

After some further manipulations the two-body decay amplitude A of a
resonance with spin J can then be written as

A = 〈~pλ′1;−~pλ′2|T |JM〉

= 4π

√
m0
p
〈φ, θ, λ′1λ′2|JMλ1λ2〉〈JMλ1λ2|T |JM〉

, (5.6)

where m0 corresponds to the characteristic mass scale of the decaying state.
T is the transition matrix element between the states. Since T is rotationally
invariant, 〈JMλ1λ2|T |JM〉 needs to be rotationally invariant as well, which
means it can only depend on the rotationally invariant quantities J, λ1 and λ2

and the value of the daughter momenta p [105]. Using

〈φ, θ, λ′1λ′2|JMλ1λ2〉 =
√

2J + 1
4π

D J
Mλ(φ, θ, 0)δλ′1λ1

δλ′2λ2
(5.7)

from the normalisation and completeness relations of the helicity amplitudes,
it is then possible to rewrite eq. 5.6 to

A = F J
λ1λ2

(p)D J∗
Mλ(φ, θ, 0), (5.8)
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The decay amplitude therefore factorises into an angular part (depending
on the angles θ and φ), that is determined from first principles via the Wigner
D-matrix and a dynamic part F J

λ1λ2
(p), which describes the dependence on

the daughter momenta.
In practice F J

λ1λ2
(p) is usually split further into a (normalised) lineshape

RJ
λ1λ2

(p), which describes the momentum-dependence of the term and a com-
plex number Hλ1λ2

, which describes the strength of each helicity amplitude.
Different parametrisations exist for RJ

λ1λ2
(p), the best known being the Breit-

Wigner amplitude. The parametrisations used in this analysis are covered in
Sec. 5.4 and 5.6.

It is possible to expand the helicity decay amplitude F in terms of partial-
wave amplitudes, which have fixed orbital angular momentum ` (and there-
fore fixed parity eigenvalues) via

〈JMλ1λ2|T |JM〉 = ∑
`s

(
2`+ 1
2J + 1

) 1
2

(`0sλ|Jλ)(s1λ1s2 − λ2|sλ)〈JM`s|T |JM〉,

(5.9)
where the quantities in the brackets are the Clebsch-Gordan coefficients again.

This allows to relate the couplings Hλ1λ2
directly to their partial-wave

counterparts BJ
`s (called aJ

`s in [105]) with the following relation:

H J
λ1λ2

= ∑
`s

BJ
`s

(
2`+ 1
2J + 1

) 1
2

(`0sλ|Jλ)(s1λ1s2 − λ2|sλ). (5.10)

5.3 Angular Description

In the following the expressions for the decay amplitudes for the different
possible decay chains in B0

s→ ψ(2S)π+π− are derived. The focus here lies on
the angular descriptions, while the dynamic part is covered in Sec. 5.4 and 5.6.

5.3.1 Decay via intermediate fk resonance

If the decay of B0
s proceeds via a partial wave fk in the dipion spectrum, in

principle three decays need to be considered: B0
s→ ψ(2S) fk, ψ(2S)→ µ+µ−,

and fk→ π+π−. Since the B0
s meson does not have a spin, it decays isotrop-

ically and does not imprint an angular structure on the daughter particles
(the Wigner D matrix is unity). Its decay amplitude therefore does not need
to be considered here. This leaves the descriptions of ψ(2S)→ µ+µ− and
fk→ π+π−, whose angular parts are taken from eq. 5.6:
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The decay fk→ π+π− is described with

A fk
λ fk

(θπ, θψ, φπ+) = H fk
λ fk

λπ
D

J fk
∗

λ fk
λπ
(φπ+ , θπ, 0)

= H fk
λ fk

eiλ fk
φ

π
+ d

J fk
λ fk

0(θπ),
(5.11)

where eq. 5.4 was used. λ fk
is the helicity of the fk partial wave with spin k,

while λπ = λπ+ − λπ− = 0 is the helicity difference between the pions, which
is 0, since both are spinless. The index is therefore dropped for the second line
and the coupling strength H fk

λ fk
contains only one index.

The decay ψ(2S)→ µ+µ− can be described with

Aψ
λψ
(θπ, θψ, φµ+) = Hψ

λψξ D1∗
λψξ(φµ+ , θψ, 0)

= Hψ
λ e

iλψφ
µ
+ d1

λψξ(θψ),
(5.12)

where λψ is the helicity of the ψ(2S) with the quantisation axis parallel to the
B0

s momentum in the ψ(2S) rest frame. ξ = λµ+ − λµ− is the helicity of the
muon pair with its quantisation axis the fk momentum in the ψ(2S) frame.
ξ = 0 is helicity-suppressed with mµ/ mψ(2S) and can therefore be neglected
leaving for ξ therefore only the values −1 and 1. Due to parity conservation
in the electromagnetic interaction, the corresponding coupling strengths are
identical (which is why the index ξ is dropped in Hλ).

Since JB0
s
= 0, λψ = λ fk

is required from angular momentum conservation

in the decay B0
s→ ψ(2S) fk. The helicities of fk and ψ(2S) λ fk

and λψ can
therefore be replaced with λ everywhere, which allows to merge the helicity
couplings of the ψ(2S) decay with that of the fk decay H fk

λ fk
Hψ

λψ
= H fk

λ and

one can combine eq. 5.11 and 5.12 to the full angular expression for the fk

decay chain

A fk
λξ(θπ, θψ, φ) = H fk

λ d
J fk
λ0 (θπ)e

iλφd1
λξ(θψ), (5.13)

where φ = φπ+ + φµ+ was used.

The complex helicity couplings H fk
λ can be written as

H fk
λ = aλeiβλ = <

(
H fk

λ

)
+ i=

(
H fk

λ

)
, (5.14)

where aλ and βλ represent its magnitude and phase. In the fit the real and
imaginary part<

(
H fk

λ

)
and=

(
H fk

λ

)
are used as free real parameters to avoid

the cyclic parameter βλ. This improves the convergence of the fits.
Using the `s decomposition given in eq. 5.6 the amplitudes can be rewritten
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as a sum of individual contributions with well-defined spin and parity. In
this basis parity conservation in the strong and electromagnetic decays of the
intermediate resonances can be enforced, which reduces the number of free
helicity couplings in the fit. In addition, angular momentum barrier effects
are easily incorporated as explained below.

In the decay B0
s→ ψ(2S) fk the total spin of the ψ(2S) and fk is~s = ~Jψ + ~J fk

and the helicity couplings can be translated to the `s couplings applying
eq. 5.10

H fk
λ fk

λ = H fk
λλ = ∑

` fk

∑
s

(2` fk
+ 1

2J + 1

) 1
2

B fk
` fk

s

(
Jψ J fk

λ −λ

∣∣∣∣∣ s
λ− λ

) (
` fk

s
0 λ− λ

∣∣∣∣∣ JB0
s

λ− λ

)
,

(5.15)
where |J fk

− Jψ| ≤ ` fk
≤ J fk

+ Jψ . The quantities in the brackets to the right
describe the Clebsch Gordan coefficients in a different nomenclature, which
shows the angular momentum quantum numbers on top and their projections
on the bottom. Eq. 5.15 reduces to

H fk
λ = ∑

` fk

∑
s

(2` fk
+ 1

2J + 1

) 1
2

B fk
` fk

s

(
1 J fk

λ −λ

∣∣∣∣∣ s
0

) (
` fk

s
0 0

∣∣∣∣∣ 0
0

)
(5.16)

and one can read off the relations for different fk states.
For J fk

= 0 the only `s combination with non-zero Clebsch-Gordan coef-

ficients is 1 1, which corresponds to the complex parameter B f0
1 1. The only

allowed helicity is λ = 0, the Clebsch-Gordan coefficients vanish for the other
values and therefore

H f0
0 = B f0

11 (5.17)

In Sec. 2.5 it is shown that J fk
= 1 states are forbidden due to isospin

symmetry considerations in this channel. Assuming isosping breaking, the
alowed values for ` fk

would be 0 ≤ ` fk
≤ 2.

For J fk
= 2 the allowed values are 1 ≤ ` f2

≤ 3, which correspond in

principle to 3 complex parameters B f2
11, B f2

22, B f2
33. Due to the small energy

release in the decay, configurations with large angular momenta, like the
ones described by B f2

22 and B f2
33, are suppressed heavily. This is called angular

momentum barrier effect. Therefore, in the default configuration only B f2
11 is

considered, which results in

H f2
1 = H f2

−1 =
3

5
√

2
B f2

11 (5.18)
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and

H f2
0 = −

√
6

5
B f2

11. (5.19)

The perpendicular polarisation of the decays via f2 states is therefore
H f2
⊥ = H f2

1 − H f2
−1 = 0 for decays via f2 states in the default fit configuration.

In order to estimate the effect of the angular momentum barrier effect, B f2
22

couplings are included as well for a systematic study in Sec. 9.

5.3.2 Decays via intermediate Z(4430)− and Z(4430)+

In the amplitude for a decay via an intermediate Z(4430)− the B0
s -decay

decays isotropically as well. Similar to the fk decay chain one needs to describe
here the decays Z(4430)−→ ψ(2S)π− and ψ(2S)→ µ+µ− :

AZ−

λ−ξ
(θZ− , φ−, θ−ψ , α−) = HZ−

λ−0D JZ∗
0λ−

(0, θZ− , 0)D1∗
λ−ξ

(φ−, θ−ψ , 0)eiξα−

= HZ−

λ− dZ−

λ−0(θZ−)e
iλ−φ̃−d1

λ−ξ
(θ−ψ )

(5.20)

This equation is derived similar to eq. 5.13 from eq. 5.6 as two subsequent
decays. The coordinate system is chosen such that the azimuthal angle in the
Z− decay is 0.

The quantisation axis for the ψ(2S) helicity λ− in this decay chain is
parallel to the π− in the ψ(2S) rest frame, which is a different axis than in the
fk chain, where the axis is parallel to the fk flight direction instead. In order to
correctly describe interference effects between the two chains, it is necessary
to align the two chains with an additional rotation of α−.

Following the considerations in [62], the helicity amplitudes are mapped
to `Z−s amplitudes using Clebsch-Gordan coefficients with orbital angular
momentum LZ and total spin of the decay products~s = ~Jψ + ~Jπ = ~Jψ = 1:

HZ−

λ− = ∑
`

Z−
∑

s

(
2`Z− + 1

2J + 1

)
BZ−
`

Z− s

(
Jψ Jπ

λ− −λπ

∣∣∣∣∣ s
λ− − λπ

) (
`Z− s

0 λ− − λπ

∣∣∣∣∣ JZ

λ− − λπ

)
(5.21)

From λπ = Jπ = 0 this reduces to

HZ−

λ− = ∑
`

Z−

(
2`Z− + 1

2J + 1

)
BZ−
`

Z−1

(
`Z− 1

0 λ−

∣∣∣∣∣ 1
λ−

)
(5.22)

and one gets |JZ − 1| ≤ `Z− ≤ JZ + 1
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Since the `Z−s states are eigenstates of the parity operator, parity conserva-
tion in the strong decay Z(4430)−→ ψ(2S)π− can be enforced via considering
only `Z− values, which satisfy4

P(ψ)P(π)(−1)`Z− ≡ P(Z−). (5.23)

For Z(4430)−, which has JP
Z = 1+ this allows only `Z− ∈ [0, 2], but due to

the very small relative energy release in Z(4430)−→ ψ(2S)π+, higher orbital
angular momentum states are strongly suppressed, leaving only `Z− = 0.

Inserted into eq. 5.22, this gives BZ−
01 = HZ−

−1 = HZ−
1 = HZ−

0 , which leaves
only one complex parameter free for the decay via Z(4430)−.

Interpreted in the transversity basis [108], the perpendicular polarisation
of the decays via Z(4430)± states would therefore be H f2

⊥ = H f2
1 − H f2

−1 = 0.
The angular description in the Z(4430)+ chain is the same as for the

Z(4430)− chain, but all π+ and π− occurrences are exchanged, since they
switch their roles from spectator to daughter and vice versa:

AZ+

λ+ξ
(θZ+ , φ+, θ+ψ , α+) = HZ+

λ+ dZ+

λ+0(θZ+)eiλ+φ̃+

d1
λ+ξ

(θ+ψ )eiξα+ . (5.24)

5.4 Breit-Wigner Parametrisation

A simple way to parametrize a resonance of a given partial wave is the Breit-
Wigner shape. This ansatz does not preserve unitarity and analyticity of the
resulting amplitudes in cases, where resonances overlap and in the vicinity of
thresholds (see Sec. 2.4.1). Nevertheless it is commonly used to parametrize
experimental results. It serves as a benchmark for the alternative description
provided by the Bonn-Jülich model, which is derived in Sec. 2.4.

The Breit-Wigner description of a resonance fk in B0
s→ ψ(2S) fk with

fk→ π+π− has the following form:

R(Mππ) = B′` fk
(p, p0, dB0

s
)

(
p
p0

)` fk · BW(Mππ|m0 fk
, Γ0 fk

)B′`π
(q, q0, d fk

)

(
q
q0

)`π

(5.25)
Here Mππ is the invariant mass of the dipion system introduced in Sec. 5.1,
p is the momentum of fk in the B rest frame, q is the momentum of the
π+ in the fk frame. p0 and q0 represent their value at m0 fk

= Mππ, which

4In the helicity basis this requirement would be enforced via HZ−

λ− =

P(ψ)P(π)P(Z−)(−1)J(ψ)+J(π)−J(Z−)HZ−

−λ− .
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is the mass parameter of the Breit-Wigner distribution mentioned earlier
in Sec. 2.4.1. The orbital angular momentum between the fk and the ψ(2S)
is ` fk

, while `π stands for the orbital angular momentum between the two
pions in the fk decay. Since the pions don’t have spin, `π = J fk

is required
from angular momentum conservation. The two fractions are needed to
describe the turn-on behaviour at the thresholds of each decay correctly.
Since these contributions grow rapidly for ` > 0, the non-relativistically
motivated, but purely phenomenological, form factors B′`(p, p0, d) called Blatt-
Weisskopf functions are introduced [44]. These cancel out the threshold
factors at high momenta [43]. The two terms in eq. 5.25 correspond to the
decay of the B0

s and fk respectively. Even though the B0
s line-shape cannot be

resolved experimentally (its width is much smaller than the detector resolution
in M(ψ(2S)π+π−)), it is imprinted on the decay amplitudes of the dipion
resonances via the Blatt-Weisskopf term, which depends on the B0

s mass and
effective size dB0

s
of the B0

s meson.
The Breit-Wigner shape is also used for the description of decays via

intermediate Z(4430)± resonances. In that case the corresponding values
of the B0

s→ Z(4430)+π− and B0
s→ Z(4430)−π+ decay chains are used in

eq. 5.25. ` fk
gets replaced by the angular momentum `Z± , `π with `ψ the

angular momentum in the decay Z±→ ψ(2S)π±, d fk
with dZ± the effective

size of the Z± state, m0 fk
, Γ0 fk

with m0Z± , Γ0Z± the mass and width parameters
of the Breit-Wigner parametrisation of the Z state.

The effective size of the mother system d is set to 1.6 GeV−1 for B0
s , fk

and possible Z(4430)+. Different values are tested for studies of systematic
uncertainties in Sec. 9.6.

The relativistic Breit-Wigner function itself is given by

BW(Mππ|m
2
0 fk

, Γ0 fk
) =

1

m2
0 fk
−M2

π+π− − im0 fk
Γ(Mππ, Γ0 fk

)
, (5.26)

where in contrast to the form used in eq. 2.41, here a mass-dependent width is
used:

Γ(Mππ, Γ0 fk
) = Γ0 fk

·
(

q
q0

)2` fk
+1

·
m0 fk

Mππ
· B′` fk

(q, q0, d fk
)2. (5.27)

Note that this mass dependent width is not as general as the one introduced
in eq. 2.36. It only accounts for the threshold of the dipion channel itself, not
for other possible thresholds near m0 fk

.
The Breit-Wigner parameters m0 fk

and Γ0 fk
do not have a strict physical
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meaning in general, but can be interpreted as the mass and width of the
resonant state, if there are no other, overlapping resonances contributing
to the decay and no thresholds to additional decay channels lie within the
vicinity of its mass (see Sec. 2.4.1).

5.5 Flatté Parametrisation

The f0(980) is the dominating resonance in the Mππ spectrum in
B0

s→ ψ(2S)π+π−. It can not be described with a simple Breit-Wigner am-
plitude, because it lies directly at the KK̄ threshold and couples strongly to
this system. This makes a coupled channel treatment necessary, which can be
approximated with a Flatté distribution using a two-width parametrisation
(see the review on resonances in [21]). Here Γ in the relativistic Breit-Wigner
amplitude from Eq. 5.26 is replaced with Γ̃:

Γ̃ =
2ρ1Γ1 + 2ρ2Γ2

m0 fk

(5.28)

with Γi = g2
i acting as partial decay widths to the two channels (ππ and KK)

as defined in eq. 2.34, and ρ1, ρ2 the phase space terms for two-body decays
(with symmetric final states) given by:

ρ1 =
2q

Mππ

ρ2 =
2qK
Mππ

,
, (5.29)

where q is the momentum of the π in the f0(980) frame in the decay via
f0(980)→ ππ (as above) and qK is the momentum of the K in the f0(980)
frame in the decay f0(980)→ KK. The f0(980) also couples to the neutral
channels π0π0 and K0K0, whose thresholds differ by a few MeV due to the
different masses of the daughters from isospin breaking. The peak shape is
sensitive to the threshold, so effectively 4 channels need to be considered in
the Flatté description.

The couplings gi on the other hand are assumed to obey Isospin symmetry,
since the shape is not as dependent on them. In summary the neutral isospin
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partner channels can be incorporated into eq. 5.28 via:

ρ1Γ1 →
(√

2
3

2q
Mππ

+

√
1
3

2q
π0

Mππ

)
Γ1

ρ2Γ2 →
(√

1
2

2qK+

Mππ
+

√
1
2

2qK0

Mππ

)
Γ2,

(5.30)

where q
π0 , qK0 , and qK+ are the momenta of one of the final state particles of

the corresponding channel in the rest frame of the f0(980) and the prefactors
are derived from isospin symmetry.

The Flatté line shape is then given by

R(Mππ) = B′` f0
(p, p0, dB0

s
)

(
p
p0

)` f0 · BW(Mππ|m0 fk
, Γ̃′)B′`π

(q, q0, d fk
)

(
q
q0

)`π

(5.31)
As derived in Sec. 5.3, the only allowed value for ` f0

is 1. In addition, since

f0(980) has J = 0, `π is 0 too and the factors B′`π
and (q/q0)

`π simplify to
unity, which reduces eq. 5.31 to

R(Mππ|m
2
0 f0

, Γ0 f0
) = B′1(p, p0, dB0

s
)

(
p
p0

)
BW(Mππ|m0 f0

, Γ̃′). (5.32)

Note that even though this parametrisation can correctly describe the Mππ

shape around the threshold, it has significant overlap with the f0(1500) reso-
nance, which leads to an overall non-unitary amplitude.

5.6 Bonn-Jülich S-wave description

The Flatté description of the f0(980) describes the phenomenology at the
KK̄ threshold, but due to the presence of further, overlapping S-wave states,
mostly the f0(1500), the resulting combined amplitude does not fulfil the
analyticity or unitarity requirements. Ultimately this means that the extracted
pole positions from the fit are not universal and will depend on the reaction in
which they are measured. Also the couplings, fit fractions and relative phases
are not reliable, even if the fit can describe the data reasonably well.

The Bonn-Jülich model [1, 46, 102] avoids this problem with a new
parametrisation of the scalar pion form factors. It is introduced in
Sec. 2.4.2, while here the technical implementation into the amplitude fit
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of B0
s→ ψ(2S)π+π− is described. The form factor derived in eq. 2.53 is

Fπ(M2
π+π−) = ∑

i=π,K,4π

F̃i(M2
π+π−)(ci + li M

2
π+π−)+ ∑

r= f0(1500) f0(2020)
F̄r(M2

π+π−)αr.

(5.33)
The base functions F̃i(s) and F̄r(s) are process independent and have been

determined by the Bonn-Jülich group numerically using different ππ data
from B0

s→ J/ψ π+π− decays [1]. These base functions were evaluated on
approximately 1300 points for Mππ ∈ [0, 2.3 GeV] and the resulting values
provided via .csv files. This resolution is sufficiently better than the experi-
mental resolution on Mππ (determined in Sec. 6.2.1). They are interpolated
with cubic splines in the amplitude fit. These interpolations are shown in
Fig. 5.4. The normalisation constants ci are fixed from quark-level considera-
tions: The pure ss source cannot directly form ππ or 4π states at small masses
due to OZI suppression. This means only ck is non-zero. The parameters li
are known to only give small corrections to the form factor in other processes.
They are therefore set to 0 for the nominal fit, which also means that the
first sum in eq. 5.33 reduces to the KK component. The only parameters that
need to be determined from the fit to B0

s→ ψ(2S)π+π− in the Bonn-Jülich
model are therefore α f0(1500) and α f0(2020), which describe the coupling to the
non-dispersively introduced resonances. The corresponding line-shape in
M2

π+π− is then given by eq. 2.55 from Sec. 2.4.2

R(M2
π+π−) = pψmBFπ(M2

π+π−), (5.34)

with pψ the ψ(2S) momentum in the B0
s rest frame, and mB the B0

s mass.

5.7 B0
s→ ψ(2S)π

+
π
− Amplitude via intermedi-

ate fk and Z(4430)±

The full time-independent part of the amplitude squared of B0
s→ ψ(2S)π+π−

is the combination of 5.6, 5.13, 5.20, and 5.24. As for all quantum mechanical
measurements, only the squared amplitude is accessible to the experiment:

A(Φ) = ∑
ξ=−1,1

∣∣∣∣∣∣∑fk

∑
λ=−1,0,1

A fk
λξ + ∑

λ−=−1,0,1

AZ−

λ−ξ
+ ∑

λ+=−1,0,1

AZ+

λ+ξ

∣∣∣∣∣∣
2

. (5.35)
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Figure 5.4: Real and Imaginary parts of base functions based
on Bonn-Jülich model versus energy in GeV [1]. Top left
F̃π(Mππ), Top Right: F̃K(Mππ). Middle: F̃4π(Mππ). Bottom
Left: F̄f0(1500)(Mππ) Bottom Right: F̄f0(2020)(Mππ). F̃π(Mππ) and
F̃4π(Mππ) are only used for systematic studies where linear

terms li M
2
π+π− F̃i(Mππ) are allowed in the fit.
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All internal helicity states are summed up coherently, the same goes for
the hadronic intermediate states from the π+π−, Z(4430)+, and Z(4430)−

decay chains. The summation over the muon helicity ξ is not coherent, since
quantum mechanically the measurement of the muon helicities is possible,
even though it is not feasible with the LHCb detector.

But the amplitude A(Φ) only describes the decay of a pure B0
s state, while

in the experiment both B0
s and B0

s mesons are produced and both can decay
into the common final state ψ(2S)π+π−. In order to correctly describe the
decays of both mesons and their mixing, the approach detailed in [108] is
taken up. This approach is briefly sketched in the following.

The fact that the quark mass eigenstates are not aligned with the quark
flavour eigenstates was introduced in Sec. 2.2. Similarly the mass eigenstates
|BL〉 and |BH〉 are not eigenstates of the quark flavour basis

∣∣∣B0
s

〉
(bs) and

∣∣∣B0
s

〉
(bs) either, but can be expressed as superpositions

|BL〉 =p
∣∣∣B0

s

〉
+ q

∣∣∣B0
s

〉
|BH〉 =p

∣∣∣B0
s

〉
− q

∣∣∣B0
s

〉
,

(5.36)

where |p|2 + |q|2 = 1 provides the proper normalisation of the wavefunction.
The time evolution of a B0

s B0
s system can be described with the Schrödinger

equation

H

(
B0

s (t)
B0

s (t)

)
= ih̄

∂

∂t

(
B0

s (t)
B0

s (t)

)
, (5.37)

where h̄ is the Planck constant and H is the system’s Hamiltonian, , which can
be written as

H = M− i
2

Γ =

(
M11 M12

M∗12 M11

)
− i

2

(
Γ11 Γ12

Γ∗12 Γ11

)
. (5.38)

The matrices M and Γ describe the off-shell and on-shell contributions to the
B0

s -B0
s mixing respectively. Their diagonal elements are constrained by CPT

symmetry to M11 = M22 and Γ11 = Γ22 respectively. In addition M and Γ are
Hermitian, which implies M21 = M∗12 and Γ21 = Γ∗12.

The solution of this equation for an initial state B0
s or B0

s is
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∣∣∣B0
s (t)

〉
=g+ (t)

∣∣∣B0
s

〉
− q

p
g− (t)

∣∣∣B0
s

〉
∣∣∣B0

s (t)
〉
=g+ (t)

∣∣∣B0
s

〉
− p

q
g− (t)

∣∣∣B0
s

〉
,

(5.39)

where g+ and g− describe the flavour-conserving and flavour-changing part
of the mixing expressed by

g+(t) =e−imte−Γt/2
(

cosh
∆Γt

4
cos

∆mt
2
− isinh

∆Γt
4

sin
∆mt

2

)
g−(t) =e−imte−Γt/2

(
−sinh

∆Γt
4

cos
∆mt

2
+ icosh

∆Γt
4

sin
∆mt

2

)
,

(5.40)

where m = 1
2(mH + mL), ∆m = mH −mL, Γ = 1

2(ΓH + ΓL) and ∆Γ = ΓL− ΓH.
mH/L, ΓH/L are the masses and widths of |BH〉 and |BL〉.

To calculate the time-dependent decay amplitudes of a flavour state B0
s

and its CP conjugate state B0
s into a common final state f , we first define the

full time-dependent amplitudes

A =
〈

f |B0
s

〉
A f =

〈
f |B0

s

〉
,

(5.41)

where we dropped the t and Φ dependence. Additionally

A =A f

A =
q
p
A f .

(5.42)

Following [109] these definitions allow to rewrite eq. 5.39 and build the time
dependent decay rate
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Γ(t) =Ne−Γt

[
|A|2 + |A|2

2
cosh

(
∆Γt

2

)
+
|A|2 − |A|2

2
cos(∆mt)

−<
(

q
p
A∗A

)
sinh

(
∆Γt

2

)
−=

(
q
p
A∗A

)
sin (∆mt)

]
,

Γ(t) =
∣∣∣∣ p

q

∣∣∣∣2Ne−Γt

[
|A|2 + |A|2

2
cosh

(
∆Γt

2

)
− |A|

2 − |A|2

2
cos(∆mt)

−<
(

q
p
A∗A

)
sinh

(
∆Γt

2

)
+=

(
q
p
A∗A

)
sin (∆mt)

]
,

(5.43)

where N is a normalisation constant.
In the data sample used for this analysis the initial B meson flavour cannot

be determined from the final state, since both B0
s and B0

s can decay into it.
A flavour-tagging from the presence of flavour-specific by-products of the
hadronisation of the B mesons is infeasible either, because the efficiency of
this approach at LHCb is not very high. In the analysis of B0

s→ J/ψ π+π− the
effective sample size decreased to only (3.89± 0.25)% of its original size due
to the flavour-tagging inefficiency [110]. The analysis in [110] was designed
to extract the CP violating phase φs, for which the knowledge of the initial
flavour is essential. The analysis of B0

s→ ψ(2S)π+π− presented here on the
other hand, does not try to extract weak phases though. Therefore a flavour-
tagging is not necessary here and only the sum of the two decay rates of B0

s

and B0
s are measured

Γ(t) + Γ(t). (5.44)

Here it is assumed that there are negligible asymmetries in the production
of B0

s mesons, which is supported by [111], where no significant asymmetry

was found. Additionally, it assumes
∣∣∣ q

p

∣∣∣2 ≈ 1, which was measured in [112] to
1.0039± 0.0033.

Inserting eq. 5.43 into eq. 5.44 two of the terms disappear, leaving only

Γ(t) + Γ(t) ∝ e−Γt

[
|A|2 + |A|2

2
cosh

(
∆Γt

2

)
−<

(
q
p
A∗A

)
sinh

(
∆Γt

2

)]
.

(5.45)
Additionally, the amplitude measurement is performed time-

independently, therefore the time-dependence of eq. 5.45 needs to be
integrated over via
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∫ ∞

0
Γ(t) + Γ(t)dt, (5.46)

which assumes a flat acceptance and reconstruction efficiency as function of
proper decay time. This approximation is motivated in Sec. 5.7.1. Eq. 5.46 can
be solved analytically via integration by parts to

∫ ∞

0
Γ(t) + Γ(t)dt ∝

|A|2 + |A|2

2

(
1

ΓL
+

1
ΓH

)
+<

(
q
p
A∗A

)(
1

ΓL
− 1

ΓH

)
.

(5.47)
Even though the time-dependence is integrated out, the effect of the mixing

is therefore still measurable through the second term in eq. 5.47. The values
for 1

ΓL
= 1.414± 0.006 ps and 1

ΓH
= 1.619± 0.009 ps are taken from [113].

Inserted into 5.47, this dilutes the mixing contribution from the second term
with respect to the incoherent contribution from the first term by

D =

(
1

ΓL
− 1

ΓH

)
/
(

1
ΓL

+
1

ΓH

)
≈ 0.068 (5.48)

In order to make use of eq. 5.47 one still needs an explicit expression for
A, describing the B0

s→ ψ(2S)π+π−. The angle definitions are the same for
decays of B0

s and those of B0
s , but the `s B`s couplings need to be replaced by

B`s, which are related by the CP parities ηi of the decay amplitude Ai [108]:

q
p
Ai
Ai

= ηi exp iφs. (5.49)

Here φs = −0.050± 0.019 rad describes the weak CKM phase responsible
for CP violation in mixing. Assuming no direct CP violation in the decay,
q
p = exp iφs. This is satisfied for the decay B0

s→ ψ(2S)π+π−, because the
leading Feynman diagram shown in Fig. 2.4 does not contain a weak phase
up to order λ3 in the Wolfenstein parametrisation (see eq. 2.2) and next to
leading order diagrams have negligibly small amplitudes. This allows to
rewrite eq. 5.49 to

Ai = ηiAi (5.50)

The values of ηi can be inferred from the application of CP on the individual
systems. The ψ(2S) is a CP eigenstate with P = C = −1, its combined CP
parity is therefore 1. Applying C to the dipion system exchanges the π+ with
the π−, which has the same effect as a parity transformation P. The parity of
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the two-pion system is given by

P(π+)P(π−)(−1)`π = (−1)`π , (5.51)

where P(π+) = P(π−) = −1 and `π is the relative angular momentum
between the two pions introduced in Sec. 2.5 (in the fk chain, this is given
by the spin of the fk state). Since C = P = (−1)` for the dipion system,
the combined CP parity is always even, which means that the final state
ψ(2S)π+π− has even CP parity.

If the two terms in eq. 5.47 are proportional, the mixing only introduces an
overall scale factor for the amplitudes and therefore the pdf. This scales the
B`s coupling parameters in the fit, but their absolute sizes are not relevant for
the determination of the fit fractions, interferences and polarisations, which
are the typical parameters of interest of amplitude analyses. Only if the two
terms are not proportional, the mixing changes the shape of the amplitudes
and therefore the pdf. In that case the mixing needs to be considered explicitly
in the amplitude fit. In the following it is shown that this is the case, if
amplitudes with different CP parities are present for the intermediate states.

If two decay paths with different CP parities A+ and A− with CP(A±) =
±1 and A = A+ + A− are possible, the second term of eq 5.47 evaluates after
some algebra to

< q
p

A∗A = <
(

q
p

(∣∣∣A+
∣∣∣2 − ∣∣∣A−∣∣∣2 + 2=

(
A−∗A+

)))
=
∣∣∣A+

∣∣∣2 − ∣∣∣A−∣∣∣2 + 2=
(

A−∗A+
)

,
(5.52)

where q
p = exp iφs ≈ 1 was used. The interference term between amplitudes

of different CP eigenvalues
(

A−∗A+
)

has different angular dependencies
than the other components of eq. 5.47, which needs to be taken into account, if
more than one CP eigenstate is present in the decay into a common final state.

In the following, the CP conjugate decay amplitudes of the different decay
chains of B0

s→ ψ(2S)π+π− are derived and their CP eigenvalues determined.

5.7.1 CP conjugate Amplitude for B0
s→ fkψ(2S)

In the decay chain involving intermediate fk states, the fk states decay strongly
via fk→ π+π−. This decay conserves CP and the π+π− system is an even
eigenstate of CP, as shown in eq. 5.51. Since visible mixing effects only occur
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for processes, which involve amplitudes with different CP parities, for the
following considerations on CP eigenvalues this decay does not play a role.
The same considerations hold for the ψ(2S), which is also an even eigenstate
of CP.

The CP parity of the intermediate state 〈ψ(2S) fk| can be determined via

CP(〈ψ(2S) fk|) = CP( fk)CP(ψ(2S))(−1)` fk 〈ψ(2S) fk| = (−1)` fk 〈ψ(2S) fk| ,
(5.53)

where ` fk
describes the relative angular momentum between the ψ(2S) and

fk states introduced in Sec. 5.3.1. For the S-wave states with J = 0, the only
allowed value is ` fk

= 1 resulting in an odd CP parity. For the f2 states the
values 1, 2, 3 are allowed though. These correspond to CP parities −1, 1,−1
respectively. In the default fit only the lowest B` fk

s couplings are taken into
account though. In this case the interference term in eq. 5.47 does not change
the shape of the pdf, because all amplitudes have the same CP parity. The
mixing effect in the decay chain with intermediate fk therefore only needs to
be taken into account in the systematic study, where higher `s couplings are
allowed in Sec. 9.

In order to determine the amplitude for the full decay chain B0
s→ ψ(2S) fk

with fk→ π+π− the effect of CP on
∣∣∣B0

s

〉
CP
∣∣∣B0

s

〉
= P

∣∣∣B0
s

〉
= −

∣∣∣B0
s

〉
(5.54)

needs to be considered as well. This can be combined with eq. 5.53 into

CP〈ψ(2S) fk|B
0
s 〉 = − 〈ψ(2S) fk

∣∣∣B0
s

〉
, (5.55)

or in the notation used in Sec. 5.3.1

A fk
λξ(Mππ, cos θπ, θψ, φ) = −A fk

λξ(Mππ, cos θπ, θψ, φ) (5.56)

which holds for both f0 and f2 intermediate states. At the level of the B` fk
s

couplings this means that

B11 = −B11, (5.57)
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if only the lowest ` fk
s states are taken into account. If higher order couplings

are allowed as well, the following relation holds

B11 = −B11

B22 = B22

B33 = −B33.

(5.58)

5.7.2 CP conjugate Amplitude for B0
s→ Z(4430)±π

∓

The determination of the CP conjugated decay amplitudes for the decays
via intermediate Z(4430)+ and Z(4430)− is less straightforward, because the
intermediate states are not CP eigenstates.

For the decay amplitude of Z(4430)±→ ψ(2S)π± CP transformation gives

CP〈ψ(2S)π−|Z−〉 = CP(ψ(2S))P(π)P(Z+)(−1)`
Z
= (−1)`

Z+1〈ψ(2S)π+|Z+〉,
(5.59)

where P(Z) = +1 was used.
Since both allowed values for `Z ∈ [0, 2] are even (see Sec. 5.3.2)

CP〈ψ(2S)π−|Z−〉 = −〈ψ(2S)π+|Z+〉. (5.60)

Assuming no direct CP violation in the decay (using the same argu-
ment as for eq. 5.49), the decay into the intermediate state B0

s→ Z(4430)+π−

〈Z+π−|B0
s 〉 can be related to its CP conjugate via

CP〈Z+π−|B0
s 〉 =P(π)P(Z)P(B0

s )(−1)`
B0

s→Z+π
−

〈Z−π+|B0
s 〉

=(−1)`
B0

s→Z+π
−

〈Z−π+|B0
s 〉.

(5.61)

The only allowed value for the angular momentum `B0
s→Z+π− between

the Z+ and π− in the B0
s decay is `B0

s→Z+π− = ~J(B0
s )−~J(π)−~J(Z) = 1, since

J(B0
s ) = J(π) = 0 and J(Z) = 1. Therefore

CP〈Z+π−|B0
s 〉 = −〈Z

−π+|B0
s 〉. (5.62)

The same consideration holds for the decay to Z−π+

CP〈Z−π+|B0
s 〉 = −〈Z

+π−|B0
s 〉. (5.63)
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Eq. 5.63 can now be combined with eq. 5.60 to relate the full decay ampli-
tudes from Sec. 5.3.2 to their CP conjugates

CPAZ−

λ−ξ
= CP〈Z−π+|B0

s 〉〈ψ(2S)π−|Z−〉

= (−1)2〈Z+π−|B0
s 〉〈ψ(2S)π+|Z+〉

= AZ+

λ+ξ

(5.64)

and for eq. 5.61

CPAZ+

λ+ξ
= AZ−

λ−ξ . (5.65)

At the level of the `s couplings derived in Sec. 5.3.2

BZ+

01 = BZ−

01

BZ−
01 = BZ+

01 ,
(5.66)

which means that an exotic contribution from B0
s→ Z(4430)−π+ and

B0
s→ Z(4430)+π− can be described with two independent complex couplings,

which need to be fitted in the amplitude fit.
Given the limited data sample size, an additional constraint needs to be

applied to the decay amplitudes in order to increase the fit stability. The
limit-setting procedure in Sec. 10 is performed twice with different relative
phases between the exotic couplings, corresponding to minimal mixing terms〈

Z−π+|B0
s

〉
=
〈

Z+π−|B0
s

〉
(5.67)

or maximal mixing terms〈
Z−π+|B0

s

〉
= −

〈
Z+π−|B0

s

〉
. (5.68)

Note that on both sides of the equation here is an initial B0
s state.

For the B`s couplings this corresponds to the following relations

BZ+

01 = BZ−
01 = BZ−

01 = BZ+

01 (5.69)

for minimal mixing or

BZ+

01 = −BZ−
01 = BZ−

01 = −BZ+

01 (5.70)

for maximal mixing effects.
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The addtional constraint decreases the number of free couplings related to
exotic contributions to just one. These choices are similar to the choice made
for the coupling parameters in the analysis of B0

s→ J/ψ pp in [10]. While the
choice for the relative phase of the couplings is arbitrary, the assumption of the
same magnitude for the couplings is motivated by isospin symmetry between
Z(4430)+ (ccud) and Z(4430)− (ccud) in the tetraquark picture. A priori
there is no reason, why the six quarks ccudud in the potentially exotic final
state should preferably form a Z(4430)+π− configuration over a Z(4430)−π+

configuration. This assumption can be relaxed, once a larger data sample is
available for study.

5.7.3 Fit Fractions And Interferences

In a standard fit with normalised pdfs the contribution to the decay width
via intermediate states would be described by the yield parameters, which
are usually realized as prefactors of the normalised pdfs of the individual
components. In an amplitude fit this is not possible directly, because the
free parameters of the amplitude fit are not yields or fit fractions, but the
`s-couplings BJ

`s. The contribution of decays via each individual intermediate
hadronic amplitude therefore needs to be calculated separately.

For each intermediate state i that is allowed in the fit, the fit fraction is
defined as

Fi =

∫
dΦ ∑ξ

∣∣∣∑λ′ Ai
λ′,ξ

∣∣∣2 + ∣∣∣∑λ′ Ai
λ′,ξ

∣∣∣2∫
|A|2 +

∣∣A∣∣2 , (5.71)

where λ′ runs over the appropriate helicities for the decay chain and Ai
λ′,ξ and

Ai
λ′,ξ are the individual amplitudes for the intermediate state. The squared

amplitudes A and A are defined in eq. 5.35. The small correction from the
oscillation effect described in eq. 5.47 is negligible with respect to the statistical
uncertainties on the fit fractions and therefore not included here.

The integrals are not evaluated analytically, but via MC integration with
uniform sampling (for an introduction to MC methods see e.g. [114]). A
simulated sample of B0

s→ ψ(2S)π+π− decays is used, which is generated
without intermediate hadronic resonances in π+π−, ψ(2S)π+ or ψ(2S)π−.
This sample is therefore distributed uniformly in phase space Φ. The integral
can then be approximated with the sum over the integrand evaluated on the
simulated events. The size of the simulated sample is > 15 times larger than
the data sample size, thus the additional statistical uncertainty introduced by
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this procedure is negligible compared to the statistical uncertainty from the fit
to data.

The sum of these contributions is not necessarily unity, because of potential
interference between the states, but in the case of negligible interference, the
fit fractions Fi can be identified with the relative decay widths Γi/Γtot of the
decay B0

s→ ψ(2S)π+π−.
The interferences between states i and j can be quantified using

Fij =

∫
dΦ ∑ξ 2Re

(
∑λ′ Ai

λ′,ξ Aj∗
λ′,ξ

)
+ 2Re

(
∑λ′ Ai

λ′,ξ Aj∗
λ′,ξ

)
∫
|A|2 +

∣∣A∣∣2 . (5.72)

Uncertainties on these values need to be propagated from the uncertainty
estimates on the `s-couplings. In principle this could be done with Gaussian
uncertainty propagation. But this approach does not take into account the
additional statistical uncertainties introduced in the s-weighting process de-
scribed in Sec. 4.6 and also does not correctly take into account the non-linear
correlations between the fit parameters, which are pronounced for small fit
fractions. In order to estimate the full statistical uncertainty on the fractions
and interferences the bootstrapping approach is applied. It is described in
Sec. 8.
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6 Amplitude Fit to Data

In the following the fit of the amplitude model (derived in Sec. 5.7) to the
s-weighted data (described in Sec. 4) is introduced. First the signal pdf and
likelihood are explained in Sec. 6.1, the concrete realisation of the amplitude
model is given in Sec. 6.3 and the fit results are given in Sec. 6.4, 6.5 and 6.6.

6.1 Signal pdf and extended likelihood

Signal pdf and likelihood are constructed following the procedure in [115].
After the s-weights are applied to the data set the sample corresponds to a
pure signal sample and a parametrisation of a background component in the
amplitude variables is not necessary any more. In general, the signal pdf P
depends on the invariant dipion mass Mππ and on the angular variables of
the decay chain θπ, θψ, and φ. In the following these variables are summarised
as ξ with the pdf taking the form:

P(ξ|w) =
1

I(w)
|M(ξ|w)|2 · εsig(ξ) · φ(ξ) (6.1)

M(ξ) is the matrix element describing the complete decay process from
the B0

s to the final-state particles π+, π−, µ+, µ−. εsig is the efficiency of
selecting signal events, φ is the phase-space element and w is the set of model
parameters. I(w) is a normalisation factor:

I(w) =
∫
|M(ξ|w)|2 · εsig(ξ) · φ(ξ) · dξ (6.2)

The amplitude fit minimises a weighted unbinned extended likelihood
Lext, where the weights are the s-weights extracted from a fit to the B0

s candi-
date mass in Sec. 4.6. The following derivation comes from [115], which itself
is based on [116–118]:

L(w, ν)ext ≡
νNe−ν

N!

N

∏
i=1
P(ξi|w)si , (6.3)
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where N is the number of observed events, a Poisson random variable with
mean value ν and si is the s-weight associated to the ith candidate.

Using Equation 6.1, L(w, ν)ext takes the form:

L(w, ν)ext =
νNe−ν

N!

N

∏
i=1

[
|M(ξi|w)|2 · εsig(ξi) · φ(ξi)

I(w)

]si

(6.4)

Taking the logarithm of Equation 6.4 and using Stirling’s approximation 1, the
extended weighted log-likelihood is given by:

lnL(w, ν)ext = −N ln N − ν +
N

∑
i

ln ν +
N

∑
i

ln

[
|M(ξi|w)|2εsig(ξi)φ(ξi)

I(w)

]si

= −N ln N − ν +
N

∑
i

ln ν +
N

∑
i

si ln |M(ξi|w)|2εsig(ξi)φ(ξi)

−
N

∑
i

si ln I(w)

(6.5)

The expected number of total events ν is given by the sum of expected
number of signal and background events:

ν = n̄s + n̄b (6.6)

with n̄s being given by the normalisation integral:

n̄s = I(w) =
∫
|M(ξ|w)|2εsig(ξ)φ(ξ)dξ (6.7)

The term ln ν in Equation 6.5 can be rewritten as:

ln ν = ln(n̄s + n̄b)

= ln
[

n̄s ·
(

1 +
n̄b
n̄s

)]
= ln n̄s + ln

(
1 +

n̄b
n̄s

) (6.8)

Assuming that the ratio of the expectation values can be replaced by the ratio
of observed events, as determined by the mass fit that produced the s-weights,
i.e.

1ln 1/N! = −N ln N + N
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n̄b
n̄s

=
nb
ns

(6.9)

and inserting Equation 6.8 in Equation 6.5, the extended weighted log-
likelihood is given by

lnL(w, ν)ext =− N ln N − ν +
N

∑
i

[
ln n̄s + ln(1 +

nb
ns

)

]
−

N

∑
i

si ln I(w) +
N

∑
i

si ln |M(ξi|w)|2εsig(ξi)φ(ξi).

(6.10)

Using eq. 6.7 this expression can be reorganised into

lnLext(w, ν) = −N ln N − ν +
N

∑
i

ln(1 +
nb
ns

)

+
N

∑
i
(1− si) ln I(w)

+
N

∑
i

si ln |M(ξi|w)|2εsig(ξi)φ(ξi)

= −N ln N − ν + N ln(1 +
nb
ns

)

+
N

∑
i
(1− si) ln I(w)

+
N

∑
i

si ln |M(ξi|w)|2 +
N

∑
i

si εsig(ξi)φ(ξi)

(6.11)

It is important to note that the efficiency and phase-space terms do not depend
on the model parameters, which all go into the matrix element M(ξi|w). The
terms which do not depend on w represent only an offset of the likelihood
and do not change the position of the maximum of the log-likelihood in the
parameter space. Thus they can be removed from Equation 6.11, leading to

− lnLext(w, ν) = ν−
N

∑
i
(1− si) ln I(w)−

N

∑
i

si ln |M(ξi|w)|2

= n̄b + I(w)−
N

∑
i
(1− si) ln I(w) −

N

∑
i

si ln |M(ξi|w)|2

(6.12)
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where Equations 6.6-6.7 have been used. The expected number of background
events n̄b does not depend on the model parameters, which allows to use the
observed number of background events nb as an estimate (n̄b = nb). The latter
can be rewritten as

nb = N − ns =
N

∑
i
(1− si). (6.13)

This can be brought to the final form of the negative extended and weighted
log-likelihood, where we neglect the constant contribution nb

− lnLext(w, ν) = I(w) −
N

∑
i
(1− si) ln I(w)

−
N

∑
i

si ln |M(ξi|w)|2
(6.14)

In order to properly take into account the statistical uncertainty introduced
by the weighting procedure, the negative log-likelihood is multiplied by a
factor α, which scales it to the effective sample size [119]

− ln L̂ext(w, ν) = −α lnL(w, ν)ext = −
∑N

i si

∑N
i s2

i
lnL(w, ν)ext, (6.15)

that leads to larger uncertainties for non-uniform weights. This factor only
holds for linear estimators, but is used as an approximation here. A more
correct uncertainty estimate for the s-weighting procedure is addressed via
bootstrapping in Sec. 8.

Now the normalisation integral I(w) needs to be addressed. In general
the efficiency ε(ξ) is not known in closed form, making it necessary to ap-
proximate it with e.g. polynomial shapes, which are fitted to the efficiency
distribution of a simulated sample or a control data sample. Using the approx-
imated efficiency, it is then possible to perform the integral I(w). Since the
matrix element M(ξ|w) usually cannot be integrated analytically, a numeric
approximation like Gaussian quadrature is used for the evaluation of I(w) in
that case. This needs to be repeated for each step of the optimisation process,
because the matrix element also depends on the model parameters w, part
of which are updated at each fit iteration. Since the fit might need hundreds
of iterations to converge to a minimum, the numeric integration needs to
performed as often, slowing down the fit process.
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In this analysis a different approach is followed. Instead of first approxi-
mating ε(ξ) and then performing numerical integrations of the integral I(w),
I(w) is evaluated directly using Monte Carlo integration with uniform sam-
pling. An introductory lecture to Monte Carlo sampling techniques can be
found e.g. in [114].

An integral I =
∫

dx f (x), where x = (u1, ...ud) is a point in a d-
dimensional space can be approximated with

E =
1
N

N

∑
n=1

f (xn), (6.16)

where xn is sampled uniformly from the d-dimensional hypercube. In the
limit N → ∞ it becomes identical to I.

It is therefore possible to approximate

I(w) =
∫
|M(ξ|w)|2 · εsig(ξ) · φ(ξ) · dξ ≈ 1/Ngen

Ngen

∑
n
|M(ξn|w)|2 · εsig(ξn)

(6.17)
via sampling events uniformly from the phase-space distribution Φ(ξ).

The efficiency εsig(ξ) is approximated by the simulated events used in
Sec. 4 as signal proxy to optimize the BDT. They were sampled uniformly
from the allowed phase space Φ(ξ) and then treated the same way as mea-
sured data, which means that detector acceptance effects and kinematic and
topological cuts are the same as for measured signal data. The efficiency at
each generated point ξn can then be approximated as a binary expression

εsig(ξn) ≈
Nacc

∑
i
[ξn − ξi ≡ 0], (6.18)

where the sum runs over all those generated events, which matched all se-
lection criteria and the Iverson bracket [ξn − ξi ≡ 0] evaluates to 1, if the
condition in it is met (the generated event was accepted by the selection
criteria), otherwise it evaluates to 0 (the generated event was not selected).

This approximation simplifies eq. 6.17 to

I(w) ≈ 1
Ngen

Nacc

∑
n
|M(ξn|w)|2, (6.19)
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where the evaluation now only needs to be performed on the accepted sim-
ulated events, instead of all generated ones. In addition, no parametric de-
scription of the 4D efficiency distribution over the phase space needs to be
introduced.

Instead of one computing-intensive numerical integration of the matrix
element and efficiency distribution in every iteration of the fit, now only the
matrix element needs to be evaluated at Nacc points in every iteration, which
is significantly faster.

The simulated samples correspond to the data-taking conditions in each
year and each magnet polarity. The relative sample sizes do not exactly corre-
spond to the integrated luminosity, which was measured in data. Different
data taking conditions can result in slightly different acceptances and efficien-
cies. In the amplitude fit’s variables, which are measured in the rest frames
of the particles, these effects are largely washed out, because of the different
orientations of the decays. They still need to be taken into account. Since the
pdf takes the acceptance and efficiency distributions directly from simulated
samples, a wrong proportion of the individual subsamples from different
run conditions could lead to a bias in the fit result. Additional weights are
introduced to scale each simulated sample i with generated events Ni by the
integrated luminosity Li that was measured in these conditions

wilum = Li/ ∑
j
Lj

∑j Nj

Ni
, (6.20)

where the sum runs over all generated samples for the 6 years of data taking.
An additional effect, which needs to be taken into account, when scaling

the simulated samples, is the production cross section of B0
s mesons, which

was higher in Run 2 than in Run 1 due to the higher proton-proton collision
energies. Because no direct measurement is available for the B0

s production
cross section at these two energies, the measured B+ production cross sec-
tion ratios for 7 over 13 TeV are used as estimate for the B0

s cross section
correction [120]. This assumption is justified by the results in [53], where
the relative production cross sections of B0

s and B0 were compared for 8 and
13 TeV respectively. These ratios fs

fd
(8 TeV) and fs

fd
(13 TeV) are compatible with

each other within 1.5 σ. Since isospin is conserved to a good degree in the
hadronisation, it can therefore be expected that the relative production ratios
of B0

s and B+ are compatible as well between 8 and 13 TeV. The correction is
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implemented as a weight

wiprod =
fs
fd
(i TeV) · fs

fd
(8 TeV)/

fs
fd
(13 TeV), (6.21)

where i represents the beam collision energies, which were used in the gener-
ation of the sample.

The weights, which scale the simulated samples by the correct luminosity
and production cross section can be multiplied to the events, which were
used to correct the simulated distributions of event multiplicity and B0

s pT

wkin (introduced in Sec. 3.2.4) via

wtot = wkinwlumwprod (6.22)

Since they give a weight to each simulated event, they can be included straight-
forwardly into the normalisation integral via

I(w) ≈ 1
Ngen

Nacc

∑
n
|M(ξn|w)|2wntot. (6.23)

6.2 Data and Efficiency Distributions

In order to correctly describe the data with the pdf of the amplitude fit, the
acceptances and efficiencies need to be well-described. Sharp features in the
efficiency distributions could lead to biases in the fit result, if they are not
described appropriately in the efficiency model. In the chosen fit procedure
this is done via directly including a fully simulated sample into the likelihood
to avoid the problem of "too smooth" or inappropriate parametrisations. Nev-
ertheless the distributions need to be verified and understood to check for
problematic regions in the phase-space, where a small mismodelling could
lead to drastically different shapes. This would especially be true, if it oc-
curred in a region, where also the fit model shows large variations, e.g. around
the f0(980) peak in Mππ. If such a region is identified, a different selection
might be necessary, which results in a smaller dependence on the variable,
reducing the effect on the result.

For a visual inspection, the combined efficiency and acceptance projections
to the amplitude variables are shown in Fig. 6.1. They are produced using
fully simulated, phase space distributed B0

s→ ψ(2S)π+π− events introduced
in Sec. 3.2.4.
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The reference distribution is given by a sample uses a sample that is
generated flat in phase space as well, but without any acceptance or detector
effects. Since their underlying models are the same, the combined efficiency
and acceptance effects in Fig. 6.1 can be calculated directly from the bin-wise
ratio of the distribution from the fully simulated sample and the reference
distribution.

The efficiency shows a steep drop around cos θπ = ±1. This can be
explained from the configuration of the momenta in these extreme cases:
Since there are a large number of low-pT pions coming from the primary
interaction forming the combinatoric background (see Sec. 4), the cuts on
the pion pT in the selection are tight, in order to have a high signal purity.
For cos θπ = ±1 one of the pions flies in the opposite direction of the flight
direction of the ππ system, which means that this pion has a low momentum
in the B0

s system and therefore in the lab frame as well. If that is the case, it is
more likely that the pion does not fulfil the pT requirement of the selection
and therefore the efficiency is lower in that region.

The ψ(2S) part of the decay is much cleaner and very few dimuon combi-
nations are formed from random muon tracks. Because of this the pT cuts on
the muons are much looser, which makes the efficiency in cos θψ much flatter
than its pion counterpart.

The efficiency distribution in Mππ can be explained as well by the pT cuts
on the pions: For very low values of Mππ the pions are emitted with low
momenta in the ππ system and no cancellation of momenta occurs. Their
momenta in the B0

s system are rather high though, because ψ(2S) and ππ

are emitted with maximum momentum. For very large values of Mππ on
the other hand the ππ system has only a small momentum in the B0

s system,
while in the ππ system the pions are emitted with large momenta. In both
these configurations, low and high Mππ, the pion momenta are high in the
B0

s frame, which increases the chance of large pT in the lab frame leading to a
larger efficiency.

The distribution in φ can be explained via the acceptance of the detector: If
the decay planes of ψ(2S) and the ππ system lie perpendicular (φ = ±π/2),
it is more likely that one of the particles leaves the instrumented region of the
detector, because the 4 tracks extend over a larger solid angle of the detector.

For very small values of M(ψ(2S)π+), the π+ is almost at rest in the B0
s

frame, reducing its possible momentum in the lab frame. For very large
M(ψ(2S)π+), the spectator π− is the one at rest. For M(ψ(2S)π−) the op-
posite holds. These events with low pion momenta are more likely to be
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Figure 6.1: Combined efficiency and acceptance distributions
for amplitude fit variables. Obtained from fully simulated

B0
s→ ψ(2S)π+π− events.

removed by the pion pT cut in the selection, reducing the efficiency in this
phase-space region.

The signal component of the data obtained with the s-weight technique is
shown in Fig. 6.2 projected into the amplitude fit variables Mππ, θπ, θψ and
φ, as well as the dependent variables M(ψ(2S)π+) and M(ψ(2S)π−). The
data is dominated by the f0(980) resonance and to a lesser extent the f0(1500)
resonance. No peaking structures are visible by eye in the ψ(2S) π masses,
where exotic contributions would occur.

This is supported by the Dalitz plot in Fig. 6.3, where only bands in M2
π+π−

are visible. The Z(4430)±would be visible as a horizontal band around 20 GeV
in M2(ψ(2S)π). A toy sample with a large Z(4430)± fraction is shown in
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Figure 6.2: Signal component of the B0
s→ ψ(2S)π+π− data ob-

tained with the s-weight technique for amplitude fit variables.
These are not efficiency or acceptance-corrected.
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Figure 6.3: Left: Relative acceptance and efficiency as function
of Dalitz plane (arbitrary scale). Right: signal component of the
B0

s→ ψ(2S)π+π− data obtained with the s-weight technique in
Dalitz plane.

Fig. 10.1 in Sec. 10 Its absence in Fig 6.3 cannot be explained with the efficiency,
which is flat in this region of the Dalitz plane, as can be seen in the efficiency
map on the left of Fig. 6.3. This is quantified with a dedicated search for the
Z(4430)± in these spectra in Sec. 10.

6.2.1 Resolution Effects

Due to the finite detector resolution and the reconstruction effects the am-
plitude fit variables can only be measured with a limited precision. These
resolution effects can distort the shapes of the distributions that were intro-
duced in Sec. 5 and must therefore be studied and (if necessary) described by
the fit model as well.

Since the simulated sample includes all detector effects, it can be used
to directly determine the distribution of resolution effects by comparing the
simulated values at generator level with the reconstructed values for the
fit variables of concern. The distributions of these differences are shown in
Fig. 6.5 and can be used to directly estimate the size of the resolution effects
that need to be considered. The reconstructed variables are the output of the
decay tree fit as described for M(ψ(2S)π+π−) in Sec. 4.4.1: It constrains the
B0

s to originate from the PV, fix the dimuon invariant mass to the PDG value
of the ψ(2S) mass. In addition here the B0

s mass is fixed to its PDG value
as well. This improves the resolution significantly towards the edges of the
phase-space of the decay, e.g. where Mππ ≈ m(B0

s )−m(ψ(2S)).
The angular resolution is better than 8 mradfor all angles, far below the vis-

ible effect of possible structures, making a resolution treatment unnecessary2.

2The highest spin states considered in the fit have Spin 2, which leads to Legendre polyno-
mials of up to order 4 in the angles. This can be seen from the Wigner-d matrix in eq. 5.13,
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The resolution of mψπ is with around 2.5 MeV also well below the measured
width of the Z(4430)+, which is around 180 MeV.

For Mππ a small effect is possible for the core region of the f0(980) reso-
nance, where the resolution is around 3 MeV. Its effect is treated as a system-
atic uncertainty in Sec. 9. This effect is evaluated using a convolution integral
in the pdf

PR(ξ|w) =
∫
P(ξ|w′)R(w−w′, w)dw′. (6.24)

The resolution R is modelled using the simulated sample following the
procedure in [121]. The convolution integral is numerically approximated
using the approach detailed in [115]: Each data point l in Mππ is replaced
with nsam = 19 points with equidistant mass values within ±3σ around it:

Mππ l,j = Mππ l + j · 3σ(Mππ l)

nsam − 1
(6.25)

with j = −nsam−1
2 , .., 0, .., nsam−1

2 and σ(Mππ l) being the mass resolution value
at mass Mππ extracted from simulation.

Each sampled point is assigned a Gaussian weight wl,j:

wl,j = C∆jG(Mππ l,j|Mππ l, σ(Mππ l)) (6.26)

where C provides the correct normalisation of the weights and ∆j corresponds
to the step size between sampling points.

σ(Mππ l) gets smaller towards the edges of the phase-space due to kine-
matic effects and the mass constraints from the B0

s , ψ(2S), π+, and π−.
This is accounted for via extracting the resolution in 30 bins over the al-
lowed Mππ range. From each bin the standard deviation of the distribution
Mππtrue−Mππmeasured is extracted via a Gaussian fit. The resulting resolution
points are fitted with a fourth order polynomial, in order to estimate the reso-
lution for arbitrary points. Both are shown in Fig. 6.4. For the determination
of σ(Mππ l) the value given by the fit function is used.

For constant step sizes, ∆j could be absorbed into C, but near the phase-
space boundary the 3σ range can stretch outside the allowed mass range.
When that is the case, the step size is reduced on one side such that the
furthest point sits on the boundary. The resulting imbalance (on the side near

which is of the form d2
λ0(θπ) =

1
2

(
cos2 θπ − 1

)
for λ = 0, which creates terms of up to order 4

in the squared amplitude. These are steepest around θπ = ±1, but even there the value of the
polynomial changes by less than 5 % within 8 mrad. Given that this only affects contributions
from f2 states, which make up less than 5 % of the full decay width of B0

s→ ψ(2S)π+π−, this
is deemed negligible.
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Figure 6.4: Resolution curve of Mππ distribution evaluated from
simulation, fitted with a fourth grad polynomial.

the boundary the sampling points lie nearer to the mode of the Gaussian) is
countered with the factor ∆j to avoid a bias towards the phase-space edge.

The resulting weighted data sample replaces the original data sample in
the amplitude fit and thereby folds the resolution directly into the likelihood
calculation given in eq. 6.12:

− lnL(w, ν)ext =
∫
|M(ξ|w)|2εsig(ξ)φ(ξ)dξ−

N

∑
l
(1− sl) ln

∫
|M(ξ|w)|2εsig(ξ)φ(ξ)dξ −

N

∑
l

sl ln
nsam

∑
j

wl,j|M(ξl,j|w)|2 (6.27)

It is important to note that the s-weight sl and the resolution weights wl,j

cannot just be combined into a single weight, since they enter the expression
at different places.

Due to the larger data sample the computing time for fits increases signifi-
cantly, when the resolution effect is taken into account. On the other hand the
inclusion of resolution effects has marginal impact on the extracted quantities.
Therefore the nominal fit does not include these resolution effects, but the
systematic uncertainty due to their neglect is determined in Sec. 9.
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Figure 6.5: Distribution of resolution in B0
s→ ψ(2S)π+π− for

amplitude fit variables taken from simulation of Run II condi-
tions. Top Left: δMππ in MeV. Top Right: δ cos θπ. Middle Left:
δ cos θψ. Middle Right: φ. Bottom Left: δM(ψ(2S)π−) in MeV.

Bottom Right: δM(ψ(2S)π+) in MeV.
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6.3 Fit Model

The known resonances included into the fit are summarized in Tabs. 6.1, 6.2,
6.3 for each fit configuration.

Resonance Spin description Mass ( GeV) Width(s) ( GeV) Source

f0(980) 0 Flatté 0.9454 0.167/0.579 3 LHCb [56]
f0(1500) 0 BW 1.4609 0.124 LHCb [56]
f0(2020) 0 BW 1.814 0.328 LHCb [56]
f2(1270) 2 BW 1.2751 0.1851 LHCb [56]
f2(1525) 2 BW 1.522 0.0814 LHCb [56]

Table 6.1: Resonances used in the amplitude fit to
B0

s→ ψ(2S)π+π− with shape parameters fixed to results from
[56] Solution I.

Resonance Spin description Mass ( GeV) Width ( GeV) Source

f0(980) 0 Flatté 0.9454 free
f0(1500) 0 BW free free
f2(1270) 2 BW 1.2751 0.1851 LHCb [56]
f2(1525) 2 BW 1.522 0.0814 LHCb [56]

Table 6.2: Resonances used in the amplitude fit to
B0

s→ ψ(2S)π+π− and their parameters as used in the approach
with Flatté and Breit-Wigner amplitudes for the S-wave descrip-
tion with freely floating shape parameters. The mass parameter
of the Flatté is fixed, because the Flatté amplitudes are ambigu-
ous, if both mass and width parameters are left free in the fit,
resulting in a underdetermined covariance matrix of the fit as

demonstrated in [122].

In the ansatz using Flatté/Breit-Wigner amplitudes for the description of
the S-wave, the f0(980) is described with a Flatté shape (introduced in Sec. 5.4).
In the first fit configuration, all shape parameters are fixed to the values
obtained in [56] Solution I. These values are given in Tab. 6.1. In the second fit
configuration, the two widths are left floating. The observed mass parameter
lies within the region of approximate ambiguity that is demonstrated in [122].
In this region of parameter space, the 3 shape parameters m0 f0(980), Γ1, Γ2 are
not independent and different combinations of the three result in very similar
amplitudes. In order to resolve this ambiguity, the mass parameter is fixed in
the fit.

3corresponding to Γ1 and Γ2 of the Flatté parametrisation given in eq. 5.32.
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Resonance Spin description Mass / pole position ( GeV) Width ( GeV) Source

f0(980) 0 Bonn-Jülich 0.996 + 0.057i [1]
f0(1500) 0 Bonn-Jülich 1.465 + 0.100i [1]
f0(2020) 0 Bonn-Jülich 1.910 + 0.398i [1]
f2(1270) 2 BW 1.2751 0.1851 LHCb [56]
f2(1525) 2 BW 1.522 0.0814 LHCb [56]

Table 6.3: Resonances used in the amplitude fit to
B0

s→ ψ(2S)π+π− and their parameters as used in the approach
with Bonn-Jülich model for the S-wave description [1].

The shape of the f0(1500) is parametrized with a Breit-Wigner amplitude.
In the first fit its shape parameters are fixed to the values obtained in [56]
Solution I. In the second fit configuration the shape parameters Γ0 f0(1500) and
m0 f0(1500) are floating freely.

The f0(2020) amplitude is only included in the first fit with Flatté/Breit-
Wigner amplitudes. Its shape parameters are fixed there to the values obtained
in [56] Solution I. In the second fit configuration is was not possible to include
the f0(2020) component as well and obtain a meaningful fit result, even when
keeping the shape parameters of the f0(2020) fixed while only floating those
of the f0(1500) and f0(980).

In the fit with the Bonn-Jülich model, the S-wave components are all
described as part of the model introduced in Sec. 5.6, where their shapes and
relative phases are fixed from a fit to B0

s→ J/ψ π+π− and B0
s→ J/ψ K+K− [1].

The pole positions are given in Tab. 6.3 .
The decays via the two intermediate f2 states contribute less than 5 % of

the decay width of B0
s→ ψ(2S)π+π−. Since the f2(1270) and f2(1525) are

separated from each other and do not lie directly at thresholds (see Sec. 2.4.1
for more about the shortcomings of Breit-Wigner parametrisations), their
shapes can be approximated with Breit-Wigner functions and their shape
parameters are fixed to those obtained in [56]. Their parametrisation is the
same for all amplitude fits described in this section.

As for all quantum mechanical measurements, the amplitude fit is not
sensitive to a global phase. This ambiguity in the phase would make the fit
underdetermined, therefore an arbitrary global phase is chosen by setting the
imaginary part of B f0(980)

11 to 0 (for the Bonn-Jülich model this is done to the
BS

11 coupling of the S-wave component).
Three different fit configurations are presented in the following differing

by their dipion S-wave description. The first uses the shape parameters
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extracted in [56]. The second lets the shape parameters float freely in the fit.
The third describes the S-wave with the model introduced in [1], where all
shape parameters are fixed as described in Sec. 5.6.

The total number of real parameters that describe the S-wave in these fit
configurations are therefore

• 5 for the fit with the Flatté/BW with fixed shape parameters: The real
part of B f0(980)

11 and the complex parameters B f0(1500)
11 and B f0(2020)

11 . It uses
the shape parameters extracted from B0

s→ J/ψ π+π− in [56]. This fit is
only performed to display the process-dependence of Breit-Wigner and
Flatté parameters for overlapping resonances. It is detailed in Sec. 6.4.
The fixed parameters are shown in Tab. 6.1. They use Solution I from [56],
but similar results are obtained with Solution II.

• 7 for the fit with the Flatté/BW model with no external shape parameters:
The real part of B f0(980)

11 , Γ f0(980)
KK , Γ f0(980)

ππ , the complex B f0(1500)
11 , Γ f0(1500),

and m f0(1500)
0 . The results are shown in Sec. 6.5.4 The fixed parameters

are shown in Tab. 6.2.

• 3 for the fit with the Bonn-Jülich model: The real part of BS
11 and the

resonance-source couplings α f0(1500) and α f0(2020). The results are shown
in Sec. 6.6. The fixed parameters are shown in Tab. 6.3.

The Flatté/BW model with free shape parameters has 4 nonlinear parame-
ters that describe the resonance shapes, which are highly correlated among
each other and make the fit less stable. These are model-inherent and cannot
be circumvented, unless the data sample size is increased. Due to the correctly
propagated external inputs into the Bonn-Jülich model, it needs fewer fit
parameters (the same number as the BW/Flatté model with fixed resonance
shapes). And those parameters that need to float are only real couplings,
since all relative phases are already fixed. This results in a better convergence
behaviour of the fit.

All fits described in the following are performed using algorithms from
the Minuit package [123]. MIGRAD is used to optimize the fitted likelihood
and HESSE to estimate the parameter uncertainties. In complex fits there can
be several local minima of the likelihood. The algorithm MIGRAD cannot find
global minima by itself (it only follows the local gradient of the likelihood
as function of the fit parameters) and therefore sometimes converges to a

4It is not possible to include the f0(2020) resonance as well, because the fit parameters do
not converge to sensible values in that case, even if the shape parameters of the f0(2020) are
fixed to the values obtained in [56].
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non-optimal parameter-configuration. Each fit is therefore repeated with
random start values and step sizes and the result with the best likelihood and
fit status is taken as the result. Because of the different start values for the
optimization procedure, the fit sometimes finds a different, better minimum
of the likelihood.

6.4 Amplitude Fit with Breit-Wigner/Flatté ampli-

tudes with Fixed Shape Parameters

As a first step, the amplitude fit is performed with all shape parameters fixed to
those from a measurement of the resonant components in B0

s→ J/ψ π+π− [56]
as given in Tab. 6.1. The different charmonia resonances have the same quan-
tum numbers, so the two channels only differ by the size of the phase-space
corresponding to the different masses of the charmonia (mψ(2S) = 3686 MeV,
mJ/ψ = 3096 MeV). If the shape parameters from fits with Breit-Wigner and
Flatté amplitudes to B0

s→ J/ψ π+π− were process-independent, it should
therefore be possible to use them to describe the decay B0

s→ ψ(2S)π+π−. It
is shown in the following that this is not the case due to the large overlap
between the S-wave states in these channels.

The results for the 9 free parameters and their uncertainty estimates from
the HESSE algorithm are shown in Tab. 6.4. They correspond to the complex
`s-couplings of f0(1500), f0(2020), f2(1270), and f2(1525) in addition to the
real part of the `s-coupling of f0(980)5.

The fit converged and the corresponding fractions and interferences as
defined in Sec. 5.7 are shown in Tab. 6.5, 6.6. The sum of the fit fractions
show a large S-wave component and a significant contribution from the
f0(2020), whose pole lies significantly outside the allowed mass region in
Mππ. Only its low-mass tail can therefore contribute to the decay amplitude.
Large relative interferences are observed between all fit components. As
shown in Sec. 2.4.1 interferences between Breit-Wigner amplitudes conflict
with the unitarity condition on the decay amplitudes and implies violation
of probability conservation. The measured fit fractions can therefore not be
interpreted as relative branching fractions of B0

s→ ψ(2S)π+π−. The violation

5Note that the individual components are not normalised, which means that the couplings
of resonances with different shape parameters differ by an arbitrary factor (see Sec. 6.1, 6. The
coupling parameters for the same resonance have the same scaling factor though, allowing to
determine the resonance’s polarisation from their relative sizes.
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of unitarity is also a sign for the process dependence of the mass and width
parameters of the parametrisations.

While the fitted fractions for the percent-level contributions of the f2 states
are compatible with those obtained in B0

s→ J/ψ π+π− in [56], this is not the
case for the S-wave fractions, which differ by factors.

Projections of data and fit model are shown in Fig. 6.6. The fit model
histograms are sampled from the optimized pdf using fully simulated
B0

s→ ψ(2S)π+π− events in order to automatically describe the efficiencies
and acceptances correctly. Due to the limited size of the simulated sample,
the statistical uncertainty of the bin contents of the model histogram is shown
as error bars. The histogram below the plot shows the pull distribution g,
which describes the difference between the value xi of the data in bin i and the
value of the model bin xi in the corresponding bin in multiples of statistical
uncertainty on the data σ(xi) and the model σ(xi):

g =
xi − xi√

σ(xi)
2 + σ(xi)

2
. (6.28)

For large number of entries in the bins and if both the data and the model are
drawn from the same underlying distribution (i.e. if the fit model is correct),
the pulls are Gaussian distributed with mean 0 and width 1 [124].

The projections of the angles can be excellently described by the model, as
can be seen by the small values for the pull distributions. It is obvious though
from the projection in Mππ that the model is not able to capture this spectrum
correctly. There are large deviations around the f0(980) peak, while the model
gives systematically too large contributions at low values. This means that
the parameters extracted from B0

s→ J/ψ π+π− cannot be used to describe the
the S-wave in B0

s→ ψ(2S)π+π−, which proves their process-dependence, as
explained in Sec. 2.4.1.

6.5 Amplitude Fit with Breit-Wigner/Flattè with

Free Shape Parameters

As demonstrated in Sec. 6.4 the shape parameters of the Breit-Wigner/Flatté
ππ S-wave description are process-dependent. In order to describe the data

7The extended log likelihood described in Sec. 6.1 allows for the sum of the pdf components
to be different from the fitted sample size, even when no interference effects are taken into
account.
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name value

=
(

B f0(1500)
11

)
(4.02± 0.33)× 103

<
(

B f0(1500)
11

)
(−6.3± 0.4)× 103

=
(

B f0(2020)
11

)
(34.0± 2.4)× 103

<
(

B f0(2020)
11

)
(−41± 2)× 103

<
(

B f0(980)
11

)
3650± 80

=
(

B f2(1270)
11

)
(3.6± 0.7)× 103

<
(

B f2(1270)
11

)
(1.1± 0.7)× 103

=
(

B f2(1525)
11

)
(−2.8± 0.6)× 103

<
(

B f2(1525)
11

)
(2.8± 0.4)× 103

logL 33842.07 converged

Table 6.4: Amplitude fit result for model with Flatté and Breit
Wigners for the description of the S-wave component with shape
parameters fixed to the values obtained in [56]. Coupling terms

contain arbitrary scale factor, see footnote 5.

name value

f0(1500) 0.465
f0_2020 0.328
f0(980) 0.316

f2(1270) 0.018
f2(1525) 0.03

Sum 1.157

Table 6.5: Amplitude fit fractions for model with Flatté and
Breit Wigners for the description of the S-wave component with
fixed shape parameters obtained in [56]. Since the fit describes
the data poorly, the uncertainties are not propagated into the
fraction estimates. The Sum over all amplitudes exceed 1 due to

interference effects and the bad description of the data7
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f 2_1270 f 2_1525 f 0_980 f 0_2020 f 0_1370

f 2_1270 / / / / /
f 2_1525 -0.0141 / / / /
f 0_980 0.002 -0.0005 / / /

f 0_2020 0.0021 -0.0002 0.0923 / /
f 0_1370 0.0021 -0.0016 0.05 -0.243 /

Table 6.6: Amplitude fit interferences for model with Flatté and
Breit Wigner functions for the description of the S-wave compo-
nent with shape parameters fixed to the values obtained in [56].
Very large interferences between the resonances are observed.
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Figure 6.6: Amplitude fit projections using Flatté for the de-
scription of f0(980) and Breit-Wigner for f0(1500) with shape

parameters fixed to the values obtained in [56].
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sufficiently well with Breit-Wigner/Flatté amplitudes, these parameters are
kept floating in this section. This comes with the price of reduced fit stability
and larger uncertainties on the fit fractions, which is shown in the following.

The amplitude fit is repeated with free shape and phase parameters for
the S-wave amplitude as described in Tab. 6.2. It was observed that fits
including f0(2020) did not improve the fit quality, even when fixing the shape
parameters of f0(2020) to the values obtained in [56] . The large number of free
shape parameters and couplings could not be constrained sufficiently by the
data making the fit unstable. Therefore the resonance f0(2020) was removed
from the fit in order to increase the stability. This is sensible, because its pole
lies significantly outside the allowed region for Mππ in B0

s→ ψ(2S)π+π−.
The results of the fit are shown in Tab. 6.7, fit fractions in Tab. 6.8. Randomized
starting values, different step sizes and f0(980) mass parameter values have
been tried, but due to the large number of free parameters and the small data
sample size, no configuration was found that leads to a converging fit with
positive definite covariance matrix. This means the quoted uncertainties on
the fit parameters are incorrect.

The large number of free parameters allows for a good description of
the data. But this large flexibility comes with the additional drawback of an
ambiguity in the fit model: Two configurations can describe the data equally
well. Solution 1 has the mass parameter ms1

0 f0(1500) = 1461.2 MeV and the width
parameter Γs1

0 f0(1500) = 219 MeV, while solution 2 has ms2
0 f0(1500) = 1452 MeV

and Γs2
0 f0(1500) = 186 MeV.

This additional solution can be a source of significant systematic uncer-
tainty, not only on the fit fractions themselves, but also on other quantities,
which should be determined from the data. A recent example are the CP ob-
servables in B0

s→ J/ψ π+π−, where the uncertainty from different fit solutions
is one of the leading systematic uncertainties [125].

Both solutions show significant interference effects between the S-wave
resonances, which violate the unitarity condition for decay amplitudes (see
Sec. 2.4.1). The fit fractions can therefore not be interpreted as branching
fractions and the shape parameters are process-dependent and cannot be
interpreted as pole positions either.

While the mass parameters for f0(1500) in Solution 1 is compatible with
that extracted in B0

s→ J/ψ π+π− in [56] Solution II, this does not hold for
the width parameters of the f0(980) and f0(1500) (compare Tabs. 6.1 and
6.7). This shows again the process dependence of Breit-Wigner and Flatté
parametrisations for overlapping resonances. The fit fractions of f0(980),
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name Solution 1 Solution 2

=
(

B f0(1500)
11

)
233± 11 459± 9

<
(

B f0(1500)
11

)
−7800± 20 −8632± 16

m0 f0(1500) (1452± 4)× 10−3 (1461.2± 2.5)× 10−3

Γ0 f0(1500) (186± 6)× 10−3 (219.4± 2.3)× 10−3

<
(

B f0(980)
11

)
12680± 40 12266± 27

Γ1 f0(980) (368.0± 3.5)× 10−3 (362.4± 2.3)× 10−3

Γ2 f0(980) (666.5± 0.9)× 10−3 (652.0± 2.2)× 10−3

=
(

B f2(1270)
11

)
(0.8± 0.4)× 103 (1.02± 0.35)× 103

<
(

B f2(1270)
11

)
(−1.6± 1.6)× 103 (−3.0± 0.8)× 103

=
(

B f2(1525)
11

)
(2.4± 0.5)× 103 (−0.3± 0.5)× 103

<
(

B f2(1525)
11

)
(−0.3± 0.5)× 103 (1.36± 0.32)× 103

logL 34002.66 34002.72

Table 6.7: Amplitude fit result for model with Flatté and Breit
Wigners for the description of the S-wave component. The last
row contains the logL value. The fits did not result in positive-
definite correlation matrix, which leads to incorrect uncertainty
estimates. B`s terms contain arbitrary scale factor, see footnote 5.

f2(1270) and f2(1525) are comparable to the values obtained in [56] Solution
I, but a quantitative statement is not possible without a reliable fit.

Apart from the conceptional problems from the violation of unitarity and
the corresponding process dependence of the shape parameters, the ansatz
using Flatté and Breit-Wigner amplitudes for the description of the dipion
S-wave has also technical flaws. These flaws stem from the large number of
free, non-linear parameters in the fit. The fits become prone to overfitting and
can have unstable fit results, which is the reason for the non-positive definite
covariance matrix in both fit solutions.

Even though the model can effectively describe the data, it is not possible
to extract meaningful pole positions of the resonances or branching fractions
for the individual resonances, since these are different for each measured
process. In addition, the large number of non-linear, free parameters make
the fit unstable for small datasets. It is therefore not a reasonable choice for
the description of the dipion spectrum in B0

s→ ψ(2S)π+π−.
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name Solution 1 Solution 2

f0(1500) 0.331 0.33
f0(980) 0.752 0.755
f2(1270) 0.013 0.004
f2(1525) 0.004 0.012

Sum 1.099 1.101

Table 6.8: Amplitude fit fractions for model with Flatté and Breit
Wigners for the description of the S-wave component. No uncer-
tainties are quoted here for the fractions, since the uncertainty

estimates on the corresponding fit parameters are incorrect.

Solution 1

f 2_1270 f 2_1525 f 0_980 f 0_1370

f 2_1270 / / / /
f 2_1525 -0.0012 / / /
f 0_980 -0.0002 -0.0001 / /

f 0_1370 0.0025 -0.0006 -0.0707 /

Solution 2

f 2_1270 f 2_1525 f 0_980 f 0_1370

f 2_1270 / / / /
f 2_1525 -0.0033 / / /
f 0_980 0.0002 0.0013 / /

f 0_1370 0.0014 -0.0005 -0.0702 /

Table 6.9: Amplitude fit interferences for model with Flatté and
Breit Wigners for the description of the S-wave component. Top:

Solution 1. Bottom: Solution 2.
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Figure 6.7: Amplitude fit projections using Flatté for the descrip-
tion of f0(980) and Breit-Wigner for f0(1500) (Solution 1). Pull
distributions include statistical uncertainties on both data and

model bins.
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Figure 6.8: Amplitude fit projections using Flatté for the descrip-
tion of f0(980) and Breit-Wigner for f0(1500) (Solution 2). Pull
distributions include statistical uncertainties on both data and

model bins.
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6.6 Amplitude Fit with Bonn-Jülich Model

The results of the fit with the Bonn-Jülich model for the S-wave component
are shown in Tab. 6.10. In contrast to the model with Flatté and Breit-Wigner
resonance parametrisations, it converged and the uncertainty estimates are
reliable. The amplitude model has two solutions with similar likelihood
values. These do not stem directly from different solutions for the S-wave
amplitude, but they can be attributed to a phase flip in the couplings of the f2

states to which the fit is not sensitive, the imaginary parts =
(

B f2(1270)
11

)
and

=
(

B f2(1525)
11

)
have different signs in the two solutions.

The corresponding fractions and interferences are shown in Tab. 6.11 and
6.12. They are not listed for each S-wave pole separately, because there is
no one-to-one correspondence between the underlying base functions and
the resonance content of the dipion spectrum. This can be seen from their
distributions in Fig. 5.4. The uncertainties on the fractions are not shown here,
because they are determined separately in a bootstrapping approach in Sec. 8.

Projections of data and fit model are shown in Figs. 6.9 and 6.10 . The
fit model histograms are sampled from the pdf using fully simulated
B0

s→ ψ(2S)π+π− events in order to automatically describe the efficiencies
and acceptances correctly.

All distributions can be described well, except for the f0(980) region in
Mππ, which seems to be slightly narrower in data than in the model. The
overall quality of the fit is good nevertheless. This holds especially for the
M(ψ(2S)π) projections, where one would expect to observe Z(4430)± contri-
butions as systematic variations in the pulls around 4.5 GeV. An upper limit
on the fit fraction of this exotic tetraquark candidate is determined in Sec. 10.

The main difference at the amplitude level between the two solutions is
the different interference between the f2 states. For Solution 1 there is little
interference, while in Solution 2 the negative interference between the states
is almost as large as their corresponding fit fractions. Since large interference
terms between Breit-Wigner amplitudes come with unitarity violation (see
Sec. 2.4.1), the fractions for the f2 states in Solution 2 are not process indepen-
dent. Additionally, the logL of the amplitude fit is better by 1.5 points for
Solution 1. The favoured solution is therefore Solution 1, while Solution 2 is
only considered for the sake of completeness in the following.

The existence two solutions for the f2 states with large interference terms
indicates that the two poles are not separated enough to describe these states
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name Solution 1 Solution 2

α f0(1500) (−2.6± 0.8)× 103 (−2.1± 0.8)× 103

α f0(2020) (−6.4± 0.5)× 103 (−6.2± 0.5)× 103

cK 3310± 50 3350± 50
=
(

B f2(1270)
11

)
(3.6± 1.0)× 103 (−2.0± 1.4)× 103

<
(

B f2(1270)
11

)
(−1.2± 0.5)× 103 (−1.3± 0.5)× 103

=
(

B f2(1525)
11

)
(−1.2± 0.6)× 103 (1.5± 0.8)× 103

<
(

B f2(1525)
11

)
(0.1± 0.4)× 103 (−1.05± 0.35)× 103

logL 33989.56 33988.1

Table 6.10: Amplitude fit result for Bonn-Jülich model for the
description of the S-wave component. The last row contains the
logL value. Coupling terms contain arbitrary scale factor, see

footnote 5.

name Solution 1 Solution 2

S-wave 0.975 0.989
f2(1270) 0.019 0.007
f2(1525) 0.003 0.007

Sum 0.996 1.003

Table 6.11: Amplitude fit fractions for Bonn-Jülich for the descrip-
tion of the S-wave component. The corresponding uncertainties

are determined in Sec. 8.

f2(1270) f2(1525) S-wave

f2(1270) / / /
f2(1525) 0.0005 / /
S-wave 0.0021 0.0002 /

Solution 2

f2(1270) f2(1525) S-wave

f2(1270) / / /
f2(1525) -0.0043 / /
S-wave 0.0021 -0.0 /

Table 6.12: Amplitude fit interferences for Bonn-Jülich model for
the description of the S-wave component.
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Figure 6.9: Amplitude fit projections Bonn-Jülich model for the
description the S-wave. Shown for Solution 1. Pull distributions
include statistical uncertainties on both data and model bins.
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Figure 6.10: Amplitude fit projections Bonn-Jülich model for the
description the S-wave. Shown for Solution 2. The contribu-
tion of the f2 states is small for this solution. Pull distributions
include statistical uncertainties on both data and model bins.
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perfectly with Breit-Wigner parametrisations. Solution 1 shows little interfer-
ence between these states though and is therefore considered reliable. Since
their contribution to the overall fit is small, and the focus of this analysis
lies on the dominant S-wave contribution, no other parametrisations for the
f2 states are considered. With a larger data sample, a more sophisticated
parametrisation should be tested.

The qualitative result of the amplitude fit with the Bonn-Jülich model for
the S-wave is comparable to the values obtained for B0

s→ J/ψ π+π−. The
decay is dominated by the S-wave component, while the f2 states make up
less than 3 % of the fit fraction. The f2(1270) has a fit fraction of 1–2 % and the
f2(1525) contributes even less than that.

It has been shown that a description using Flatté and Breit-Wigner am-
plitudes for the dipion S-wave spectrum is not appropriate due to violation
of unitarity and technical problems in the fit from large numbers of free
non-linear parameters. The Bonn-Jülich model on the other hand provides a
stable, unitarity-conserving parametrisation of the S-wave amplitude, which
is able to describe the data sufficiently well in B0

s→ ψ(2S)π+π−. Possible
unitarity-violations in the Breit-Wigner parametrisation of the f2 states could
be remedied in a future analysis using a K-matrix parametrisation for these
states (see review on resonances in [21]). The additional free parameters in-
troduced with a K-matrix model cannot be constrained sufficiently from the
current data. The use of this model in an amplitude fit of B0

s→ ψ(2S)π+π−

therefore requires a larger sample, which should be available after the next
data taking period of the LHCb detector.
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7 Process-Independence of
Bonn-Jülich Model

In Sec. 6.6 it is shown that the Bonn-Jülich model, which was extracted
from B0

s→ J/ψ K+K− and B0
s→ J/ψ π+π−, is able to describe the data in

B0
s→ ψ(2S)π+π−. It uses external parameters for the description of the

high-mass resonances, which are fixed in the fit to B0
s→ ψ(2S)π+π−. These

external parameters wext are the bare resonance-channel couplings gR
i and

bare resonance masses mR introduced in Sec. 2.4.2. They are listed in Tab. 7.1.
Even though the data is described well, it is still possible that these parameters
are process-dependent and a different configuration of wext could describe
the S-wave in B0

s→ ψ(2S)π+π− even better. This is tested in the following.
Since a combined fit of all 4 decay channels is beyond the scope of this

work, a simpler approach is taken: The likelihood of B0
s→ ψ(2S)π+π−

L(w, wext) is a function of both the wext and the internal parameters w, but in
Sec. 6.6 only L(w|wext) was optimized. If the external parameters are really
process-independent, then wext ≈ wopt

ext and the fit results are already optimal:

Lmax(w
opt|wext) = Lmax(w

opt, wopt
ext ). (7.1)

If the wext are not process-independent on the other hand, then
Lmax(w

opt|wext) is only a saddle point of L(w, wext). This is checked in
the following with parameter configurations w′ext close to the nominal wext ob-
tained by sampling from the covariance matrix of the fit to B0

s→ J/ψ π+π− and
B0

s→ J/ψ K+K− in [1]. For each configuration w′ext the fit to B0
s→ ψ(2S)π+π−

as described in Sec. 6.6 is then repeated resulting in a maximized likelihood
Lmax(w

′opt|w′ext). Like this the internal parameters w are profiled out and one
can focus on L(wext). The distribution of this likelihood against the external
parameters is visualized in Fig. 7.1 as scatter plots.

A process-dependence of one parameter wext i would be visible here as
a parabolic shape 1 in the scatter plot between wext i and the logL. If the
external parameters are optimal, the likelihood is uncorrelated to the w′ext.

1Or a strong linear correlation, in case the external parameter is far from optimal.
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name value [GeV]

m f0(1500) 1.2941± 0.020
m f0(2020) 3.26873± 0.401

g f0(1500)
π 0.4149± 0.0097

g f0(2020)
π 0.4257± 0.17

g f0(1500)
K 0.358± 0.015

g f0(2020)
K −0.03± 0.11

g f0(1500)
4π 0.52± 0.12

g f0(2020)
4π 4.6± 1.3

Table 7.1: External parameters of the Bonn-Jülich model.
m f0(1500) and m f0(2020) correspond to the bare masses, not the

physical masses of the resonance poles.

The scatter plots in Fig. 7.1 show the result for Ngen = 200 external param-
eter configurations for Solution 1 of the amplitude fit. They do not show any
significant correlations between the logL and the external parameters wext.

This means that within the sensitivity of the amplitude fit to
B0

s→ ψ(2S)π+π−2 the external parameters can be considered to be already at
the optimal values, which supports the hypothesis of process independence.

2The sensitivity to the exact value of the bare mass of the high-lying resonance is limited
in B0

s→ ψ(2S)π+π− with respect to the data studied in [1] due to its smaller phase space. A
process dependence at higher energies would need to be checked in a different channel, e.g.
J/ψ→ π+π−γ.
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Figure 7.1: Scatter plots of external parameters of Bonn-Jülich
model sampled from their covariance matrix and correspond-
ing likelihoods in fit to B0

s→ ψ(2S)π+π−. Titles show linear
correlation coefficients. No significant correlations are observed.
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8 Statistical Uncertainties

The results of the amplitude fit might be biased, e.g. due to non-parabolic
likelihood shapes because of the small sample size or because of non-linear
dependencies between fit parameters. In this case, the resulting uncertainty
estimates from MIGRAD and HESSE are not reliable, because they assume linear
correlations between the parameters [123]. Additionally, the statistical un-
certainty that stems from the extraction of the s-weights (see Sec. 4.6) is not
fully reflected in the results: A factor that describes the reduction of effective
sample size due to the non-uniform weights is introduced in Sec. 6.1, but
this procedure does not account for non-Poissonian uncertainties in the fit to
M(ψ(2S)π+π−). These additional uncertainties come from the floating shape
parameters of the fit components like the width of the signal distribution or
the decay constant of the exponential distribution describing the combinatoric
background. The uncertainties are underestimated by up to 15 % for the B`s

couplings of the f2 states.
An additional complication arises with the fit fractions, which are impor-

tant physics results of this analysis, but are not fitted directly. Their depen-
dence on the fit parameters is not linear, since they depend on the squared
amplitudes. This non-linearity is especially pronounced for amplitudes with
small fit fractions, like the decays via f2 states, which lie near to their physical
boundaries. For these the uncertainties on the fractions are not symmetric,
because fractions are positive by definition. Gaussian uncertainty propagation
from the fit parameters is therefore inaccurate in that case.

The correct statistical uncertainties of the fit parameters and derived quan-
tities can be determined using the bootstrapping method [126]. The approach
suggested in [127] is followed here: A new sample (called resample) of similar
size is drawn from the original data sample; in this procedure individual
events can be drawn more than once. All resamples are therefore drawn from
the same underlying distribution, which is in this case the original sample.
This is analogue to performing repeated measurements of a physical quantity,
which follows a random distribution. Since the resamples have the same
size as the original sample, the quantities derived from the resamples like
mean, standard deviation, but also the maximum likelihood estimators have
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name Solution 1 Solution 2

α f0(1500) (−2.6± 0.8)× 103 (−2.1± 0.8)× 103

α f0(2020) (−6.4± 0.5)× 103 (−6.1± 0.6)× 103

cK 3310± 40 3350± 40

=
(

B
f2(1270)
11

)
(3.6± 1.2)× 103 (−2.7± 1.4)× 103

<
(

B
f2(1270)
11

)
(−1.3± 0.6)× 103 (−1.1± 0.5)× 103

=
(

B
f2(1525)
11

)
(−1.3± 0.5)× 103 (1.8± 0.9)× 103

<
(

B
f2(1525)
11

)
(0.0± 0.5)× 103 (−1.0± 0.4)× 103

Table 8.1: Results for amplitude fit variables from full bootstrap-
ping with Bonn-Jülich model.

the same fluctuations as for the original sample. The confidence levels of an
estimator on the original sample can then be estimated from the width of the
distribution of estimator results from the resamples.

A drawback of this approach is the computational cost, since the numer-
ically expensive amplitude fit needs to be repeated for every resample and
cannot be performed an arbitrary number of times. As a compromise be-
tween cost and accuracy, Ntoy = 600 resamples are drawn. For each the fit
to M(ψ(2S)π+π−) and subsequent determination of s-weights is repeated.
The amplitude fit is then repeated with the resamples and their new weights
1. The distribution of the resulting parameters xtoy for the Ntoy fits can then be
used to determine the uncertainty of the parameters for the original sample
with correct coverage.

Fig. 8.1 shows the bootstrapping distributions for the fit variables. The
distribution for each variable is fitted with a Gaussian pdf, whose width
parameter is taken as uncertainty for that variable. Note that only the plots
for Solution 1 are shown, since Solution 2 is disfavoured due to its smaller
likelihood and the large unitarity-violating interference terms between the f2

states (see Sec. 6.6).
The results for mean and width of the Gaussians for the fit variables from

the bootstrapping approach are given in Tab. 8.1. They can be compared with
the values in Tab. 6.10. Due to the limited number of resamples, the mean of
the Gaussians does not coincide exactly with the estimate from the nominal fit,
but the remaining difference is much smaller than the statistical uncertainty.
For the B`s couplings of the f2 states, the uncertainties increase noticeably with
respect to the estimates from the amplitude fit, while for the other parameters
the differences are smaller.

1The calculation of the s-weights for each resample is necessary to correctly propagate the
statistical uncertainty of this technique to the results, as shown in [127].



Chapter 8. Statistical Uncertainties 121

4000 3000 2000 1000 0
f0(1500)

0

5

10

15

20

25

30

=-2590 ± 50, = 820 ± 40

7500 7000 6500 6000 5500 5000
f0(2020)

0

5

10

15

20

25

30

=-6406 ± 30, = 546 ± 26

3200 3250 3300 3350 3400 3450
cK

0

5

10

15

20

25

30

35
=3311.1 ± 2.3, = 42.0 ± 1.9

2000 3000 4000 5000

(Bf2(1270)
11 )

0

5

10

15

20

25

=3650 ± 80, = 1190 ± 80

2000 1800 1600 1400 1200 1000 800 600

(Bf2(1270)
11 )

0

5

10

15

20

=-1277 ± 32, = (0.6 ± 0.5)E+03

2500 2000 1500 1000 500 0

(Bf2(1525)
11 )

0

5

10

15

20

25

30

=-1289 ± 30, = 532 ± 27

1500 1000 500 0 500 1000

(Bf2(1525)
11 )

0

5

10

15

20

25

30

35

=47 ± 25, = 470 ± 19

Figure 8.1: Distributions of amplitude fit parameters from full
bootstrapping for the amplitude fit with Bonn-Jülich model.
Shown for Solution 1. Overlaid with a fit of a Gaussian distribu-
tion. Parameter mean and width of the fit result are shown in

the title together with their uncertainties.
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Figure 8.2: Distributions of amplitude fit fractions from full boot-
strapping for amplitude fit variables from full bootstrapping
with Bonn-Jülich model. Orange: Fit with a Gaussian distribu-
tion. Parameter name, mean and width of the fit result are shown
in the title. In case of skewed distributions asymmetric uncer-
tainties are determined from percentiles. The overlaid Gaussian
then depicts the symmetrized interval for visual purposes only.

Shown for Solution 1.

The uncertainties on fit fractions and interferences are extracted from the
bootstrapping directly and not from the estimates provided by the fit. The
corresponding distributions are shown in Fig. 8.2 for the fractions and Fig. 8.3
for the interferences. Where the distribution cannot be approximated with a
simple Gaussian, the median and asymmetric 68 % intervals of the distribution
are calculated directly from the distribution. The asymmetric intervals are
then symmetrized for simplicity. This is the case for the fractions of the f2

states, which are skewed towards 0 due to their small contribution to the fit.
The results for the fractions are combined into Tab. 8.2 and can be com-

pared to the values obtained from the nominal fit in Tab. 6.11. The central
values from the bootstrapping are included as a consistency check here. With
increasing number of resamples the peak of the bootstrapping distribution
should approach the central value obtained from the nominal fit [128], which
is is the case here. The nominal central values of the variables, fractions and
interferences, which will be quoted as final result, are the values obtained
from the nominal fit. The fact that the central values from the bootstrapping
agree with the fit estimates indicates that enough resamples were used and
also the estimate for the uncertainties from the bootstrapping is sound.

The interference terms between the fit components are combined into
Tab. 8.3. They are comparable to the values obtained from the nominal fit
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Figure 8.3: Distributions of amplitude fit interferences from
full bootstrapping for the amplitude fit with Bonn-Jülich model.
Overlaid with a fit of a Gaussian distribution. Parameter mean
and width of the fit result are shown in the title together with
their uncertainties. Top Left: S-wave – f2(1270). Top Right:
S-wave – f2(1525). Bottom: f2(1270)– f2(1525). Shown for Solu-

tion 1.

name Solution 1 Solution 2

S-wave 0.972± 0.011 (987± 9)× 10−3

f2(1270) (18± 5)× 10−3 (9± 4)× 10−3

f2(1525) (4.2± 1.5)× 10−3 (9.9± 3.4)× 10−3

Sum (996.1± 2.5)× 10−3 (1005.0± 3.1)× 10−3

Table 8.2: Results for amplitude fit fractions for amplitude fit
variables from full bootstrapping with Bonn-Jülich model.

given in Tab. 6.12. Taking into account the statistical uncertainties, a significant
interference between the S-wave and the f2(1270) is found for both solutions.
With only 0.2 % it is small though compared to the fit fraction of the involved
S-wave amplitude. The other interference terms are not significant for Solution
1. In Solution 2 the interference between the f2 states is significant though.
The large interference between the Breit-Wigner amplitudes violates unitarity
and the resulting fit fractions cannot be interpreted as physical quantities,
which supports the reasoning in Sec. 6.6 to disfavour this solution.
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Solution 1

S-wave f2(1270) f2(1525)

S-wave 1 (2.2± 0.6)× 10−3 (0.14± 0.10)× 10−3

f2(1270) 1 (0.6± 1.6)× 10−3

Solution 2

S-wave f2(1270) f2(1525)

S-wave 1 (1.7± 0.8)× 10−3 (−0.05± 0.19)× 10−3

f2(1270) 1 (−5.2± 2.7)× 10−3

Table 8.3: Interferences for amplitude fit amplitudes from full
bootstrapping with Bonn-Jülich model.
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9 Systematic Uncertainties

In addition to the statistical uncertainties determined in Sec. 8 also systematic
uncertainties need to be estimated for the amplitude fit results. The necessary
studies are detailed in the following paragraphs and summarized in Tab. 9.4
and 9.3.

Most systematic studies presented here deal with choices in the fit models,
where it is not clear, which one is "better". One approach to estimate the
related uncertainties is to repeat the fit to the data sample with modified
models and take the difference to the nominal result as systematic uncertainty
from the model choice. This approach is prone to be biased by statistical
fluctuations in the data sample and can therefore over- or under-estimate the
effect size.

Since the data sample is the same for all model choices, bootstrapping
can be used to reduce the statistical fluctuations compared to the one-fit
approach described above. The data sample is bootstrapped as explained
in Sec. 8 and the fit procedure is performed twice on each resample i, once
with the nominal fit configuration resulting in parameters wi and once with
the modified configuration resulting in parameters w′i. This is repeated N
times and the difference ∆wi between nominal and modified results is taken
for each resample. The width of the distribution of ∆wi corresponds to the
systematic uncertainty on the parameter w. The peak of the distribution of
∆wi is an estimate of the systematic bias between the two models. In the
case that one model can be preferred over the other, this bias can be corrected
for. In most cases there is no clear preference of one model over the other. In
that case the quadratic sum of peak position and width of the distribution of
∆wi is taken as systematic uncertainty on w. This procedure is referred to as
approach 1.

The peak position and width are determined with a fit of a Gaussian pdf
and the mean of the Gaussian is taken as systematic uncertainty.

For some systematic studies this approach is not applicable, because the
data sample is different in the nominal fit and in the systematic study. This is
e.g. the case, when additional cuts are introduced in the selection. When that is
the case, the systematic uncertainty is taken directly as the difference between
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the nominal fit and the fit to the modified data sample. This is referred to as
approach 2.

As discussed in Sec. 6.6, Solution 2 of the amplitude fit shows significant
interferences between the f2 states. It is therefore not considered as viable
result. Systematic uncertainties for Solution 2 are only included for the sake
of completeness.

9.1 Quality of Simulation

Mismodelling in Simulation The simulated data samples are reweighted
in the track-multiplicity and pT(B0

s ) in order to make them resemble the data
better (see Sec. 3.2.4). Other variables, which are used as inputs to the MVA in
Sec. 4, are slightly mismodelled as well though. The cut on the MVA output in
the selection could therefore affect the efficiency distribution as function of the
amplitude variables differently for the signal in data than for the simulated
signal sample, which could bias the fit results. On the other hand, weighting
in too many variables leads to a large spread of weights, which reduces the
effective size of the weighted sample (see eq. 6.15). This can then lead to a bias
in the amplitude fit, because the statistical fluctuations in the normalisation
sample in eq. 6.14 distort the likelihood distribution. Therefore, the nominal
fit uses a reweighting in just 2 variables. To study the effect of ignoring
the remaining mismodelling, an alternative reweighting is performed on the
simulated sample in 9 variables. Since the data sample is not affected by the
reweighting, the systematic uncertainty can be evaluated with approach 1.
After the systematic uncertainty from the amplitude model variation this is
the largest source of systematic uncertainty.

Mismodelling of VELO Errors The VELO hit uncertainty estimates are
known to be mismodelled in the simulated samples of 2018 and 2017 data,
which results in differences in the χ2

IP distributions. In order to test the effect,
the selection in these variables is tightened, reducing the signal efficiency by
10 % and the difference to the nominal result is estimated with approach 2.
Since the fit uses an extended likelihood, the coupling variables need to be
scaled for the modified data samples by a factor

√
εextracuts.

Tracking Efficiency Corrections Simulated tracking efficiencies are cor-
rected in a data-driven way (see Sec. 3.2.4). The track-wise correction factors
are provided in a 2-dimensional table in track momentum and track η and the
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4 factors from the final state tracks are multiplied together for the correction-
weight of each simulated event. These corrections are mostly below 5 %. For
the amplitude variables this effect is smaller, because they are measured in
the B0

s ’s frame and its daughters’ and the boost into these systems smears out
the corrections (note that the fit is only sensitive to relative efficiency varia-
tions in the variables). In order to estimate the uncertainty on this correction,
the table is varied within its respective statistical and (correlated) systematic
uncertainties 200 times and the fit to the nominal data sample is repeated for
each correction. The difference to the fit result with the nominal correction
is taken for each fit and the distribution of these differences is fitted with a
Gaussian pdf. The width parameter of this pdf corresponds to the systematic
uncertainty of the tracking efficiency corrections. It is found to be negligibly
small.

Difference between Runs in M(ψ(2S)π+π−) The nominal fit extracts the
s-weights from the combined Run 1 and Run 2 LHCb data samples. This is
justified, because the shape parameters of the signal and background com-
ponents are compatible for both data taking conditions within uncertainties.
Nevertheless, the assumption that the shape parameters are the same, is ad-
dressed with a systematic uncertainty. The Run 1 and Run 2 samples are
combined after s-weighting them separately and the difference to the nominal
result is measured with approach 2.

Difference between Runs Efficiency variations over the Dalitz plane could
be modelled with different precision for Run 1 and Run 2 simulation. In
order to estimate this effect, the bootstrapping, s-weighting and amplitude
fit are performed once with only Run 2 data and once with both Run 1 and
Run 2 data. For the latter the data samples are combined only after the s-
weighting in order to not mix the effect with the difference between Runs
in M(ψ(2S)π+π−). The mode of the differences is estimated with a Gaus-
sian fit and taken as systematic uncertainty. Since the fit uses an extended
likelihood, the coupling variables are corrected for the Run 2 only fits by a

factor
√

NRun2
NRun1+NRun2

. Additionally, the Bonn-Jülich parameters cK, α f0(2020),
and α f0(1500) have a different configuration, which increases the measured
difference for these parameters. Since the fit fractions are the values of interest
in this analysis and not the couplings, this is not a problem, because the effect
on the fractions is small.
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9.2 Fit Model in M(ψ(2S)π
+

π
−)

The choice of parametrisation of the distributions in M(ψ(2S)π+π−) (see
Sec. 4) is not unique. To test the systematic uncertainty related to the choice
of background model, the exponential pdf is exchanged with a first order
Chebychev polynomial and approach 1 is followed. This is repeated for
the signal component, where the double Crystal Ball pdf is replaced with a
Hypatia pdf [129].

9.3 Resolution Effects

The resolution in the amplitude variables is well below the size of the expected
structures (see Sec. 6.2.1), which is why resolution effects are not part of the
nominal fit. To estimate the systematic uncertainty related to neglecting
resolution effects, approach 2 is used with the modified likelihood from
eq. 6.27. The effect is found to be negligibly small.

9.4 Time Acceptance

The derivation of eq. 5.47 does not take into account the non-uniform decay
time acceptance at LHCb, which is shaped by e.g. the PV-detachment criteria
and other selection cuts introduced in Sec. 4. The size of this mismodelling
effect is estimated using approach 1, where the interference term in eq. 5.47
is removed, neglecting time-dependent effects, that could be influenced by
the time acceptance. Since in the nominal fit all components have odd CP
parity, which removes any interference effects, this is done with the model,
which includes higher angular moments in the B0

s decay for the f2 states as
explained in Sec. 5.3.1 and 9.6.

9.5 Theory Uncertainty

The process-independent parameters used in the Bonn-Jülich model have their
own uncertainties. They need to be propagated into the fit results. The study
performed in Sec. 7 is used for this purpose: The distribution of results from
fits with randomly sampled values for the external parameters is fitted with a
Gaussian pdf, whose standard deviation is taken as systematic uncertainty.
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9.6 Amplitude Fit Parametrisation

Apart from the uncertainty introduced from the statistical uncertainty of
the external Bonn-Jülich model parameters described above, the nominal fit
model makes assumptions on the size of other external parameters as well.
The number of participating resonances and additional process-dependent
parameters of the Bonn-Jülich model need to be considered. Since the data
sample does not change for model variations, it is possible to use approach 1
for these studies. The following changes were made to the model to estimate
their corresponding systematic uncertainty:

• In the nominal fit the mass and width parameters of the Breit-Wigner
description of the f2 states are fixed to the central values taken from
PDG [21]. In the modified model these parameters are allowed to vary.
Their values are constrained by the uncertainties quoted by the PDG
through a parabolic term, added to the logL.

• The nominal fit allows only the lowest angular momentum couplings,
because higher angular momentum states should be suppressed by the
momentum barrier effect (see Sec. 5.3). This assumption is tested allow-
ing Lmin + 1 for the f2 states, which adds 4 additional real fit parameters,
corresponding to two complex couplings B f2(1270)

22 and B f2(1525)
22 .

• The hadronic scale of the empirical Blatt-Weisskopf barrier factors used
in the Breit-Wigner descriptions of the f2 states (see Sec. 5.4) is set to
1.5 fm−1 for the nominal fit. It describes the effective size of the described
system, which is not known precisely. In order to estimate its effect,
alternative models are fitted with 0.5 fm−1 and 2 fm−1 for the scale.

• In order to test, if all necessary resonances are included in the model, a
Breit-Wigner parametrisation of the ρ3(1690) resonance is added with
mass and width parameter fixed to PDG values. This resonance is
prohibited by isospin symmetry. It is added here to estimate the effects
of isospin symmetry breaking in the decay.

• In the Bonn-Jülich model described in eq. 5.4 additional linear polyno-
mial terms in M2

π+π− are in principle allowed. Since they are highly
correlated to the 0th order coefficients, they are not included in the
nominal fit to increase fit stability. Their effect is tested by allowing
2 or all 3 of them to float in the model. This corresponds to up to 3
additional real couplings lπ, lK, l4π. Since the allowed phase space for
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Sum × 0.001 S-wave × 0.001 f2(1270) ×
0.001

f2(1525) ×
0.001

varied PDG inputs 0.60 2.8 2.1 3.22
ρ(1690) 0.45 1.2 0.7 0.67

nr component 0.16 7.8 5.2 0.11
larger L 4.58 8.9 5.8 2.39

larger had scale 0.60 1.2 1.7 0.28
smaller had scale 0.38 0.9 1.1 0.23

3 more S-wave terms 3.91 8.0 5.6 4.99
lpi lK S-wave terms 3.03 6.8 7.2 6.50

lpi l4pi S-wave terms 0.41 3.7 4.8 0.23
lK l4pi S-wave terms 0.59 3.8 8.8 1.18

quadratic sum 6.10 14.6 12.1 7.68

Sum × 0.001 S-wave × 1e-06 f2(1270) × 1e-
06

f2(1525) × 1e-
06

varied PDG inputs 3.06 4379 3438 4360
ρ(1690) 0.38 2310 657 626

nr component 0.15 4 5 5
larger L 7.23 11140 6662 4962

larger had scale 0.51 515 782 306
smaller had scale 0.22 370 430 310

3 more S-wave terms 3.64 5186 8781 4721
lpi lK S-wave terms 3.16 5983 7053 2568

lpi l4pi S-wave terms 4.29 2883 7618 2627
lK l4pi S-wave terms 1.96 2563 3284 2383

quadratic sum 8.97 13589 11591 8149

Table 9.1: Systematic Uncertainties on fit fractions from sources
related to the amplitude model. Bold for largest contributions.

Top: Solution 1. Bottom: Solution 2.

Mππ is only within [2mπ, mB0
s
−mψ(2S)] = [280, 1680]MeV, and the dom-

inant base function F̃KK is very small for low masses (see Fig 5.4), the
fit can hardly distinguish the contributions from the 0th order and the
1st order terms in the polynomial in eq. 5.4. These terms are therefore
highly anti-correlated with each other, which leads to a large uncertainty
and for some resamples also sign flips for some of the parameters. The
effect on the full S-wave amplitude is mostly cancelled out between the
0th and 1st order components of the polynomial of eq. 5.4. The overall
shape of the amplitude is therefore barely affected by the addition of the
linear terms. This can be seen from the fact that the fit parameters of the
Bonn-Jülich model have significantly different values, when the linear
terms are included, while the fit fractions of the S-wave and the f2 states
change by less than 0.01.

The results for the fractions and fit parameters are shown in Tab. 9.1 and 9.2.
The largest value in each group is added in quadrature for the quadratic sum
in the last line. The largest uncertainties on the fit parameters are introduced
via inclusion of 1st order polynomial terms in the S-wave model.

Sum
Sum
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α f0(1500) α f0(2020) cK =
(

B
f2(1270)
11

)
<
(

B
f2(1270)
11

)
=
(

B
f2(1525)
11

)
<
(

B
f2(1525)
11

)
varied PDG inputs 38 16 1.5 80 50 177 140

ρ(1690) 79 76 5.2 250 50 125 70
nr component 939 363 16.6 870 180 69 170

larger L 170 59 8.0 2380 130 820 370
larger had scale 40 15 2.6 180 50 51 100

smaller had scale 26 10 1.9 120 50 32 70
3 more S-wave terms 2226 11891 2912.2 2620 680 357 1480
lpi lK S-wave terms 13993 9948 2890.3 2250 430 481 1960

lpi l4pi S-wave terms 2382 11811 403.5 120 110 107 60
lK l4pi S-wave terms 5130 1781 1628.4 360 430 153 160

quadratic sum 14026 11897 2912.2 3660 720 978 2010

α f0(1500) α f0(2020) cK =
(

B
f2(1270)
11

)
<
(

B
f2(1270)
11

)
=
(

B
f2(1525)
11

)
<
(

B
f2(1525)
11

)
varied PDG inputs 66.03 113.44 2.769 307.135 300.31 661.01 171.33

ρ(1690) 124.56 120.47 3.930 78.833 39.88 127.23 26.85
nr component 0.13 0.20 0.011 0.018 0.27 0.26 0.16

larger L 420.88 139.69 29.755 2186.240 236.96 1591.38 461.38
larger had scale 21.71 13.38 1.184 65.653 37.27 52.77 19.35

smaller had scale 13.29 33.27 0.761 43.892 23.10 53.43 17.48
3 more S-wave terms 10347.80 18992.70 3343.458 3142.392 2416.43 3993.67 482.62
lpi lK S-wave terms 5788.89 861.81 2564.790 1085.121 326.28 743.97 132.51

lpi l4pi S-wave terms 1483.55 11753.40 532.014 836.298 113.71 146.79 132.53
lK l4pi S-wave terms 4779.81 1706.23 1759.230 809.355 260.45 287.55 137.01

quadratic sum 10357.34 18993.96 3343.594 3841.761 2447.13 4351.76 690.11

Table 9.2: Systematic Uncertainties on fit parameters from
sources related to the amplitude model. Bold for largest contri-

butions. Top: Solution 1. Bottom: Solution 2.

9.7 Combination of Systematic Uncertainties

The different systematic uncertainties described above are added in quadra-
ture in Tabs. 9.4 and 9.3. The systematic uncertainties are significantly larger
than the statistical uncertainties, not only for the fit parameters, but also for
the extracted fit fractions and therefore the partial branching ratios. The sec-
ond largest systematic uncertainty is related to the quality of the simulation
of the signal decays.

The largest systematic uncertainties are related to variations for the ampli-
tude model and within these choices those related to the Bonn-Jülich model
contribute most. This gives the impression that the Bonn-Jülich model might
not be a good parametrisation of the S-wave component of the dipion spec-
trum. One needs to consider though that the main reason, why the statistical
uncertainties are so small in the first place, is the fact that the shape of the
S-wave amplitude is fixed by the Bonn-Jülich model. The Breit-Wigner and
Flatté amplitudes, which require floating shape parameters, did not result in a
converging fit and the fit parameters and fit fractions could not be constrained
effectively by the data (see Sec. 6.5).

The systematic uncertainties tend to be larger for the disfavoured (see
Sec. 6.6) Solution 2.

The results for fit parameters together with their statistical and systematic
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Solution 1

α f0(1500)
× 1000.0

α f0(2020)
× 1000.0

cK =
(

B
f2(1270)
11

)
× 1000.0

<
(

B
f2(1270)
11

)
=
(

B
f2(1525)
11

)
<
(

B
f2(1525)
11

)
MC weights 0.33 0.17 60 0.48 200 140 24

VELO uncertainties 0.150 0.300 178.0 0.014 80 200 170
Run differences M(ψ(2S)π+π−) 0.050 0.050 0.4 0.190 90 80 80

Run differences amplitude variables 0.19 1.44 920 1.34 410 300 82
resolution effects 0.041 0.039 5.0 0.009 8 17 4

different background model 0.011 0.018 2.5 0.024 7 21 7
different signal model 200 174 16.1 0.084 43 59 37

time acceptance 0.534 0.1233 625.0 0.701 256 268 85
theory input 0.70 0.52 70 0.17 60 80 101

amplitude model 14.03 11.90 2910 3.66 720 980 2005

quadratic sum 14.1 12.1 3120 4.0 900 1100 2000

statistical uncertainty 0.7 0.6 50 1.2 600 500 500

Solution 2

α f0(1500) α f0(2020)
× 1000.0

cK =
(

B
f2(1270)
11

)
× 1000.0

<
(

B
f2(1270)
11

)
=
(

B
f2(1525)
11

)
<
(

B
f2(1525)
11

)
MC weights 208 0.6 110 6.74 60 3040 1140

VELO uncertainties 210 0.39 183 0.360 420 800 14
Run differences M(ψ(2S)π+π−) 50 0.21 29 40 0.230 700 113

Run differences amplitude variables 8 1.3 940 0.81 270 510 290
resolution effects 43 0.042 5.0 0.008 9 21 2.9

different background model 17 0.026 3.3 0.011 20 41 7.9
different signal model 254 0.168 15.8 0.074 37 119 26.8

time acceptance 427 1.139 634.1 0.538 281 399 196.5
theory input 620 0.4 70 0.15 100 90 50

amplitude model 10357 19.0 3340 3.84 2450 4350 690

quadratic sum +10400 19.1 +3540 7.8 2500 +5500 1400

statistical uncertainty 700 0.8 50 1.2 700 1000 500

Table 9.3: Systematic Uncertainties on fit parameters compared
to statistical uncertainty. Top: Solution 1. Bottom: Solution 2.

Solution 1

Sum ×
0.001

S-wave ×
0.001

f2(1270)
× 0.001

f2(1525)
× 0.001

MC weights 0.83 3.9 5.6 1.00
VELO uncertainties 1.3 2.5 0.26 0.34

Run differences M(ψ(2S)π+π−) 0.5 1.2 1.65 0.11
Run differences amplitude variables 0.04 2.6 3.1 0.43

resolution effects 0.029 0.070 0.062 61
different background model 0.043 0.284 0.171 0.104

different signal model 0.292 0.824 0.812 0.322
time acceptance 0.017 0.005 0.012 0.005

theory input 0.41 1.8 1.8 0.40
amplitude model 8.89 13.5 13.3 7.93

quadratic sum 9.0 15 15 8.0

statistical uncertainty 2.6 11 5 1.3

Solution 2

Sum ×
0.001

S-wave ×
0.001

f2(1270)
× 0.001

f2(1525)
× 0.001

MC weights 10.14 12.0 9.90 6.9
VELO uncertainties 1.7 1.3 3.18 5.01

Run differences M(ψ(2S)π+π−) 1.1 1.4 0.18 0.11
Run differences amplitude variables 0.27 0.7 0.12 0.6

resolution effects 0.058 0.129 0.068 0.152
different background model 0.165 0.311 0.139 0.341

different signal model 0.658 0.961 0.492 0.858
time acceptance 0.003 0.007 0.005 0.004

theory input 0.30 0.8 1.03 0.7
amplitude model 8.97 13.6 11.59 8.1

quadratic sum 13.7 18 16 11.9

statistical uncertainty 3.4 10 4 3.3

Table 9.4: Systematic Uncertainties on fit fractions compared to
statistical uncertainty. Top: Solution 1. Bottom: Solution 2.

Sum
Sum
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uncertainties are given below. The systematic uncertainties are dominated by
the effect from the amplitude model choice.

Solution 1

α f0(1500) (−2.6± 0.7± 14.1)× 103

α f0(2020) (−6.4± 0.6± 12.1)× 103

cK 3310± 50± 3120

=
(

B f2(1270)
11

)
(3.6± 1.2± 4.0)× 103

<
(

B f2(1270)
11

)
(−1.2± 0.6± 0.9)× 103

=
(

B f2(1525)
11

)
(−1.2± 0.5± 1.1)× 103

<
(

B f2(1525)
11

)
(0.1± 0.5± 2.0)× 103

Solution 2

α f0(1500) (−2.1± 0.7± 10.4)× 103

α f0(2020) (−6.2± 0.8± 19.1)× 103

cK 3350± 50± 3540

=
(

B f2(1270)
11

)
(−2.0± 1.2± 7.8)× 103

<
(

B f2(1270)
11

)
(−1.3± 0.7± 2.5)× 103

=
(

B f2(1525)
11

)
(1.5± 1.0± 5.5)× 103

<
(

B f2(1525)
11

)
(−1.1± 0.5± 1.4)× 103

The results for the fit fractions are the following. (Note again that Solution
2 is only shown here for the sake of completeness)

Solution 1

S-wave 0.975± 0.011± 0.015
f2(1270) (19± 5± 15)× 10−3

f2(1525) (3.1± 1.3± 8.0)× 10−3

Sum (996.1± 2.6± 9.0)× 10−3

Solution 2

S-wave 0.989± 0.010± 0.018
f2(1270) (7± 4± 16)× 10−3

f2(1525) (7.0± 3.3± 11.9)× 10−3

Sum (1003.4± 3.4± 13.7)× 10−3

The absolute values for the systematic uncertainties of the fit fractions are
of similar size for all fit components, for the f2 states these systematic uncer-
tainties are of the same order as their absolute contribution to the nominal fit
though, resulting in a large relative uncertainty.
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10 Search for Z(4430)±

In the previous sections only conventional hadronic states were considered
in the amplitude fits. Since no bands were visible in the exotic ψ(2S)π+ and
ψ(2S)π− axes of the Dalitz plot of data, this was justified (see Fig. 6.3). In
the following section an upper limit on the possible contribution from the
exotic Z(4430)± to B0

s→ ψ(2S)π+π− is quantified. This tetraquark candidate
is introduced in Sec. 2.6.1 and its description within the amplitude model
can be found in Sec. 5.3.2. Its Breit-Wigner parameters are fixed to the values
obtained in the analysis of B0→ ψ(2S)K+π− [63]. A possible Z+(4200) state
was observed there as well, but its contribution to the decay was measured
to be much smaller than that of the Z(4430)±, making a search for this state
infeasible given the current sample size.

In Fig. 10.1 fits to toy samples are shown, where about 40 % of the decays
proceed via either B0

s→ Z(4430)+π− or B0
s→ Z(4430)−π+. The two config-

urations use the same coupling strength, but to demonstrate the effect of
interferences, their phase relative to the conventional system from the dipion
states differ by π. While the effect is less pronounced in the projection to
M(ψ(2S)π+π−), the interference pattern drastically influences the distribu-
tion in Mππ (compared e.g. to Fig 6.9). In both configurations an enhancement
is visible for low values of Mππ though, which is not observed in data. The
interference effects also drastically change the pattern in the Dalitz plane.

As shown in Sec. 5.7 the coupling strengths of the decays
B0

s→ Z(4430)+π− and B0
s→ Z(4430)−π+ can be different in principle.

Due to the limited data sample size, their magnitudes are set equal and their
relative phases are fixed in the amplitude fit. Two choices of the phase are
considered, which result in the following relations between the ls coupling
terms

BZ+

01 = BZ−
01 = BZ−

01 = BZ+

01 (10.1)

or
BZ+

01 = −BZ−
01 = BZ−

01 = −BZ+

01 . (10.2)
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Figure 10.1: Projections of 15000 toy events with 20 %
B0

s→ Z(4430)+π− and 20 % B0
s→ Z(4430)−π+ fit fractions.

Left: Model with relative phase 0.4π between S-wave coupling

BS−wave00 and Z− coupling BZ−
01 . Right: Model with relative

phase −0.6π between S-wave coupling BS−wave00 and Z− cou-

pling BZ−
01 . Top: Mππ projection. Middle: M(ψ(2S)π) projection.

Bottom: Dalitz projection in M2(ψ(2S)π) versus M2
π+π− .
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The limit-setting procedure is performed once for each choice of the phase
and the larger of the two resulting limits is chosen as upper limit.

A common nuisance for searches in particle physics is, that before the
measurement it is not clear, whether the final result will be a two sided
interval (value and confidence interval) or a one-sided interval (upper limit),
since this depends on the significance of a potential signal. If the method
is only chosen after the significance is known, the correct coverage of the
extracted intervals can be incorrect. This effect is known as "flip-flopping".
The approach of Feldman-Cousins unifies the procedure providing both upper
limits and two-sided confidence intervals with correct coverage [130] and is
therefore chosen here.

The unified Feldman-Cousins approach is itself based on Neyman’s con-
struction of confidence intervals, which is introduced here following the
description in the review on statistics in [21]. Consider a pdf f (x|θ), where x
represents the measured estimate for coupling strength of the exotic contribu-
tion to the decay B0

s→ ψ(2S)π+π− and θ is the true value for this coupling
strength1. For every allowed value of θ and for a given probability 1− α one
can find intervals [x1(θ, α), x2(θ, α)] such that

P(x1 < x < x2; θ) =
∫ x2(θ)

x1(θ)
f (x; θ)dx ≤ 1− α. (10.3)

For repeated measurements and a true value θ, this interval then contains a
fraction of 1− α of measurements of x. For continuous x and θ the union of the
intervals [x1(θ, α), x2(θα)] forms an area in the x− θ plane, called confidence
belt. An example of a confidence belt is shown in Fig. 10.2.

In the measurement a single value of x is determined (in this work the
fitted value of the coupling), which singles out a vertical slice [θ1(x), θ2(x)]
of the confidence belt. The so-called confidence interval (CI) for θ from this
measurement corresponds to all values of θ, which lie in this interval.

For repeated measurements x, the interval [θ1(x), θ2(x)] varies. It can be
shown that for θ0 being the true value, a fraction 1− α of experiments will
contain θ0. Confidence intervals constructed in this way are therefore said to
have a confidence level (CL) of 1− α.

The interval [x1(θ, α), x2(θ, α)] above is not uniquely determined. It could
could be any interval or even a set of distinct intervals within the allowed

1In Sec. 5 the estimate for the coupling strength for decays via Z(4430)+ is denominated

BZ+

01 . In the derivation, the nomenclature from [21] is used instead, which is common in the
field.
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region for x. The unified approach by Feldman and Cousins provides a
method to define unique intervals [x1(θ, α), x2(θα)], while also providing the
correct coverage.

It introduces a likelihood ratio

λ(θ) =
f (x; θ)

f (x; θ̂)
, (10.4)

where θ̂ is the value for θ, which maximizes f (x; θ).
From eq. 10.4 one can form the test statistic

t(θ) = −2 log λ(θ). (10.5)

The intervals in x are then chosen as the ones, which minimize t(θ).
The particular formulation of the test statistic in eq. 10.5 was chosen, be-

cause according to Wilk’s theorem [131] for large sample sizes, t(θ) asymptot-
ically follows a χ2 distribution with degrees of freedom equal to the dimen-
sionality of θ, if the null hypothesis H0 : θ = θ̂ is true.

Since the χ2 distribution is well studied, the corresponding values for kα

are known and tabulated (see e.g. the review on statistics in [21]). In case of a
one-dimensional θ, the null hypothesis H0 is accepted at significance α = 0.95,
if [132]

t(θ) < kα ≈ χ2
1−α(ndof = 1) = 3.84. (10.6)

Determining the interval from this expression is not straightforward, be-
cause f (x; θ) is determined from optimizing the likelihood of the amplitude
fit, which contains not only the coupling strength θ, but also nuisance param-
eters w′. In order to make the test statistic independent of these nuisance
parameters, the profile likelihood ratio is introduced

λp(θ) =
L(θ, ˆ̂w′(θ))
L(θ̂, ŵ′)

, (10.7)

where θ̂ and ŵ′ are the maximum likelihood estimators from the amplitude
fit, while ˆ̂w′(θ) is the value for the nuisance parameters, which optimize the
likelihood for a fixed value of θ. In practice the likelihoods are optimized on
pseudo data generated with the MC technique from the pdf of the amplitude
fit. For each tested value of θ0 a new sample needs to be generated.

In order to find the interval, where relation eq. 10.6 holds, the likelihood in
the numerator of eq. 10.4 is optimized for several values of θ around the value
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θ̂, as shown in Fig. 10.2. This is only feasible for low-dimensional θ, where
only a few values need be scanned.

In order to apply this procedure to the contribution of Z(4430)± in
B0

s→ ψ(2S)π+π− three technicalities need to be addressed:

1. The parameters in the likelihood of the amplitude fit are not directly the
fit fraction of Z(4430)±, but the `s couplings BZ+

01 . The relation between
coupling and fit fraction is not straightforward (see eq. 5.71). Therefore
the confidence intervals are first determined in the couplings and only
afterwards translated into fit fractions.

2. The couplings are complex parameters, which would result in two real
parameters for θ, but the described process for the confidence interval es-
timation is computationally very expensive in more than one dimension.
Therefore the 2D scan procedure is only approximated. The phase of the
Z coupling is fixed to the value obtained from a fit to data. This reduces
the limit-setting to one-dimensional tests. To estimate the effect from
fixing the phase, the limit-setting procedure is performed 4 times at the
values β′ = β, β + 1

2 π, β + π, β + 3
2 π, where β̂ is the value obtained from

the fit to data. This still reduces the computational cost significantly
compared to a full 2D scan.

3. The s-weighting procedure reduces the effective data sample size. The
number of generated pseudo-data events for the profile likelihood test
therefore needs to be scaled by the factor α from eq. 6.15 in order to have
the same statistical power as the data sample. If this would not be taken
into account, the derived confidence intervals would be too small.

This brings another complication though. Since the sample size of data
and that of the generated pseudo data is different, the value of the cou-
plings is different as well. The reason for this is that the likelihood,
which is optimized, is extended, so the values of all the couplings in the
amplitude fit scale with the number of events in the data sample, on
which the likelihood is optimized. In the implementation of the likeli-
hood defined in eq. 6.14 the couplings in the fit to data correspond to a
pure signal sample of size Ntot = Nsig + Nbg. The couplings extracted
from a fit to pseudo-data on the other hand only correspond to a pure
signal sample of size Nsig, since no background events are simulated.
The couplings in the fit to pseudo data are therefore smaller by a factor
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of
√

Ntot
αNsig

= 0.8.2 This is the reason, why the CI of the fitted value for

the parameter is offset by 25 % in Fig. 10.3 from the true parameter on
the y-axis. This is only a technical detail though, as the fit fractions FZ

are unaffected, because a scale factor cancels out in the ratio in eq. 5.71.

The confidence level is therefore determined in the following way:

• Generate a pseudo data sample from the amplitude fit model with
an exotic contribution with coupling strength Bgen = |B|gen exp iβgen.
The sample size of the pseudo data sample is Ngen = 3000 events,
corresponding to the statistical power of the data sample.

• Calculate the profile likelihood ratio for 20 values of |B| around |Bgen|.

• Fit t(θ) with a second order polynomial to determine the region, where
t(θ) fulfils eq.10.2 (see Fig. 10.2).

• Repeat the previous steps for different values of |B|gen and build the
confidence belt for the coupling strength and corresponding fit fractions
FZ (see example in Fig. 10.3).

• Overlay the confidence belt with the measured value for the fit fraction
and read off the confidence limit (see Fig. 10.3).

• Repeat the previous steps for different values of βgen.

2The square root here comes from the fact that the pdf is proportional to the squared
amplitudes, which contain the couplings as linear parameters.
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to data.

• Perform all previous steps for each of the two hypotheses for the phase
between B0

s→ Z(4430)+π− and B0
s→ Z(4430)−π+ given in eqs.10.1

and 10.2.

The procedure above results in 8 different limits on the fit fraction
FZ, two from the choice of phase between the B0

s→ Z(4430)+π− and
B0

s→ Z(4430)−π+ amplitude and four from the overall phase of the exotic
amplitudes with respect to the amplitudes of decays via intermediate dipion
resonances. These results range from 0.2 % to 1.0 %. As a conservative esti-
mate for the upper limit on the fit fraction, the largest of these values is taken
and therefore

FZ < 1.0 % (10.8)

at 95 % CL. Note thatFZ = FZ+ = FZ− , since the magnitudes of the couplings
of the exotic amplitudes are connected. The upper limit on the fit fraction from
either B0

s→ Z(4430)+π− or B0
s→ Z(4430)−π+ is therefore ≈ 2FZ, where the

≈-sign stems from possible interference effects between the exotic amplitudes
from the two decay chains.

As described in Sec. 2.6.1 it is hard to determine theoretical predictions
for the fraction in B0

s→ ψ(2S)π+π− in the tetraquark and molecule picture.
Considering the Feynman diagram in Fig. 2.4, not all the necessary valence
quarks are available right after the weak decay process. They only occur after
hadronic interactions in the ss system, which could reduce the probability of
the formation of a Z(4430)± drastically.

Since no explicit theory predictions exist for the fraction in
B0

s→ ψ(2S)π+π−, it is compared to the value in B0→ ψ(2S)K+π− [63],
where FZ = (5.9± 0.9+1.5

−3.3)% was measured. A fit fraction of that size can be
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excluded in in B0
s→ ψ(2S)π+π−. The limit lies in the region of the observed

fraction in B0→ J/ψ K+π− [15], where the Z(4430)+ fraction was measured
to (0.5+0.4

−0.1)%.
The description with a triangle singularity implicitly excludes any contri-

bution in this channel though (see Sec. 2.6.1), an observation here would have
therefore strongly disfavoured that model. Since this is not the case, no final
conclusion can be drawn and the nature of the Z(4430)± remains unknown
for now.
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The hadronic partial waves in the decay B0
s→ ψ(2S)π+π− are studied in this

thesis using an amplitude analysis of the full decay chain. The analysis focuses
on a novel description of the dipion S-wave, which uses information extracted
from the channels B0

s→ J/ψ π+π− and B0
s→ J/ψ K+K− [1, 46, 102], applying

it for the first time to a different process. In contrast to the conventional
description with Breit-Wigner and Flatté parametrisations, this description of
the dipion interaction conserves unitarity and crossing symmetry, allowing to
transfer most of its parameters to other processes.

The process-independence of the S-wave description is proven in this
dissertation by its successful application to B0

s→ ψ(2S)π+π− opening the
way to its use in other amplitude analyses with dipion S-wave component.

The Bonn-Jülich parametrisation is compared to a more naive approach
describing the dipion S-wave as sum of overlapping Flatté and Breit-Wigner
amplitudes. Even though the naive approach can effectively describe the
data, it was shown that it cannot be used to extract meaningful estimates of
the partial branching fractions for the intermediate hadronic partial waves of
the dipion system. This is because the overlapping Flatté and Breit-Wigner
resonances produce significant interference terms, which violate unitarity
and analyticity making an interpretation of the fit fractions and shape param-
eters of the amplitudes as partial branching fractions and pole parameters
impossible.

The amplitude fit using a Bonn-Jülich parametrisation for the description
of the dipion S-wave on the other hand shows much smaller interference
effects and the extracted fit fractions shown below can be interpreted as
partial branching fractions

S-wave 0.974± 0.011± 0.015
f2(1270) (17± 5± 15)× 10−3

f2(1525) (4.1± 1.3± 8.0)× 10−3

After the process independence of the Bonn-Jülich parametrisation is now
shown in B0

s→ ψ(2S)π+π− the parametrisation can be used to reduce the
systematic uncertainty from the modelling of the dipion system in other
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channels as well. At the current experimental precision the dipion description
is already the leading systematic uncertainty in the measurement of the CP
violating phase φs in B0

s→ J/ψ π+π− [125]. With the 50 fb−1 of data from
the upcoming runs of the LHCb detector the statistical precision on this
observable will decrease significantly and with the improved model it should
be possible to keep the systematic uncertainty low enough to make full use of
the additional data.

This additional data will also open up the possibility of coupled chan-
nel analyses with scalar isospin singlet sources including B0

s→ J/ψ π+π−,
B0

s→ J/ψ K+K−, B0
s→ ψ(2S)π+π−, B0

s→ J/ψ K+K−, and J/ψ→ π+π−γ,
which should make it possible to increase the precision on the extracted pole
positions further, including higher mass resonances within the large phase
space in J/ψ→ π+π−γ. This might also shed light on the possible glueball
nature of the high-mass resonances like f0(1500) and f0(2020) through the
comparison of the relation between the spectra and their production processes
described in [133].

The presence of exotic contributions in the form of the Z(4430)± in the
spectra of M(ψ(2S)π+) and M(ψ(2S)π−) is tested as well, but since no sig-
nificant signal is seen, an upper limit on its fit fraction in B0

s→ ψ(2S)π+π− is
determined to FZ < 1.0 % at 95 % confidence level in agreement with the in-
terpretation of the Z(4430)± as triangle singularity. No theoretical predictions
exist to date for this value in the tetraquark and molecular models, but they
are being worked on and should be available soon.

The next natural step after the presented analysis would be the exploration
of the dipion spectrum and possible exotic contributions in B0→ ψ(2S)π+π−,
where the dipion system is produced in an isospin multiplet, built from a
dd configuration, allowing to test the corresponding model from [46], while
the final state quark content would be more favourable for the production of
possible Z(4430)± under the assumption of a true tetraquark state.
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A Preselection Cuts

The first selection step after reconstruction of the events is called Stripping
at LHCb. The cuts given in Tab. A.1 are used to select those events with two
muons, which form ψ(2S) candidates, which originate in a distance from
the V. The Strippings are performed centrally. DLLµπ corresponds to the
likelihood difference for a muon over a pion hypothesis of the RICH response.

The trigger requirements for this analysis are given in Tab. A.2. The corre-
sponding cuts can be found in [134].

The other preselection cuts are given in Tab. A.3. The definitions of the
abbreviations are given in Sec. 4.

Candidate Variable Cut

µ±

pT > 550
DLLµπ > 0

track χ2/ndf < 5.0
global muon PID decision True

di–µ
Decay vertex χ2/ndf < 20.0

Mass window [3586.109, 3786.109] MeV
Decay length significance > 3

Table A.1: Stripping line selection requirements.
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L0 L0Muon or
L0DiMuon

HLT1 TrackMuon

HLT2 DiMuonDetachedPsi2S or
DiMuonDetachedHeavy

Table A.2: Trigger Requirements

Candidate Variable Cut

µ±
ghost probability < 0.5

IP χ2 > 9

π±

ghost probability < 0.5
pT > 200

DLLKπ < 5
IP χ2 > 6.0

HASRICH True

B

DIRA > 0.9999
PV χ2 distance > 64

IP χ2 < 16
vertex χ2 < 50

DTF Mass window [5150, 5500] MeV
DTF |Mψπ±(π∓→K∓) −MB0,PDG| > 25

DTF |Mψ(π±→K±) −MB0,PDG| > 30
DTF |Mψπ± −MB0,PDG| > 30

vertex ∆χ2
add−track > 10

Table A.3: Preselection requirements.
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B Toy study on Oscillation Effects

To test the effect of oscillations, toy samples are generated using eq. 5.47 and
compared with toy samples, where τs = τl and the mixing term vanishes. 40k
events each are simulated, both samples use the same seed in the generation to
reduce statistical noise. Two models are used: a realistic one, with about 96 %
S-wave contribution and 1-2 % contribution from f2(1270) and f2(1525) each.
Like in the nominal fit only the smallest allowed values for ` are considered
for the partial waves in the deceay. The comparisons are shown in Fig. B.1. No
differences are visible. This is expected, since all involved decay amplitudes
have the same CP eigenvalues and therefore the mixing term in eq. 5.47 is
proportional to the first two terms in that equation.

A second model is generated, which only contains f2(1270) with a sig-
nificant component of CP even and CP odd partial waves. In addition to
the coupling B f2(1270)

11 , which describes the strength of the CP odd amplitude,
B f2(1270)

22 is set to finite values as well. The corresponding amplitudes of the
higher ` state is CP even. Since now the decay contains both CP even and
CP odd amplitudes, the mixing term in eq. 5.47 becomes nontrivial and dis-
tortions of several percent can be seen in the angular distributions shown
in Fig. B.2. The Mππ distributions for both models including B0

s oscillation
effects are shown in Fig. B.3.
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