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Abstract

This thesis presents an improved neural-network-based Track-Matching algorithm to re-
cover and reconstruct electron tracks more efficiently in LHCb’s real-time analysis trigger.
Electrons emit bremsstrahlung, which complicates their track reconstruction. Currently,
the track-reconstruction tuning explicitly excludes electrons, since including them signi-
ficantly lowers the reconstruction efficiency of other particles.

The presented algorithm is intended to be run in a dedicated electron reconstruction
in HLT2, thereby circumventing such issues entirely, while allowing all aspects of the al-
gorithm to be optimised to electrons. It is demonstrated that the improved electronMatch-
ing algorithm allows for electron tracking efficiencies of above 90%, while simultaneously
reducing the fake track fraction to below 15%.

Kurzfassung

DieseArbeit präsentiert einen verbessertenTrack-MatchingAlgorithmus, unterVerwendung
eines neuronalen Netzes, zur effizienteren Rekonstruktion von Elektronen Spuren in dem
Echtzeit-Analyse Trigger des LHCb. Elektronen emittierenBremsstrahlung,was ihre Spur-
rekonstruktion erschwert. Derzeit werden Elektronen aus dem Tuning der Spurrekon-
struktion explizit ausgeschlossen, da deren Einbeziehung die Rekonstruktionseffizienz
der anderen Teilchen deutlich verringert.

Der präsentierte Algorithmus soll in einer dedizierten Elektronen-Rekonstruktion im
HLT2 ausgeführt werden, um solche Probleme vermeiden und gleichzeitig den Algorith-
mus vollständig für Elektronen zu optimieren. Es wird gezeigt, dass der verbesserte
ElektronenMatchingAlgorithmus Elektronen Spureffizienzen von über 90% ermöglichen
würde, während zeitgleich der Anteil der falschen Spuren auf unter 15% gesenkt wird.
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1 INTRODUCTION

1 Introduction

The field of particle physics deals with the fundamental constituents of matter on the
smallest scales. Since the discovery of the electron in 1897 [1], the ability to visualise the
trajectories of charged particles traversing some experimental set-up has been indispens-
able fromhigh-energy physics. To reconstruct a charged particle’s trajectory, its position is
measured several times along its path, after which the space point measurements are ana-
lysed and can then be used to fit a track. Physicists continuously work on new and better
ways to measure and reconstruct paths of charged particles. Advancements often affect
the underlying computing architecture upon which they are implemented, thus allowing
for more efficient and faster data processing.

The Large Hadron Collider at CERN is at today’s forefront of experimental particle
physics and hosts many high-energy physics experiments, all of which share the need to
measure and visualise particles’ trajectories. The major experiments are already able to
reconstruct tracks of the charged particles that are of interest to the respective physics
programmes with efficiencies well above 95%.

In this thesis, the track-finding efficiency of electrons1 at the LHCb experiment is stud-
ied in order to improve their reconstruction, since they underperform significantly com-
pared to other charged particles. Electrons are the lightest stable charged particles. They
typically have a lowermomentum spectrum because of photon emissions through brems-
strahlung. This leads to more scattering while traversing the LHCb detector, which is es-
pecially problematic since large portions of the detector are not instrumented with track-
ing sub-detectors. Therefore, following electrons’ trajectories, e.g. through the magnet, is
more difficult, and their reconstruction more challenging.

However, considering electrons are relevant for many key measurements, e.g. flavour-
changing neutral currents [2] or lepton flavour universality [3, 4] in decays such asB0 →
K∗l+l−, improving their track-finding efficiency is of great interest to the LHCb collabor-
ation.

This thesis presents a neural-network-based approach to recover and reconstruct elec-
tron tracks in the real-time analysis trigger at LHCb. Therefore, the reconstruction se-
quence must be computationally cheap enough to be run in the trigger, while providing
offline-quality track reconstruction.

First, the LHCb experiment and the machine-learning methods used in this thesis are
described in Section 2. Afterwards, LHCb’s real-time analysis trigger is presented in Sec-
tion 3, followed by a definition of the performance metrics and a first look at current
reconstruction efficiencies in Section 4. The physical phenomena needed for the track
reconstruction are briefly outlined in Section 5. Then, the differences between properly
reconstructed and lost electron tracks are presented in Section 6. In Section 7, a currently

1Charge conjugation is implied throughout this thesis.
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1 INTRODUCTION

used baseline reconstruction algorithm is described, followed by the author’s main work:
an improved electron reconstruction. Lastly, the performance of both track-reconstruction
sequences is presented and compared.
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2 THE LHCB EXPERIMENT

2 The LHCb Experiment

The LHCb experiment is one of the four large particle physics experiments at the Large
Hadron Collider (LHC), located at CERN near Geneva, Switzerland. The LHC is a pro-
ton-proton (pp) collider. During Run 3 of the LHC, protons with a centre-of-mass energy
of √s = 13.6TeV are collided. The Large Hadron Collider beauty (LHCb) experiment
operates at an instantaneous luminosity of L = 2 × 1033 cm−2s−1 [5]. In this section, a
brief overview of the LHCb detector is given.

2.1 Overview

The LHCb detector (Figure 2.1) is a single-arm forward spectrometer, with an angular
acceptance of 10 to 300 (250)mrad relative to the beamline in the bending x-z (non-bend-
ing y-z) plane, corresponding to a pseudorapidity2 range of 2 < η < 5. Bending refers to
the effects of the Lorentz force that charged particles encounter in a magnetic field. The
entire detector stretches over a length of approximately 20m. A right-handed coordinate
system is used, with its origin in the centre of the Vertex Locator (VELO), a z-axis direc-
tion along the beamline pointing downstream of the magnet, x pointing to the centre of
the LHC ring, and y pointing up in the vertical direction.

Figure 2.1: Side view of the LHCb detector in the non-bending y-z-plane [6].

2Pseudorapidity is defined as η = − ln(tan(θ/2)) where θ is the opening angle between a particle’s mo-
mentum vector and the beam pipe axis.
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2 THE LHCB EXPERIMENT

The interaction point is located in the centre of the VELO, making it the first sub-de-
tector particles encounter. Depending on the lifetime and type of particles, they then travel
through the first Ring-Imaging Cherenkov detector (RICH1), theUpstreamTracker (UT),
the magnet, the Scintillating Fibre (SciFi) Tracker, the second Ring-Imaging Cherenkov
detector (RICH2), the electromagnetic calorimeter (ECAL), and the hadronic calorimeter
(HCAL).

Electrons donot typically reach theHCAL, since they get absorbed by the ECAL. Muons
also encounter themuon stations (M2-M5) at the end of the detector. Of these sub-detect-
ors, the VELO, UT, and SciFi tracker together with the magnet make up LHCb’s tracking
system and are described in more detail in the following sections. The RICH detectors,
the HCAL, and the muon stations are all part of the particle identification (PID) system,
which is only marginally relevant to the work presented in this thesis. While the ECAL is
also part of the PID system, its use to identify electrons and photons is explored further
in the following sections.

2.2 Magnet

The magnet generates a field that bends charged particles’ trajectories, which in turn
makes momentum estimates possible. It is located around z = 5000mm, with fringe
fields extending further into sub-detectors up- and downstream, as shown in Figure 2.2
[8]. A warm dipole magnet with saddle-shaped coils in a window-frame yoke is used.
The integrated magnetic field of 4Tm for 10m tracks in z direction significantly reaches

Figure 2.2: Magnetic field strength components as functions of z. The components off-
axis are shown for a particle with positive x and y slopes. T1, T2, and T3 illustrate the
three stations of the SciFi tracker [7].
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2 THE LHCB EXPERIMENT

into the UT and SciFi tracker, while the field in the VELO is negligible. The magnet po-
larity (MagUp and MagDown) is reversed regularly during data taking to minimise effects
stemming from detector asymmetries [6].

2.3 Tracking Detectors

The tracking system of VELO, UT, SciFi tracker, and magnet is used to find and describe
trajectories of charged particles through track state vectors, defined as

s = (x y tx ty q/p)⊤zref (2.1)

where x and y are the position coordinates, tx ≡ dx/dz and ty ≡ dy/dz are the slopes
of x and y with regard to z, respectively, and q/p is the signed charge over the particle’s
momentum. Thefive track parameters are given at some reference plane zref, e.g. a detector
layer.

2.3.1 Vertex Locator

The Vertex Locator (VELO) detects particles coming from the beam collision region. All
tracks are first reconstructed as straight lines. Then the location of primary interaction
vertices, displaced decay vertices, and the distances between them can be determined [6].
The VELOmodules are located 5.1mm from the beam to provide a high vertex resolution.
The two movable halves consist of 26 L-shaped modules each.

The VELO is a silicon pixel detector reaching a hit resolution of 12.5µm in the x and
y coordinate [9] while adding heavily onto the material budget with a radiation length
fraction of x/X0 ≃ 21.3%, averaged over the nominal pseudorapidity range [10]. The
material budget of onemodule is around x/X0 ≃ 0.94% for perpendicular incident tracks.

Figure 2.3: Left image: schematic top view of the x-z plane with an illustration of the
z extent of the luminous region and the nominal LHCb pseudorapidity acceptance.
Right image: nominal layout of the closed VELO configuration [6].
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2 THE LHCB EXPERIMENT

2.3.2 Upstream Tracker

The Upstream Tracker (UT) is the second tracking detector, located around z = 2485mm

upstream of the magnet. The location of the UT puts the sub-detector in a substantial
magnetic field, see Figure 2.2. The UT consists of four layers of silicon micro-strip sensors
that vary in length and pitch according to the decrease of the particle flux away from the
beam pipe. Thus the highest hit resolution is reached by the sensors in the centre around
the beam pipe hole with 27µm. The hit resolution of the outer sensors, coloured in green
in Figure 2.4, is 55µm. Furthermore, the layers are in an x-u-v-x layout, hence measuring
only the x coordinate in the first and last layer, and an x and y coordinate with both inner
layers using their stereo angle of ±5◦.

Because of the UT’s position between the VELO and the SciFi tracker, a low material
budget is especially paramount to not hinder the reconstruction of particles. The average
radiation length fraction is relatively small with x/X0 ≃ 7% [6].

Figure 2.4: UT geometry overview, looking downstream [11]. The pink sensors have a
pitch of 93.5µm and a length of around 5 cm, the yellow sensors have the same pitch,
but double the length, and the green sensors have a pitch of 187.5µm at 10 cm of length.
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2 THE LHCB EXPERIMENT

Figure 2.5: Front and side view schematic of the SciFi tracker [6].

2.3.3 Scintillating Fibre Tracker

The Scintillating Fibre (SciFi) Tracker is located around z = 8520mm downstream of the
magnet. Measurements from the SciFi tracker combined with hits from the VELOmake it
possible to reconstruct tracks with the best momentum resolution in LHCb, by exploiting
the long lever arm made up of VELO and SciFi tracker, and utilising the bending of the
trajectory in the magnetic field. The SciFi tracker’s acceptance covers a range of up to
±3186(2425)mmhorizontally (vertically). Each of the three stations (T1, T2, T3), depicted
in Figure 2.5, is composed of four layers that follow the x-u-v-x layout like the UT, with the
first and last layer solely used to measure the x coordinate, and the stereo angle of ±5◦ of
the inner two layers to also measure a y coordinate. The single hit position resolution, as
estimated during a test beam campaign, is about (64±16)µm for perpendicular tracks [6].
The SciFi tracker adds to the material budget with a radiation length fraction of x/X0 ≃
12.4%.

2.4 Particle Identification

The particle identification (PID) system consists of the Ring-Imaging Cherenkov detect-
ors (RICH1, RICH2), calorimeters (ECAL, HCAL), and the muon stations (M2-M5) [12].
Since only the RICH1 is located upstream of the SciFi tracker, it is the only PID sub-de-
tector that affects the particle trajectories in amanner that could obstruct track reconstruc-
tion. The RICH1 is located between the VELO and the UT, so a low material budget is of

7



2 THE LHCB EXPERIMENT

Figure 2.6: Schematic view of different particle signatures in the LHCbdetector, including
showers in the calorimeters [15]. The ECAL is depicted in yellow. Photons’ tracks
are gray, and electrons’ tracks are coloured blue. The detector layout depicted is not
current.

great importance. The total radiation length fraction is x/X0 ≃ 4.8%, which is not signi-
ficant for track reconstruction [7].

The ECAL is located behind the SciFi tracker and RICH2 at around z = 12.5m and is
part of the calorimeter system [13]. Before particles reach the ECAL (or HCAL), they
must traverse through two pre-detectors. The Scintillating Pad Detector indicates the
presence of a charged particle, which makes it possible to separate electrons and photons.
The PreShower detector marks the start of an electromagnetic (EM) shower, thus mak-
ing it possible to differentiate between charged hadrons and electrons or photons. The
ECAL measures an EM-shower’s energy and position and is used to identify electrons
and photons. Electrons are distinguished from photons by their shower shape and the
fact that their ECAL clusters can be matched to reconstructed tracks, see Figure 2.6. More
information on the ECAL can be found in Ref. [14].
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2 THE LHCB EXPERIMENT

2.5 Machine Learning Methods

Machine learning is a subset of artificial intelligence involving algorithms that enable com-
puters to learn fromdata and perform taskswithout explicit programming. The literature
separates between supervised, unsupervised, and semi-supervised learning. Unsuper-
vised learning is used to reveal intrinsic structures in the data, i.e. the computer is not
supplied with any outside information. On the other hand, in supervised learning the
computer is provided with labelled data in the form of a training set. The aim is to ex-
plore external information that is available during training but is otherwise unknown.
For discrete labels, the problem is called classification, for continuous values regression.
The last type of learning is semi-supervised learning, where most data are unlabelled and
only few are labelled. More information on machine learning can be found in Refs. [17,
16]. This section briefly recapitulates the supervised machine-learning methods used in
this thesis.

The Matching algorithm, described in Section 7, uses a machine learning classifier in
the form of a neural network. An artificial neural network is a non-linear statistical data-
modelling or decision-making tool, comprised of data processing nodes, referred to as
artificial neurons. Multi-layer perceptrons (MLP) form the basis for all neural networks.
They consist of neuronswhich are organised into interconnected layers. MLPs contain one
or more hidden layers with regard to the input and output nodes. These hidden neurons
act as feature detectors. The basic architecture of an MLP with one output variable is
shown in Figure 2.7. Each node processes information by performing a computation on
the input signal using an activation function and produces an output that influences other
neurons in the network. The activation functions allow for non-linearity, making it pos-
sible for the network to learn complex patterns in data. The level of influence of a neuron

Figure 2.7: Graph of an MLP with two
hidden layers and one output neuron
[16].

Figure 2.8: Illustration of the directions
of signal flows in an MLP [16].
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2 THE LHCB EXPERIMENT

over another is described by synaptic weights. The weights are adjusted to minimise the
loss function, which is used to quantify the level of agreement between the predicted and
actual target values.

AllMLPs used in this thesis are trained using back-propagation, whichmeans the train-
ing stage is split into a forward and a backward phase. First, the input signal is propagated
through the network, layer by layer, with fixed synaptic weights until it reaches the out-
put. Subsequently, the loss function’s error signal is propagated through the network in
the backward direction, while successive changes to the synaptic weights of the network
are made. The forward propagation of function signals and the back propagation of error
signals are illustrated in Figure 2.8.

To adequately train the network, a sufficient number of training events is required. The
complexity of the data, i.e. the number of features and dimensions dictates the volume
of the required data to adequately represent the entire phase space. The curse of dimen-
sionality refers to the problem that the complexity of the network increases exponentially
with the increasing complexity (dimensionality) of the data [18]. However, it is also pos-
sible for a network to have too many neurons or training epochs, so that it becomes too
complex to model a particular problem. As a result, it learns statistical fluctuations in the
training data, s.t. it is unable to adapt to and generalise between new events. This is called
overtraining or overfitting [16].

10



3 REAL-TIME ANALYSIS IN THE TRIGGER

3 Real-Time Analysis in the Trigger

All particle detectors use trigger systems. Triggers use criteria to determine which events
are of interest and should be recorded for later analysis, thus reducing the amount of data
that has to be stored and processed further. In this section, an overview of LHCb’s two-
stage software trigger is given. The section follows the structure of the description found
in Ref. [7].

3.1 Real-Time Analysis at LHCb

LHCb’s trigger for Run 3 is entirely software-based to more efficiently deal with the vast
amounts of data recorded by the detector. In the context of LHCb, real-time refers to the
time span from a particle-bunch crossing towriting the detector data into permanent stor-
age. For Run 3, LHCb employs a full, real-time aligned and calibrated, software trigger
that carries out offline-quality event reconstruction on the incoming data at bunch-cross-
ing frequency (30MHz). It selects and stores only the reconstructed decay trees that are of
interest for further analysis. Event reconstruction is inextricably dependent upon track re-
construction, s.t. virtually all variables used in the selection of charged final state particles
are derived from the reconstructed tracks.

The high-level trigger (HLT) is split into two parts separated by a storage buffer, as
illustrated in Figure 3.1. Both trigger stages perform selections. The High-level Trigger
One (HLT1) runs a partial event reconstruction using GPUs while processing events at
a rate of about 30MHz. At this stage, events are mainly selected using one- and two-
track-based algorithms. More information on the first level trigger of the LHCb detector
can be found in Refs. [20, 21]. Events selected by HLT1 are written to the buffer storage
network, where they are accessed by the High-level Trigger Two (HLT2) which performs
a full event reconstruction at a rate of around 1MHz using CPUs [7]. HLT2 is able to select

Figure 3.1: LHCb software-trigger dataflow [19]. The bandwidths and percentages on
the right-hand side are examples.
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3 REAL-TIME ANALYSIS IN THE TRIGGER

specific decay trees that are of interest, rather than entire events. At this point, the data
rate is reduced to around 100 kHz corresponding to 10GB/s, which can then be stored in
permanent storage systems.

3.2 Track Types at LHCb

A track’s specific type is determined by what tracking detectors are used to reconstruct a
particle’s trajectory. The track types relevant to this thesis are:

VELO tracks, reconstructed from hits in the VELO detector only. VELO tracks are
straight (linear). They are used for primary vertex reconstruction and seed other re-
construction algorithms. However, they offer no information on the momentum.
T tracks, also called SciFi tracks, reconstructed from hits in the SciFi detector only. Sim-
ilar to VELO tracks, they seed other track types, but also offer a rough momentum
estimate, with a resolution of 25%-35% [23].
Long tracks, with hits in the VELO and SciFi detector, and optionally also in the UT
stations. These tracks are of most interest because they offer the highest momentum
resolution with 0.5%, and are the standard type used in physics analyses [7].

The different track types are visualised in Figure 3.2. Downstream tracks consist of hits
in the UT stations and the SciFi tracker, while Upstream tracks are VELO tracks with hits
in the UT detector. They are not central to this thesis. Furthermore, there are:

Fake tracks, or ghost tracks, consist of hits of more than one particle or none. They are
only known in simulation where the hits’ origin is known.
Clone tracks are tracks that share a significant amount of hits with other tracks. They
are associated to a single particle in simulation, and cannot be ghost tracks.

These track-like objects are defects of the pattern recognition and can have any track type.

Figure 3.2: Sketch of LHCb track types in the x-z plane [22].
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3 REAL-TIME ANALYSIS IN THE TRIGGER

3.3 Full Reconstruction Sequence

HLT2 performs a full event reconstruction, startingwith track reconstruction. Reconstruc-
ted tracks serve as input for both, the PID system and the selections. The following is a
brief overview of how Long tracks are obtained in the baseline track reconstruction se-
quence, which is illustrated in Figure 3.3. Track reconstruction can be divided into a track-
finding and track-fitting stage. In the track-finding stage, the measured hits are combined
to track segments using different pattern-recognition methods. In the track-fitting stage,
estimates for the track parameters are calculated. Furthermore, fake tracks are rejected,
and duplicate tracks removed, s.t. only filtered best tracks remain [24].

The first tracks to be reconstructed are VELO and T tracks. More information on VELO
Tracking can be found in Ref. [25]. T tracks are obtained through the Hybrid Seeding al-
gorithm,which is described in detail in Ref. [26]. Both of these are stand-alone algorithms,
meaning they only depend on measurements in the tracking sub-detectors.

LHCb’s Long tracks are reconstructed using two algorithms, Forward Tracking and
Track Matching. The Forward tracking algorithm uses VELO tracks with the objective of

VELO Tracking Hybrid Seeding

VELO Tracks T Tracks

Forward Tracking Matching

Long Tracks Long Tracks

Kalman Filter + Clone Killing

Best Long Tracks

Pattern Recognition

Track Fit

1

Figure 3.3: Dataflow in the baseline Long-track reconstruction. Algorithms are shown in
rectangles, and track containers in trapeziums. Detector hits are not shown.
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3 REAL-TIME ANALYSIS IN THE TRIGGER

finding forward extensions of them in the SciFi tracker. A description of Forward tracking
in HLT2 as used in Run 3 can be found in Refs. [7, 27]. Track Matching makes use of
already reconstructed track segments as input to create Long tracks by combining VELO
and T tracks. The Matching algorithm is described in Section 7.2, and in Ref. [7].

Both algorithms supply Long tracks, ending the track-finding stage of the reconstruc-
tion. The Long tracks are then fitted using the Kalman filter, and passed through a clone
removal algorithm, to select the best track from those that share many hits, thus creating
Best Long tracks.

14



4 TRACKING

4 Tracking

Track reconstruction refers to a system of coordinated hardware and software for detect-
ing and measuring charged particles’ trajectories, and providing estimates on the mo-
mentum vectors along their path. At LHCb, the tracking sub-detectors consist of multiple
layers that are able to measure the position of a particle when passing through. These sin-
gular position measurements are called hits. The number of hit-measuring layers cannot
be arbitrarily increased for greater precision. More detector material means more inter-
actions between final state particles and the material, which can influence the particles’
trajectories or even stop them outright in hadronic interactions [28].

One crucial material effect, which dominates the momentum resolution, is caused by
multiple elastic Coulomb scattering (multiple scattering). In thin scatterers, this causes
a change in the momentum vector’s direction. The scattering angle θ is proportional to
1/p, where p is the particle’smomentum. However, multiple scattering affects all particles,
and cannot be addressed properlywithin the limited scope of thiswork. More onmultiple
scattering can be found in Ref. [29]. During the track-finding stage of the reconstruction,
special algorithms are used to group amultitude of hits, presumably from one particle, to
form a track, which entails the particle’s trajectory and momentum estimate. This section
gives an overview of the reconstruction performance of electrons and other particles at
LHCb.

4.1 Reconstruction Performance

Prior to describing any reconstruction algorithm, the criteria for evaluating the perform-
ance of the reconstruction have to be defined. A more detailed description can be found
in Ref. [30].

There are two main performance indicators for track reconstruction with pattern re-
cognition: the track finding efficiency and the fake track rate. The track-finding efficiency is
defined as

ε =
Nreconstructible & MC-matched

Nreconstructible
(4.1)

whereN is the number of tracks in the corresponding category. More than 70% of a track’s
hits must originate from the same simulated particle for a track to be classified as MC-
matched, or truth matched. A particle’s reconstructibility depends on the amount of hits it
leaves in the tracking detectors. The requirements differ for all track types. The simulated
particle of a reconstructible Long track must pass through at least three VELO layers,
leaving hits in each, and have a hit in at least one x and one stereo layer in each of the SciFi
stations. The fake track fraction is defined as the ratio of tracks that could not be associated
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with a simulated particle over the total number of tracks outputted by the algorithm:

rfake =
Nfake
Ntotal

(4.2)

4.2 Long-Track Efficiency

The Long-track efficiency does not solely depend on the performance of Forward tracking
or theMatching algorithm. The efficiencies withwhich the VELO and T tracks are created
directly determine the performance ceiling for the algorithms. VELO tracking performs
with the highest efficiency of all track types at LHCb and constitutes the upper boundary
in performance observations for Long tracks. The track-finding efficiencies of VELO and
T tracks can be found in Section A.3.2.

The integratedLong track efficiencies for electrons andnot-electrons are shown inTable 4.1
for several selection categories. The fake track fraction of Long tracks is low at 10%. The
track reconstruction of electrons compared to other particles underperforms significantly,
s.t. a performance discrepancy of around 10% can usually be observed.

The efficiency in dependence on various kinematic variables is plotted in Figure 4.1 for
electrons and other particles. The efficiency drops rapidly at lowmomenta, at least in part
because low-momentum tracks experience more multiple scattering which makes them
harder to reconstruct.

The efficiency as a function of pseudorapidity and azimuthal angle both illustrate that
the respective variable’s distributions are fairly similar. The azimuthal angle shows an
almost constant efficiency gap of around 10%. In the pseudorapidity, the gap is almost
non-existent for small η < 2.5 but widens with increasing η. Tracks with η = 4.3 or
η > 4.5 cross beam-pipe material, thus experiencing more scattering or hadronic inter-
actions [7]. This causes a decrease in the distribution of reconstructible particles at high

Table 4.1: Integrated Best Long efficiency of electrons and other particles obtained from
simulated B0 → K∗(J/ψ → e+e−) events. The efficiencies corresponding to the Long
from B category are plotted in Figure 4.1.

Category e± ε[%] not-e± ε[%]

Long 66.72 88.63

Long from B 82.04 91.08

Long p > 5GeV from B 84.15 94.00

Long p > 3GeV pT > 0.5GeV from B 85.58 94.48

Fake track fraction rfake 10.26%
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Figure 4.1: Track reconstruction efficiency of Best Long tracks for simulated Long tracks
originating from a B meson with regard to various kinematic variables. The variables’
distributions and efficiencies are represented in blue for electrons and in grey or black
for other particles. The distributions represent the true, simulated variable values at
creation. The efficiencies have been obtained using simulated B0 → K∗(J/ψ → e+e−)
events.

pseudorapidity, as well as a rapid drop in efficiency, affecting electrons especially hard.
The efficiency drops to around 78% for other particles, and to below 30% for electrons.
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5 TRACKING DOWN ELECTRONS

5 Tracking Down Electrons

This section deals with the physical phenomena that affect electrons while traversing the
LHCb detector. More comprehensive information on the tracking of charged particles at
LHCb, and in general, can be found in Refs. [7, 31] respectively.

5.1 Material Effects

In order for the tracking detectors to register a hit, the electrons must interact with them
by transferring a small amount of energy to the detector material’s electrons. For low
energies of around 10MeV, ionisation dominates the energy loss of electrons. However,
ionisation loss rates rise logarithmically, while bremsstrahlung losses increase almost lin-
early, thus dominating the energy loss above an energy ofO(10MeV). The average energy
loss can be described by [31]:

⟨E(x)⟩ = E0 exp

(
− x

X0

)
(5.1)

with the electron’s initial energy E0, and the distance travelled in the material in units
of the radiation length x/X0. The radiation length X0 is defined as the average distance
after which a high-energy electron has lost all but 1/e of its energy. This is especially use-
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Figure 5.1: Amount of energy emitted by electrons upstream of the magnet in units of
the initial energy of the particles. The red line denotes the mean, and the blue line the
median energy emission.
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5 TRACKING DOWN ELECTRONS

ful when discussing the material budget of detectors. The sum of the radiation length
fractions of the upstream detectors, provided in Section 2, is x/X0 ≃ 33.1%. Therefore, an
electron3, on average, loses around a third of its initial energy before reaching the mag-
net. The mean upstream energy loss, shown in Figure 5.1, concurs with the theoretical
predictions.

5.2 Magnetic Field

Thedipolemagnet generates a field that results in the bending of the trajectories of charged
particles as described by the Lorentz force. The amount of bending that takes place can
be quantified by the curvature radius

r ∼ |p|
B

(5.2)

where p is the particle’s relativistic momentum and B the magnetic field’s flux density.
The magnetic field, depicted in Figure 2.2, is strongest from in front of the UT to in front
of the SciFi tracker, with fringe fields reaching into the SciFi stations. The equations of
motion show that both magnetic field components By and Bz can alter the y-z trajectory
of a particle. However, noting By > Bz ≫ Bx, the bending is most significant in the x-z
plane.

All charged particles’ trajectories are subject to bending and traverse the same mag-
netic field, i.e. the momentum is what mainly affects the trajectories’ shapes. Electrons are
the only particles whose energy loss is dominated by bremsstrahlung. The emission of a
high-energy photon by an electron traversing the magnetic field with initial momentum
p1 causes a change in momentum p2 < p1. This decrease in momentum also alters the
curvature radius r(p2) < r(p1) for its remaining passage through the field. This stands
in conflict with the parameterisations, defined in Section 7.2, used during reconstruction.
New parameterisations for electrons based on the simplified track model are described in
Section 7.3.1.

5.3 Calorimetry

Electrons interact with the ECAL converting the particle’s energy into a detectable signal
in a destructive process, i.e.until the particle is absorbed, as can be seen in Figure 2.6. Had-
rons shower in the ECAL and HCAL, which means both calorimeters measure a part of
their energy. Showers are firstmatched to reconstructed tracks to dismiss photon showers.
Subsequently, the distribution ofE/p, whereE is the energymeasured by the ECAL, and p
is themomentum estimate provided by the LHCb tracking system, enables a separation of

3Unless specifically stated otherwise, the results presented have been obtained using electrons originating
from a B meson in the B0 → K∗e+e− decay in MC simulated events, with magnet polarity MagDown.
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5 TRACKING DOWN ELECTRONS

a: E/p using Run 1 data. b: DLL using simulated events.

Figure 5.2: Distributions of variables in the ECAL for electrons (blue) and hadrons (red).
Figure (a) adopted from Ref. [13], and (b) from (M. V. Veghel, personal communica-
tion, January 2024).

hadrons and electrons. Electrons are absorbed by the ECAL in contrast to hadrons, which
means the distribution should be centred around E/p ≈ 1 for electrons, and E/p < 1 for
hadrons. This is illustrated in Figure 5.2a.

LHCb’s software framework contains an ECAL filter designed to separate electron and
hadron showers and by extension tracks. The algorithm uses a delta-log likelihood (DLL)
of E/p, depicted in Figure 5.2b, as a quality measure to select T tracks (M. V. Veghel, per-
sonal communication, January 2024). The tracks are extrapolated to the ECAL’s position
to find corresponding EM-showers. Selected T tracks must fulfil DLL(E/p) > −2. There
are currently no publicly available academic works on the functionality or performance
of the ECAL filter.

It is also possible to select VELO tracks using information from the ECAL. Because of
the VELO’s position, however, it is unfeasible to extrapolate VELO tracks to the ECAL
directly. Instead, the VELO tracks are matched to photon-induced EM-showers, as op-
posed to electron-induced EM-showers for T track selection. It is assumed that electrons
emit photons while traversing the VELO, causing EM-showers in the ECAL. While such
an algorithm exists in the LHCb framework, it is not available out-of-the-box and is thus
out-of-scope for this thesis.
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6 Understanding Inefficiencies for Electron Reconstruction

The current track reconstruction algorithms are tuned by explicitly excluding electrons.
Including them would lower the track-finding efficiency for all other particles. This com-
promise, however, results in electrons underperforming, as can be seen in Figure 4.1.

This section deals with electrons traversing the LHCb detector while focusing on the
properties of reconstructed and not reconstructed electron tracks (in the baseline Match-
ing algorithm). Since the baseline reconstruction already correctly finds many electron
tracks, understanding what contributes to them being found or lost may allow for more
efficient track reconstruction.

In the following, lost refers to reconstructible but not reconstructed electron tracks, and
found to tracks that are both reconstructible and MC-matched, according to Section 4.1.

6.1 The Lost

The energy loss of electrons, unlike any other particle, is dominated by bremsstrahlung.
Almost all electrons emit photons, while traversing the LHCb detector, making this the
natural starting point. Found electrons, on average, lose significantly less of their energy
due to bremsstrahlung, than lost electrons, as illustrated in Figure 6.1. Especially of in-
terest are energy emissions that occur downstreamof theVELOdetector, more specifically
within the range of the magnet’s strong field, see Section 5.2.

Approximately 2/3 of electrons that emit less than half of their energy in the magnetic
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Figure 6.1: Amount of energy emitted by an electron before reaching the RICH2 in units
of the initial energy of the particle. Found electrons are represented in green and lost
electrons in red.
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Figure 6.2: Amount of energy emitted by an electron between 770mm < z ≤ 9410mm, i.e.
from the end of the VELO to the end of the last SciFi station (see Figure 3.2), in units
of the energy of the particle at z = 770mm. Found electrons are represented in green
and lost electrons in red.

field’s reach are found. The vast majority of found electrons lose less than 30% of the
energy they possess after leaving the VELO. The energy loss distribution, depicted in
Figure 6.2, suggests electrons that emit a larger part of their energy after the VELO are,
on average, slightly more likely to be lost.

Additionally, the bremsstrahlung vertex distributions plotted in Figure 6.3, show little
separation up until the end of the VELO, suggesting that what hinders the track recon-
struction occurs there. In both distributions, there are many vertices, where the sub-
detectors’ material is located. However, the distribution on the right is narrower with
many vertices immediately around x = 0mm, where the beam pipe is located. Both Fig-
ure 6.3a and Figure 6.3b depict bremsstrahlung vertices of a similar number of electrons.
Yet there are substantially more vertices in the right plot, indicating that lost electrons
emit photons more often while traversing the detector.

Summarising, bremsstrahlung after the VELO, especially around the beam pipe can
severely obstruct the successful track reconstruction. This is also apparent in the pseu-
dorapidity distributions, plotted in Figure 6.4. Most electrons in the high pseudorapidity
region, i.e. with a small opening angle, are lost. The ensuing question is, whether it is
material in general that leads to the inefficiencies at higher pseudorapidity, or if the beam
pipe, specifically, obstructs reconstruction. The radiation length fraction, shown in Fig-
ure 6.5, provides ameasure of howmuchmaterial an electron encounters. However, there
are no significant differences in the distributions to draw a conclusion from. It appears
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Figure 6.3: Distributions of bremsstrahlung vertices where more than 0.1 of the electron’s
current energy is emitted. The distributions are representative of the same amount of
electrons. The red lines in the plots mark the sub-detectors’ locations (l.t.r. : end of the
VELO, beginning of the RICH1, end of the UT, and beginning of the SciFi tracker).
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Figure 6.4: Pseudorapidity of an electron at creation. LHCb’s acceptance is 2 < η < 5.
Found electrons are represented in green and lost electrons in red.

the differences in the amount of material traversed, are too little to impact reconstruction
alone, evenwhen considering the total radiation length fraction from the end of the VELO
to the end of the last SciFi station.

The radiation length fraction x/X0 shows correlation to geometrical variables, such as
the pseudorapidity η, plotted in Figure 6.6. There is a spike in the radiation length fraction
at around η = 4.3, which is also where a drop in the reconstruction efficiency occurs (see
Figure 4.1). As explained in Section 4.2, these tracks cross beam-pipe material. For any
such correlation to become feasibly useful in the context of the Matching algorithm, it
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Figure 6.5: Total radiation length fraction of an electron from z = 770mm to z = 2700mm.
Found electrons are represented in green and lost electrons in red.
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Figure 6.6: Average radiation length fraction x/X0 seen by particles from z = 770mm to
z = 2700mm, as a function of the azimuthal angle ϕ and the pseudorapidity η. White
spaces are unoccupied (η, ϕ) combinations.

must be parameterisable (see Section 7.2), as well as offer information that prove useful
in separating electron tracks from background. Consequently, the use of x/X0 would not
reasonably improve Matching.

6.2 Redefinition of Momentum Dependent Efficiencies

The track-finding efficiencies are illustrated with regard to various kinematic variables,
such as the total and transverse momentum. This is useful to understand how particles
with certain properties perform in track reconstruction. This section uses the efficiency
definition based on simulated events introduced in Section 4.1.
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Currently the efficiency plots with regard to both, the total and transverse momentum
use the true, simulated variable values at generation. Electrons emit bremsstrahlung, as
explained in Section 5.1, which means that electrons lose significantly more energy than
other particles. Therefore, the momentum of electrons traversing the sub-detectors is
often lower than their true value at generation suggests. As pointed out in Section 4.2,
lower momentum particles’ track reconstruction is much less efficient than in the higher-
momentum regime. If there is a significant number of high-momentumelectrons at gener-
ation that lose somuch energy in theVELO that they effectively behave like low-momentum
particles when entering the RICH1, this would skew the efficiency plots with regard to
total and transverse momentum4.

The momentum of a particle is estimated by its trajectory through the magnetic field,
which means bremsstrahlung before reaching the field essentially has the same effect on
an electron’s track shape that a lower momentum at generation would have.

On average, electrons lose about 16% of their initial energy before leaving the VELO, as
shown in Figure 6.7, and 30% of their initial energy before reaching themagnet. However,
more thanhalf of the electrons lose less than 20% of their energyupstream(see Figure 5.1).
Some electrons lose a significant amount of energy in the VELO and are consequently of
lower momentum than at their generation, which could result in a skewed momentum
distribution for electrons. To circumvent this, the momenta of simulated electrons used
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Figure 6.7: Amount of energy emitted by electrons in the VELO in units of the initial
energy of the particles. The vertical line denotes the mean energy emission.

4The end of the VELO has been chosen as reference.
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for efficiency plots are redefined to take energy emissions in the VELO into considera-
tion. This allows for the efficiency plots to reflect a more precise measure of performance
regarding the tracking algorithms. The efficiencies in dependence of the default and re-
defined momenta are depicted in Figure 6.8. There is no change in the integrated efficien-
cies, which is expected since both numerator and denominator in Equation 4.1 remain
unchanged. Moreover, the momentum distribution is shifted towards lower momenta,
and the depicted efficiencies change according to the particles that now occupy a given
momentum region. The biggest change in efficiency is noticeable in the lower-momentum
regime, where the efficiencies are higher using the momentum at the end of the VELO.
However, the effect of photon emissions in the VELO on the efficiency plots appears to
be relatively small compared to the difference of electron to non-electron performance, as
shown in Figure 4.1. Although bremsstrahlung in the VELO is not the main reason for
the efficiency difference, it accounts for around 1%− 2%. A comparison plot for the Seed
track efficiencies can be found in Figure A.11.
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Figure 6.8: Track finding efficiency of the baseline Matching algorithm with VELO and
T input tracks for simulated Long tracks originating from a B meson with regard to
the total and transverse momentum. The distribution of the true variable values at
creation is shown in blue and the values at the end of the VELO are shown in gray. The
corresponding efficiencies are depicted in blue and black respectively.
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7 The Matching Algorithm

This section describes the Matching algorithm at LHCb. Since VELO and T tracks are
created independently of each other, an algorithm is implemented to take these track seg-
ments and try to combine them into Long tracks using an artificial neural network.

7.1 Simplified Track Model

Describing the trajectory of a charged particle in a magnetic field is a solved problem.
However, the issue is that there is not enough time in the trigger to solve the differential
equation. So instead of solving a complex problem, the problem is simplified as far as
possible while maintaining as much information as possible. For that purpose, the here-
inafter described model is used. It allows a simpler approximation of the trajectory. The
track state vectors of the VELO and T track segments are

s(zV ) = (xV , yV , tx, ty, ±q/p)
⊤

zV

(7.1)

at the end of the VELO, zV , and

s(zT ) = (xT , yT , tEndTx , tEndTy , q/p)
⊤

zT

(7.2)

at the end of the SciFi, zT , respectively.
TheMatching algorithmuses a simplified trackmodel on the basis of the OpticalModel

method [32]. The magnetic field is approximated as a thin lens refracting tracks like light
rays, such that it is possible to parameterise the state transfer from upstream to down-
stream of the magnet as two tangents on the bending arc. The exact path of particles
through the magnet is not relevant to track finding at LHCb, since there are no tracking
sub-detectors in the magnet, making this approach feasible. For a complete definition of
the simplified track model, see Ref. [7]. The optical centre of the magnet, illustrated in
Figure 7.1, is the intersection between the trajectory tangents upstream and downstream
of the magnet. It is also referred to as the magnet kick position and is defined by

zmag =
xV − txzV − xT + tEndTx zT

tEndTx − tx
(7.3)

The slope differences are defined as ∆tmatch
x = tEndTx − tx and ∆tmatch

y = tEndTy − ty for the
x and y components.

However, because of the fringe fields (see Figure 2.2), aswell as thematerial interactions
described in Section 5, charged particles do not traverse the detector in a straight line,
as illustrated in Figure 7.2. The magnet kick position in the Matching algorithm is thus
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Figure 7.1: Optical Model method used to describe a trajectory through the magnet [7].
The hit projections onto a reference plane, and the ∆x correction are merely used in
Forward tracking.

estimated by

zmatch
mag = c0 + c2|xT |+ c3t

2
x + |∆tmatch

x |(c1 + c4|∆tmatch
x |) (7.4)

with the coefficients listed in Table A.1.
Before using estimates such as this, the intention behind such parameterisations should

be pointed out. A parameterisation is an estimate of some property that is unknown
during track reconstruction with real data. Therefore, using simulated particles, the true
values are estimated using only information given by the track state vectors, or that is
otherwise available during reconstruction with data. Often, linear regression is used to
find a polynomial for that purpose. Parameterisations are used to provide previously in-
accessible information that help separate true from fake tracks without having to solve
the differential equation. More complex properties or variables with more non-trivial de-
pendencies become increasingly difficult to parameterise adequately. Sometimes estim-
ates have to be precise but not especially accurate, meaning a small variance is the main
goal.

7.2 Baseline Matching

Matching uses several variables defined specifically to quantify the level of agreement
between VELO and T tracks. Then, a machine learning classifier can be evaluated on the
variables to assess the matching quality in a combined estimate.

The algorithm’s structure is simple: a loop over all VELO track state vectors with a
nested loop over all T track state vectors, so that the input variables for the neural net-
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Figure 7.2: Kink approximation in the zx = zmatch
mag plane used in the Matching algorithm

[22]. ∆x denotes the matching distance Dmatch
x .

work can be calculated for all possible combinations. Alongside the slope differences, the
square of the VELO slopes t2x + t2y is also used as input for Matching. The tracks are then
extrapolated in y onto a reference plane at zmatch = 10m to calculate the distance in the y
direction, and onto a reference plane at the magnet kick position zmatch

mag , parameterised in
Equation 7.4, in the x direction. The x distance, depicted in Figure 7.2, is defined by

Dmatch
x =

∣∣∣xT − xV + tEndTx (zmatch
mag − zT )− tx(z

match
mag − zV )

∣∣∣ (7.5)

and the y distance by

Dmatch
y =

∣∣∣yT − yV + tEndTy (zmatch − zT )− ty(zmatch − zV )− ymatch
corr

∣∣∣ (7.6)

with a y correction
ymatch
corr = ty(c0|∆tmatch

x |2 + c1|∆tmatch
y |2) (7.7)

for which the coefficients can be found in Table A.2. Both matching distances are sub-
sequently used to define a combined quality measure

χ2
match =

D2
x

δx2 + t2δx
∣∣∆tmatch

x

∣∣2 +
D2

y

δy2 + t2δy
(
t2x + t2y

) +
|∆tmatch

y |2

var(tEndTy )
(7.8)

where δx = 8mm and tδx = 80mm correspond to the x uncertainty, while δy = 6mm and
tδy = 300mm correspond to the y uncertainty. Additionally, the inverse variance of the
T track’s y slope at the end of the SciFi tracker is var(tEndTy )−1 = 625. This χ2

match, even if
named as such, is strictly speaking not a χ2 [7].
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7 THE MATCHING ALGORITHM

Table 7.1: Matching MLP input variables.

Variable Preselection

χ2
match < 15

Dx < 250 mm

Dy < 250 mm∣∣∆tmatch
x

∣∣ < 1.5∣∣∆tmatch
y

∣∣ < 0.15

t2x + t2y

The network’s architecture remains simple, utilising amulti-layer perceptron, forwhich
the training is done using the Toolkit for Multivariate Data Analysis (TMVA) [33]. The
basics of an MLP are described in Section 2.5.

The MLP used for the Matching algorithm is described in the following. The network
weights are adjusted with Cross-Entropy5 as the loss function, using backpropagation, as
explained in Section 2.5. Furthermore, the neuron activation function is a rectifier linear
unit ReLU(x) = max(0, x). The network response is projected onto the interval [0, 1]. The
MLP has two hidden layers, the first of which consists ofN+2 neurons, and the second of
N neurons, whereN is the number of input variables for theMatching, listed in Table 7.1.

Electrons are currently excluded from the training data of the baseline Matching al-
gorithm at LHCb [7]. The distributions of the input variables, excluding electrons, are
illustrated in Figure A.1. The current cut on the response value is 0.215, resulting in reject-
ing 84% of the fake tracks, while keeping 97% of the true matches. The network response
is depicted in Figure A.2. If there is more than one pair, the pair with the highest response
value is chosen, along with other pairs that deviate less than 0.1 from the best one.

The Matching algorithm was designed to be used in the trigger, which requires it to be
computationally cheap. Itmust provide reasonably accurate resultswithin a short amount
of time.

5CE(p) = − log p − (1 − p) log(1− p) where p = S/(S + B) is the purity of a node, given by the ratio of
signal events to all events in that node.
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7 THE MATCHING ALGORITHM

7.3 Improved Matching for Electrons

The baseline Track Matching, described in Section 7.2, serves as the basis for the modi-
fied Matching algorithm outlined in this section. Hereinafter, all MLPs have been trained
using simulated B0 → K∗e+e− events, while the tests and efficiency plots have been ob-
tained using simulated B0 → K∗(J/ψ → e+e−) events.

The separation of training and test samples is a simple but effective way to check for
overfitting, while the decaywas chosen, in part, because it provides high-energy electrons
and is relevant in research regarding the standard model.

7.3.1 Parameterisations

The Matching algorithm utilises parameterisations to estimate certain variables, such as
zmatch
mag and ymatch

corr . Currently, electrons are excluded from all parameterisations used dur-
ing track finding. Consequently, the estimates are optimised for not-electrons, i.e. the pre-
dicted values show large deviations from the true variable values for electrons, as shown
with the example of the magnet kick position in Figure 7.3.

This is addressed by reparameterising the magnet kick position and y correction to fit
electrons using linear regression. In the case of ymatch

corr , adding a correction term andfinding
new coefficients has sufficed to provide estimates with decent accuracy for electrons. The
fit has a root mean squared error (RMSE) of 10mm and an r-squared (R2) of 0.863. The
y correction for electrons is defined by

ymatch
corr = ty

(
c2|∆tx|2 + c3|∆ty|2

)
+∆ty (c0 + c1∆tx) (7.9)

with the coefficients listed in Table A.4. The distribution, as well as the deviation from the
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a: zmag for electrons. b: zmag for not-electrons [7].

Figure 7.3: Regression plot of the baseline zmag parameterisation for (a) electrons, and
(b) not-electrons, where zoldMag is the predicted value using the current default para-
meterisation.
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Figure 7.4: Regression plot for new ymatch
corr parameterisation for electrons.

true value, is shown in Figure 7.4.
The distribution of the magnet kick position of electrons is broader than that of other

final-state particles (Figure 7.5). Since the currently used estimate disregards electrons,
it tries to fit the predictions for electrons into a narrower distribution leading to large
deviations at the tails. Using the same variables, a new electron-specific parameterisation
can be found. The magnet kick position is then defined by

zmatch
mag =c0 + c3t

2
x + c7t

2
y + |∆tx|

(
c1 + c11t

2
y

)
+∆t2x (c5 + c10|xT |)

+ ∆txtx (c4 + c9|xT |) + |xT |
(
c2 + c8t

2
x + c6|xT |+ c12|xT |2

) (7.10)

with the coefficients listed in Table A.3. The regression plots depicted in Figure 7.6c and
Figure 7.6d show that the magnet kick position is a property of the track slopes at the
end of the VELO, but also of the slope difference from before and after the magnet, see
Figure 7.6b. The histograms show the correlations between the track properties and zmag.
While the new parameterisation provides better estimates than what is currently used,
the inaccuracies are still considerably larger than for other particles. The largest devi-
ations can be seen at the left tail of the distribution, but only affecting a limited number
of particles. The regression plot for the new parameterisation following Equation 7.10 is
shown in Figure 7.6a. Most electrons’ zmag estimate deviates less than 50mm from the true
value, which is tolerable, considering the previously used values. The fit has an RMSE of
37mm and an R2 score of 0.815.
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Figure 7.5: Distribution of the magnet kick position zmag (Equation 7.3). Electrons are
depicted in teal, kaons in red.
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Figure 7.6: Regression plots for new zmag parameterisation for electrons, and the variables
used to determine estimates thereof.
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7.3.2 Seed Track Preselection

Matching tries to combine VELO and T tracks6 to create Long tracks. Reducing the num-
ber of input tracks by removing those that likely do not belong to electrons should improve
reconstruction performance. This would result in there being fewer track combinations
to consider, which contributes to a decrease in the amount of fake tracks as well. T tracks
are reconstructed from detector hits in the SciFi tracker, which is located in front of the
RICH2 and ECAL, as shown in Figure 2.1. Since electrons and photons primarily inter-
act with the electromagnetic calorimeter, see Figure 2.6, the information provided by the
ECAL can be used to determinewhich T tracks are likely to be of particles that also caused
electron showers in the ECAL7. The functionality of the ECAL is addressed in Section 2.4,
whereas the ECAL filter is briefly described in Section 5.3.

7.3.3 Electron Track Matching

The underlying architecture of the network remains identical to the baseline MLP de-
scribed in Section 7.2 since the use of different architectures has not led to noticeable per-
formance improvements. Even though other variables have been considered and tried as
well, the default input variables have proven to be robust. Moreover, the variables are
defined using new parameterisations (Section 7.3.1). This directly affects both matching
distancesDx,Dy, and the combined quality measure χ2

match. The preselection cuts on the
input variables can be found in Table 7.2. They have been adjusted s.t. the network per-
forms optimally. Since there are some outlying values, a cut is also placed on the magnet
kick position, confining it to 5100mm < zmatch

mag < 5700mm. The MLP is trained with
simulated electron Long tracks as signal, and fake tracks of all types of particles as back-

Table 7.2: Matching MLP input variables for electron Matching.

Variable Preselection

χ2
match < 15

Dx < 300 mm

Dy < 300 mm∣∣∆tmatch
x

∣∣ < 2.0∣∣∆tmatch
y

∣∣ < 0.15

t2x + t2y

6T tracks are also called Seed tracks since they are obtained through the Hybrid Seeding algorithm. They
seed the Matching algorithm.

7The ECAL filter was not implemented by the author of this thesis.
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Figure 7.7: Output of the Matching MLP. The bars denote the training sample, and the
data points denote the test sample. The distribution of true pairs is teal with triangles,
and of wrong pairs red with circles.

ground. It has also been considered to only use fake tracks that possess electron T tracks
as background, for the explicit use with the Seed track preselection. However, the Match-
ing MLP performed most reliably using all types of fake tracks. Imposing such a cut on
the background sample, while possible, is only feasible in conjunction with a near-perfect
T-track filter.

The network response for the training and test sample is depicted in Figure 7.7, which
is used to check for overfitting, described in Section 2.5. The networkmodels the data well
with a Kolmogorov-Smirnov test score of 0.563 for true pairs and 0.489 for false pairs.

The cut on the response value determines the amount of false matches that are rejected,
and the amount of truematches that are kept. The cut is set to 0.25, thereby rejecting 84.1%
of fake tracks, while keeping 97% of the true matches. If there is more than one pair,
the pair with the highest response value is chosen, along with other pairs that deviate
less than 0.1 from the best one. The distributions of the input variables are shown in
Figure A.3.
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7.4 Performance Comparison

The performance is evaluated on the track-finding efficiency ε and the ghost rate rfake,
as explained in Section 4. The Matching algorithm uses VELO and T tracks as input.
Referring to Section 4.2, the track-finding efficiency of electron Long tracks must be lower
than the T-track reconstruction efficiency, given in Table A.6. By extension, it is also lower
than the efficiency of not-electron Long tracks as well (Table 7.3).

The goal is to sustain a ghost rate of below 20%. That may not be possible for electrons,
while also maintaining a high efficiency because reducing the ghost rate also lowers the
efficiency. It should be pointed out that the ghost rate is a measure overarching all cat-
egories. This means that a low ghost rate alone is not an indicator of the amount of ghosts
created. Since baseline Matching reconstructs an enormous amount of not-electron Long
tracks with a very low ghost rate, the number of fake tracks stemming frommismatching
electron track segments is not as prominently featured in the ghost rate because there are
many more reconstructible not-electron than electron tracks. So it is possible to have an
inflated ghost rate while actually reducing the number of fake tracks.

This section presents the electron track-finding efficiencies using baseline Matching
and the electron Matching algorithm. All efficiencies have been obtained from simulated
B0 → K∗(J/ψ → e+e−) events. The performance of the baseline Matching algorithm is
also evaluated in Ref. [7].

7.4.1 Baseline

The integrated efficiencies of the baseline Matching algorithm are listed in Table 7.3 for
several selection categories. The fake track fraction is 17%. The track reconstruction of
not-electrons performs with an efficiency of around 94% for Long tracks p > 5GeV ori-
ginating from a B meson. In contrast, electron tracks are reconstructed with around 86%

Table 7.3: Integrated Matching efficiencies obtained from simulated B0 → K∗(J/ψ →
e+e−) events using baseline Matching. The efficiency in dependence on various kin-
ematic variables of electron and not-electrons is plotted in Figure A.5.

Category e± ε[%] not-e± ε[%]

Long 64.02 87.38

Long from B 83.46 90.35

Long p > 5GeV from B 86.22 94.31

Long p > 3GeV pT > 0.5GeV from B 87.72 94.54

Fake track fraction rfake 17.44%
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Figure 7.8: Track finding efficiency of the Seed tracks and the baselineMatching algorithm
with VELO and T input tracks for simulated Long tracks originating from a B meson
with regard to various kinematic variables. The variables’ distributions are repres-
ented in blue. Efficiencies of the Seed tracks are depicted in black and the Matching
algorithm in blue. The pseudorapidity and azimuthal angle distributions represent
the true, simulated variable values at creation. The momenta distributions have been
adjusted according to Section 6.2 (for unaltered momentum spectrum see Figure A.8).

efficiency denoting a significant difference in performance. This is also reflected in the
efficiency plots in dependence on various kinematic variables in Figure 7.8 when taking
into account that the Seed track efficiency for electrons is lower than the Matching effi-
ciency for not-electron tracks. The distributions of the plotted efficiencies resemble the
Best-Long efficiencies depicted in Figure 4.1 in Section 4.2, displaying the same detector-
related characteristics.

7.4.2 No Preselection

Firstly, the electron Matching algorithm can in theory be used with the same input tracks
as baseline Matching, i.e. all VELO and T tracks are given as input tracks, and there is no
specific track selection prior to the algorithm. Since the algorithm has not been trained
on not-electron tracks, a high fake track fraction is expected. The efficiencies are listed
in Table 7.4. Electron tracks in the Long category experience an efficiency increase by
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Table 7.4: Integrated Matching efficiencies obtained from simulated B0 → K∗(J/ψ →
e+e−) events, using electron Matching with no preselection.

Category e± ε[%]

Long 76.17

Long from B 86.60

Long p > 5GeV from B 88.78

Long p > 3GeV pT > 0.5GeV from B 89.68

Fake track fraction rfake 33.74%

more than 10%, whereas the efficiency of tracks originating from a B meson increases by
2%− 3%.

The increase in efficiency is accompanied by a ghost rate of around 34%, which is almost
twice as high as in the baseline Matching algorithm. This is in part because the network
is trained on electron tracks as signal and fake tracks as background. Therefore, it is unfa-
miliar with non-electron tracks. The provided VELO and T track segments arematched to
pairs that best correspond to electrons’ trajectories. However, the majority of input tracks
are not of electrons, so the ghost rate is expected to be inflated.

7.4.3 Perfect VELO and T Track Selection

Using simulated events enables the perfect selection of track segments. The algorithm
is given electron VELO and T track segments as input tracks to assess the actual effi-
ciency ceiling. The efficiencies and fake track fraction are listed in Table 7.5. The fake
track fraction is low at around 14% corresponding to the network-response cut chosen.

Table 7.5: Integrated Matching efficiencies obtained from simulated B0 → K∗(J/ψ →
e+e−) events, using electron Matching with perfect VELO and T track selection.

Category e± ε[%]

Long 78.33

Long from B 87.90

Long p > 5GeV from B 90.05

Long p > 3GeV pT > 0.5GeV from B 90.86

Fake track fraction rfake 13.96%
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Table 7.6: Integrated Matching efficiencies obtained from simulated B0 → K∗(J/ψ →
e+e−) events, using baseline Matching with perfect VELO and T track selection.

Category e± ε[%]

Long 65.39

Long from B 84.45

Long p > 5GeV from B 87.19

Long p > 3GeV pT > 0.5GeV from B 88.66

Fake track fraction rfake 10.95%

The track-finding efficiency shows significant improvements with several categories now
reaching efficiencies above 90%. Considering the highest possible efficiency using VELO
and Seed tracks as input is about 93% in those categories, the algorithm performs very
well. It should also be pointed out that applying a perfect selection filter on the input
tracks of the baseline Matching algorithm does not yield comparable efficiency improve-
ments (Table 7.6).

The efficiency in dependence on various kinematic variables is presented in Figure 7.9.
While the new algorithm performs better than the baseline at all momenta, the efficiency
gain is especially large for low-momentum tracks, as can be seen in Figure 7.9a and Fig-
ure 7.9b. In the higher momentum regime, the efficiency gain is larger than the gap
between the electron Matching efficiency and the Seed track efficiency. The efficiency
as a function of pseudorapidity and azimuthal angle is depicted in Figure 7.9c and Fig-
ure 7.9d respectively. The increase in efficiency shows little variance with regard to the
azimuthal angle. On the other hand, the efficiency difference between baseline and elec-
tron Matching becomes greater with increasing η. The baseline algorithm performs close
to the efficiency ceiling at low η, but the distance to the performance ceiling widens as η
increases. The new algorithm performs much better in the higher pseudorapidity region,
damping the efficiency’s downward trend significantly. A decrease in efficiency for η ≥ 4

is expected because of detector material, as explained in Section 4.2. The efficiency as a
function of the number of primary vertices, depicted in Figure 7.9e, is relatively flat until
the drop in efficiency for tracks with nPV ≥ 13. This may indicate that the algorithm does
not perform well for busy events. However, the Seed track efficiency also decreases for
busy events, which seems to be the actual reason for the drop in performance, and not the
Matching algorithm itself.
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Figure 7.9: Track finding efficiency of the Seed tracks and the electronMatching algorithm
with perfect selection VELO and T input tracks for simulated Long tracks originating
fromaBmesonwith regard to kinematic variables and the number of primary vertices.
The variables’ distributions are represented in blue. Electron Seed track efficiencies are
depicted in grey triangles. The black marker with full circles denotes electron tracks of
the baseline Matching algorithm, and the blue marker with empty circles denotes elec-
tron tracks of the new (electron) Matching algorithm. The pseudorapidity, azimuthal
angle, and number of primary vertices distributions represent the true, simulated vari-
able values at creation. The momenta distributions have been adjusted according to
Section 6.2 (for unaltered momentum spectrum see Figure A.9).
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Figure 7.10: Fake track fraction of the electronMatching algorithmwith perfect VELO and
T track selection of input tracks in dependence on kinematic variables and the number
of primary vertices.

The fake track fractions as a function of the total and transverse momentum are presen-
ted in Figure 7.10a and Figure 7.10b, respectively. The electronMatching algorithmmain-
tains a lower ghost rate compared to baselineMatching, especially at lowmomenta, where
the improved algorithm produces ghosts at less than half the rate. The ghost rate of the
new algorithm in dependence on the pseudorapidity, depicted in Figure 7.10c, is very
low for tracks with η ≤ 3 but then rises to around the same rate as the default algorithm,
before dropping lower again above η > 4.5.
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7 THE MATCHING ALGORITHM

7.4.4 ECAL Filter for T Tracks

The ECAL filter, described in Section 5.3, is used to select T tracks that are likely to be of
electrons. While this reduces the number of possible track combinations, it also leaves not-
electron VELO tracks without their corresponding T tracks. This causes the algorithm to
match false track pairs that would otherwise have been dismissed because a better match
is available, resulting in a high ghost rate. This could be managed by preselecting VELO
tracks similarly to T tracks using the ECAL. This is briefly addressed in Section 5.3. Using
perfect VELO track selection and the ECAL filter together yields identical track-finding
efficiencies for electrons while reducing the ghost rate by half, from around 53% to 26%.

This configuration provides Long tracks with 76% efficiency, denoting an increase of
12%, and Long tracks originating from a B meson with efficiencies that are around 2%−
3% higher than in the baseline Matching algorithm. The efficiencies and ghost rates are
listed in Table 7.7, and presented in Figure 7.11 and Figure 7.12.

The track-finding efficiency follows the same trends as in Section 7.4.3, with a slightly
lower performance gain. The most significant increases are noticeable at lower momenta
but even high-momentum tracks perform better in the electron Matching algorithm than
in the baseline algorithm. Furthermore, tracks with η > 3 are also more efficiently recon-
structed, whereas a slight drop in the efficiency is visible around η < 2.2.

Table 7.7: Integrated Matching efficiencies obtained from simulated B0 → K∗(J/ψ →
e+e−) events, using electronMatching with implemented ECAL filter for T track selec-
tion. A fake track fraction marked with perfect VELO selection implies that only VELO
tracks associatedwith electrons are selected, while onemarkedwithECAL filter implies
that T tracks are selected using the implemented ECAL filter described in Section 5.3.

Category e± ε[%]

Long 76.41

Long from B 86.40

Long p > 5GeV from B 88.55

Long p > 3GeV pT > 0.5GeV from B 89.39

Fake track fraction rfake

ECAL filter 52.48%

Perfect VELO selection + ECAL filter 26.37%
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Figure 7.11: Track finding efficiency of the Seed tracks and the electron Matching al-
gorithmwith VELO and ECAL-filtered T input tracks for simulated Long tracks origin-
ating from a B meson with regard to kinematic variables and the number of primary
vertices. The variables’ distributions are represented in blue. Electron Seed track ef-
ficiencies are depicted in grey triangles. The black marker with full circles denotes
electron tracks of the baseline Matching algorithm, and the blue marker with empty
circles denotes electron tracks of the new (electron) Matching algorithm. The pseu-
dorapidity, azimuthal angle, and number of primary vertices distributions represent
the true, simulated variable values at creation. The momenta distributions have been
adjusted according to Section 6.2 (for unalteredmomentum spectrum see FigureA.10).
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Figure 7.12: Fake track fraction of the electron Matching algorithm with perfect VELO
track selection and ECAL filtered T tracks as input tracks in dependence on kinematic
variables and the number of primary vertices.

The fake track fraction is shown in Figure 7.12. The new algorithm performs at a ghost
rate that is approximately 10% higher than baselineMatching, as is visible in Figure 7.12d.
The fraction of ghosts is high at lowmomenta but decreases rapidly, before asymptotically
approaching a lower limit. This is present in both Figure 7.12a and Figure 7.12b. How-
ever, while the ghost rate of the new algorithm as a function of the total momentum is
continuously higher compared to baseline Matching, this is not the case for the ghost rate
as a function of the transverse momentum. The new algorithm performswith almost 20%
fewer ghosts at low pT ≤ 200MeV, and a slightly lower ghost rate above pT > 2000MeV.
The fake track fraction in dependence on the pseudorapidity, depicted in Figure 7.12c,
is very low for tracks with η ≤ 3 but rises with increasing pseudorapidity. The new al-
gorithm produces around 15% more ghosts above η > 4.3 than default Matching.

44



7 THE MATCHING ALGORITHM

7.5 Summary and Integration into LHCb’s Real-Time Analysis

The Matching algorithm is tasked with finding Long tracks at LHCb. It is run in the
HLT2 event reconstruction sequence using VELO and Seed tracks as input. The baseline
Matching algorithm is designed to be most efficient with not-electron tracks. In order to
achieve this, electrons are explicitly excluded from all parameterisations (see Section 7.1)
and training samples [7]. As a result, electron tracks underperform by a significant mar-
gin compared to tracks of other particles. This issue is currently not addressed in LHCb’s
real-time analysis sequence.

The electron Matching algorithm utilises new parameterisations, optimised for elec-
trons (Section 7.3.1). The newly parameterised variables perform much better for elec-
trons. However, they still show significantly larger deviations from the true values than
other particles’ predictions using the current parameterisations. This is due to the falla-
cious assumption that an electron’s trajectory in a magnetic field can be adequately ap-
proximated using the simplified track model, described in Section 7.1. Electrons lose a
significant portion of their energy due to bremsstrahlung (Section 5.1), resulting in more
complex trajectories through the magnetic field. To address this issue properly, the sim-
plified track model would have to be abandoned completely. The new neural network is
trained on electron tracks exclusively, with adjusted preselection cuts on the input vari-
ables, listed in Table 7.2, and the magnet kick position.

There are several ways to integrate this dedicated electron reconstruction into the track-
reconstruction sequence of HLT2. One possibility, proposed in Ref. [7], is to run it over
residual VELO and T tracks, i.e. tracks unmatched during baseline Long-track reconstruc-
tion. This would, however, prevent the recovery of mismatched electron tracks. Al-
ternatively, it might run parallel to baseline Matching, s.t. Forward tracking, baseline
Matching, and electron Matching independently find Long tracks that are subsequently
passed through the Kalman filter and clone removal process. In order to control the fake
track fraction of the new algorithm, a VELO and T track preselection might be necessary,
whereby only track segments of electrons are selected (Section 5.3).
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8 Conclusion

A dedicated electron reconstruction for the real-time analysis in HLT2 is presented in
this thesis. The track reconstruction sequence in LHCb’s HLT2 is described, with a focus
on the neural-network-based Matching algorithm. Simulated B0 → K∗e+e− and B0 →
K∗(J/ψ → e+e−) events are used.

The Matching input variables have been defined using electron-specific parameterisa-
tions thereby improving their accuracy for electrons. The underlying architecture of the
network corresponds to that of the baseline Matching algorithm. The subsequent train-
ing of the neural network has been done on electron Long tracks from simulated B0 →
K∗e+e− events. In order to control the fake track fraction, both VELO and T tracks un-
dergo a preselection to dismiss not-electron track segments. For this, an already imple-
mented ECAL filter is used, which matches electron-induced EM-showers to T tracks.
Similarly, VELO tracks can bematched to photon-inducedEM-showers, using an algorithm
that is currently not available out-of-the-box and thus beyond the scope of this thesis.
Therefore, VELO tracks are passed through a perfect filter instead.

The newelectron reconstructionfinds approximately 76% of electronLong tracks,mark-
ing an improvement by more than 12%, and around 86.4% of electron Long tracks origin-
ating from a B meson, denoting an efficiency gain of more than 2%. The two Long track
categories, Long p > 5GeV from B and Long p > 3GeV pT > 0.5GeV from B, are often
used in physics analyses. Marking similar efficiency improvements, their track-finding
efficiencies are determined to be around 88.6% and 89.4% respectively. The fake track
fraction is around 26% before the Kalman filter, which is relatively high, but in the con-
text of electron reconstruction acceptable. The ghost rate is expected to be smaller after
the track-fitting stage, i.e. the Kalman filter and clone removal.

The performance of the new Matching algorithm, which is the centrepiece of the elec-
tron reconstruction, is best determined using perfect VELO and T track selection. Both
categories containing momentum cuts perform with an efficiency above 90%, which is
just short of the upper limit set by the VELO tracking and Hybrid Seeding algorithms
while maintaining a ghost rate of below 14% before the Kalman filter.

Track reconstruction consists of both track finding and track fitting. The focus of the
work presented in this thesis has been on the former since tracks must first be found be-
fore they can be fitted. The electron Matching algorithm in combination with a high-
performance VELO and T track preselection would significantly improve electron recon-
struction at LHCb in Run 3 and possibly beyond. In addition to implementing and op-
timising a high-efficiency ECAL filter for both VELO and T tracks, the tracks found by the
Matching algorithm would have to be fitted as well.

The implementation of a specialised track fit for electrons would improve the perform-
ance of an electron reconstruction and aid in controlling the ghost rate further. The Kal-
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man filter is almost optimal for a near-linear track model and approximately Gaussian
noise. However, for electron reconstruction, the Gaussian-sum filter might be an alternat-
ive estimator to be used during track fit instead of the Kalman filter, because of its super-
ior ability to deal with highly asymmetric and long-tailed noise, such as energy loss by
bremsstrahlung. More information on the Gaussian-sum filter can be found in Ref. [31].
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A Appendix

A.1 Parameterisations

A.1.1 Baseline Matching Algorithm

Table A.1: Coefficients for zmag (Equation 7.4).

Coefficient Value

c0 5286.687877988849

c1 −3.259689996453795

c2 0.015615778872337033

c3 −1377.3175211789967

c4 282.9821232487341

Table A.2: Coefficients for ymatch
corr (Equation 7.7).

Coefficient Value

c0 −1974.6355416889746

c1 −35933.837494833504
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A.1.2 Electron Matching Algorithm

Table A.3: Coefficients for zmag (Equation 7.10). Parameterisation only for electrons.

Coefficient Value

c0 5308.689740859701

c1 94.8390840129271

c2 0.03952176022974936

c3 70418.55504271125

c4 62087.4827671762

c5 13580.830615214854

c6 −0.000842287765099925

c7 −2237.8985443626666

c8 −16.447718852307414

c9 −13.929546692369508

c10 −3.2033475757333143

c11 3364.6401097763382

c12 1.936634587279551× 10−7

Table A.4: Coefficients for ymatch
corr (Equation 7.9). Parameterisation only for electrons.

Coefficient Value

c0 4089.1594362560113

c1 25.0456971896117

c2 1049.7443418962382

c3 77388.96417801932

49



A APPENDIX

A.2 Matching Algorithm Input Variables

A.2.1 Baseline Matching
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Figure A.1: Distributions of the input variables for the Matching MLP, listed in Table 7.1.
The MLP was trained using true VELO, T track-pairs, excluding electrons, as signal,
and false pairs, i.e. fake tracks, as background.
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Figure A.2: Output of the Matching MLP. The bars denote the training sample, and the
data points denote the test sample. The distribution of true pairs is teal with triangles,
and of wrong pairs red with circles.
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A.2.2 Electron Matching
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Figure A.3: Distributions of the input variables for the Matching MLP, listed in Table 7.2.
The MLP was trained using simulated electron VELO, T track-pairs as signal, and fake
tracks of all particles as background.

52



A APPENDIX

A.3 Reconstruction Efficiencies

A.3.1 Best Long Tracks
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Figure A.4: Track reconstruction efficiency of Best Long tracks for simulated Long tracks
with regard to various variables. The variables’ distributions and efficiencies are rep-
resented in blue for electrons and in grey or black for other particles. The distributions
represent the true, simulated variable values at creation.
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A.3.2 VELO Tracking and HybridSeeding

Track-finding efficiencies for the VELO Tracking and Hybrid Seeding used as input input
to the Matching algorithm.

Table A.5: Integrated VELO tracking efficiencies obtained from simulated
B0 → K∗(J/ψ → e+e−) events.

Category e± ε[%] not-e± ε[%]

Long 96.04 99.20

Long from B 97.41 99.28

Long p > 5GeV from B 98.17 99.57

Fake track fraction rfake 2.47%

Table A.6: Integrated Hybrid Seeding efficiencies obtained from simulated
B0 → K∗(J/ψ → e+e−) events.

Category e± ε[%] not-e± ε[%]

Long 87.87 94.30

Long from B 92.78 95.58

Long p > 5GeV from B 93.91 97.57

Fake track fraction rfake 2.02%
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A.3.3 Baseline Matching
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Figure A.5: Track finding efficiency of the baseline Matching algorithmwith VELO and T
input tracks for simulated Long tracks originating from aBmesonwith regard to vari-
ous kinematic variables. The variables’ distributions and efficiencies are represented
in blue for electrons and in grey or black for other particles. The pseudorapidity and
azimuthal angle distributions represent the true, simulated variable values at creation.
The momenta distributions have been adjusted according to Section 6.2 (for unaltered
momentum spectrum see Figure A.6 and Figure A.7).
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Figure A.6: Track finding efficiency of the baseline Matching algorithmwith VELO and T
input tracks for simulated Long tracks with regard to various variables. The variables’
distributions and efficiencies are represented in blue for electrons and in grey or black
for other particles. The distributions represent the true, simulated variable values at
creation.
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Figure A.7: Track finding efficiency of the baseline Matching algorithm with VELO and
T input tracks for simulated Long tracks originating from a B meson with regard to
various variables. The variables’ distributions and efficiencies are represented in blue
for electrons and in grey or black for other particles. The distributions represent the
true, simulated variable values at creation.
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Figure A.8: Track finding efficiency of the Seed tracks and the baseline Matching al-
gorithm with VELO and T input tracks for simulated Long tracks originating from
a B meson with regard to various kinematic variables. The variables’ distributions are
represented in blue. Efficiencies of the Seed tracks are depicted in black and theMatch-
ing algorithm in blue. The distributions represent the true, simulated variable values
at creation.
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A.3.4 Electron Matching
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Figure A.9: Track finding efficiency of the Seed tracks and the electron Matching al-
gorithm with perfect selection VELO and T input tracks for simulated Long tracks
originating from a B meson with regard to various kinematic variables. The variables’
distributions are represented in blue. Electron Seed track efficiencies are depicted in
grey triangles. The blackmarkerwith full circles denotes electron tracks of the baseline
Matching algorithm, and the blue marker with empty circles denotes electron tracks
of the new (electron) Matching algorithm. The distributions represent the true, simu-
lated variable values at creation.
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Figure A.10: Track finding efficiency of the Seed tracks and the electron Matching al-
gorithm with VELO and ECAL-filtered T input tracks for simulated Long tracks ori-
ginating from a B meson with regard to various kinematic variables. The variables’
distributions are represented in blue. Electron Seed track efficiencies are depicted in
grey triangles. The blackmarkerwith full circles denotes electron tracks of the baseline
Matching algorithm, and the blue marker with empty circles denotes electron tracks
of the new (electron) Matching algorithm. The distributions represent the true, simu-
lated variable values at creation.
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A.3.5 Momentum Redefinition

This appendix is related to Section 6.2.
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Figure A.11: Track finding efficiency of the baseline HybridSeeding algorithm with SciFi
hits as input for simulated T tracks originating from aBmeson with regard to the total
and transverse momentum. The variables’ unaltered distributions and efficiencies are
represented in blue and the redefined values in grey and black.
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