
DEPARTMENT OF PHYSICS AND ASTRONOMY

UNIVERSITY OF HEIDELBERG

Bachelor Thesis in Physics

submitted by

Christoph Dressler

born in Heidelberg

2011

Implementation of a Phase Space Generator in C++

This Bachelor thesis has been carried out by Christoph Dressler at

Physikalisches Institut in Heidelberg

under supervision of

Prof. Dr. André Schöning

Abstracts

Inspired by the search for physics beyond the Standard Model an experiment has been

proposed to search for the lepton flavour violating decay µ→ eee. The experiment

has a target sensitivity four orders of magnitude beyond previous experiments. This

makes it crucial to understand the background of this process. In this thesis a

phase space generator for the simulation of the experiment has been implemented in

C++. The viability of the code has been shown by describing the kinematics of the

simulated events in Dalitz Plots. The results have been compared to experimental

data.

Inspiriert von der Suche nach Physik jenseits des Standardmodells wurde ein Ex-

periment entworfen, dass den Zerfall µ → eee untersuchen wird. Dieser Zerfall

verletzt die vom Standardmodell vorhergesagte Erhaltung der Leptonfamilienzahl.

Die angestrebte Sensitivitaet dieses Experiments wird um bis zu vier Groessenordnun-

gen hoeher als bei bisher durchgefuehrten Experimenten sein. Daher ist es von grosser

Bedeutung, den Untergrund des Prozesses zu verstehen. In dieser Arbeit wurde

ein Phasenraumgenerator fuer das Simulationssystem in C++ programmiert. Die

Funktionsfaehigkeit des Programmes konnte anhand der kinematischen Darstellung

der generierten Ereignisse in Dalitz Plots nachgewiesen werden.

Contents

1 Particle Physics 5

1.1 The Standard Model . 5

1.2 Beyond the Standard Model . 8

1.3 Particle Interactions . 9

2 Muon decay experiments 12

2.1 The SINDRUM experiment . 13

2.2 Proposed experiment . 13

3 Introduction to Monte Carlo methods 16

3.1 Classical numerical integration . 16

3.2 Monte Carlo techniques . 17

3.3 Random numbers . 20

4 The RAMBO phase space generator 22

4.1 Overview . 23

4.2 The Algorithm . 24

5 Results 27

5.1 Simulation . 27

6 Summary and Outlook 30

A Programm code 35

1 Particle Physics 5

1 Particle Physics

This thesis has been done in the field of particle physics which deals with the con-

stituents of matter at subatomic size as well as their interactions. Under ambient

conditions on earth, most particles are not stable and decay rapidly. To study them

scientifically, they have to be specifically created at very high energies that can only

be achieved in dedicated particle accelerators. For this reason, particle physics is

also called high energy physics. This work contributes to the design of an innovative

particle detector that will be built to search for the decay µ→ eee. Details about

the particular decay will follow in a later chapter.

In the following section, a brief introduction to the physical background and the

theory this thesis is based on is given.

1.1 The Standard Model

Both the known subatomic particles and the forces that mediate their dynamics are

currently best described by the Standard Model of particle physics, a theory that

combines the electromagnetic, weak and strong nuclear interactions. Its origins go

back to 1960, when Sheldon Glashow found a way to combine electromagnetic and

weak interactions [1] . In 1967, Steven Weinberg [2] and Abdus Salam [3] incorporated

the Higgs mechanism and gave the theory its modern form.

The Standard Model explains a wide variety of physical phenomena and experimental

results and has thus gained a lot of credence in the last decades. Until today, none

of the main predictions of the the Standard Model have been proven wrong, but not

all of them have been confirmed experimentally either.

It is built upon three main pillars: particles, forces and the Higgs mechanism. The

Higgs mechanism is widely believed to give the particles their masses, but this has

not been confirmed to date.

6 1 Particle Physics

Figure 1: The Standard Model

Particles

The elementary particles of the Standard Model are categorized in two groups:

fermions (spin 1/2) and bosons (spin 1), where spin is a quantum-mechanical prop-

erty of the particles that can be regarded as their intrinsic angular momentum.

Fermions are usually associated with ordinary matter, whereas bosons are the force

carriers that mediate the strong, weak and electromagnetic interactions. The two

basic categories can be subdivided as follows:

Fermions are particles that obey Fermi-Dirac statistics, stating that only one par-

ticle can occupy a particular quantum state at any given time. They are classified

according to their charge, and other quantum numbers (isospin, colour,...). There

are six quarks (up, down, charm, strange, top, bottom) and six leptons (electron,

muon, tau, each with a corresponding neutrino). They can be classified in three

families according to their electric charge. In addition, they are arranged in three

generations, and there is a mass hierarchy between these generations.

Quarks carry fractional electric charge and leptons integer electric charge. Addition-

ally, they are distinguished by the fact that that quarks carry color charge. Color

charge is a property that enables particles to interact via the strong interaction (see

below). A phenomenon called color confinement results in quarks not being able

to exist as free particles, but being forced to form color-neutral composite particles

(hadrons) that contain either a quark and an antiquark (mesons) or three quarks

1 Particle Physics 7

(baryons).

Leptons do not carry color charge. The neutrinos do not carry electric charge, either.

Only electron-like leptons do and thus interact electromagnetically.

Forces

As mentioned above, all these particles experience different forces. In the Standard

Model, those forces are explained to be caused by the exchange of force mediating

particles, so-called bosons. As opposed to fermions, all bosons have integer spin

and obey Bose-Einstein statistics, which means that, unlike fermions, two or more

bosons can occupy the same quantum state at the same time. Bosons can be both

elementary particles and composite ones, since obviously any particle containing an

even number of fermions will behave according to Bose-Einstein statistics, due to its

integer spin. There are several types of elementary bosons:

• Photon - the force carrier for the electromagnetic force

• W± and Z bosons - the force carriers for the weak force

• Gluons - the force carriers for the strong force

Those three kinds of bosons are called gauge bosons since each one of the corresponds

to one of the three Standard Model interactions. Two more gauge bosons have been

predicted, but not observed experimentally yet:

• Higgs boson - a massive scalar particle explaining why the other elementary

particles (except photon and gluon) are massive

• Graviton - the force carrier of gravitation

The reason why we have this very detailed knowledge about the constituents of

matter in our universe is mainly due to the construction of better and better particle

accelerators and particle detectors. Since many of the elementary particles are

extremely massive, the required energy to create those particles is correspondingly

8 1 Particle Physics

large according to Einsteins E = mc2. After the electron has been discovered around

1900, most of the following discoveries were results of experiments with cosmic rays

due to the fact that was were simply no other source of high energy particles available

at the time. It was not until 1930 that physicists started to build dedicated particle

accelerators that provided controlled beams of particles of known energy. This beam

energy has been increased again and again over the last decades up to magnitudes of

several TeV (Large Hadron Collider, CERN), allowing to create and observe evermore

particles of higher and higher mass.

1.2 Beyond the Standard Model

All kinds of experiments manifest the power of the Standard Model. Nevertheless,

there are several inherent deficiencies, such as an explanation for gravity, the observed

matter-antimatter asymmetry, the origins of dark matter/ dark energy and several

other important phenomena. Resulting from these shortcomings of the Standard

Model, the search for a more complete ’theory of everything’ has become one of the

most active areas of research in physics.

Theoretical physicists have been developing models that provide solutions to those

problems. The most promising models are the various forms of Supersymmetry, a

theory that postulates a fermion-boson symmetry – all known fundamental bosons

(fermions) would then have ’new’ fermion (boson) partners. Since in case of perfect

symmetry, all these partners would have equal masses, this symmetry could not be

exact. A different ansatz are technicolor theories – they address the breaking of

electroweak symmetry. Even though the ideas differ, they all imply the existence

of new particles. If the theories are found to be true, they will induce a couple of

experimental implications that can be verified. For example, the Standard Model

introduces the conservation of the lepton number (the number of leptons minus the

number of antileptons) in each leptonic family. These new particles might cause the

violation of the lepton flavour conservation which could not be explained by the

Standard Model.

1 Particle Physics 9

Indeed, physics beyond the Standard Model can only be found once the rules of

the Standard Model are broken, so the general way to find out more about these

violations is to search for phenomena that can not be explained or are in fact not

allowed by the Standard Model, e.g. certain particle decays that are kinematically

possible but not in accordance to the known rules. The foundation of this thesis is

the planned search for one of those decays, namely µ− → e−e+e−. The observation

of this particular decay would give powerful evidence for possible physics beyond the

Standard Model. This is due to the violation of lepton number conservation that is

supposed to stay the same through an interaction.

1.3 Particle Interactions

To describe the interactions that happen in a particle detector, one needs to un-

derstand some concepts of particle physics. Classically, physical interactions are

described in terms of a potential or a field that was caused by one of the particles

and had an impact on another particle. The quantum concept of interaction is rather

based on exchange than on influence, stating that the exchanged boson carries mo-

mentum from one particle to the other with the rate of exchange providing the force.

Since the whole process needs to satisfy energy conservation, it has to take place

within a timescale ∆t due to the Uncertainty Principle. Those transient particles

that exist only for a limited space and time are said to be virtual and can not be

directly observed.

The likelihood for a given particle interaction is specified by the so-called cross-

section, which is a hypothetical target area in a beam of particles. There will be an

interaction if a particle of the beam hits that surface. The approach originates from

the classical picture, where the probability that a single point-like particle hits a

solid surface was actually given by the ratio of the section of the solid to the total

targeted area. If one imagines an experiment

a+ b→ c+ d (1.1)

10 1 Particle Physics

in which a well-defined parallel beam of particles of type a and density na hits a

target that contains nb particles of type b per unit volume and has the thickness dx.

The flux through the target will be

Φ = navi (1.2)

with vi being the velocity of the beam relative to the target. Since each target

particle has a cross-section σ, the fraction of the target area covered by the target

particles b equals the probability Φσnbdx that any particle a will hit a target particle.

Obviously, the reaction rate per target particle is therefore

W = Φσ. (1.3)

In general, the reaction rate describes the probability of reaction or transition per

unit time. It can be calculated using Fermi’s Golden rule

W =
2π
h̄
|Mif |2ρf . (1.4)

and depends upon the transition probability |Mif |2 between the initial and final

state of the system and upon the number of possibilities for the transition considered,

which is expressed as the phase space density of the final states ρf .

The phase space of a specific system contains all states the system can represent,

giving a rather abstract but very practical depiction of allowed points that obey

energy and momentum conservation. A mathematical expression for the phase space

can for instance be derived by imagining a single particle within a cube of sides L

and (quantized) momentum.

px =
2πnx
L

py =
2πny
L

pz =
2πnz
L

(1.5)

Once transferred to momentum space, each state stays within the elemental volume

(2π)3/V . The number of states available to that particle becomes

dN1 =
total phase space
volume element

(1.6)

=
1

(2π)3

V

1
V

∫
dpxdpydpz (1.7)

=
1

(2π)3

∫
d3p (1.8)

1 Particle Physics 11

once the momentum space is normalised to one particle per (spatial) element volume.

For n particles, this leads to

dNn =
1

(2π)3n

∫ n∏
i=1

d3p (1.9)

and thus the number of states per unit energy (phase space) becomes

ρ(Ef) =
dNn

dE
=

1
(2π)3n

d

dE

∫ n−1∏
i=1

d3pi. (1.10)

The product goes no further than n− 1 because the nth particle is constrained by

total momentum conservation.

12 2 Muon decay experiments

2 Muon decay experiments

The minimal Standard Model postulates the separate conservation of electron, muon

and tau number and does not allow lepton flavour changing processes. The following

table shows the decays that satisfy this condition. The main muon decay is the decay

to an electron, an anti-electron-neutrino and a muon-neutrino, antimuons would

decay to the corresponding antiparticles. For every decay, the branching ratio (the

fraction of particles which decay by an individual decay mode with respect to the

total number of particles which decay) is given as well.

Decay Branching ratio Reference

µ− → e−ν̄eνµ ≈ 100% [4]

µ− → e−ν̄eνµγ (1.4± 0.4)× 10−2 [5]

µ− → e−ν̄eνµe
−e+ (3.4± 0.4)× 10−5 [6]

Table 1: Muon decay modes permitted in the Standard Model

Certain other decay modes are kinematically allowed, but forbidden by the minimal

Standard Model. These Lepton Family number violating modes are given in the

following table:

Decay Branching ratio Confidence level Reference

µ− → e−νeν̄µ < 1.2× 10−2 90% [7]

µ− → e−γ < 1.2× 10−11 90% [8]

µ− → e−e+e− < 1.0× 10−12 90% [9]

µ− → e−γγ < 7.2× 10−11 90% [10]

Table 2: Upper Limits for the branching ratio for forbidden muon decay modes

These processes have not been observed (yet), so one can only specify an upper limit

for the corresponding branching ratios. Their observation would give clear evidence

for physics beyond the Standard Model.

2 Muon decay experiments 13

Several theoretical extensions break this conservation law. All models considered

provide different branching ratios and predict (non-zero) observable branching ratios

for lepton family number violating decays. Improving the upper limit of the µ− →

e−e+e− decay could lead to a better understanding of the properties of new particles,

possibly even refute some potential beyond the Standard Model theories and can

thus be seen as a major improvement in particle physics.

2.1 The SINDRUM experiment

The search for the decay µ+ → e+e+e− with the SINDRUM magnetic spectrometer

started in 1983. The result was published in [9] and gave a new upper limit for the

branching ratio of the decay µ→ 3e of

Bµ→3e < 1.0× 10−12 (90% Confidence Level) (2.1)

The branching ratio of this experiment is especially important since many Standard

Model extensions predict an observable for the branching ratio. By pushing this

limit, one might be able to learn more about the properties of a Beyond the Standard

Model (BSM) theory or exclude certain BSM models.

2.2 Proposed experiment

A new experiment [11] is proposed. The aim is to reach a sensitivity of

Bµ→3e < 1.0× 10−16 (2.2)

corresponding to an improvement by a factor 10000 compared to the SINDRUM

experiment. To achieve this sensitivity a particle rate of around 109 is required.

The concept is similar to the SINDRUM experiment: a continuous beam of surface

anti-muons µ+ of momentum p = 28MeV/c is stopped with a hollow double-cone

target that consists of thin, low Z (low number of protons) material. A low Z in

the cones reduces multiple scattering and thereby improves the resolution, since it

is especially sensitive to multiple scattering for low momentum particles. A strong

magnetic field bends the tracks and thus enables momentum measurement due to

14 2 Muon decay experiments

Figure 2: Simulation of muon decays using a simple detector geometry with four concentric

layers of silicon sensors. The blue trajectories represent muons which are stopped in the

hollow double cone target. The red trajectories are decay electrons which are bend in a

solenoidal magnetic field.

the Lorentz force

~F = q(~v × ~B) (2.3)

The detector is designed to reconstruct about 109 muon stops per second (see below).

To resolve the vertices of all the different decays, the surface of the target should be

large compared to the vertex resolution. The double cone structure both yields a

large target surface and small opening angles, which minimizes the target material

in the transverse projection of decaying electrons while at the same time providing

optimum material in the beam direction so that the muon stopping efficiency is high.

The tracking system of the proposed experiment uses semiconducting material which

could be as thin as 50µm. This reduces multiple scattering of the electrons which is

the dominant effect on the momentum measurement and improves the total energy

resolution.

2 Muon decay experiments 15

Detector Geometry

As mentioned above, the tracking detector is dominated by multiple scattering effects.

Since the track resolution degrades with the square root of the thickness of the

material [12], the number of layers should not be larger than three or four, and for

redundancy reasons, four layers has been considered optimal for the proposed experi-

ment. This choice is supported by the expected momentum range of 15− 50MeV/c.

The four-layer design makes it possible to measure higher momentum tracks (with

large bending radius) using four layers and lower momentum tracks using only three

layers.

Monte Carlo Simulations

Around 109 muon events will be reconstructed in the detector per second, so there

will definitely be some background. It is important to distinguish the actual events

from the ones that were misidentified. To learn more about the background of the

new detector, we want to simulate possible background processes with Monte Carlo

simulation and run the reconstruction scheme on the generated events. With these

studies we can benchmark efficiency and fake rate.

The background can have different reasons [11]. It can be real physics backgrounds

(in this case only the radiative muon decay with internal conversion µ→ eeeνν) or

accidental backgrounds due to combinational phenomena such as

• accidental coincidences of two muon decays (yielding two positrons) and the

existence of a fake electron track due to wrong reconstruction, not identified

back curling or Bhabha Scattering [17]

• accidental coincidences of an ordinary muon decay and an radioactive muon

decay with internal conversion where one electron is not detected

Lepton flavour violating muon decays are not observed until now. If observed they are

a clear signature of Physics beyond the Standard Model. The proposed experiment

has an improved sensitivity by four orders of magnitude. This also means that the

background of the process µ→ eee and detector effects should be well understood.

16 3 Introduction to Monte Carlo methods

3 Introduction to Monte Carlo methods

Event generation involves solving multidimensional integrals. For the work of this

thesis, the following integral had to be solved (see Sec.4).

V (
√
P 2) =

∫
δ4

(
P −

N∑
i

pi

)
N∏
i

[d4pi δ(p2
i)θ(p

0
i)] (3.1)

This integral is high-dimensional and can not be solved efficiently with ordinary

methods, but there are other possibilities to address this problem. The following

explanations of various integration techniques are based on [13] and illustrate how

classic numerical integration methods approach a simple, one-dimensional integration

problem. It will become obvious why their adaption for higher dimensional integrals

causes problems that can be addressed using the Monte Carlo approach, a numerical

integration method that is capable of (and thus helpful for) calculating higher

dimensional integrals that can not be solved analytically.

Let us have a look at the one-dimensional integral

I =
∫
dx f(x) (3.2)

for which an estimation is wanted.

3.1 Classical numerical integration

The simplest example for one-dimensional integrals are classic numerical integration

methods. They refer to they idea of the Riemann integral [19] and solve the integral

by calculating the area under the curve. Those methods can be broadly categorized

by the question whether they evaluate the integrand at equally spaced (Newton-Cotes

type) or non-equally spaced (Gaussian quadratures) abscissas.

Newton-Cotes type formulae

Newton-Cote type formulae are used once it makes sense to approximate an integral

over a finite interval by weighted values of the integrand at equally spaced abscissas.

The simplest example is the trapezoidal rule:∫ x0+∆x

x0

=
∆x
2

[f(x0) + f(x0 + ∆x)s]− (∆x)3
12

f ′′(ξ) (3.3)

3 Introduction to Monte Carlo methods 17

where x0 ≤ ξ ≤ x0 + ∆x. It gives a formula that approximates an integral over a

finite interval [x0, xn] by dividing the interval into n sub-intervals of length ∆x that

can then be estimated with the trapezoidal rule. The position of the ξ cannot be

known without knowing the integral exactly. For this reason, the last term is usually

neglected and introduces an error in the numerical evaluation that is proportional to

1/n2.

Gaussian quadrature

While Newton-Cotes type formulae are used if the value of the integrand is given at

equally-spaced points, it can be more suitable to use other methods such as Gaussian

quadrature if it is possible to change the points at which the integrand is evaluated.

The main formula of Gaussian quadrature states that if a weight function w(x) exists

on [a,b], then there exist also weights wj and abscissas xj for 1 ≤ j ≤ n such that∫ b

a
dxw(x)f(x) =

n∑
j−1

wjf(xj) +
f2n(ξ)
(2n)!

∫ b

a
dxw(x)

[∏
(x)
]2

(3.4)

Multi-dimensional integration

All the classic numerical integration techniques are are defined for one-dimensional

integrals. In many problems, such as the phase space integral depicted above, multi-

dimensional integrals occur. They can often not be solved analytically and have

to be evaluated numerically. A possible solution would be to iterate the multi-

dimensional integral by applying a one-dimensional integration rule in each iteration

and combining the pieces at the end. However, the error of this approach scales

as N−2/d with N as the number of function evaluations and d as the number of

dimensions. This means that the number of required function calls for a specific

numerical accuracy scales exponentially.

3.2 Monte Carlo techniques

As shown in the previous section, classical numerical integration techniques are

inefficient for multi-dimensional integrals. The key feature of Monte Carlo integration

is the independence of the number of dimensions and that the error scales only with

the number of function calls like 1/
√
N . Even though this is a big improvement

18 3 Introduction to Monte Carlo methods

compared to its alternatives, a convergence by a rate of 1/
√
N is still too slow for a

fast and accurate result. Thus, some ways to improve the efficiency of Monte Carlo

integrations even further will be presented.

Monte Carlo integration

In order to show the power of Monte Carlo integration, we go back to the basic

idea at the beginning of this chapter and consider an integral of a square-integrable

function over the unit hypercube [0, 1]d that depends on d variables u1, ..., ud. To

keep it simple, we will label a point in the unit hypercube as x = (u1, ..., ud) and the

evaluation of the function at this point as f(x) = f(u1, ..., ud). The integral

I =
∫
dx f(x) =

∫
ddu f(u1, ..., ud) (3.5)

can be estimated using Monte Carlo integration to

E =
1
N

N∑
n=1

f(xn) (3.6)

which converges to the true value of the integral due to the law of large numbers.

For a finite N, we can now estimate the error by calculating the variance σ2(f) of

the function f(x):

σ2(f) =
∫
dx(f(x)− I)2 (3.7)

It can be shown that∫
dx1...

∫
dxN

(
1
N

N∑
n=1

f(x)− I

)2

=
σ2(f)
N

, (3.8)

indicating that the mean error in the Monte Carlo estimate is σ(f)/
√
N on average.

It is important to realize that Monte Carlo integration gives only a probabilistic

error bound. This means that we can only give a probability that the Monte Carlo

estimate lies within a certain range of the true value and not a deterministic error

bound as in the trapezoidal rule.

Variance reducing techniques

It has been shown how the Monte Carlo error scales. This is both a huge advantage

(due to the independence of the integral’s dimension) and a problem (since it converges

3 Introduction to Monte Carlo methods 19

relatively slow to the true value). In the following sections we introduce several

techniques to improve the scaling behaviour even further.

Stratified sampling

A fundamental property of the Riemann integral is the fact that one can divide the

full integration space into subspaces∫ 1

0
dx f(x) =

∫ a

0
dx f(x) +

∫ 1

a
dx f(x) (3.9)

This idea can also be applied if the integral is evaluated using Monte Carlo techniques.

One performs a Monte Carlo integration in each subspace, and adds up the partial

result at the end. The division of the hypercube can be imagined similarly. The

procedure can lead to a dramatic variance reduction compared to crude Monte Carlo

if the subspaces and the number of points in each subspace are chosen carefully. This

is indeed necessary, since an inappropriate choice can also lead to a larger variance.

Importance sampling

Importance sampling is a general technique for estimating properties of a particular

distribution, while only having samples generated from a different distribution.

Mathematically, importance sampling corresponds to a change of integration variables:∫
dx f(x) =

∫
dx

f(x)
p(x)

p(x) =
∫
dP (x)

f(x)
p(x)

(3.10)

with

p(x) =
∂d

∂x1...∂x2
P (x) (3.11)

If we restrict p(x) ≥ 0 and
∫
dx p(x) = 1, then p(x) can be interpreted as a probability

density function. Now we just have to choose p(x) such that it approximates |f(x)|

reasonably well in shape and that it can be used to generate random numbers that

are distributed according to P(x).

Control variates

As with importance sampling one seeks an integrable function that approximates

the function f to be integrated reasonably well, but this times the two functions are

substracted rather than divided:∫
dx f(x) =

∫
dx(f(x)− g(x))−

∫
dx g(x) (3.12)

20 3 Introduction to Monte Carlo methods

If the integral of g is known, the only uncertainty comes from the integral of (f − g),

which can have a smaller variance than f if g is chosen carefully.

There are several other methods that serve the same purpose, but they will not be

discussed here.

Adaptive Monte Carlo techniques

The problem with all variance-reducing techniques described above is that they

require some knowledge of the integrand in advance. Since we deal very often with

functions that can not be solved analytically this knowledge is not generally available.

For this reason, one usually prefers adaptive techniques, i.e. an algorithm which

learns about the function as it proceeds.

Multi-channel Monte Carlo

If the integrand f(x) has sharp peaks, crude Monte Carlo usually leads to poor

results. Multi-Channel Monte Carlo offers a solution if the transformations for a

single peak structure are known (each such transformation is known as a channel).

3.3 Random numbers

It is now clear that Monte Carlo Integration offers a tool for the numerical evaluation

of integrals in high dimensions. Since random numbers play an important role in the

Monte Carlo ansatz, we will finish this introduction with a brief discussion of their

nature.

In the most general sense a computer is a fully deterministic machine and it can never

generate truly random numbers. Instead, we have to use so-called pseudo-random or

quasi-random numbers.

Pseudo-random numbers

Pseudo-random numbers are produced in the computer deterministically by a simple

algorithm. They are not truly random, but appear to be random to someone who

does not know the algorithm. By today’s standards a good random number generator

should satisfy criteria like good distribution, long period, repeatability, long disjoint

subsequences, portability and efficiency. To test all those qualities and ensure that a

given set of random numbers is adequate for a given problem, there are a certain

3 Introduction to Monte Carlo methods 21

number of tests available (that will not be discussed here).

Quasi-random numbers

Quasi-random numbers are actually not random at all, but produced by a numerical

algorithm that is designed to distribute them as uniformly as possible. A use of

quasi-random numbers is valid nonetheless since the true randomness of the generated

numbers is not that important in Monte Carlo integrations. It is more relevant that

the integration region is sampled as uniformly as possible. This is why the use of

quasi-random numbers can in fact reduce the errors in Monte Carlo generation.

22 4 The RAMBO phase space generator

4 The RAMBO phase space generator

Knowing the basics of Monte Carlo integration, one can now go back to the original

physical problem, i.e. the generation of events from a multiparticle phase space. This

problem is addressed in [14], where a method is proposed that generates phase-space

points with uniform weights. The FORTRAN program that resulted from this paper

has been used successfully in various HEP Monte-Carlo generators for many years.

This thesis will provide a new implementation of this method in C++.

The most widely used approach to generate phase-space distributions is to implement

the particle production hierarchically as a series of sequential two-body decays. In

order to avoid the variable event weights that result from this strategy, RAMBO

(short for RAndom Momenta Beautifully Organized) uses a democratic procedure

that treats all particles equally.

The goal of the implementation is the ability to generate decays of a parent particle

of given momentum P = (P,0,0,0) that result in four-momenta of the N daughter

particles. In the given scenario, the phase space volume for N-body decay is given by

V (
√
P 2) =

∫
δ4

(
P −

N∑
i

pi

)
N∏
i

[d4pi δ(p2
i)θ(p

0
i)] (4.1)

where

• the four dimensional δ-function ensures energy momentum conservation,

• δ(p2
i) ensures that the daughter particles are real (not virtual), and

• θ is a function which takes into account several detector effects and can be set

to unity.

The power of the idea behind the RAMBO algorithm is the ansatz that once one

has generated an arbitrary phase space region that does not necessarily satisfy

energy-momentum conservation, one can get to a system that meets the requirements

of these constraints by first generating all particle momenta isotropically and then

boosting and rescaling them according to a certain conformal transformation. To

give some more insights into the RAMBO algorithm, the general mathematical idea

4 The RAMBO phase space generator 23

is outlined first and then the procedure is described more detailed in Sec. 4.2.

4.1 Overview

We define a quantity

Rn ≡
∫ N∏

i

[d4qi δ(q2
i)f(q0

i)θ(q
0
i)] (4.2)

and assume that

Qµ =
N∑
i=1

qi (4.3)

is the vector sum of the all the random 4-vectors generated in our new system and

Pµ =
N∑
i=1

pi (4.4)

is the vector sum of the desired “well behaved” 4-vectors of the true particles with

zero mass. RAMBO offers the following conformal transformation from Qµ to Pµ.

p0
i = γq0

i +~b · ~qi ~pi = x(~qi +~bq0
i + a(~b · ~qi)~b) (4.5)

Notice that the arrows indicate the 3-vectors and the index i represents the ith

daughter particle. The single terms are defined as

~b =
~Q

M
withM =

√
QµQµ =

√
Q2

γ =
Q0

M
=
√

1 + b2

a =
1

1 + γ

x =

√
PµPµ

M
=

√
P 2

M

(4.6)

In a second step, the pµi are then transformed into new physical four-momenta of

non-zero mass

Kµ =
N∑
i=1

ki (4.7)

with mass mi as follows:

k0
i =

√
m2
i + ξ2p0

i
2 ~ki = ξ~pi (4.8)

24 4 The RAMBO phase space generator

4.2 The Algorithm

As said before, sequential algorithms generate weighted events. The ideal case gives

unweighted events, meaning that all generated events are of equal probability.

Massless particles

The first goal is thus to generate independently n massless four-momenta qµi with

isotropic angular distribution, energies (q0
i) and uniform weight. RAMBO does not

use the phase space given in equation 4.1, but starts by defining the quantity

Rn ≡
∫ N∏

i

[d4qi δ(q2
i)f(q0

i)θ(q
0
i)] =

[
2π
∫ ∞

0
xf(x)dx

]n
(4.9)

which can be interpreted as a phase-space like object describing a system of n massless

four-momenta qµi that are not constrained by momentum conservation but occur

with some weight function f that ensures that the total volume stays finite. In a

next step, the conformal transformation given in equation 4.5 relates the four-vectors

qµi to their physical counterparts pµi by transforming the overall momentum of the

set qµi into the desired Pµ.

This is done with a sequence of random numbers {{ρ}1, {ρ}2, . . . , {ρ}N} where N

is the number of daughter particles and {ρ}i itself is a set of 4 random numbers

{ρi1, ρi2, ρi3, ρi4}. The random numbers should be uniformly distributed in the closed

interval (0,1), which means the numbers should never be 0 or 1 (boundaries excluded).

This is achieved by using the ROOT [20] class TRandom2, a random number generator

that is based on the maximally equidistributed combined Tausworthe generator by

L’Ecuyer [15]. It has a period of 288 (around 1026) [16] and should be sufficient for

our purpose.

Since it is a decay process, the massless three-vectors need to be distributed according

to the density q0
i e
−qidq0

i . This can be achieved using the method of exponential

deviates with uniform random numbers. One can generate the following quantities:

ci = 2ρi1 − 1 φi = 2πρi2 (4.10)

4 The RAMBO phase space generator 25

Now we can generate the required qµi = (q0
i , q

x
i , q

y
i , q

z
i)

q0
i = − ln(ρi3ρi4) qxi = q0

i

√
1− c2

i cosφi

qyi = q0
i

√
1− c2

i sinφi qzi = q0
i ci

(4.11)

They enable us to address the problem using a Monte Carlo approach, which is highly

favorable as depicted in 3.2.

Every generated Monte Carlo event has to be weighted. In this case, the weights are

constant and can be calculated to

W0 =
(π

2

)n−1 w2n−4

Γ(n)Γ(n− 1)
(4.12)

where w is the center of mass energy.

Massive particles

Contrary to hierarchical procedures where there is no fundamental difference between

generating massless and massive particles, the democratic approach requires some

changes due to the fact that they can obviously not be scaled without varying their

masses. Nevertheless, it is possible to transform the momentum components of

a set of massless momenta that obey momentum conservation in a way that the

transformed momenta have non-zero mass and still satisfy the conditions of the given

phase space. The corresponding transformation as given in eq. 4.7 is

k0
i =

√
m2
i + ξ2p02

i
~ki = ξ~pi (4.13)

where ξ is the solution of the equation

w =
n∑
i=1

√
m2
i + ξ2p0

i
2
. (4.14)

Since the sum and the square root do not commute there is no general analytic

expression for ξ, but it can be computed numerically very quickly and to high

accuracy using an iterative algorithm.

Now, the weights are not constant any more but depend on the four-vectors of the

daughter particles.

Wn =

[
1
N

n∑
i=1

|~ki|

]2n−3 [n∏
i=1

|~ki|
k0
i

][
n∑
i=1

|~ki|2

k0
i

]−1

(4.15)

26 4 The RAMBO phase space generator

Consequently, the efficiency of the weight distribution, which is defined as the average

event weight divided by the maximum weight, goes down.

We now have both an algorithm that generates Monte Carlo events with massless

momenta and weights W0 and an algorithm that transforms those massless momenta

into massive ones with weights Wm. Now we are able to generate any type of final state

by subsequently applying these two algorithms and multiplying the corresponding

weights, W = W0 ·Wm.

5 Results 27

2 1000 [MeV]×2)-,e+m(e
0 2 4 6 8 10 12

2
 1

00
0

[M
eV

]
×2)-

,e+
m

(e

0

2

4

6

8

10

12

0

100

200

300

400

500

600

 eee)→µDalitz plot (

Figure 3: Dalitz plot

5 Results

5.1 Simulation

There are several ways to test the quality of the simulated phase space region, one of

them being a so-called Dalitz Plot [18], a scatter-plot that can be used to depict the

dynamics of a three-body decay. By choosing the squares of the invariant masses of

two (different) pairs of the decay products as the axis, one can completely describe

the kinematics in one plot. This has been done for µ→ 3e (Fig. 3) and pp̄→ 3π0

(Fig. 4). The results where exactly as expected. The triangles represent momentum

conservation and the rounded corners are due to the fact that the possible number

of combinations decreases to the extremes. The Dalitz Plot for pp̄ → 3π0 can be

compared to a similar Plot from the Crystal barrel Experiment (Fig. 5) that has

been done with real data, and the similarities are obvious. The simulated plots do

not show any features though which is reasonable because we did not take the matrix

elements into account. Other then that, the plots sufficiently consistent. This proves

28 5 Results

2 GeV2m12
0 0.5 1 1.5 2 2.5 3

2
 G

eV
2

m
23

0

0.5

1

1.5

2

2.5

3

0

20

40

60

80

100

120

140

160

0π0π0π → pDalitz plot for p

Figure 4: Dalitz plot (simulated)

Figure 5: Dalitz plot(Crystal Barrel Experiment)

5 Results 29

that the implementation of the RAMBO algorithm in C++ was successful.

30 6 Summary and Outlook

6 Summary and Outlook

Summary

During the work on this thesis, a phase space generator has been implemented in

C + + according to the ideas presented in [14]. It was possible to show the viability

of the code using Dalitz Plots that were plotted with the data from the simulated

event.

Outlook

The phase space generator can now be used for the simulation framework of the

planned µ → eee experiment to generate signal Monte Carlo. It might also be

possible to combine the RAMBO procedure with the integration routine VEGAS

from the CUBA library [21] in order to generate BSM backgrounds where we know

the matrix element in principle.

References 31

References

[1] Sheldon L. Glashow, Partial-Symmetries of Weak Interactions, Nuclear Physics

22, 579 (1961)

[2] Steven Weinberg, A Model of Leptons, Physical Review Letters 19, 1264 (1967)

[3] Abdus Salam, Weak and electromagnetic interactions, Imperial College of Science

and Technology, London (1968)

[4] K. Nakamura et al., Particle Data Group, Journal of Physics G37, 075021 (2010)

[5] R.R. Crittenden et al., Radiative decay modes of the muon, Phys.Rev. 121, 1823

(1961)

[6] Bertl et al., Search for the decay µ− → e−e+e−, Nucl.Phys. B260, 1823 (1985)

[7] S.J. Freedman et al., Limits on neutrino oscillations from anti-electron-neutrino

appearance, Phys.Rev. D47, 811 (1993)

[8] M.L. Brooks et al., New limit for the family number nonconserving decay µ− →

e+γ, Phys.Rev.Lett. 83, 1521 (1999)

[9] Bellgardt et al., Search for the Decay µ+ → e+e+e−, Nucl.Phys. B299, 1 (1988)

[10] R.D. Bolton et al., Search for Rare Muon Decays with the Crystal Box Detector,

Phys.Rev. D38, 2077 (1988)

[11] A. Schoening et al., A Novel Experiment to Search for the Decay µ → eee,

Physics Procedia 00, 1 (2010)

[12] Particle Data Group, Review of Particle Physics, Volume 37, Chapter 27 “Pas-

sage of particles through matter” (2010)

[13] Stefan Weinzierl, Introduction to Monte Carlo methods, NIKHEF Theory Group

(lecture) (2000)

[14] Kleiss, Stirling and Ellis A new Monte Carlo Treatment of Multiparticle phase

space at high energies, Computer Physics Communications 40, 359 (2000)

32 List of Figures

[15] Pierre L’Ecuyer Maximally equidistributed combined Tausworthe Generators,

mathematics of Computation 65, 203 (1996)

[16] ROOT class TRandom 2, details can be foudn here: http://root.cern.ch/

root/html/TRandom2.html

[17] Bhabha et al. The Scattering of Positrons by Electrons with Exchange on Diracs

Theory of Positron Royal Society (1935)

[18] R.H. Dalitz Decay of τ Mesons of Known Charge Phys.Rev. 94, 1046 (1954)

[19] B.Riemann Ueber die Darstellbarkeit einer Function durch eine trigonometrische

Reihe Abhandlungen der Koeniglichen Gesellschaft der Wissenschaften zu Goet-

tingen 13, 87 (1868)

[20] Rene Brun and Fons Rademakers, ROOT - An Object Oriented Data Analysis

Framework, Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst.

& Meth. in Phys. Res. A 389 (1997) 81-86. See also http://root.cern.ch/.

[21] T. Hahn, Cuba–a library for multidimensional numerical integration, Computer

Physics Communications 168 (2005)

List of Figures

1 Standard Model of Elementary Particles (Source: wikipedia.com) . . 6

2 Simulation of muon decays (Source: [11]) 14

3 Dalitz Plot µ→ eee . 27

4 Dalitz Plot pp̄→ π0π0π0 . 28

5 Crystal Barrel Dalitz Plot (Source: http://www-meg.phys.cmu.edu/cb/) 28

I, Christoph Dressler, hereby declare that this thesis is entirely my own work except

where otherwise indicated. It is being submitted for the degree of Bachelor of Science

at the University of Heidelberg (Germany) and has not been submitted before for

any degree or examination at this or any other University.

Date and place Christoph Dressler

To my parents, Sabine and Christian Dressler, I gratefully dedicate this thesis.

Thank you for always supporting me. It’s been a long, hard road – but it was worth it.

I would like to thank Mr. Schoening

for being a great advisor. His ability to share knowledge in an incredible instructing

and motivating way has made the work on this thesis a lot easier.

I would also like to thank Rohin

for all his clarifications and help during the last months. This thesis would not have

been possible without his assistance.

Thanks to Moritz

for giving me the most vivid explanations ever. When I was lost in physical no

man’s-land he was there to save me, and I can’t tell how much I appreciate it.

Thanks to Patricia, Arno, Robert, Botho, Gregor and Sebastian

for making the time in this group the best time of my physics studies.

Thanks to Florian

for reading this mess and throwing in those funny comments. Rambo strikes back.

And, above all, special thanks to Kika

for your never ending patience. Sorry for my temporary inability to enjoy anything

– you really earned yourself a cookie and some quality time.

A Programm code 35

A Programm code

main.cc

1 #include ”rambo . h”

#include <iostream>

#include ”TLorentzVector . h”

#include ”TFile . h”

#include ”TH1F. h”

6 #include ”TH2F. h”

#include ”TPad . h”

#include ”TVector3 . h”

#include ”TRandom2 . h”

#include ”TMath . h”

11 #include <vector>

#include <valarray>

#include <c s t d l i b >

using namespace std ;

16

int main ()

{
TLorentzVector parentMomenta (0 , 0 , 0 , 105) ;

int n daughter = 3 ;

21 rambo RAMBOgeneral (n daughter , parentMomenta) ;

cout << ” gene ra t ing . . . ” << endl ;

RAMBOgeneral . generate () ;

cout << ”drawing . . . ” << endl ;

RAMBOgeneral . draw () ;

26 }

.

rambo.h

#ifndef rambo h

#define rambo h

4 /∗ Random Momenta B e a u t i f u l l y Organised (RAMBO) i s a Democratic Phase

Space genera tor

∗/

#include <iostream>

#include ”TLorentzVector . h”

9

#include ”TFile . h”

#include ”TH1F. h”

#include ”TH2F. h”

#include ”TPad . h”

14 #include ”TVector3 . h”

#include ”TRandom2 . h”

#include ”TMath . h”

36 A Programm code

#include <vector>

#include <valarray>

19

class rambo

{
public :

rambo (int , TLorentzVector) ;

24 ˜rambo () ;

void generate () ;

void draw () ;

protected :

29 int num daughter ;

TLorentzVector m parentMomenta ;

std : : vector<double> m daughterMassContainer ;

s td : : va larray<TLorentzVector> m daughterMomenta random ;

34 std : : vector<TLorentzVector> m daughterMomenta massless ;

s td : : vector<TLorentzVector> m daughterMomenta massive ;

std : : vector<std : : vector<TLorentzVector> >

m daughterMomentaInAllEvents ;

s td : : vector<TLorentzVector> m daughterMomentaContainer ;

39

void GenerateQ () ;

void GenerateP () ;

void Calcu lateWeightsMass les s () ;

void CalculateWeightsMass ive () ;

44 int f ak n (int num

) ;

double m weightMassless ;

s td : : vector<double> m weightsInAl lEvents ;

49

std : : vector<TLorentzVector> GenerateMass () ;

} ;

54 #endif

.

rambo.cxx

1 #include ”rambo . h”

#include ”TMath . h”

#include <iostream>

using namespace std ;

6

rambo : : rambo (int n , TLorentzVector parent)

{

A Programm code 37

num daughter = n ;

m parentMomenta = parent ;

11 m daughterMassContainer . c l e a r () ;

for (int i = 0 ; i < num daughter ; ++i)

{
m daughterMassContainer . push back (0 . 5 11) ;

}
16 m daughterMomentaInAllEvents . c l e a r () ;

}

rambo : : ˜ rambo ()

{}
21

// genera te

void rambo : : generate ()

{
26 int n events = 100000;

m daughterMomentaInAllEvents . c l e a r () ;

for (int i = 0 ; i < n events ; i++)

{
31 this−>GenerateQ () ;

this−>GenerateP () ;

this−>m daughterMomenta massive = GenerateMass () ;

this−>Calcu lateWeightsMass les s () ;

this−>CalculateWeightsMass ive () ;

36

m daughterMomentaInAllEvents . push back (m daughterMomenta massive) ;

}

}
41

//GenerateQ

void rambo : : GenerateQ ()

{
46 TRandom2 rand (0) ;

m daughterMomenta random . r e s i z e (num daughter) ;

for (int i =0; i < num daughter ; i++)

{
51 double rho1 = rand . Uniform (0 , 1) ;

double rho2 = rand . Uniform (0 , 1) ;

double rho3 = rand . Uniform (0 , 1) ;

double rho4 = rand . Uniform (0 , 1) ;

double c i = 2∗ rho1 − 1 ;

56 double ph i i = 2∗TMath : : Pi () ∗ rho2 ;

double q0 = −TMath : : Log (rho3∗ rho4) ;

38 A Programm code

double qx = q0 ∗ std : : s q r t (1 − c i ∗ c i) ∗ TMath : : Cos (

p h i i) ;

double qy = q0 ∗ std : : s q r t (1 − c i ∗ c i) ∗ TMath : : Sin (

p h i i) ;

61 double qz = q0 ∗ c i ;

TLorentzVector Qi ;

Qi . SetPxPyPzE(qx , qy , qz , q0) ;

m daughterMomenta random [i] = Qi ;

66 }
}

//GenerateP

71 void rambo : : GenerateP ()

{
TLorentzVector Q mu = m daughterMomenta random . sum() ;

double M = std : : s q r t (Q mu.Mag2 ()) ;

TVector3 b = −Q mu. Vect () ∗(1/M) ;

76 double gamma = Q mu.E() /M;

double a = 1/(1 + gamma) ;

double x = std : : s q r t (m parentMomenta .Mag2 ()) /M;

m daughterMomenta massless . c l e a r () ;

81 for (int i = 0 ; i < num daughter ; i++)

{
double qiE = m daughterMomenta random [i] . E() ;

TVector3 qi 3Vec = m daughterMomenta random [i] . Vect () ;

double b dot q = b . Dot (qi 3Vec) ;

86 double p0 = x∗(gamma∗qiE + b dot q) ;

TVector3 pi 3Vec = x∗(q i 3Vec + b∗qiE + a ∗(b . Dot (qi 3Vec)) ∗b) ;

TLorentzVector aMomenta(pi 3Vec , p0) ;

m daughterMomenta massless . push back (aMomenta) ;

}
91

cout << ”m daughterMomenta massless s i z e : ” <<

m daughterMomenta massless . s i z e () << endl ;

}

//GenerateMass

96

std : : vector<TLorentzVector> rambo : : GenerateMass ()

{
cout << ” generate mass” << endl ;

s td : : vector<TLorentzVector> MassiVeDaughterVector ;

101

i f (m daughterMomenta massless . s i z e () == m daughterMassContainer . s i z e

())

{
const int ContSize = m daughterMassContainer . s i z e () ;

MassiVeDaughterVector . r e s i z e (ContSize) ;

A Programm code 39

106 const int iterMax = 1000 ;

const double Accuracy = 1e−5;

std : : va larray<double> E(ContSize) ;

s td : : vector<double> XM2(ContSize) ;

111 std : : va larray<double> P2(ContSize) ;

for (int i =0; i < ContSize ; i++)

{
XM2[i] = m daughterMassContainer [i] ∗

m daughterMassContainer [i] ;

116 P2 [i] = m daughterMomenta massless [i] . E() ∗
m daughterMomenta massless [i] . E() ;

}

double XMT =0;

double ET = std : : s q r t (m parentMomenta .Mag2 ()) ; //Rest mass

energy o f parent

121

for (int i =0; i< ContSize ; i++)

{
XMT = XMT + m daughterMassContainer [i] ;

}
126

double XMAX = std : : s q r t (1 − (XMT/ET) ∗(XMT/ET)) ;

double X = XMAX;

int n i t e r = 0 ;

131 while (n i t e r < iterMax)

{
double F0 = −ET;

double G0 = 0 ;

double X2 = X∗X;

136

for (int i =0; i < ContSize ; i++)

{
E[i] = std : : s q r t (XM2[i] + X2∗P2 [i]) ;

G0 = G0 + P2 [i] /E[i] ;

141 }

F0 = F0 + E. sum() ;

i f (f abs (F0) <= Accuracy)

146 {
for (int i = 0 ; i < ContSize ; i++)

{
TLorentzVector massive (

m daughterMomenta massless [i] . Vect () , E [i

]) ;

MassiVeDaughterVector [i] = massive

151 }

40 A Programm code

break ;

}
else

{
156 n i t e r++;

X = X − F0/(X∗G0) ;

std : : cout<< ” I t e r a t i o n s : ”<<n i t e r <<endl ;

}

161 i f (n i t e r == iterMax)

{
std : : cout<< ” I t e r a t i o n s : ”<<n i t e r <<endl ;

s td : : cout<<”RAMBO DID not CONVERGE”<<std : : endl ;

}
166 std : : cout <<” check 1” <<std : : endl ;

}
std : : cout <<” check 2” <<std : : endl ;

}
std : : cout <<” check 3” <<std : : endl ;

171 return MassiVeDaughterVector ;

s td : : cout <<” check 4” <<std : : endl ;

}

int rambo : : f ak n (int num)

176 {
i f (num > 1)

{
return f ak n (num − 1) ∗num;

}
181 return 1 ;

}

void rambo : : Ca lcu lateWeightsMass le ss ()

{
186 double w = m parentMomenta .E() ;

double pi = 3 . 1415 ;

double prod1 = pow((p i /2) , num daughter − 1) ;

double prod2 = pow(w,2∗ num daughter − 4) ;

191

double W 0 = (prod1∗prod2) / ((this−>f ak n (num daughter − 1)) ∗(this−>
f ak n (num daughter − 2))) ;

m weightMassless= W 0;

196 }

// Ca l cu l a t i n g the massive we i gh t s

201 void rambo : : CalculateWeightsMass ive ()

A Programm code 41

{
double w = m parentMomenta .E() ;

double sum1 = 0 ;

206 double sum1a = 0 ;

double sum1b = 0 ;

double sum2 = 0 ;

double sum2a = 0 ;

double prod1 = 1 ;

211

for (int i =0; i < num daughter ; i++)

216 {
// f i r s t sum

double k mag = m daughterMomenta massive [i] . Vect () .Mag() ;

sum1a = sum1a + k mag ;

221

//Second sum

double k mag2 = m daughterMomenta massive [i] . Vect () .Mag2 () ;

double k i 0 = m daughterMomenta massive [i] . E() ;

226 double k r a t i o 2 = k mag2/ k i 0 ;

sum2a = sum2a + k r a t i o 2 ;

// f i r s t product

231

double k r a t i o = k mag/ k i 0 ;

prod1 = prod1 ∗ k r a t i o ;

}

236 // c a l c u l a t i o n o f the f i r s t sum

sum1b = (1/w) ∗sum1a ;

sum1 = pow(sum1b ,2∗ num daughter − 3) ;

// c a l c u l a t i o n o f the second sum

241 sum2 = pow(sum2a ,−1) ;

double Wm = sum1∗sum2∗prod1 ;

cout <<”Sum 1 : ”<<sum1 <<endl ;

cout <<”Sum 2 : ” << sum2 <<endl ;

246 cout <<”prod1 : ” << prod1 <<endl ;

s td : : cout <<”Massive Weights : ” << Wm <<std : : endl ;

m weightsInAl lEvents . push back (Wm) ;

251 }

42 A Programm code

//Draw−f unc t i on f o r Da l i t z P lo t f o r massive v e c t o r s (K)

256 void rambo : : draw ()

{

cout << ” i n i t h istograms ” << endl ;

261 //Histograms o f the daugher momenta

TH1F∗ h1 = new TH1F(”daughter1 ” , ”Daughter 1 Pt ; MeV” , 100 ,−10 ,110) ;

TH1F∗ h2 = new TH1F(”daughter2 ” , ”Daughter 2 Pt ; MeV” , 100 ,−10 ,110) ;

TH1F∗ h3 = new TH1F(”daughter3 ” , ”Daughter 3 Pt ; MeV” , 100 ,−10 ,110) ;

266 TH1F∗ sumMomenta = new TH1F(”SumMomenta” , ”Magnitude o f Sum of momenta

” ,100 ,−10 ,10) ;

TH1F∗ momentaD1 = new TH1F(”momentumDaugther1” , ”Daughter 1

Momentum” ,100 ,−10 ,110) ;

TH1F∗ momentaD2 = new TH1F(”momentumDaugther2” , ”Daughter 2

Momentum” ,100 ,−10 ,110) ;

TH1F∗ momentaD3 = new TH1F(”momentumDaugther3” , ”Daughter 3

Momentum” ,100 ,−10 ,110) ;

271

// Da l i t z P lo t

TH2F∗ Dal i t z = new TH2F(” Da l i t z ” , ” Da l i t z p l o t (mu−>eee) ”

,500 ,−1 ,15 ,500 ,−1 ,15) ;

Dal i tz−>GetXaxis ()−>Se tT i t l e (”m12∗m12”) ;

Dal i tz−>GetYaxis ()−>Se tT i t l e (”m23∗m23”) ;

276

//Open a ROOT f i l e

TFile ∗ outF i l e = new TFile (” output . root ” , ”RECREATE”) ;

//Histogram of the we igh t

281 TH1D ∗weights = new TH1D(”weights ” , ”Rambo weights ” , 100000 , 0 ,

1) ;

//not done ye t

cout << ” f i l l i n g histograms ” << endl ;

for (int i = 0 ; i < m daughterMomentaInAllEvents . s i z e () ; i++)

286 {
TLorentzVector f i r s tDaught e r = m daughterMomentaInAllEvents [i] [0] ;

TLorentzVector secondDaughter= m daughterMomentaInAllEvents [i] [1] ;

TLorentzVector thirdDaughter = m daughterMomentaInAllEvents [i] [2] ;

291 double f i r s tDaughte rPt = f i r s tDaught e r . Pt () ;

double secondDaughterPt = secondDaughter . Pt () ;

double thirdDaughterPt = thirdDaughter . Pt () ;

h1−>F i l l (f i r s tDaughte rPt) ;

296 h2−>F i l l (secondDaughterPt) ;

h3−>F i l l (thirdDaughterPt) ;

A Programm code 43

momentaD1−>F i l l (f i r s tDaught e r .P()) ;

momentaD2−>F i l l (secondDaughter .P()) ;

301 momentaD3−>F i l l (thirdDaughter .P()) ;

// Ca l cu l a t e Da t l i z Var iab l e s

double m12 sqr = (f i r s tDaught e r + secondDaughter) ∗(
f i r s tDaught e r + secondDaughter) ;

double m23 sqr = (secondDaughter + thirdDaughter) ∗(
secondDaughter+ thirdDaughter) ;

306

m12 sqr = m12 sqr /1000000; //GeVˆ2

m23 sqr = m23 sqr /1000000;

//Sum Momena

311 TVector3 Momentum 1 = f i r s tDaught e r . Vect () ;

TVector3 Momentum 2 = secondDaughter . Vect () ;

TVector3 Momentum 3 = thirdDaughter . Vect () ;

double sumVec = (Momentum 1 + Momentum 2 + Momentum 3) .Mag()

;

316 sumMomenta−>F i l l (sumVec) ;

Dal i tz−>F i l l (m12 sqr , m23 sqr) ;

// F i l l we i gh t s histogramm

321 weights−>F i l l (m weightsInAl lEvents [i]) ;

}
cout << ”Massive weights s i z e : ”<<m weightsInAl lEvents . s i z e ()<<

endl ;

cout << ” s t o r i n g histograms on d i sk ” << endl ;

326

h1−>Write () ;

h2−>Write () ;

h3−>Write () ;

Dal i tz−>Write () ;

331

momentaD1−>Write () ;

momentaD2−>Write () ;

momentaD3−>Write () ;

336 sumMomenta−>Write () ;

weights−>Write () ;

outFi l e−>Close () ;

}

44 A Programm code

xsifinder.cxx

#include ” x s i f i n d e r . h”

#include ”TF1 . h”

#include ”TLorentzVector . h”

#include ”TVector3 . h”

5 #include ”TMath . h”

//works on ly f o r 3 p a r t i c l e s

double Rootfunctor (double ∗x , double ∗param)

{
10 int n par =3∗2;

double parentMass = param [0] ;

// loop v a r i a b l e s

unsigned int l c = 0 ;

15 unsigned int parIndex1 = 1 ;

unsigned int parIndex2 = 2 ;

unsigned int xindex =0;

double sum sqrt =0;

20 while (l c <=n par)

{
sum sqrt += TMath : : Sqrt (param [parIndex1]∗ param [parIndex1] +

param [parIndex2]∗ param [parIndex2]∗ x [xindex]∗ x [xindex]) ;

parIndex1++; parIndex2++; xindex++; l c++;

}
25 double funcVal= parentMass − sum sqrt ;

return funcVal ;

}

30 x s i f i n d e r : : x s i f i n d e r (double parentMass , std : : vector<TLorentzVector>

Daugther4Vector) :

m f1 (0) ,

m parentMass (parentMass) ,

m daugtherFourVectorCol lect ion (Daugther4Vector) ,

m rootParamVector (0)

35 {
unsigned int n daughter = Daugther4Vector . s i z e () ;

unsigned int nParam = n daughter ∗2 ;

m f1 = new TF1(” f3 ” , Rootfunctor ,−100 ,100 ,nParam) ;

}
40

x s i f i n d e r : : ˜ x s i f i n d e r ()

{}

void x s i f i n d e r : : SetTF1Parameters ()

45 {
m rootParamVector . push back (m parentMass) ;

s td : : vector<TLorentzVector > : : i t e r a t o r v e c I t e r ;

A Programm code 45

for (v e c I t e r = m daugtherFourVectorCol lect ion . begin () ; v e c I t e r !=

m daugtherFourVectorCol lect ion . end () ; ++ve c I t e r)

50 {
TVector3 p = vec I t e r−>Vect () ;

double E = vec I t e r−>E() ;

double mass = E∗E − p . Dot (p) ;

m rootParamVector . push back (mass) ;

55 m rootParamVector . push back (E) ;

}

for (unsigned int i =0; i < m rootParamVector . s i z e () ; ++i)

{
60 m f1−>SetParameter (i , m rootParamVector [i]) ;

}
}
double x s i f i n d e r : : g e tSo lu t i on ()

{
65 this−>SetTF1Parameters () ;

// re turn m f1−>GetX(0. , −100. ,100. ,1 e−10 ,1000.) ; That ’ s too many

v a r i a b l e s f o r my root ve r s i on : (

return m f1−>GetX(0 . , −100 . ,100) ;

}

	Particle Physics
	The Standard Model
	Beyond the Standard Model
	Particle Interactions

	Muon decay experiments
	The SINDRUM experiment
	Proposed experiment

	Introduction to Monte Carlo methods
	Classical numerical integration
	Monte Carlo techniques
	Random numbers

	The RAMBO phase space generator
	Overview
	The Algorithm

	Results
	Simulation

	Summary and Outlook
	Programm code

