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Abstract

This bachelor thesis deals with the identification of inelastic interactions of light antinuclei

within the ALICE detector volume using neural networks operating on graph-structured data.

For this purpose, data from a Monte Carlo simulation of p–Pb collisions at
√

sNN = 5.02 TeV

is used, in which primary tracks of light antinuclei such as antideuterons (d), antitritons

(t) and antihelium-3 (3He) are injected. The starting point for the graph creation consisted

of so-called TRD tracklets that were constructed from a full detector simulation within the

Transition Radiation Detector (TRD).

In this bachelor thesis, the creation of a data basis for an appropriate neural network is

described, which includes a preselection of relevant data from the baseline Monte Carlo and

the corresponding reconstructed information. Different approaches for graph constructions

are tested in the context of first neural network architectures, which are optimized in fur-

ther steps. After the final training of two network models, their performance was evaluated

while comparing the classification results for different antinuclei and particles with different

transverse momentum pT. The performances of the neural networks were further compared

with that of two simple cut-based approaches and a simple random forest, that all relied on

handcrafted features which were constructed from the TRD tracklet information as well. It

was shown that the neural networks surpass the performance of these simple models and

were especially able to produce a clearly higher signal purity at equal signal efficiency. At the

end of this thesis, a first outlook towards the potential deployment of the achieved results in

a future physics analysis is provided.
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Zusammenfassung

Diese Bachelorarbeit befasst sich mit der Identifikation unelastischer Wechselwirkungen leich-

ter Antikerne innerhalb des ALICE Detektorvolumens mithilfe von neuronalen Netzwerken,

die auf Daten mit einer Graphstruktur operieren. Hierzu wurden Daten aus einer Monte Car-

lo Simulation von p–Pb-Kollisionen bei
√

sNN = 5.02 TeV verwendet, in die Primärspuren

leichter Antikerne wie Antideuteronen (d), Antitritonen (t) und Antihelium-3 (3He) einge-

bettet sind. Die Grundlage für die entsprechenden Graphkonstruktionen bildeten sogenannte

TRD-Tracklets, die aus einer vollen Detektorsimulation innerhalb des Übergangsstrahlungs-

detektors (TRD) konstruiert wurden.

In dieser Bachelorarbeit wird die Erstellung einer Datengrundlage für ein entsprechendes

neuronales Netzwerk beschrieben, was eine Vorselektion relevanter Daten aus zugrundelie-

genden Monte Carlo bzw. rekonstruierten Informationen beinhaltet. Es werden verschiedene

Methoden von Graphkonstruktionen im Rahmen erster Netzwerkarchitekturen getestet, die in

weiteren Schritten optimiert werden. Nach dem abschließenden Training zweier Netzwerkmo-

delle wurde deren Performance für unterschiedliche Antikerne und Teilchen mit unterschied-

lichem transversalen Impuls pT untersucht. Außerdem wurde die Performance der neurona-

len Netze mit derjenigen zweier schnittbasierter Ansätze und einem einfachen Random Forest

verglichen. Diese Modelle operierten allesamt auf handgefertigten Features aus den gleichen

TRD-Tracklet-Informationen. Dabei zeigte sich, dass es mithilfe der neuronalen Netze möglich

ist, die Performance dieser einfachen Modelle zu übertreffen und insbesondere eine deutlich

höhere Signalreinheit bei gleicher Signaleffizienz zu gewinnen. Abschließend wird ein erster

Ausblick auf den potentiellen Einsatz der erzielten Resultate im Kontext künftiger Physikana-

lysen gegeben.
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1 Introduction and motivation

In the current understanding of galaxy formation, every galaxy is assumed to be embedded

into a halo of dark matter [1]. The measurement of cosmic ray antinuclei such as antideuterons

(d) and especially antihelium-3 (3He) at energies of E ≲ 1 GeV/nucleon [2] can serve as a probe

for the annihilation or decay of weakly interacting dark matter into standard model parti-

cles [3] within the mentioned halo. This is because standard model particles in primary decay

channels result in the production of antinuclei such as antideuterons or antihelium-3, which

propagate through galaxies as secondary particles over long distances. As a consequence, an

increased particle flux of these antinuclei at lower energies compared to the expected signal

from astrophysical background effects is hoped to be measured in spectrometer experiments

in the lower-earth orbit. Two of these experiments are for example the ballon-born GAPS ex-

periment (General Antiparticle Spectrometer) [4] or the AMS-02 experiment (Alpha Magnetic

Spectrometer 2) on the International Space Station [5].

For the evaluation of these experiments, it is of critical importance to understand the oc-

currence of background effects from astrophysical processes, e.g. the production of antinuclei

within the interstellar medium. Even though these background effects are expected to be

rather small, when lower energy antinuclei are considered [6, 7], it is necessary to take these

effects into account. Therefore, extensive efforts have been made in the past to theoretically

and experimentally study production mechanisms of light (anti)nuclei, e.g. by the coalescence

of (anti)protons and (anti)neutrons which are close to each other in phase space or by statisti-

cal hadronization models [8].

Moreover, it must be well understood, how antinuclei traverse the interstellar medium,

e.g. whether and how often they annihilate with cosmic hadrons and how these effects might

influence the results of the aforementioned experiments. Therefore, quantities like inelastic

cross-sections of d and 3He were studied for different momentum ranges at the ALICE ex-

periment at CERN (Conseil Européen pour la Recherche Nucléaire) under the use of different

experimental proceedings and involving different parts of the detector systems [7, 9].

A Large Ion Collider Experiment (ALICE) is one of four big experiments currently operat-

ing at the Large Hadron Collider (LHC) and was designed to study properties of the quark-

gluon plasma (QGP). The QGP is a state of deconfined quarks and gluons, that is believed to

have been present in the early universe until about 10 µs after the big bang [10]. Properties

of the QGP are predicted from the reconstruction of relativistic heavy-ion collisions, that are

studied with ALICE.

However, the experimental environment has also shown its capabilities in other physics

questions. Since antinuclei are copiously created in high energy proton–proton and heavy-ion

collisions, they can serve as a source of these particles and the experimental setup of AL-

ICE can provide particle identification (PID) and tracking capabilities in a high-multiplicity

environment. Additionally, the various detector subsystems like the Time Projection Cham-

ber (TPC) and especially the Transition Radiation Detector (TRD) provide different material

budgets with which antinuclei can interact after having been produced in a particle collision.
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Furthermore, the detectors represent a controllable experimental surrounding, that is studied

in detail with Monte Carlo simulations. Within the simulations, the ground truth about the

data-generating processes is known. By a subsequent comparison of the simulation results

with the ones from real data taking, additional knowledge about the underlying physics can

be obtained.

During the investigation of additional methods to identify inelastic interactions of light

antinuclei within the ALICE detector volume, local measurements of the particles in the TRD,

that are processed in the form of so-called TRD tracklets, have been shown to be useful within

previous works [11]. In particular, the topology of these tracklets in the detector is supposed

to give hints about the underlying physical processes. Interpreting this kind of information,

that is in addition largely heterogeneous, is one example of a use case for modern deep learn-

ing techniques operating on graph-structured data. This is the case since TRD tracklets that

are reconstructed nearby inside the detector are often related and even causally linked by un-

derlying physical processes. Consequently, the locality and adjacency information of tracklets

in the modular layer structure of the TRD can form a physically justifiable basis for a graph

construction. The framework of the so-called graph neural networks (GNNs) then allows for

combining the intrinsic geometric situation with the fact, that an expressive high-level feature

selection under use of TRD tracklets providing a description of the underlying process is a

priori not really intuitive. Furthermore, neural networks have already shown their capabilities

within a large set of applications at other high energy physics (HEP) experiments [12]. In this

thesis, it will be investigated whether GNNs are in fact applicable to the introduced physics

problem and whether positive results can be gained from the considerations in general, that

could be used within future physics analyses on this or similar problems.

In order to approach this, the thesis is structured as follows: In chapter 2, an introduction

to the components of the ALICE experiment is given, which were mostly relevant for this

work. Chapter 3 introduces general concepts of deep learning and explains the underlying

principles of graph neural networks that were important within the scope of this thesis. In

chapter 4, the information extraction from the used data sample is explained which serves

the baseline for respective graph constructions and the first preliminary experiments on a

suitable neural network architecture in chapter 5. Chapter 6 explains further modifications

of the network architecture and presents the results of the final trainings. In chapter 7, the

performance of the trained GNNs is compared to that of three other classification approaches,

which relied on cut-based analyses and the deployment of a random forest algorithm with

simple handcrafted features. In chapter 8, first steps towards the potential deployment of a

GNN in further analyses are discussed by describing one possibility to determine a physically

motivated working point. Chapter 9 provides a conclusion of the thesis with a final discussion

of possible improvements and remaining research questions for the future.
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2 The ALICE experiment

The main research objective of the ALICE experiment is the investigation of high energy p–p-,

p–Pb- and Pb–Pb-collisions. Especially in heavy-ion collisions, a very high particle multiplicity

is created which is a big challenge to cope during detector construction regarding position and

energy resolution for particle identification and tracking tasks [13].

During the Long Shutdown 2 at the LHC, upgrades have been performed to improve the

experimental setup for LHC Run 3. However, the used data within this thesis relies on the

ALICE detector configuration as it was used during LHC Run 2 (cf. chapter 4). Therefore, a

schematic drawing of the experiment during Run 2 is given in figure 1 including an illustration

of the ALICE coordinate system.

Figure 1: Schematic overview of the ALICE apparatus during LHC Run 2. The ALICE co-
ordinate system is shown in the lower right corner with the z-axis pointing along the beam
direction and the origin defined to be coinciding with the nominal interaction point. The
respective parts of the central barrel and the muon arm are labeled with numbers on the left-
hand side. Particular reference should be made to the Inner Tracking System (1), the Time
Projection Chamber (3) and the Transition Radiation Detector (4). Figure adapted from [14].

The ALICE experiment is divided into the muon arm and the central barrel, but only the

latter is of relevance in the scope of this thesis. Within the central barrel, multiple detec-

tor systems are arranged in a layer structure each fulfilling different tasks within the above-

mentioned investigations. The barrel is surrounded by a solenoid magnet, which provides a

magnetic field of B = 0.5 T along the z-direction of the experiment.

In the following, the detector systems of ALICE, which were the most relevant for the

physics of this thesis, will be introduced. This includes an explanation of the Inner Tracking

System (ITS) and the Time Projection Chamber (TPC) which were mostly important because of

the tracking tasks they fulfill. Moreover, the Transition Radiation Detector (TRD) is introduced

in detail. Finally, a brief summary of the construction of TRD tracklets is given as well as a

short overview of the material budget within the detectors in the ALICE central barrel.
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2.1 Inner Tracking System (ITS)

The Inner Tracking system (ITS) is the innermost detector system of ALICE. During LHC Run

2, it consisted of six layers of silicon detectors covering together a radial range from 3.9 cm

to 43 cm and a pseudorapidity range of |η| < 0.9 [15]. The first two layers of the ITS were

made of silicon pixel detectors, which are surrounded by two layers of silicon drift detectors

and finally two layers of silicon strip detectors. The main functions of the ITS are a high-

resolution reconstruction of the primary vertex and the tracking respectively identification

of low-momentum particles, which can not reach the Time Projection Chamber (TPC) [15].

Additionally, it can be used to improve the momentum and angular resolution of the TPC for

particles with higher momenta.

Over the ALICE upgrade in the Long Shutdown 2, the ITS was replaced by a new system

built out of seven cylindrical layers of silicon pixel detectors. It was possible to enlarge the

active area to about 10 m2, shift it closer to the beam line due to a size reduction of the ALICE

beam pipe and reduce its material budget significantly to a level of about X/X0 = 0.3% per

detector layer [16].

2.2 Time Projection Chamber (TPC)

The main purposes of the Time Projection Chamber (TPC) are the identification of charged

particles, the associated track reconstruction and momentum determination. Its active area

ranges from an inner radius of approximately 85 cm to an outer radius of 250 cm and covers

the full azimuthal range and a pseudorapidity interval of |η| < 0.9 [15]. It consists of a

cylinder with a volume of about 90 m3 and is filled with a gas mixture that is made of Ne,

CO2 and N2 [15]. When charged particles traverse the TPC, they ionize the gas mixture. The

so produced ionization electrons drift to the end plates of the TPC due to the application of an

internal electric field. During LHC Run 2, these ionization electrons had been detected under

the use of 72 multiwire proportional chambers (MWPC) with cathode pad readouts. Over

the Long Shutdown 2, the MWPCs got replaced by so-called gas electron multipliers (GEMs)

together with a new readout electronics setup. This allows to execute continuous readouts at

collision rates of up to 50 kHz in Pb–Pb-collisions during LHC Run 3 [17].

In order to perform particle identification, the specific energy loss of a particle dE/dx is

measured together with the particle momentum and its charge. The expected specific energy

loss per unit length due to ionization processes can then be described by parameterizations

based on the Bethe-Bloch-formula, which are for example further described in [18]. By a

comparison of expected energy loss curves with the actual measured energy loss as a function

of momentum, a hypothesis for the true particle species can be set up.

Examples of expected energy loss curves are shown in figure 2 together with actual mea-

surements from the TPC. It can be seen that antihelium-3 (3He) can be clearly separated from

lower-mass particles even at high momenta, which is a consequence of the fact, that the nu-

cleus is doubly negatively charged. Furthermore, the discrimination of antideuterons (d) and
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antitritons (t) from lower-mass particles can also be performed with a high purity in a wide

momentum range.

Figure 2: Energy loss of negatively charged particles in the TPC as a function of particle
momentum/charge (p/Z). The black dashed lines indicate the expected energy loss for the
respective particles according to the Bethe-Bloch-formula. Figure adapted from [18].

2.3 Transition Radiation Detector (TRD)

The Transition Radiation Detector (TRD) at ALICE is an ensemble of 522 individual detector

chambers, that are arranged in 18 super modules around the beam line (labeled with numbers

from 0 to 17). Each super module itself consists of five stacks along the beam direction (labeled

from 0 to 4) and six layers aligned in the radial dimension (labeled from 0 to 5 and ranging

from positions of 2.90 m to 3.68 m)1. With this, a full azimuthal and a pseudorapidity coverage

of |η| < 0.84 is achieved [13]. The TRD has on the one hand been constructed to discriminate

electrons and hadrons (e.g. pions) in high multiplicity events, but it is on the other hand of

importance in the tracking of charged particles, which is the mainly relevant aspect during

this thesis.

The operating principle of one TRD chamber is based on the one of a multiwire propor-

tional chamber (MWPC) with a drift region inside a Xe-CO2-gas atmosphere. A radiator is

installed in front of the chamber and a pad readout is mounted at the back. This is shown in

a schematic overview in figure 3. When charged particles traverse the so-called drift region

of the MWPC, they ionize the detector gas in the corresponding volume. The so produced

ionization electrons travel along the drift lines indicated in figure 3 and induce an ionization

cascade in the detector gas [19] that is used to perform a dE/dx-measurement of the incoming

1In super modules 13 to 15, no TRD chambers were installed in stack 2 to reduce the material budget
in front of the PHOS detector, which can be seen in figure 1.
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particles. This allows to directly discriminate different particle species based on their specific

energy loss.

The radiator itself is constructed in a sandwich structure of different foams and fibers,

which are described in detail in [13]. Incoming highly relativistic particles with a Lorentz

factor of γ ≳ 1000 pass the radiator and emit Transition Radiation (TR) when they cross the

boundaries of media with different dielectrical constants. The produced TR photons in the

X-ray region then enter the drift region of the MWPC (cf. figure 3) and ionize gas particles

with a high probability such that an additional voltage signal in the readout chamber for these

high-γ particles is measured. This allows further discrimination of hadrons and electrons, as

their huge mass difference leads to different orders of magnitude in the Lorentz factor γ at

similar momenta.

Figure 3: Schematic cross-section of a TRD chamber. In the lower left corner, a corresponding
local coordinate system of the chamber is shown, which results from a rotation of the global
ALICE coordinate system. The length of the radiator is not drawn to scale with respect to
the other components. The energy deposition in the chamber due to TR photons of a highly
relativistic electron is indicated by a red dot. Figure taken from [13].

2.4 Construction of tracklets and calibration

As pointed out before, the TRD offers the capability for charged particle tracking. This task is

usually performed by the use of Kalman filtering such that the finding and the fitting of the re-

spective tracks are performed at the same time [13]. To apply a Kalman filter-algorithm within

a TRD tracking, the positional information of a particle traversing a single TRD chamber is

usually represented by a local track segment, which is called tracklet [11]. The construction

of these tracklets is based on an individual calibration technique, that was inter alia newly

developed to provide the datasets that are used within this thesis [20].
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Each tracklet consists of a three-dimensional offset point and a three-dimensional direction

information. They are constructed by performing a time-binned readout of the pad voltage

signal in each TRD chamber with analog digital converters (ADCs) using a time bin width of

∆t = 100 ns. Typically, the ADC readout provides signals in 24 time bins [13]. This information

can afterwards be used to perform a straight-line fit to the time-binned signals of all pad

positions within one TRD chamber using a singular value decomposition [20] after certain

corrections, such as for the E × B-effect on the motion of the ionization electrons in the drift

region [13], were applied to the respective pad positions.

2.5 Material budget in the central barrel

All the aforementioned parts of the experiment have different material budgets, which is of

importance when considering the occurrence of inelastic interactions between antinuclei and

hadronic components of each detector. To illustrate this, the cumulative material budget in the

ALICE detectors in the central barrel is shown in figure 4 looking at straight primary tracks.

Figure 4: Cumulative material budget in the detectors of the ALICE central barrel as a func-
tion of radial distance for straight primary tracks. The blue curve represents an average taken
over the full azimuth for particles that were emitted perpendicularly to the beam line. Figure
taken from [9].

It can be seen, that the cumulative material budget rises considerably within in the TRD,

which is the reason for an increased interaction probability of antinuclei. This is mainly due

to the fact that the radiator (X/X0 = 0.69 %), the pad planes (X/X0 = 0.77 %) and the readout

electronics (X/X0 = 1.18 %) contribute significantly to the cumulative amount of radiation

lengths, which is specifically for one TRD chamber given by X/X0 = 2.85 % for particles with

normal incidence [13].
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3 Deep learning and graph neural networks

In this chapter, an introduction to relevant concepts concerning graph neural networks (GNNs)

will be given. Therefore, the basics of deep learning architectures such as fully-connected net-

works (FCNs) and convolutional neural networks (CNNs) will be discussed. After that, graph

neural networks will be introduced as an example from the field of geometric deep learn-

ing, which is a generic term for deep learning techniques that do not operate on Euclidean

domains [21].

First, it will be shown how graph neural networks can be generally introduced using

the so-called graph network (GN) framework with a special focus on the so-called message-

passing neural networks (MPNNs). Furthermore, it will be motivated how the process of

convolution on ordered vectors in CNNs can be generalized to unordered sets in which rela-

tionships between different parts of the dataset are considered. This is known as the process of

graph convolution. As a final step, the working principle of so-called graph attention networks

(GATs) will be explained, which was an important concept regarding the GNN construction

that was performed within this thesis.

3.1 Deep learning terminology, fully-connected and convolutional

neural networks

Neural networks are nowadays very popular, since they can learn very complex nonlinear

functions and especially produce high-level information output from sets of low-level features.

This is beneficial, because classical machine learning algorithms like random forests (RFs)

or boosted decision trees (BDTs) rely on handcrafted features that represent the underlying

processes of data occurrence satisfactorily [22]. Features like this can be hard to construct,

when the data-generating processes get very complicated or the provided notion of features

is rather abstract [23]. However, the application of neural networks often results in models

that are difficult or nearly impossible to interpret in terms of their decision process, which is

a downside in the scope of a physics analysis.

3.1.1 Fully-connected networks

Fully-connected networks2 (FCNs) are known as the simplest architecture, that is used in deep

learning, but can also serve as a powerful baseline. They consist of multiple layers of neurons

and each neuron of a certain layer is connected to all the neurons in the subsequent layer, such

that a maximally dense network structure is created. A neuron is the smallest processing unit

within a neural network and computes one-dimensional outputs x′ ∈ R by weighting entries

of a multidimensional input X ∈ Rd [24]. Fully-connected layers were applied in this thesis to

provide the final classification output of the constructed graph neural network (cf. chapter 6).

2A fully-connected network is in many applications also often called multilayer perceptron (MLP).
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During one specific layer l, a feature input vector Xl ∈ Rd is linearly transformed by a

learnable weight matrix Wl ∈ Rd′×d and added with a learnable bias term bl ∈ Rd′ [12]. It

must be noted that every neuron connection between two layers is assigned an independent

weight such that there is no weight-sharing between adjacent neurons.

Afterwards, a nonlinear activation function φ, e.g. the often used rectified linear unit

(ReLU), which is for some x ∈ R defined as

ReLU(x) = max(x, 0), (1)

is applied elementwise to the output. This provides a nonlinear transformation of the original

input Xl in the layer l to the input vector Xl+1 of the layer (l + 1),

Xl+1 = φ(WlXl + bl). (2)

After a certain number of repetitions, a final output layer is constructed. The form of this

layer depends on the use case of the network. In classification tasks, which is the kind of

problem, that was relevant within this thesis, it typically contains C output neurons, where

C denotes the number of different classes in the baseline classification problem. Like this, a

score vector Si ∈ RC can be computed for every data instance i, the components of which can

be used to derive a class prediction Ŷi of the model according to the frequently used decision

rule

Ŷi = argmax
k∈{0, ..., C−1}

(Si)k. (3)

The score vector Si is in practice often normalized by applying a softmax function, such

that the final model outputs can be interpreted as posterior probabilities. The softmax func-

tion [12] for a vector x ∈ Rd is defined componentwise as

(Softmax(x))j =
exp

(
xj
)

∑d
m=1 exp(xm)

. (4)

In the context of this thesis, a binary classification task is considered: For a respective light

antinucleus, it should be determined whether it underwent an inelastic interaction process in

a predefined detector volume or not. Further details, how the respective class definitions were

implemented, are explained in chapter 4.

In order to quantify the quality of the model prediction in a differentiable way, a loss

function L is introduced. The specific form of the loss function depends on the application

and for the case of classification tasks, the so-called cross-entropy loss is often used [25]. It is

calculated from the known true class identity Y∗
i of an instance i, the derived class prediction

Ŷi and the normalized score vector S̃i = Softmax(Si), that is computed from the model output,

with

L(Y∗
i ; Ŷi, S̃i) = −

C−1

∑
k=0

1[Y∗
i = Ŷi] log

(
(S̃i)k

)
, (5)
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where 1 is an indicator function, that is non-vanishing, only if Y∗
i = Ŷi.

The basic task is to find a set of parameters for the model such that the value of the loss

function L gets minimized for a given training set. This is performed using gradient-based op-

timizers, e.g. gradient descent or ADAM [24], that are updating the parameters of the model

using information about the gradients of the loss L in parameter space. The step width in

parameter space is controlled via an adjustable hyperparameter, the so-called learning rate τ.

The training algorithm that is used for efficient gradient management while making use of

the layer structure of the neural network is called backpropagation [25]. During backpropaga-

tion, the model is evaluated while performing a so-called forward pass, where the respective

gradients of the loss with respect to the outputs of each layer are computed and stored in

memory. After that, the gradients of L with respect to its parameters are derived by taking

the gradients of the loss during the forward pass and a backward application of the chain

rule [12].

The above-mentioned gradients are typically updated using consecutive evaluations on

random subsets of the training set, which are called batches. One reason for this strategy is

that processing the complete training set at once could lead to difficulties, when the training

set is too large to fit into memory. This might especially be the case, when the training is

performed on GPUs to take advantage of their highly-parallelized computation infrastruc-

ture. The training is then performed in epochs, during which the complete training set gets

processed once.

3.1.2 Convolutional neural networks

Convolutional neural networks (CNNs) represent a type of network that has led to revolutions

in image classification and segmentation problems [25, 26]. This success resulted from the fact,

that convolutional processes on pixel-based feature inputs can reveal underlying patterns in

images, which purposefully incorporate feature properties in the neighborhood of certain

pixels. To illustrate this, a convolutional process on a two-dimensional feature input is shown

in figure 5.

A kernel function, which can be seen as a window that runs over the input, outputs a

different representation of the features compared to the original one. The size of this repre-

sentation depends on the definition of the kernel window, e.g. regarding the kernel size, the

kernel stride or the definition of a feature padding [12]. Whereas the kernel stride is a term for

the step width of the kernel function as it runs over the input, the feature padding describes

the behavior of the kernel at the edges of the feature inputs. Since there might be multiple

patterns of interest in the data, one convolutional layer in a CNN typically applies multiple

kernels that are all convolved with the input data and provides therefore multiple so-called

output channels [25].

Additional to a potential size reduction of the original features, the network structure

associated with the convolutional process results in a much sparser connectivity between the

neurons in subsequent layers than in a fully connected network [27]. This is because only
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entries in some neighborhood of a certain point in the original feature input contribute to one

specific element in the output, which is a priori not the case in a fully-connected network. The

notion of neighborhoods and locality is defined by the specific kernel functions that are used

for the convolution.

Furthermore, the parameters that are used in each kernel function, are jointly learned

based on all feature outputs that are computed, as each kernel window is slidden over the

total amount of input features. This ensures that patterns in the input can be filtered in a way

that is not affected by spatial translations.

Figure 5: Process of convolution for a two-dimensional feature input. The defined kernel
window runs over the feature input and produces an output of reduced size in this setting.
The learnable weights of the kernel are shared over the whole feature input. Figure taken
from [24].

3.2 Framework for graph neural networks

The working principle of the previous methods were based on the fact that some ordering

of the underlying feature inputs was possible in a canonical way, e.g. by representing pixels

within vectors or matrices, such that a natural sense of neighborhoods and relations between

different elements existed. However, a way to achieve this kind of ordering might not always

be very obvious, especially when the input information can not easily be represented by

tabular data. This problem is addressed by the so-called graph network (GN) framework that

was first presented in [27]. It builds the environment for the construction of general neural

networks that work on unordered sets with some bias on the relation between the set elements.

In the context of this thesis, only a subclass of these networks, the so-called message-passing

networks, were considered. The principle of these networks will be explained in more detail

in section 3.3. The specific application of this approach to the given physics problem is further

explained in chapter 5.
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The basic idea of the graph network framework is, that unordered sets can be assigned

a relational structure by representing them as a graph with certain edges and nodes. Due

to the edges, a natural representation of relationships between different graph nodes can be

obtained. The feature information on which the neural networks operate are then assigned to

the different elements in the graph, e.g. the nodes or the edges.

Abstractly, a graph G can be represented as a 3-tuple, G = (u, V, E), where u denotes a

vector of attributes of the whole graph. V is the set of nodes associated with node feature

vectors vi such that V = {vi, i ∈ {1, . . . , Nv}} and E is the set of edges associated with edge

feature vectors ek such that E = {(ek, rk, sk), k ∈ {1, . . . , Ne}}. Nv and Ne are the respective

numbers of nodes and edges in a graph and rk and sk are the indices of the receiver/sender

node, which are connected by a given edge k.

The graph network itself consists of three building blocks that increase in their hierarchical

position: The edge block, the node block and the global block. Each of these blocks contains

one update function ϕ, that computes updates of either edge, node or graph attributes. Fur-

thermore, every block has one aggregation function ρ, that is used in the computation steps

within certain updates. In this general setting, the specific form of these functions does not

need to be specified. Only the aggregation functions ρ need to be constructed such that their

output is invariant under permutations of the respective inputs. This reflects the requirement

that the GN framework is robust against the occurrence of graph isomorphies. Broadly speak-

ing, two graphs are isomorphic, if there exists a bijective map between them to interchange

nodes such that the edge and the label structure of the nodes in the graph is preserved [28].

This fundamental symmetry is comparable to invariance under translations in a convolutional

neural network, that has been mentioned before. The dependencies of each graph network

function and their specific deployment within an operational step of a GN are illustrated in

figure 6.

Initially, the features of all edges ek are updated with the update function ϕe using the node

features vrk and vsk , i.e. the nodes that are connected by the respective edge, and the global

graph attributes u. In the next step, the features of each node get updated to v′
i via the node

update function ϕv under use of the former node features vi, the global graph features u and

the aggregated updated features of those edges that have the respective node as a receiver. The

aggregation is performed using the aggregation function ρe→v of the edge block. In the last

step, an update of the graph-level features is performed. Therefore, the beforehand updated

node and edge features are globally aggregated using the aggregation functions ρe→u and

ρv→u. Subsequently, updated graph-level features u′ are computed using the graph update

function ϕu.

This very general setting has the advantage that a huge class of networks can be embedded

into this framework. However, the application of the presented ideas to specific problems,

especially regarding the network implementation in detail, is not straightforward. Therefore,

multiple subclasses of graph networks have been developed with further constraints on their

operational steps.
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Node Block

Edge Block

Global Block

Block division Functions in each block

Update:

Aggregation:

e′k = ϕe(ek, vrk , vsk , u)

e′i = ρe→v (E′
i
)

Update:

Aggregation:

v′
i = ϕv(e′i, vi, u)

e′ = ρe→u (E′)

Update:

Aggregation:

u′ = ϕu(e′, v′, u)

v′ = ρv→u (V ′)

Computation steps -this thesis-

Edge attribute update: e′k = ϕe(ek, vrk , vsk , u)

Edge attribute
aggregation for
respective nodes:

e′i = ρe→v (E′
i
)

with : E′
i =

{(
e′k, rk, sk

)
, k ∈ {1, . . . , Ne}, rk = i

}

Node attribute update: v′
i = ϕv(e′i, vi, u)

Global edge attribute
aggregation:

e′ = ρe→u (E′)
with : E′ =

{(
e′k, rk, sk

)
, k ∈ {1, . . . , Ne}

}

Global node attribute
aggregation:

v′ = ρv→u (V ′)
with : V ′ = {v′

i, i ∈ {1, . . . , Nv}}

i ∈ {1, . . . , Nv}

k ∈ {1, . . . , Ne}

Graph attribute update: u′ = ϕu(e′, v′, u)

Figure 6: Operational steps in a general graph network. The curved arrows on the right-hand
side indicate loops over all respective edges/nodes. The used notation is explained in the text.

3.3 Message-passing neural networks

During this thesis, a subclass of graph networks was considered, that has e.g. raised attention

in quantum chemistry due to successfully predicting the properties of certain molecules [29].

This type of implementation is called message-passing neural network (MPNN) and will be

further explained for the specific setting of supervised graph predictions, which was the base-

line problem considered within this thesis. There exist further use cases of MPNNs, e.g. the

inference on properties of single nodes in a graph or the prediction of edge features. Further

references, especially regarding the application of MPNNs in HEP, are for example summa-

rized in [23, 12].

The underlying idea of a MPNN is that nodes exchange messages with their nearest neigh-

bors repeatedly along their edges for a given number of time steps [29]. The output informa-

tion, that results from feature propagation during a certain time step t, serves as an input for

the computation of updated node features belonging to the subsequent time step (t+ 1). After

T time steps, the node features are passed to a permutation-invariant readout function, that

constructs a graph representation based on the final node features. This process is illustrated

in detail in figure 7.

It should be noted that the notation has changed compared to the general introduction on

graph networks, because the awareness of different time steps is necessary for understanding

the working principle of MPNNs.

One time step is defined by a complete update procedure of the features of all nodes in

a graph. For reasons of better understanding, the different nodes are here viewed separately

such that one specific node i is considered here. However, the respective processes can also
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eji,(t+1) = ϕe
t (eji,t, vj,t, vi,t) ei,(t+1) = ρe→v(Ei,(t+1)) = ∑j∈N (i) eji,(t+1)

Ei,(t+1) = {eji,(t+1), j ∈ N (i)}

edge update and aggregation:

node update:
vi,(t+1) = ϕv

t (ei,(t+1), vi,t)

i ∈ {1, ..., Nv}

For multiple time steps t ∈ {0, ..., T − 1}: -this thesis-

After T timesteps : Compute graph representation based on final node features :

Ŷ = ΨR(VT)

VT = {vi,T, i ∈ {1, ..., Nv}}

Figure 7: Functional principle of a message-passing neural network to perform graph-level
predictions. The curved arrow on the right-hand side indicates a loop over all nodes in a
graph. The first box represents the actual message-passing part and is performed for T time
steps. Afterwards, a graph prediction Ŷ is computed from the final node features using a
readout function ΨR. The used notation is explained in the text.

be parallelized for all nodes in one graph and especially be expressed in terms of matrix

operations.

In a certain time step t, the features of all edges from an arbitrary node j, while having

the node i as a receiver, will be updated to eji,(t+1), using the edge update function ϕe
t . As

an input, the former edge features eji,t and the current features of the nodes, that are linked

by the respective edge, are taken. The function ϕe
t is a differentiable function and typically

implemented as a simple neural network or a linear transformation (cf. section 3.4). After that,

the respective edge features for the node i are aggregated to ei,(t+1) using the edge aggregation

function ρe→v, which is typically implemented as an elementwise summation, as it is indicated

in figure 7. Therefore, the index set of all neighboring nodes for a given node i is denoted as

N (i). Specifically, j is an element of N (i), if there exists an edge in the graph, that points from

node j to node i. Finally, the features of the node i can be updated using the former node

features vi,t of time step t and the aggregation of the edge features ei,(t+1) as an input for the

node update function ϕv
t . The latter is typically also implemented as a simple neural network

or as an elementwise application of a nonlinear activation function [23].

So far, only node representations have been updated. To obtain a graph embedding from

the local node information, a readout function ΨR is applied to the final node representations

after message-passing. This involves a so-called pooling mechanism, that e.g. computes the

elementwise average of all node features, which is also often called global average pooling.

Finally, the obtained graph representation must be transformed to an output of the desired

shape, which is for example a score vector with two entries in a binary classification task and
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typically done under the use of an FCN.

3.4 Graph convolution

Within the framework of a MPNN, it is possible to define a sense of convolution on graphs.

There exist multiple approaches to do this and all of them generalize convolutions that are

used in CNNs (cf. section 3.1.2), as one can also clearly represent grids of features as graphs.

One problem to cope in this context is a rigorous definition of locality on a graph. Further in-

formation about this and the theoretical foundations of the different approaches implementing

graph convolutional layers can for example be found in [30].

One ansatz that is frequently used to implement convolutions on graphs and that was

also deployed during first investigations on candidate network structures during this thesis is

the so-called GCN-layer, which was first proposed in [31]. The update of the matrix of node

representations V(l+1) in layer (l + 1) can be directly computed from the previous ones V(l)

using stacked matrix operations

V(l+1) = σ(ÂV(l)W(l)). (6)

W(l) is a layer-specific trainable weight matrix, σ a nonlinear activation function (e.g. the

ReLU function) and Â denotes a normalized version of the adjacency matrix A for a given

graph, in which self-connections are added. This means that every node feeds back its feature

information to itself during message-passing. The so applied normalization process is called

neighborhood normalization. The adjacency matrix A of a graph itself is defined by

Aij =

1, if ∃ edge from node i to node j

0, else
(7)

and Â is then computed as

Â = D−1/2AD−1/2 (8)

with the so-called degree matrix D = ∑j Aij. The inverse square root of D is meant element-

wise.

It has already turned out that neighborhood normalization might cause problems dur-

ing graph-level predictions, as it might have a smearing effect on particularities within local

graph structures [32]. Therefore, other layers have been introduced, that omit neighborhood

normalization and apply different weight matrices to self- and the neighboring connections

of a given node. The impact of these effects for the classification task in this thesis will be

studied in detail in chapter 5. Further information on this sense of convolution is for example

presented in [28] in the more general setting of so-called higher-order GNNs.
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3.5 Graph attention networks

A further possibility to improve the performance of a general graph convolution is to identify

which of the neighboring nodes are most important for a given node during their aggregation

whilst message-passing. This is addressed by a so-called graph attention network (GAT),

which has been proposed first in [33] by a team of researchers working at DeepMind. There

also exist slightly different approaches which permute the computation steps that are used in

the here presented GAT [34]. However, the idea of attention mechanisms is not new to deep

learning and they have already shown their usefulness in a variety of problems, e.g. natural

language processing [35].

The baseline of the computations from section 3.4 remains the same with the difference

that for each so-called query node i, each of the neighboring nodes j is now assigned a differ-

ent normalized weight αij during node aggregation within the update procedure. The node

feature updates v′
i ∈ Rd′ of former node features vi ∈ Rd in one step of message-passing are

computed by

v′
i = σ

Ñ
∑

j∈N (i)∪{i}
αijWvj

é
, (9)

where W ∈ Rd′×d denotes a learnable weight matrix and σ is again a nonlinear activation

function. The weight coefficients αij are computed with

αij = (Softmax(ẽi))j (10)

with a vector of so-called attention coefficients ẽi ∈ R(#N (i)+1) of the query node i. These

attention coefficients originate from an attention function that is implemented as a single-

layer neural network. The structure of this network including the final softmax normalization

is illustrated in figure 8(a).

Initially, the feature vectors vi, vj ∈ Rd with j ∈ {1, . . . , Nv} are jointly transformed by the

above introduced learnable weight matrix W and then concatenated to a vector of dimension

n = 2d′. Via an inner product with a learnable weight vector a ∈ R2d′ , a real number is

obtained, which gets passed through a so-called leaky-ReLU activation

LeakyReLU(x; β) = max(x, βx) (11)

with the slope parameter β = 0.2. Subsequently, the coefficients are normalized using the

relation shown in equation (10).

An additional aspect to cope with is the fact that the learning of attention coefficients might

suffer from instabilities, that are in practice not desirable. This is addressed by so-called K-

multihead attention during which the attention coefficient computation is performed K times

in parallel with different weight matrices W(k) (k ∈ {1, . . . , K}) for the initial transformation

within the network (cf. figure 8(a)). The resulting node update can be obtained by a concate-

nation of the results calculated with equation (9) for a complete vector of attention weights
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(a) (b)

Figure 8: Illustration of graph attention networks. Figure (a) shows the structure of the atten-
tion network that is used to compute the normalized node weights αij. Figure (b) illustrates
the update of node features in a graph for a specific node with node features v1 using mul-
tihead attention with K = 3 heads, which is indicated using arrows of different colors and
forms. Further information about this is provided in the text. Adapted from [33].

αij ∈ RK and the different weight matrices W(k) or by averaging over the different results

before applying the final activation σ in equation (9). The first leads to an extended dimen-

sion of the updated node feature vector, while the averaging process is dimension-preserving.

The process of multihead attention for a specific node and its nearest neighbors in a graph is

illustrated in figure 8(b).
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4 Data preselection

In this chapter, the construction of the dataset, that was used to generate an input for a

graph neural network, will be explained. This was done using the ROOT Framework [36] and

program code originating from the TRD Self Tracking Repository in [37]. The latter is written

in the C++ programming language.

The simulation that built the baseline for this thesis consisted of 257.200 Monte Carlo

events of p–Pb-collisions at
√

sNN = 5.02 TeV using the detector configurations of ALICE dur-

ing the LHC16q run period. In these events, light antinuclei like antideuterons (d), antitritons

(t) and antihelium-3 (3He) were injected as primary tracks to study antinuclei annihilation

using the TRD as an absorber and tracker of the resulting fragments. The interaction of the

antinuclei with the detector material was simulated using the GEANT4-toolkit [38]. For pur-

poses of this thesis, the raw data were provided in the form of ROOT-files that contained

information about the constructed TRD tracklets, a TPC track reconstruction and the true MC

information of the underlying simulation.

At the beginning, the data set was investigated with a three-dimensional TRD event dis-

play. As an example, one complete p–Pb event from the dataset is shown in figure 9.

Figure 9: Three-dimensional display of a full p–Pb MC event. Different chambers of the
TRD are displayed in turquoise, the reconstructed TPC tracks are shown in orange and are
propagated to the outer TRD radius. The coloring scheme of the TRD tracklets reflects the
TRD layer to which they belong.

The inspection of the dataset involved a filtering of the above-mentioned antinuclei using

the true particle identity from the MC information and an investigation of their behavior in

18



the detector volume with the additional graphical feedback. It was found that a lot of antin-

uclei undergo inelastic interaction processes at the end of the TPC volume or within the TRD

chambers, during which daughter particles like light mesons (e.g. pions or kaons) or low-

mass baryons and antibaryons (e.g. (anti)protons and (anti)neutrons) are multiply created in

a particle shower. Furthermore, some antinuclei just passed the TRD volume without any

interaction or caused the knock out of low-momentum electrons at different positions along

their track.

Additionally, the resulting tracklet structures around the MC tracks of antinuclei were

inspected, as they were supposed to form the baseline of a graph construction by serving

as nodes of a graph with geometric features based on the tracklet offset and its direction.

During this investigation, it was found that a connection of these tracklets resulting from

inelastic interaction processes could not be provided by the application of an existing tracking

algorithm, since there were typically too few tracklets reconstructed next to an interaction

vertex to achieve a high tracking efficiency for the daughter particles and a tracking-based

edge construction.

For the further proceeding, it was important to develop a connection between the recon-

structed information and the underlying true processes that were provided by the MC infor-

mation. As the considered antinuclei are typically reconstructed in the TPC due to their high

specific energy loss and the fact, that the data only contained antinuclei in form of primary

tracks, a matching between TPC and MC tracks of antinuclei was implemented. This match-

ing used a parameter based comparison of the TPC and MC track helices. All the considered

tracks were therefore represented using the AliHelix-class of AliROOT [39]. Antinuclei, for

which no matching TPC track was found, were not considered in the following.

After these first investigations, the matched TPC tracks of the antinuclei were assigned

binary labels based on whether the underlying particles undergo an inelastic interaction pro-

cess in a defined target volume. This target volume was selected to cover a radial range from

270 cm to 345.5 cm which corresponds to a region in the outer TPC until a radius in layer 3 of

the TRD. Referring to this binary labeling, particles that are considered to perform an inelastic

interaction process within the target volume will be denoted as signal, whereas the remaining

candidates that pass the volume without any interaction are called background particles.

In the following, the criteria for an assignment of antinuclei to the signal and the back-

ground class are explained: Every antinucleus of either signal or background class needs to

have an MC momentum of p > 0.3 GeV/c and its pseudorapidity η needs to fulfill |η| < 0.84.

Particles that had a daughter creation vertex at radii below 270 cm, were assigned neither to

the signal nor to the background class. A particle is considered a signal event if there exists a

daughter creation vertex in the target volume, where at least two daughter particles with an

MC momentum of p > 0.04 GeV/c are created. Particles, that did not fulfill these criteria and

did not get rejected because of a daughter creation vertex at r < 270 cm, were assigned to the

background class.

After the assignment of a binary label to the selected TPC tracks, a selection of the TRD

tracklets was performed, which were considered to belong to the physical processes asso-
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ciated with a certain TPC track. This selection consisted of two steps: First, the tracklets

were prefiltered based on whether they were located in the respective sector or in one of the

adjacent sectors, where the propagated TPC track hit the TRD. Tracklets, that were recon-

structed in other than these three sectors, were rejected. For the remaining tracklets, their

three-dimensional distance of closest approach (DCA) of their offset point to the propagated

TPC track was calculated using an iterative algorithm. If a tracklet had a DCA < 35 cm, it was

assigned to the respective TPC track. The so created tracklet structures were visualized in the

TRD event display for signal and background particles. Some examples of this visualization

process are illustrated in figure 10.

It can be seen that this preselection sometimes contains noise tracklets or even tracklets,

that possibly originate from a track of another charged particle, which is located close to the

propagated TPC track. However, neural networks are very often able to filter important infor-

mation from a set of low-level data including a reasonable amount of noise. Consequently, no

further selection cuts were applied to the surrounding tracklets, which could have additionally

implied a loss of important information.

In the end, the final information on the TPC tracks of signal and background particles

was stored in form of one ROOT-tree each. These trees were nested such that each TPC

track contained the assigned TRD tracklets as subobjects. Before the local information of each

tracklet was saved to the corresponding tree, the coordinates of its offset and direction vector

were transformed to a local coordinate system of the sector, where the respective TPC track

hit the detector, via a respective rotation around the z-axis of the experiment (cf. figure 1).

This made it possible to reduce the spread of positional features for the different sectors of

the TRD in advance and can be seen as an additional step of feature preprocessing.

The stored tracklet information then consisted of the localized offset and direction vector

and was further replenished by the three-dimensional distance of closest approach of the

tracklet offset to the respective TPC track. The information of each TPC track was made of the

reconstructed Lorentz vector, the number of assigned TRD tracklets and a unique identifier

of each track, that was built of the event number and the TPC track number within the given

files. Furthermore, it contained the true particle identity originating from the MC information,

geometric information of the track (e.g. its pseudorapidity η) and the signal tree also contained

local information of the respective points, that were considered to be inelastic interaction

vertices.

Before the final input for the GNN was created, a further cut on the produced datasets was

applied taking into account the number n of assigned tracklets for each TPC track. Throughout

the investigations in chapters 5 to 8, only TPC tracks were considered, to which at least seven

tracklets were assigned. The purpose of this step was to reject particles, for which no adequate

detector signal was present to be considered during classification. The assignment of less than

seven tracklets can e.g. happen, when a particle does not pass the active volume of the TRD

at all, when certain TRD chambers were not fully operational during the respective runtime

or when the vicinity of the TPC track only contains the tracklets of a traversing particle itself.

The impact of this preliminary selection process on the amount of statistics for the two classes

20



(a) Example of a signal event: An an-
tideuteron nucleus, that serves as a nuclear
interaction candidate, produces a shower of
outgoing tracklets in the second TRD layer.

(b) Example of a background event: An an-
titriton nucleus, that passes the TRD with
tracklets of an additional charged particle
track crossing the propagated TPC track.

(c) Example of a signal event: An antihelium-
3 nucleus, that serves as a nuclear interaction
candidate. Tracklets of an additional charged
particle track overlay tracklets of an in- and
outgoing particle shower.

(d) Examle of a background event: An an-
titriton nucleus that passes the TRD with
additional adjacent tracklets that are closely
aligned.

Figure 10: Illustration of tracklet assignments to given TPC tracks in the xy-plane of the TRD.
TPC tracks from the signal class are shown in blue, background tracks are depicted in violet
and are propagated to the end of the TRD. The TRD tracklets are colored with respect to the
TRD layer where they originate from. Red tracklets belong to layer 0, whereas orange tracklets
belong to layer 5. For signal events, the determined interaction vertex is shown as a green dot.
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is illustrated in table 1. It can be seen, that this cut significantly reduces the abundance of

background particles in the dataset, but only shrinks the signal class to about 86.54% of its

original size. Moreover, only about 7.83% of the so excluded instances were signal particles.

no. of entries no. of entries with n > 6 fraction
background 901 629 371 004 0.4115

signal 335 086 289 998 0.8654

Table 1: Impact of the cut on the number of assigned TRD tracklets on the abundance of the
signal and background class within the dataset.

A further illustration of this preselection process is given in figure 11, where the signal and

background distributions of the number of assigned tracklets to the TPC tracks are shown. It

can be seen that the background distribution is peaked at n = 6 assigned tracklets which can

be explained by the conjecture that a lot of preselected background events only contain the

tracklets due to the traversing particle itself.

Figure 11: Distribution of the number of assigned tracklets for the TPC tracks of signal and
background class. The bin width of the histogram is one. The red line illustrates the cut, that
was applied to extract data for further investigations within the following chapters.

Additionally, figure 12 depicts the radial distribution of the points which were considered

as inelastic interaction vertices of the signal particles, after the cut on the number of tracklets

was applied.

It can be seen that there are peaks in the distribution that can be assigned to the different

layers of the TRD. The reason for this is the high interaction probability of antinuclei within

the TRD due to its material budget, which was discussed in chapter 2. Additionally, a lot of

interactions take place in the outer area of the TPC. The two clear peaks in this radial range

might be present because of the high material budget in the outer field cage and the outer
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Figure 12: Radial distribution of space points, which were considered to be inelastic inter-
action vertices. The marked red lines show the spatial radial center of the active area for the
respective TRD layers.

containment vessel [40], which limit the CO2-gap of the TPC, but further studies are required.

Moreover, a lot of inelastic interactions take place in front of layer 0 of the TRD.

Further plots, in which the distributions of the respective reconstructed transverse mo-

mentum pTPC
T of the extracted signal and background particles are shown with a separation

into different antinuclei species, can be found in the appendix in section A.1. These plots also

illustrate the signal and background class balance for different species of antinuclei.
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5 Pilot experiments on the network architecture

Neural networks have nowadays gained so much in popularity, because there exist power-

ful libraries which allow for a convenient and fast implementation of deep learning models.

In the context of this thesis, the neural network library PyTorch [41] and the extension for

graph neural networks which is called PyTorch Geometric [42] were used. Both libraries allow

for training and execution of the respective architectures on graphics cards using the CUDA

toolkit [43]. The implementation of the network architectures and their evaluation was per-

formed using the Python-programming language. All the subsequent steps were executed on a

DELL XPS 15 9500 laptop with an Intel Core i7-10750H and 32 GB DDR4-RAM. Furthermore,

an NVIDIA GTX 1650 Ti with 4 GB GDDR5-RAM was used for running the above-mentioned

CUDA extensions.

5.1 Graph construction from the preselected data

After the data preselection, that was described in chapter 4, graphs were built, that served

as an input for a graph neural network. Therefore, the constructed ROOT trees of the signal

and background class were embedded into a Python environment using the software package

uproot [44].

First, graphs were built from the tracklet structures that were assigned to each TPC track.

Each tracklet served as the basis for one node of a graph, while holding a seven dimensional

feature information. This consists of the three-dimensional localized offset and directional

information of the tracklet and its distance of closest approach to the respective TPC track.

For the edge creation, two different strategies were decided to be investigated during first

network trainings: The first approach was to construct fully-connected graphs to insert as

little prior knowledge on the connectivity in the graph as possible and let the GNN learn the

importance of each node during message-passing via an attention network (cf. section 3.5).

Therefore, every node is a priori connected to all the other nodes in a graph, which results in

a maximally dense graph connectivity.

In the second approach, k-nearest neighbor graphs (k-NN graphs) [45] were constructed

using preliminary biases on the positional information of the respective tracklet offsets. There-

fore, the pairwise Euclidean distances between the offset points of the underlying tracklets

were calculated. Afterwards, a specific node i was connected by an edge to another node j,
if the corresponding tracklet offset of node j had a distance to the one of node i, which was

under the k smallest ones over the complete graph. Consequently, each node spreads feature

information to its positional k nearest neighbors within one step of message-passing and the

resulting graph structure always contains self-connections. Like this, a sense of locality on the

graphs was introduced, which was related to the tracklet geometry in position space. Fur-

thermore, this results in a graph connectivity that is typically sparser than in fully-connected

graphs.

Within the further proceeding, each graph was assigned global attributes such as the trans-
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verse momentum pTPC
T of the respective TPC track, the event and track number, which made

an identification possible within the framework of the raw data in the ROOT trees, and the

associated true particle type, that originated from the MC information. This information

allowed to conduct additional studies considering physical properties of the underlying par-

ticles. Furthermore, each graph received a binary label based on the fact, whether the under-

lying antinucleus belonged to the signal or the background class.

The representation of the graph data was performed by embedding them into single com-

pressed files using the array representation library NumPy [46]. In these files, all the needed

information for the graph construction, such as the node features, the adjacency matrix and

global graph attributes were included. The advantage of this approach was that it allowed

to embed subsets of graphs into PyTorch Geometric later on without having to reperform all

previous computations and it further offered a rather simple way to deal with the large het-

erogeneity of the different tracklet structures.

In the next step, a PyTorch Geometric-dataset was constructed. This involved the imple-

mentation of a PyTorch Geometric Dataset-class, which was needed to represent the graphs

within the framework correctly. It was decided to build a dataset, that was not embedded into

RAM, but could be stored permanently on a hard disk instead. During file creation within a

PyTorch-format, the previously created compressed NumPy-files were used as an input.

Subsequently, the final PyTorch Geometric-dataset got processed, during which the respec-

tive node features were normalized. Feature normalization or standardization is an often per-

formed procedure of preprocessing during gradient-based training of neural networks. For

the subsequent training and testing steps, an appropriate subset of the dataset was passed to

a dataloader of PyTorch Geometric in order to create graph batches and automatically perform

batch-shuffling during the training process.

5.2 First training steps

One challenge, that is omnipresent during the optimization of neural networks, is that their

performance critically relies on the used architecture and the choice of good network hyper-

parameters. Furthermore, the training strategy itself, e.g. the choice of the optimizer and

its configuration (e.g. learning rate), can have a huge impact on the quality of the network

output after training. Since network training can become very expensive regarding computa-

tional resources and also in terms of time, some restrictions need to be applied on the tests

beforehands. This also includes the fact that the first trainings are normally not conducted

on the complete amount of available data and that the network training is typically not per-

formed until final convergence. The network structure, that was investigated during these

first considerations ("pilot experiments"), is illustrated in figure 13 and builds the framework

for additional optimization steps that are explained in detail in chapter 6.

In this network, the graph input gets passed through a predefined number of message-

passing layers with subsequent ReLU activation functions. After the message-passing steps,

a global average pooling is applied for every graph. This means that a graph representation

25



Figure 13: Starting point for a GNN architecture during the pilot experiments. The boxes
in different colors stand for different parts of the network that largely belong together. The
red boxes represent message-passing layers, whereas the green box stands for a pooling layer
that computes a graph representation from the average of node representations within each
graph. A final linear layer, which is displayed in blue, produces output scores for each graph
referring to the defined signal and background class.

is obtained from an elementwise average over the feature representations of all nodes in the

graph. Afterwards, a dropout is applied to the output of the pooling layer, which is a common

technique in training neural networks to provide a regularization effect and therefore prevent

overfitting. This is done by randomly setting outputs of a given layer to zero during training

with a given dropout probability p. Afterwards, a single linear layer computes signal and

background scores for each graph from which a class prediction can be derived by applying

the decision rule that is shown in equation (3).

The main focus during this investigation was to find out how the application of different

numbers and types of message-passing layers have an influence on the classification results.

Therefore, four different layer types were selected for first experiments: Two layers (GCNConv,

GraphConv) implement a graph convolution. The GCNConv-layer performs convolution in

exactly the same way that was introduced in section 3.4. The GraphConv-layer slightly differs

from this implementation as no neighborhood normalization as in GCNConv is performed and

that different learnable weight matrices are applied to the original and neighboring nodes in

a graph. The other two layers (GATConv, GATv2Conv) allow for building a graph attention

network (cf. section 3.5) and differ in the way the attention coefficients are calculated and

incorporated in the respective node updates. Further details about this can be found in [34].

All these layers are already implemented in PyTorch Geometric and were used with different

numbers nh of so-called hidden channels, which refers to the size of the feature representation

that each node is assigned between multiple message-passing layers. The number of message-

passing layers was varied between two and four and for the number of hidden channels,

the values 64, 128 and 256 were tried out. Since the global average pooling preserves the

dimension of the computed feature vectors, as the average is performed over the different

nodes in a graph, the number of input neurons nr of the linear layer was equal to the number

of hidden channels nh.

The training was performed using datasets of fully-connected graphs and k-NN graphs.

Early tests within the above shown architecture were conducted with different numbers of

nearest neighbors. A number of k = 5 nearest neighbors showed the most promising results,

such that this value was used for systematic studies in the following. Furthermore, a rapid

performance decrease was observed, when lower values for k were used. This can be reasoned
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by the fact that the resulting graphs contained increasingly more isolated nodes, which has a

considerable impact on the process of message-passing.

As processing the complete datasets with all instances during these preliminary tests

would have been infeasible in points of time consumption, three subsets of 20.000 graphs were

sampled from all instances and used during the first trainings. Each dataset of 20.000 graphs

was divided into 14.000 training graphs, 3.000 validation graphs and 3.000 test graphs. The

training graphs were grouped into batches of size N = 200. The training was performed using

the cross-entropy as a loss function and the ADAM-optimizer with a constant learning rate of

τ = 0.005 for 100 epochs. The model states after all epochs were logged by storing the respec-

tive model parameters. Furthermore, the model accuracies on the training and validation set

were calculated during each epoch to monitor the training progress and further judge, how

well the model generalizes to previously unseen data. Additionally, this strategy was applied

to identify signs of overfitting, which would imply an increasing training accuracy, while the

validation accuracy would simultaneously decrease over multiple epochs. However, no clear

signs of overfitting were encountered throughout all pilot experiments, which was concluded

from plots of the training and validation accuracies of the considered models over the training

epochs.

After 100 epochs, the best model during training time was selected based jointly on the

documented training and validation accuracies. This final model was then evaluated on the

test set and the respective area under curve (AUC) was calculated. The AUC denotes the area

under the so-called Receiver Operating Characteristic (ROC), for which the signal efficiency

εs (also known as true positive rate) of the model is evaluated as a function of its background

efficiency εb (also known as false positive rate). It can be seen as a measure that summarizes

the prediction power of the model independent of the specific classification threshold for the

final class assignment.

This procedure of training and testing was repeated for the three sampled subsets of

the dataset for all mentioned network types, numbers of message-passing layers and hid-

den channels, respectively. The corresponding results were afterwards averaged for a certain

network-/dataset configuration and the standard deviation of the obtained three values were

calculated. The results of the investigation during the use of three message-passing layers of

the four respective types with different numbers of hidden channels, while considering 5-NN

graphs, can exemplarily be seen in tables 2 and 3. In this setting, the best overall model perfor-

mances during the chosen optimization procedure were encountered, which was concluded

based on the mean accuracies calculated on the respective test sets and the associated mean

of the AUCs.

The full results for other numbers of message-passing layers and especially for the dataset

with fully-connected graphs are shown in the appendix in section A.2. As it turned out,

the performance on the dataset with fully-connected graphs was in almost all configurations

behind the results, that were achieved during the consideration of NN graphs and larger

standard deviations considering the final test accuracies and AUCs were encountered. This

was the case for the convolutional and the attention-based methods, even though the con-
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GCNConv GraphConv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.778 ± 0.003 0.774 ± 0.003 0.775 ± 0.002 0.852 ± 0.001 0.853 ± 0.001 0.852 ± 0.001
validation accuracy 0.773 ± 0.002 0.766 ± 0.002 0.765 ± 0.003 0.848 ± 0.001 0.848 ± 0.002 0.847 ± 0.002

test accuracy 0.768 ± 0.003 0.764 ± 0.003 0.767 ± 0.003 0.850 ± 0.002 0.851 ± 0.001 0.849 ± 0.002
AUC 0.856 ± 0.002 0.852 ± 0.002 0.854 ± 0.002 0.914 ± 0.001 0.915 ± 0.001 0.913 ± 0.001

Table 2: Results of pilot experiments with 5-NN graphs for three message-passing layers
using two graph convolutional methods.

GATConv GATV2Conv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.851 ± 0.001 0.852 ± 0.001 0.850 ± 0.001 0.851 ± 0.001 0.850 ± 0.001 0.850 ± 0.001
validation accuracy 0.846 ± 0.002 0.847 ± 0.002 0.848 ± 0.002 0.846 ± 0.001 0.844 ± 0.001 0.844 ± 0.001

test accuracy 0.845 ± 0.002 0.851 ± 0.002 0.849 ± 0.002 0.844 ± 0.002 0.843 ± 0.001 0.845 ± 0.002
AUC 0.909 ± 0.002 0.914 ± 0.001 0.912 ± 0.001 0.908 ± 0.002 0.907 ± 0.001 0.910 ± 0.002

Table 3: Results of pilot experiments with 5-NN graphs for three message-passing layers
using two different methods implementing a graph attention network.

volutional methods were performing significantly worse than the attention-based ones. This

shows that a preliminary bias on the graph connectivity, which is further motivated by the un-

derlying tracklet geometry, can help to improve the classification performance of the networks

compared to a relatively unbiased proceeding.

Additionally, the naive approach of just passing the node features on graphs with full

connectivity to a neural network and let an attention mechanism extract relevant information,

did not work satisfactorily compared to the approach with NN graphs, when taking the above

network structures and optimization steps as a baseline. Consequently, the dataset of fully-

connected graphs was not used anymore while taking the above network architecture through

further optimization steps.

When comparing the graph convolutional methods using NN graphs, it can be seen that

the use of the GraphConv-layer within the network architecture delivers much better results

than the GCNConv-layer. This might be due to the fact that the GCNConv-implementation

loses important graph-structural information while performing neighborhood normalization,

which has already been pointed out in recent publications, e.g. in [32]. The best overall

performance is seen with the GraphConv-network with 128 hidden channels, even though the

difference compared to 64 and 256 hidden channels is not assessed significant considering the

standard deviations of the results.

For the attention-based solutions, both methods essentially achieve similar results during

training, that are on average better than a normal graph convolution with GCNConv and

only slightly worse than using GraphConv-layers. However, the GATConv-architecture shows

a little better generalization to previously unseen data than the model using GATV2Conv-

layers and the best results are obtained with 128 hidden channels as well. The performance

of the models of identical type (same type and number of message-passing layers) when

using different numbers of hidden channels, are not too dissimilar, but expose a little larger

differences compared to the tests with GraphConv-layers.
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6 Training of the final models

Due to the performance tests in the first training steps within chapter 5, two models were

chosen to be carried through further optimization steps, before applying them to the complete

dataset of 5-NN graphs. A detailed documentation of the respective results for the following

optimization steps, like it was given in chapter 5, is not presented here. The two models, that

were investigated further, were the chosen GraphConv- and the GATConv-model with three

message-passing layers and 128 hidden channels each.

6.1 Additional optimization of the final models

In the first step of further optimization, the single linear layer, which was put at the end of

both models, got replaced by a three layer fully-connected network with ReLU activations.

This step was taken to enable the model to learn a more complex readout function, that

computes the final signal and background scores. The details on the respective configuration

of the number of input and output neurons are illustrated in figure 14.

Figure 14: Final network configuration after additional optimization steps. It consists of three
message-passing layers with 128 hidden channels each and a complete readout-MLP, that is
built of three fully-connected layers using ReLU activations.

Additionally, the message-passing layers in the GATConv-model were enhanced to perform

K-multihead attention with K = 3 heads, during which the feature dimension of nh = 128 was

preserved by applying the final layer activation after averaging the aggregated feature output.

This step was done to stabilize the process of learning attention coefficients during message-

passing. It was additionally observed to deliver visual improvements during training, as

huge fluctuations within the registered train and validation accuracies became less abundant.

Both modifications of the GATConv-model and the extension of the readout network for the

GraphConv-model were identified to result in an additional performance improvement during

similar testing strategies, as they were performed in chapter 5.

6.2 Training procedure and training results

After the final decision on the network structure, both models were trained using the complete

dataset of 661.002 graph instances. During this training, the graphs were not separated due

to their particle species and no separation of the data due to the transverse momentum pTPC
T

of the respective TPC tracks was performed either. Additional investigations on the effects of

further data separation and the reasoning of the used final training procedure are presented

at the end of this section.
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The training was performed for 200 epochs, which took about 54.83 hours for the Graph-
Conv-model and about 46.45 hours for the GATConv-model. For the optimization process of

each model, a schedule on the learning rate of the ADAM-optimizer was applied to improve

its convergence. It was decided to use a learning rate reduction every 30 epochs to 75% of

the previous one starting in epoch 30. The initial learning rate τ was chosen to be τ = 0.005.

The complete dataset was split such that 70% of all instances were used during training, 15%

for validation and 15% for testing. The training instances were presented in batches of size

N = 1000 and the model accuracies on the training and validation set were calculated in ev-

ery epoch to monitor the training progress. A plot of the resulting training and validation

accuracies for both GNN models during the final trainings can be seen in figure 15.

(a) Results for the GraphConv-model.

(b) Results for the GATConv-model.

Figure 15: Trends of the training and validation accuracies during the final training process of
both GNN models. Figure (a) shows the accuracy trends for the GraphConv-model and figure
(b) for the GATConv-model.
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After every epoch, the model states were saved by storing the respective model parameters.

This allowed for selecting a model after training, which has shown very good performance

in terms of training and validation accuracies and additionally prevents from choosing a

potentially bad model due to noise in the resulting accuracies at the end of the respective

training period.

The decision to terminate training of both models after 200 epochs was taken based on

the convergence behavior of both models. It can be seen in figure 15(a), that the training and

validation accuracy of the GraphConv-model did not change significantly any more during the

last 30 epochs of training. Thus, the occurrence of additional improvements that considerably

influence the model quality was considered rather unlikely.

For the GATConv-model, it can be seen in figure 15(b) that the training accuracy of the

model was still increasing a little on average, but this was not significantly the case for valida-

tion accuracy for about 30 epochs. It was therefore concluded that substantial improvements

on previously unseen data are not very likely, even when the training accuracy continues to

rise further. However, the difference between the model performance on the training and

the validation set at the end of training was not interpreted as a sign of overfitting, since the

further increase in training accuracy did not lead to a decreasing validation accuracy.

After the termination of training, both models were evaluated using the graph instances

in the beforehand separated test set. Additionally, the AUC and the so-called average preci-

sion score of the two different models were calculated. While the AUC considers the signal

efficiency εs of the model as a function of its background efficiency εb in the ROC curve, the

average precision score is based on the evaluation of the model purity εp as a function of its

signal efficiency εs in the so-called precision-recall curve3. Like this, it can be visualized, how

well the model can separate signal and background due to classifying a particle as signal,

while taking into account that only a certain fraction εs of signal particles is classified cor-

rectly. In ideal cases, a classifier returns a very pure sample at a high signal efficiency, but

in practice, a suitable trade-off between these two quantities must be applied. The average

precision score can be seen as a single quantitative measure, how well a model can correctly

identify all signal instances without classifying too many background particles wrongly.

An overview of the respective model accuracies on the training, validation and test set

is given in table 4, where also the AUCs and the average precisions of both classifiers are

included. Plots of the respective ROC and precision-recall curves are shown in chapter 7, when

the performance of the GNNs is compared against additional simple classification approaches.

As it can be seen, both GNNs achieve satisfactory results. They provide high accuracies

during training and are apparently both able to generalize to previously unseen data con-

sidering their performances on the test set. However, the GraphConv-GNN delivers a slightly

better overall model performance and shows superior results on the test set compared to the

GATConv-model. A detailed analysis of the model performances while looking at the different

types of antinuclei and investigations of the model behavior in different ranges of transverse

3In machine learning jargon, the terms precision for the purity and recall for the signal efficiency
are commonly used.
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Model GraphConv-GNN GATConv-GNN
training accuracy 0.9139 0.9121

validation accuracy 0.9104 0.9046
test accuracy 0.9120 0.9037

AUC 0.970 0.964
average precision 0.964 0.957

Table 4: Overview of the model performance of both GNNs after final training.

momentum is provided in chapter 7.

During additional tests, the creation of particle-specific models was considered. Therefore,

the used dataset was separated for the different species of antinuclei and similar trainings as

before have been carried out. As it turned out, training these individual models from scratch

did not result in an improvement of the model accuracies compared to deploying the general

models on particle-specific data.

Moreover, it was tried to use pretrained models that were obtained with the unseparated

dataset within different epochs and continue training under use of parts of the respective

training/validation set, where the instances were separated according to their particle species.

These investigations have also never led to reaching the individual performance of the final

overall models on particle-separated data.

One reason on the side of physics for this could be that the topology of inelastic interaction

processes of different antinuclei is not too dissimilar and that the individual neural network

performance benefits from the respective samples across different antinuclei species. However,

these differences can also result from the fact that further adjustments of the models for

different particle species are needed, as the amount of available statistics gets reduced to

about one third of the original size. In any case, approaches like this require further studies

in the future, e.g. with more statistics from additional simulations.

6.3 Systematics of wrongly classified instances

To make further trainings in additional use cases of the GNNs more accurate, especially when

using the models for physics analyses, it is of interest to identify problems in the classification

process by a systematic study of misclassified instances. It is therefore interesting to search

for similarities in the respective instances, which provides the chance of future improvements,

e.g. in the data preselection.

To perform these investigations, the individual graphs, that were classified wrongly by the

final models, were written out and matched with the underlying information that was derived

from the raw data files.

An important point was that the radial distribution of the inelastic interaction vertices of

the false negatives using both final GNNs is peaked at higher radii and was especially not

similar to the original radial distribution of interaction points, that is shown in figure 12. This

can be seen in figure 16.
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Figure 16: Radial distribution of interaction vertices of signal particles that are classified as
background. The plot includes the results for both final GNNs.

One reason for this dissimilarity could be the fact that interacting particles in layers 4 and

5 of the TRD are also assigned to the background class as a result of the definition of the

target volume. Consequently, the topology of nuclear interactions in the backstage area of the

target volume might be confused with background events during the classification procedure.

This could be further supported by the fact that inelastic interactions at higher radii are in

general less abundant in the dataset (cf. figure 12) and are therefore seen less during training.

However, interpretations like these must be treated with caution, as the exact decision process

of the GNN is not transparent for the user. Consequently, additional investigations of these

effects require further empirical studies, for example with further data samples or with a

customized data preselection that uses a definition of a reduced target volume.
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7 Comparison of graph neural networks against other

classification approaches

The previous chapters have shown that it is indeed possible to apply GNNs to the given classi-

fication problem and achieve reasonable results. However, it is of interest, how GNNs behave

in comparison to other simple classification approaches and find out, if they deliver a similar

or even better performance. Within this chapter, two different approaches are presented: The

first one relies on classical cut-based analysis on handcrafted features, as it is widely used

in HEP. The second one is based on a random forest classifier that is built using the features

of the cut-based models and additional positional features of the underlying tracklets. Both

approaches were used with data, for which no preliminary separation of different particles re-

spectively pT-bins was performed during model creation, since this was also not done during

the training of the neural networks.

7.1 Cut-based models

7.1.1 Creation of cut-based models

One problem that occurs when trying to apply a cut-based analysis is that the given setting

makes it difficult to come up with handcrafted features such that they can be assigned a

comprehensive physical meaning together with the applied cuts. This is the case since the

positional information of the tracklets around a TPC track is rather abstract and it is therefore

difficult to develop an intuition, which strategies might deliver good results.

In this thesis, two approaches to the cut-based model creation were investigated: The first

one was based on applying a cut on the number of assigned tracklets n for each TPC track. As

it can be seen in figure 11, the different distributions of the number of tracklets for the signal

and the background class are expected to provide some separational power. This can also

be assigned a physical meaning since antinuclei that perform inelastic interactions, typically

produce multiple outgoing charged particles which are expected to leave signs of presence in

the TRD in the form of additional reconstructed tracklets.

The cut search was performed while trying to obtain a maximum accuracy of the result-

ing model. This approach was selected because this was also the one chosen during neural

network training, where the accuracies of the respective models were monitored to judge the

performance during the model creation. However, further use of these models in the scope of

a physics analysis might require to change the cut selection, such that e.g. statistical errors of

the inferred physical quantities get minimized (cf. chapter 8).

In this model, a particle was identified as signal, if the number of tracklets n exceeded a

certain threshold number ncut. As it turned out, a cut on the number of tracklets with ncut = 13

performed best in the given setting.

In a second approach, the mean distance d of all assigned tracklets from a given TPC track

was considered. This was motivated by the fact that d is expected to be higher if a particle
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creates certain daughter particles that typically propagate away from the original TPC track.

The distribution of the respective mean distances for signal and background particles is

illustrated in figure 17. Just as done before, an optimal cut dcut was searched that provided

a maximal model accuracy when applying the decision rule that every particle with d > dcut

is classified as signal. The search was performed on a grid of spacing 0.1 cm from mean dis-

tances of 0 cm to 30 cm. The optimal cut value dcut was found to be dcut = 15.6 cm, which is

indicated by a red line in figure 17.

Figure 17: Distribution of the mean distance of all assigned tracklets from the TPC track for
signal and background particles. The red line illustrates the cut that was found to produce
the highest accuracy in the respective cut-based model.

The accuracies of the two individual cut-based models are shown in table 5. Additionally, the

resulting efficiency and purity of each model is included.

Model cut on number of tracklets n cut on mean tracklet distances d
accuracy 0.7113 0.7027
efficiency 0.592 0.600

purity 0.703 0.684

Table 5: Overview of the general performance of the two created cut-based models operating
on the number of assigned tracklets and the mean distance of all assigned tracklets of the
given TPC track.

It can already be seen that the performance is not really satisfactory, as especially the effi-

ciency of both models is rather low and the model accuracies do not exceed values of roughly

71%. One reason for this is possibly the occurrence of noise tracklets and the fact that the

tracklet preselection, as it is performed here, is not suitable for the application of these sim-

ple cut-based models. The overall performance might improve with a different approach for

the tracklet preselection or if the complete dataset was divided into subsets with additional
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constraints (e.g. with respect to the transverse momentum of the particle) and cut search was

performed individually on the different subsets.

During further investigations, it was tried to combine both above used features and de-

rive joint cuts to further improve the results. As it turned out, both features could not be

combined meaningfully into a joined model. This is because the found optimal cuts by using

the approach of obtaining a maximum accuracy delivered the same cut value on the num-

ber of surrounding tracklets as above and implied to overthrow the dependence on the mean

distance d.

Of course, there might be more expressive features, which could result in a better per-

formance in the framework of cut-based analyses, as they could provide more separational

power. However, it might then be problematic to interpret the respective features and assign

them a reasonable physical meaning together with the derived cuts.

7.1.2 Comparison of cut-based models with the GNNs

For an additional comparison between the cut-based models and the GNN approaches, the

resulting efficiencies and purities of both cut-based models were calculated by applying them

separately to particles with different reconstructed transverse momentum pTPC
T . Therefore,

a division into eight pTPC
T -bins of the same width between 0.75 GeV/c and 10.75 GeV/c was

used. In the next step, the efficiencies of both GNNs were fixed to the efficiency of each cut-

based model within the specific pTPC
T -bin and the corresponding purities of the GNNs were

calculated. The results are visualized in figure 18 together with the respective purities and

efficiencies of the cut-based models.

(a) (b)

Figure 18: Comparison of the GNN purities to the purity of both cut-based models in eight
different pTPC

T -bins at equal efficiency. The efficiencies, for which the purities of the different
models are shown, are depicted by a green dotted line and correspond to these of each cut-
based model within the specific pTPC

T -bin. Figure (a) shows the results for the cut-based model
using the number n of surrounding tracklets and figure (b) for applying a cut on the mean
tracklet distances d.
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Further plots, which were derived analogously with additional particle separation and the

subsequent evaluation of the model purities in different pTPC
T -bins at equal efficiency levels,

can be found in the appendix in section A.3.

As depicted in figure 18, the GNNs provide purities that are a lot higher compared to the

respective purities of the cut-based models and that are also nearly constant at the considered

efficiency levels. Some exceptions thereof can be seen at lower pT within the cut-based model

on the mean tracklet distance d. This is due to the fact that the corresponding efficiencies It

should be noted that the purity of the cut-based model using the number of assigned tracklets

does not change very much for different pT with the exception that the purity becomes a

little lower within the two bins of pTPC
T < 3.25 GeV/c. During the use of the cut-based model

on the mean distance, a decreasing purity is observed as well as a monotonically decreasing

efficiency over subsequent momentum bins for increasing pTPC
T with a small exception in the

bin with the highest pTPC
T -values. One reason for this can be the different kinematic conditions

during the interactions at different pTPC
T , as the resulting tracks of daughter particles may have

smaller curvature at higher pTPC
T and therefore on average a smaller distance from the original

TPC track.

Based on these results and especially under consideration of the respective model per-

formances, when searching for cuts showing a good performance over the whole dataset,

the approach of deploying cut-based models for this classification problem was not further

extended. In summary, it was shown that the constructed GNNs clearly outperform these

simple cut-based models.

7.2 Random forest

7.2.1 Description of feature selection and training

A further approach to benchmark the GNN was to use multivariate analysis methods that

operate on additional features compared to the cut-based models. In this thesis, it was decided

to use a random forest classifier, like it is implemented in the machine learning library scikit
learn [47]. Decision trees are an important method in classical machine learning and are also

widely used in HEP [12]. This is mainly because they are quite simple and fast to train within

many machine learning libraries and their working principle is more intuitive compared to

deep learning methods. They especially become powerful when multiple trees are used in

an ensemble of predictors, such that weaknesses of individual classifiers can be compensated.

Further enhancements of ensemble methods like boosting techniques, which are for example

further explained in [12], were not considered within this thesis.

During the training of a random forest, an ensemble of decision trees is successively built,

until the desired number of estimators is reached. For building individual trees, subsets of

the complete dataset are considered and these instances are assigned leaves in the tree. The

exact tree-structure is then derived from the given training set, as a split of a node in the tree

is performed after determining an optimal cut according to a predefined split criterion [25].
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Splits are typically executed, until a certain tree only has pure leaves (only instances of one

class remain in the leave) or another termination criterion is fulfilled. In both cases, a leaf in

the tree is created containing the remaining instances. When the forest is used for prediction,

an instance is assigned to a leaf in the tree using the derived cuts during training. Afterwards,

a probability estimate for the test instance belonging to a certain class is calculated by taking

the number of certain class members in the assigned leaf and dividing them by the total

number of instances in the leaf. The class prediction of a tree for a test instance is then

typically derived by taking the class of the majority of training instances in the leaf to which

the test instance was assigned. Finally, a forest prediction can be derived by a majority vote

of all trees in the ensemble [25].

In this comparison, a simple random forest was trained that operated on nine different

features: The distances of the seven nearest tracklet offsets to the TPC track, the number

of assigned tracklets and the mean distance of all tracklet offsets from the respective TPC

track. Like this, the underlying geometry of the tracklet configurations could be represented

by a feature vector in a simple way. In the future, further studies should be done, whether

different feature constructions could be applied to improve the following results and therefore

represent the underlying tracklet configurations better within the setting of tabular data.

Before the performance of a trained random forest was compared to the those of the two

different GNNs, a hyperparameter optimization was performed using a grid search approach.

This means that all possible combinations of hyperparameters that can be constructed from

initial options for each hyperparameter are tested. Within this thesis, only the number of

estimators and the maximum tree depth were optimized by means of 5-fold cross validation

on the complete dataset [25]. The maximum tree depth is part of a termination criterion for

tree building and determines the maximum number of performed splits, before a final leaf

is created. The result of the hyperparameter search is illustrated in table 6, where all tested

hyperparameters are listed together with the ones, that resulted in the best mean test accuracy

calculated from each of the five different splits during cross validation.

hyperparameter tested parameters optimal hyperparameter
number of estimators 50, 100, 200, 300 200
maximum tree depth 2, 3, 5, 8, 10, 12, 15, 18, 20, 25 15

Table 6: Results of the hyperparameter search for the random forest, that was compared
against the two different GNNs.

After the hyperparameter search, the random forest was trained on the complete dataset

of 661.002 instances. This was done by using 70% of the total amount of data for training and

30% for testing.

During training, a feature importance computation was performed in order to find out,

which of the used features were the most relevant during the model construction. This was

done by using a method that relies on feature permutation. Therefore, the features are ran-

domly shuffled individually among the instances, such that the reference between a certain

instance and its underlying true feature is destroyed. Depending on the fact, how important
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the feature for the resulting model is, this will cause the resulting accuracy on the model with

permuted features to drop. By performing this procedure repeatedly, a mean accuracy de-

crease can be obtained due to randomly shuffling individual features, which can be seen as a

measure of the importance of a certain feature in the given model. The corresponding results

for the random forest are shown in figure 19.

Figure 19: Mean accuracy decreases in the random forest model due to the individual per-
mutation of features among the instances. The features that were used here and which are
abbreviated on the horizontal axis are explained in the main text. The black dots on top of the
bars show the standard deviation of the results, as the shuffling of each feature was performed
ten times.

As it can be seen, the performance of the random forest mainly relies on the distances

of tracklets, which are not in the immediate vicinity of a given TPC track. Additionally, the

number of preselected tracklets is also a rather important feature. However, this importance

ranking is not necessarily related to the individual separational power of each feature, which

can be demonstrated by the example of the mean tracklet distance and the number of assigned

tracklets (cf. section 7.1).

The training of the 200 estimators took about 4 minutes and 19 seconds, which illustrates

the previously mentioned superiority of the random forest over the GNNs in points of the

need for computation resources and training time. However, it does not reach the overall per-

formance of the GNN in points of the resulting accuracies, which can be seen when comparing

the tables 4 and 7.

performance measure value
training accuracy 0.8885

test accuracy 0.8445
AUC 0.918

average precision 0.889

Table 7: Overview of the random forest performance after training.

The differences in performance can additionally be visualized by comparing the ROC and
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precision-recall curves of the random forest with the ones of both GNNs. This is illustrated in

figure 20.

(a) ROC curves. (b) Precision-recall curves.

Figure 20: Comparison of the ROC and precision-recall curves of both GNNs with the ones
of the trained random forest. The black dashed line in figure (a), which is titled with "trivial
classifier" corresponds to a classification, that would assign the labels for all given instances
randomly with equal probability.

It is visible, that the ROC curve of both GNNs is clearly above the one of the random

forest and that the AUC of the GNNs is also noticeably higher. When looking at the precision-

recall curves of the different classifiers, it can be seen that the ones of the GNNs are almost

everywhere above the one of the random forest, which is also supported by the significantly

higher average precision value. Furthermore, it is noticeable that the precision-recall curves

of the GNNs remain much more constant for a wide range of efficiencies and that the GNNs

provide a much higher purity at high efficiencies of εs > 0.8. The latter implies that the neural

networks can significantly better provide a high classification purity, even when the efficiency

of the classifier is chosen to be rather large.

7.2.2 Overall performance comparison for different antinuclei and transverse mo-
menta

As it was explained before, the GNNs were trained on the complete dataset of 5-NN graphs

without separation due to different kinds of antinuclei or the reconstructed transverse momen-

tum. As a consequence, no comparable subdivisions of the dataset were performed during the

training of the random forest either. Nevertheless, the individual performance of the classi-

fiers on instances with different physical properties is an important point for a future physics

analysis. This section therefore presents a performance comparison between the GNNs and

the random forest based on a consideration of individual ROC curves. They were calculated

during the application of the trained classifiers to respective parts of their test sets and the par-

titioning was performed according to the antinuclei species and the reconstructed transverse

momentum of the given instances. To summarize the results, the AUCs of these individual
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ROC curves are provided in the form of tables here, whereas plots of the ROC curves are

provided in the appendix in section A.4. The appendix also contains plots of ROC curves,

which were created for an application of the classifiers to particle-individual subsets with ad-

ditional separation in pTPC
T -bins. Within this subsection, a comparison has been performed

using a separation of either the particle species (cf. table 8) or the reconstructed transverse

momentum pTPC
T (cf. table 9). The latter was performed by choosing a division of all instances

by eight pTPC
T -bins of equal width between 0.75 GeV/c and 10.75 GeV/c.

3He d t
GraphConv-GNN 0.971 0.965 0.971
GATConv-GNN 0.965 0.962 0.966
Random Forest 0.909 0.921 0.921

Table 8: AUCs of different classifiers during application on parts of the test set separated for
different antinuclei.

0.75 − 2.0 GeV/c 2.0 − 3.25 GeV/c 3.25 − 4.5 GeV/c 4.5 − 5.75 GeV/c
GraphConv-GNN 0.946 0.966 0.970 0.973
GATConv-GNN 0.940 0.960 0.967 0.967
Random Forest 0.851 0.907 0.925 0.926

5.75 − 7.0 GeV/c 7.0 − 8.25 GeV/c 8.25 − 9.5 GeV/c 9.5 − 10.75 GeV/c
GraphConv-GNN 0.973 0.973 0.974 0.972
GATConv-GNN 0.969 0.969 0.970 0.964
Random Forest 0.927 0.930 0.930 0.936

Table 9: AUCs of different classifiers during application on parts of the test set separated for
the reconstructed transverse momentum pTPC

T .

When looking at the results for different antinuclei, it can be seen that both GNN models

always provide significantly better AUCs than the random forest. The AUC for both GNNs

considering d is observed to be a little lower than for t and 3He, but these differences are not

assessed as significant. The random forest shows a little lower performance for 3He and the

results for the AUC for d and t are identical.

When comparing the results, in which the instances are partitioned according to the re-

constructed transverse momentum pTPC
T , all classifiers seem to perform worse for particles in

the lowest pTPC
T -bin. However, this decrease in performance compared to the other pTPC

T -bins

seems much lower for both GNNs than for the random forest and the AUC of the GNNs in

this pTPC
T -bin is still reasonably high with values of above 0.94. When comparing the results

across all other pTPC
T -bins, the performance of the GNNs and the random forest seems to be

rather constant. These arguments also apply when the performance is evaluated for individ-

ual particles in certain transverse momentum bins (cf. appendix section A.4.3), where the

lowest performance of all classifiers was observed for the lowest pTPC
T -bin of 3He-particles.

However, the AUC in this setting indicated a reasonable classification and was additionally

much higher compared to the result of the random forest.
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7.2.3 Purity comparison with the GNNs at different transverse momentum

As an additional step, the performance of the different classifiers was compared by consider-

ing the output purities at a fixed efficiency level across different transverse momenta. Like in

the previous subsection, the test instances of the models were grouped into eight pTPC
T -bins

of the same width between 0.75 GeV/c and 10.75 GeV/c. Afterwards, the purity of the ran-

dom forest and both GNN models were calculated in the different pTPC
T -bins while fixing the

efficiencies in all bins to the predefined values of 70%, 80% and 90%. The results of this are

illustrated in figure 21.

Figure 21: Comparison of the GNN purities to the purity of the random forest model in eight
different pTPC

T -bins at predefined efficiency levels of 70%, 80% and 90%.

As it turns out, the purities of both GNNs are significantly higher than the ones of the

random forest, when comparing the results at equal predefined efficiency levels. The distance

between the purity curves grows with an increased predefined efficiency level. With a few

exceptions, the purities of the GraphConv-GNN are a little higher than for the GATConv-GNN

and this difference seems to increase with a growing efficiency level. Additionally, the purity

of the random forest decreases significantly at efficiencies of 70% and 80% in the bin with

the lowest pTPC
T -values, which is an effect that is not that pronounced when considering both

GNNs. This effect also matches the observation of decreased classifier performances in the

bin with the lowest pTPC
T in subsection 7.2.2.

Further plots, in which the above comparison is shown with additional subdivision taking

into account different antinuclei species, are provided in figure 22.

Essentially, the above-mentioned points also apply, when the results are considered with

further antinuclei separation. Though, it was seen that the purities of both GNNs are more

stable across different pTPC
T -ranges for 3He- and t-nuclei than for antideuterons, which is par-

ticularly noticeable at an efficiency level of 90%.

In the end, it can be said that the GNNs were shown to perform overall better than the trained

random forest. As it has already been pointed out, there might exist possibilities to improve
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(a) Results for 3He.

(b) Results for d.

(c) Results for t.

Figure 22: Comparison of the GNN purities to the purity of the random forest model in
eight different pTPC

T -bins at predefined efficiency levels of 70%, 80% and 90% with additional
separation of different antinuclei species.
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the feature selection of the random forest and therefore gain performance by constructing a

better underlying model.

However, it was also shown that the GNNs provide a rather constant performance over

wide ranges of different transverse momentum and also for different antinuclei species un-

der consideration of individual AUCs on data subsets, which is an important point for their

application in the scope of future physics analyses.
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8 Working point determination for a GNN

In this chapter, a first outlook towards the application of the GNNs in a physics analysis is

provided. As it was motivated in the introduction, the identification of inelastic interactions

of antinuclei in the TRD is of relevance during the determination of their cross-sections with

hadronic components inside a predefined detector volume.

Within the investigations using the GNNs, a subset of overall N0 candidates was consid-

ered, which were all required to have at least seven tracklets assigned to their underlying

TPC track. This sample of N0 candidates consists of Ns true signal and Nb true background

instances. Consequently, one can assign particles with seven or more assigned tracklets an

interaction probability pint with

pint =
Ns

N0
, (12)

which can be used to calculate the true interaction cross-section referring to the respective

particle sample.

During a real physics application, the true class of a given antinucleus is not known and

needs to be predicted by the trained model. Specifically, the consideration of a new sample of

size N0 with seven or more tracklets requires deriving an estimate Ñs for the number of true

signal events from the final output of the classifier. It can be shown (cf. appendix section A.5),

that the total number of true signal events can be estimated by

Ñs =
n+ − εbN0

εs − εb
, (13)

where n+ is the total number of instances that are classified as signal. εs and εb denote the

respective signal and background efficiency with which the GNN is used.

A working point of the classifier in a physics analysis, which is defined by a corresponding

pair (εb, εs) of background and signal efficiency (i.e. a point on a ROC curve), should be cho-

sen such that statistical fluctuations of the inferred quantity Ñs become minimal4. A complete

derivation, which takes into account fluctuations of Ñs due to the number of positively clas-

sified instances n+ and also due to the signal and background efficiencies εs and εb, as they

were determined on a test set of finite size, is sketched in the appendix in section A.5. In the

following consideration, fluctuations of the efficiencies were neglected and only the variations

of n+ were taken into account.

Under this assumption, the relative statistical uncertainty of Ñs can be calculated with

∆Ñs

Ñs
=

√
εs(1 − εs)(N0εb − n+) + εb(1 − εb)(n+ − N0εs)√

εb − εs|N0εb − n+|
, (14)

which was determined using linear error propagation and the sketch of the derivation, that is

shown in the appendix in section A.5.

4In the following considerations, the effect of the preselection on the number of tracklets, which
was performed at the end of chapter 4, was not taken into account and a sample of fixed size N0 with
seven or more tracklets was considered.
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This expression only contains the number of positive classified instances n+, the respective

background and signal efficiencies εs and εb which are related within the ROC curve and the

total number of events N0 in the respective sample. For the following purposes, the test set

was not used with additional separation criteria, e.g. a partition due to different antinuclei

species.

(a) Working points within the distributions of the normalized
model output scores for signal and background instances.

(b) Signal and background efficiencies as a function of nor-
malized model output scores.

Figure 23: Illustration of the results of the working point determination for the GraphConv-
model. In both figures, the blacked dashed line shows the optimal cut on the model score,
if only statistical uncertainties were taken into account. Colored vertical lines illustrate the
optimal working points when additional systematic fluctuations with a certain magnitude
of the signal and background efficiencies are assumed. Further information about this is
provided in the text.

An iteration over all pairs of efficiencies (εb, εs) in the ROC curve of the test set then

yields an optimal working point, which also corresponds to applying a cut on the normalized
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network output score. This is illustrated in figure 23(a), where the normalized signal score

of the trained GraphConv-model for all test instances is shown in a histogram separated for

signal and background.

The normalization was carried out by applying a softmax function on the final score vector

of the network. The optimal threshold, that corresponded to the above-mentioned pair of

signal and background efficiency (εb, εs), is drawn with a black dashed line.

Further colored lines in figure 23(a) indicate where the optimal threshold would lie, if

additional systematic uncertainties, e.g. errors in the beforehand class assignment of the TPC

tracks, for the signal and background efficiencies were incorporated within equation (14). As

no estimations of systematic uncertainties were performed within this thesis, optimal thresh-

olds were exemplarily calculated for relative uncertainties on the obtained signal and back-

ground efficiencies of 0.1%, 0.5%, 1% and 5%. The goal of this was to visualize how the work-

ing point of the classifier changes in order to obtain a minimal overall error on the inferred

quantity Ñs. It can be seen that the optimal threshold gets systematically shifted towards

higher values of the model output. This is a desired behavior, as additional uncertainties in

the respective efficiencies need to be compensated by stronger requirements regarding a low

background efficiency and therefore achieve a higher purity of the output. An additional il-

lustration of this is given in figure 23(b), where the model signal and background efficiencies

are shown as a function of the above described normalized signal score.
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9 Summary and outlook

In this bachelor thesis, an approach for the detection of inelastic interactions of light antinuclei

in the Transition Radiation Detector of ALICE using graph neural networks was developed.

Therefore, a motivation for the physical relevance of this research topic was provided and

an overview of the underlying theory of graph neural networks was given at the beginning

of this thesis. This involved an introduction to relevant concepts of deep learning and an

explanation of graph networks in general with further details about message-passing neural

networks, graph convolutional networks and graph attention networks.

Afterwards, the data preselection from the files of the underlying MC simulation respec-

tively particle reconstruction was described. Therefore, the TPC tracks of three different antin-

uclei (d, t and 3He) were considered and a dataset to perform a binary classification was de-

rived. TRD tracklets which were assigned to the respective TPC tracks using a DCA-approach

provided the baseline for a graph construction, during which the tracklets gave rise to nodes

in the graphs with corresponding positional features. The edge construction was performed

by defining fully-connected graphs and k-NN graphs, mainly with k = 5, in those ensembles,

where at least seven tracklets were assigned to the corresponding TPC track. The connectivity

in the NN graphs was derived from positional biases on the TRD tracklet positions, for which

the pairwise relative distance between the tracklet offsets was taken into account.

In the next step, these two sets of graphs were used for testing first network architectures

with different methods of message-passing and network hyperparameters. It was found that

providing a set of NN graphs as an input delivered better results than with fully-connected

graphs within the framework of the tested network architectures. Therefore, only NN graphs

were considered during further analyses. Furthermore, these pilot experiments have also pro-

vided two configurations of GNNs and hyperparameters that were carried through additional

optimization steps. The first approach relied on a variant of a graph convolutional network

and the second one made use of a graph attention network.

During the final trainings, all constructed graphs were used at once and no differentiation

according to the antinuclei species or the transverse momentum of certain particles was ap-

plied. Both final networks achieved overall test accuracies of clearly above 90% and an overall

AUC of above 0.96. Furthermore, the trained classifiers showed overall similar performance

when their ROC curves were calculated on subsets of the test set that were separated for

different kinds of antinuclei and due to the reconstructed transverse momentum pT of the

particles. Some exceptions to this were found in the lowest pT-bins, where the performance

of the GNNs dropped a little during evaluations with and without particle separation. How-

ever, the AUC of both GNNs in the low pT-bins never decreased too critically and the overall

performance on these data subsets remained satisfactory.

In a further step of this thesis, both trained networks were compared to classification

approaches relying on cut-based analysis and a simple random forest. Compared to these

simple approaches, the GNNs have shown a superior performance and especially provided

a significantly higher output purity for all tested predefined signal efficiencies across the
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complete range of transverse momentum pT.

Finally, a method for a working point determination of the GNNs was described, that

relied on the minimization of statistical fluctuations of the number of predicted inelastic in-

teraction events within the used test set. It was also briefly shown how the results would

change if systematic uncertainties of different size on the considered signal and background

efficiencies were incorporated in the minimization procedure.

For the future, it needs systematic studies whether the respective data preselection can be

improved to further gain performance of the networks, e.g. on the side of the tracklet selection

around a given TPC track. Additionally, extra optimization of the graph construction could

be performed by trying different solutions for the determination of graph connectivities, e.g.

by using dynamic nearest neighbor graph constructions within the training process taking

into account node feature updates during the process of message-passing [23]. Moreover,

strategies for the GNN improvement from the physics side could be investigated, e.g. by

incorporating properties of the respective TPC track into the GNN as a conditional input. So

far, these properties are available, but have not been used as additional features during the

GNN construction. Besides, further network optimization could be carried out, which might

lead to an extra improvement of the network performances.

As Monte Carlo simulations are typically not able to represent the experimental environ-

ment perfectly, it needs to be investigated, whether the developed methods behave well on

real data and how exactly the transition between these kinds of data could be executed. Dur-

ing this step, it is of interest how the application of GNNs might improve the mostly relevant

inference on the overall interaction probability (cf. chapter 8) compared to other classification

approaches.

It should be mentioned that the training and optimization of the GNNs is a costly pro-

cedure, especially in terms of computation resources and training time. As it could be seen

during the pilot experiments, the performance of the GNNs hugely relies on their configu-

ration and the choosing of reasonable architectures is typically based on trial and error. The

same argument applies to finding reasonable graph constructions, if the application does not

provide a practicable canonical way for implementing this. Additionally, the interpretation

of these models in terms of their decision process is much harder compared to methods of

classical machine learning, for example of ensemble predictors like random forests.

However, it should also be emphasized that the here presented application of GNNs al-

lowed for operating on low-level feature information from the experiment, which was en-

riched by a relational structure and delivered very good results. Furthermore, graph neural

networks provided the advantage, that they can elegantly cope with data that exposes a het-

erogeneous structure, which is often the case within many applications in HEP. This includes

that once a reasonable way of data representation in terms of graphs is found, not much

explicit feature engineering is required anymore. This can be an advantage, if the data gen-

erating processes are not accessible by well established physical quantities serving as high-
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level and especially interpretable feature inputs. Therefore, graph neural networks have been

shown to provide a considerable method to identify inelastic interaction processes of light

antinuclei in the TRD and the here developed strategy might also be applicable to similar

physical problems, which is a further objective that should be investigated in the future.
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A Appendix

In this part of the thesis, additional material that was referenced in the main text is provided.

A.1 pTPC
T -distributions of preselected antinuclei

In this part of the appendix, plots of pTPC
T -distributions are shown for different antinuclei.

(a) Results for all antinuclei without further sepa-
ration.

(b) Results for 3He.

(c) Results for d. (d) Results for t.

Figure 24: pTPC
T -distributions of different antinuclei.
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A.2 Additional results from pilot experiments

In this part of the appendix the remaining results of the pilot experiments on the GNN archi-

tecture that were described in chapter 5, are shown. This especially includes the full results

for the investigations on fully-connected graphs and the ones using 5-NN graphs with two

and four message-passing layers.

GCNConv GraphConv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.770 ± 0.002 0.780 ± 0.003 0.773 ± 0.003 0.851 ± 0.001 0.851 ± 0.001 0.852 ± 0.001
validation accuracy 0.756 ± 0.003 0.769 ± 0.002 0.768 ± 0.003 0.845 ± 0.001 0.846 ± 0.002 0.844 ± 0.002

test accuracy 0.758 ± 0.003 0.766 ± 0.003 0.763 ± 0.002 0.847 ± 0.002 0.847 ± 0.002 0.845 ± 0.002
AUC 0.850 ± 0.002 0.857 ± 0.002 0.852 ± 0.002 0.913 ± 0.002 0.914 ± 0.002 0.912 ± 0.002

Table 10: Results of pilot experiments with 5-NN graphs for two message-passing layers
using two graph convolutional methods.

GATConv GATV2Conv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.849 ± 0.002 0.851 ± 0.002 0.848 ± 0.002 0.848 ± 0.001 0.849 ± 0.002 0.847 ± 0.001
validation accuracy 0.842 ± 0.002 0.844 ± 0.002 0.843 ± 0.002 0.842 ± 0.002 0.843 ± 0.001 0.842 ± 0.002

test accuracy 0.843 ± 0.002 0.846 ± 0.001 0.845 ± 0.002 0.845 ± 0.002 0.842 ± 0.002 0.844 ± 0.002
AUC 0.910 ± 0.002 0.913 ± 0.001 0.912 ± 0.001 0.912 ± 0.002 0.906 ± 0.002 0.910 ± 0.002

Table 11: Results of pilot experiments with 5-NN graphs for two message-passing layers
using two different methods implementing a graph attention network.

GCNConv GraphConv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.773 ± 0.003 0.774 ± 0.003 0.779 ± 0.002 0.847 ± 0.001 0.849 ± 0.001 0.849 ± 0.001
validation accuracy 0.760 ± 0.002 0.764 ± 0.003 0.760 ± 0.003 0.844 ± 0.001 0.843 ± 0.002 0.844 ± 0.002

test accuracy 0.767 ± 0.003 0.768 ± 0.002 0.765 ± 0.003 0.843 ± 0.002 0.845 ± 0.001 0.847 ± 0.001
AUC 0.857 ± 0.002 0.860 ± 0.002 0.855 ± 0.002 0.908 ± 0.002 0.911 ± 0.001 0.913 ± 0.001

Table 12: Results of pilot experiments with 5-NN graphs for four message-passing layers
using two graph convolutional methods.

GATConv GATV2Conv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.849 ± 0.002 0.848 ± 0.002 0.847 ± 0.002 0.842 ± 0.001 0.842 ± 0.001 0.843 ± 0.001
validation accuracy 0.844 ± 0.002 0.843 ± 0.002 0.845 ± 0.002 0.836 ± 0.001 0.838 ± 0.002 0.839 ± 0.001

test accuracy 0.843 ± 0.002 0.843 ± 0.001 0.845 ± 0.002 0.837 ± 0.002 0.840 ± 0.001 0.839 ± 0.002
AUC 0.910 ± 0.001 0.907 ± 0.001 0.908 ± 0.001 0.905 ± 0.001 0.908 ± 0.001 0.906 ± 0.002

Table 13: Results of pilot experiments with 5-NN graphs for four message-passing layers
using two different methods implementing a graph attention network.
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GCNConv GraphConv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.738 ± 0.004 0.740 ± 0.004 0.746 ± 0.004 0.777 ± 0.004 0.773 ± 0.003 0.767 ± 0.003
validation accuracy 0.734 ± 0.004 0.735 ± 0.004 0.738 ± 0.004 0.764 ± 0.004 0.762 ± 0.004 0.761 ± 0.004

test accuracy 0.733 ± 0.004 0.732 ± 0.004 0.741 ± 0.004 0.765 ± 0.004 0.767 ± 0.004 0.758 ± 0.004
AUC 0.789 ± 0.004 0.787 ± 0.003 0.793 ± 0.003 0.845 ± 0.003 0.853 ± 0.003 0.837 ± 0.003

Table 14: Results of pilot experiments with fully-connected graphs for two message-passing
layers using two graph convolutional methods.

GATConv GATV2Conv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.830 ± 0.002 0.827 ± 0.003 0.829 ± 0.002 0.835 ± 0.003 0.834 ± 0.003 0.832 ± 0.003
validation accuracy 0.831 ± 0.003 0.825 ± 0.003 0.828 ± 0.003 0.833 ± 0.002 0.835 ± 0.003 0.834 ± 0.003

test accuracy 0.827 ± 0.003 0.828 ± 0.003 0.824 ± 0.002 0.832 ± 0.003 0.833 ± 0.003 0.829 ± 0.003
AUC 0.901 ± 0.002 0.902 ± 0.002 0.898 ± 0.002 0.907 ± 0.002 0.907 ± 0.002 0.904 ± 0.002

Table 15: Results of pilot experiments with fully-connected graphs for two message-passing
layers using two different methods implementing a graph attention network.

GCNConv GraphConv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.721 ± 0.004 0.723 ± 0.004 0.721 ± 0.004 0.771 ± 0.004 0.758 ± 0.004 0.757 ± 0.004
validation accuracy 0.725 ± 0.003 0.724 ± 0.003 0.718 ± 0.004 0.755 ± 0.004 0.759 ± 0.004 0.751 ± 0.003

test accuracy 0.721 ± 0.004 0.720 ± 0.004 0.716 ± 0.003 0.752 ± 0.004 0.757 ± 0.003 0.754 ± 0.004
AUC 0.773 ± 0.004 0.771 ± 0.003 0.768 ± 0.003 0.816 ± 0.004 0.824 ± 0.004 0.791 ± 0.004

Table 16: Results of pilot experiments with fully-connected graphs for three message-passing
layers using two graph convolutional methods.

GATConv GATV2Conv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.834 ± 0.003 0.830 ± 0.004 0.829 ± 0.004 0.837 ± 0.003 0.838 ± 0.003 0.836 ± 0.003
validation accuracy 0.829 ± 0.004 0.831 ± 0.003 0.827 ± 0.003 0.833 ± 0.002 0.830 ± 0.002 0.828 ± 0.003

test accuracy 0.827 ± 0.003 0.829 ± 0.002 0.828 ± 0.002 0.832 ± 0.003 0.831 ± 0.003 0.830 ± 0.003
AUC 0.901 ± 0.002 0.904 ± 0.002 0.903 ± 0.002 0.909 ± 0.002 0.908 ± 0.003 0.906 ± 0.003

Table 17: Results of pilot experiments with fully-connected graphs for three message-passing
layers using two different methods implementing a graph attention network.

GCNConv GraphConv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.718 ± 0.004 0.724 ± 0.004 0.719 ± 0.004 0.764 ± 0.003 0.762 ± 0.004 0.758 ± 0.004
validation accuracy 0.708 ± 0.003 0.711 ± 0.003 0.712 ± 0.003 0.753 ± 0.004 0.756 ± 0.004 0.759 ± 0.003

test accuracy 0.712 ± 0.004 0.713 ± 0.004 0.715 ± 0.004 0.762 ± 0.004 0.755 ± 0.004 0.754 ± 0.003
AUC 0.745 ± 0.004 0.743 ± 0.004 0.751 ± 0.004 0.805 ± 0.004 0.782 ± 0.003 0.775 ± 0.004

Table 18: Results of pilot experiments with fully-connected graphs for four message-passing
layers using two graph convolutional methods.

GATConv GATV2Conv
number of hidden channels 64 128 256 64 128 256

training accuracy 0.831 ± 0.004 0.833 ± 0.004 0.827 ± 0.003 0.834 ± 0.003 0.832 ± 0.003 0.834 ± 0.002
validation accuracy 0.827 ± 0.002 0.830 ± 0.003 0.824 ± 0.002 0.829 ± 0.004 0.828 ± 0.003 0.827 ± 0.003

test accuracy 0.831 ± 0.002 0.829 ± 0.002 0.826 ± 0.003 0.829 ± 0.004 0.830 ± 0.003 0.829 ± 0.003
AUC 0.903 ± 0.002 0.904 ± 0.003 0.901 ± 0.003 0.907 ± 0.002 0.906 ± 0.002 0.906 ± 0.002

Table 19: Results of pilot experiments with fully-connected graphs for four message-passing
layers using two different methods implementing a graph attention network.
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A.3 Comparison of cut-based models and GNNs for different antin-

uclei

This part of the appendix shows further plots on the performance comparison of the two

different GNNs with the constructed cut-based models. The strategy for creating the plots

below and the construction of the respective models were described in section 7.1.
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A.4 Comparison of random forest and GNNs

In this part of the appendix, additional plots are provided on the performance comparison

between the trained GNNs and the random forest.

A.4.1 ROC curves of random forest and GNNs during application to different
antinuclei

(a) Results for 3He. (b) Results for d.

(c) Results for t.

Figure 27: ROC curves for the separate application of the random forest and the GNNs to
instances of different antinuclei species. The black dotted line in all plots, which is titled
with "trivial classifier", corresponds to a classifier that would assign the labels for all given
instances randomly with equal probability.

A.4.2 ROC curves of random forest and GNNs during application to particles of
different transverse momentum
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A.4.3 ROC curves of random forest and GNNs during application to different
antinuclei of different transverse momentum
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A.5 Additional calculations for the working point determination

In this section of the appendix, additional calculations for the working point determination

that was shown in chapter 8 of this thesis are provided. Since a binary classification task is

considered, the total number of candidates N0 in a sample that is presented to the GNN can

be written as

N0 = Ns + Nb = n+ + n−, (15)

where Ns denotes the number of true signal instances and Nb the number of true background

instances. Furthermore, n+ is the number of instances, that were classified as signal and n−

the number of instances classified as background. The signal and background efficiency εs

and εb are defined with

εs =
ns

Ns
(16)

εb =
nb

Nb
, (17)

in which ns denotes the number of signal events, that are classified correctly and nb the

number of background events that are classified as signal. As a consequence, n+ can be

expressed by

n+ = ns + nb = εsNs + εbNb, (18)

which implies equation (13) under use of equation (15).

As it was sketched in section 8, the search for an optimal working point of the GNN is

based on the minimization of the statistical error on the inferred number Ñs of true signal

events. Applying linear error propagation to equation (13) yields

∆Ñs =

Ã
σ2

n+

Ç
∂Ñs

∂n+

å2

+ σ2
εs

Ç
∂Ñs

∂εs

å2

+ σ2
εb

Ç
∂Ñs

∂εb

å2

, (19)

where the variance of n+ is given by

σ2
n+

= σ2
ns
+ σ2

nb
. (20)

ns and nb follow binomial distributions regarding the fact, whether a true signal or back-

ground candidate is classified to be signal or background. Consequently, the variances in

equation (20) are given by

σ2
ns
= Nsεs(1 − εs) (21)

σ2
nb

= (N0 − Ns)εb(1 − εb). (22)
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Because of equation (16), the variance σ2
εs

can be derived using error propagation with

σ2
εs
=

σ2
ns

N2
s
=

εs(1 − εs)
Ns

(23)

and analogously for σ2
εb

using equation (17).

After calculating the derivatives in equation (19), dividing by Ñs and inserting equation

(13) for Ns, an expression for the relative statistical error of Ñs can be obtained, which also

takes into account statistical fluctuations in the efficiencies εs and εb. Systematic uncertainties

of the signal and background efficiencies on the respective particle sample can be incorpo-

rated in equation (19) by adding them in quadrature and weighting them with respective

derivatives.
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[33] Petar Veličković and Guillem Cucurull et al. "Graph Attention Networks", 2017. URL:

https://arxiv.org/abs/1710.10903, doi:10.48550/ARXIV.1710.10903.

[34] Shaked Brody, Uri Alon, and Eran Yahav. "How Attentive are Graph Attention Net-

works?", 2021. URL: https://arxiv.org/abs/2105.14491, doi:10.48550/ARXIV.2105.

14491.

[35] Sneha Chaudhari and Varun Mithal et al. "An Attentive Survey of Attention Models",

2019. URL: https://arxiv.org/abs/1904.02874, doi:10.48550/ARXIV.1904.02874.

[36] Fons Rademakers and Philippe Canal et al. "root-project/root: v6.20/04", April 2020.

doi:10.5281/zenodo.3895855.

[37] Alexander Schmah. "TRD-self-tracking repository". URL: https://github.com/aschmah/

TRD-self-tracking.

[38] S. Agostinelli et al. "GEANT4 — a simulation toolkit". Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 506(3):250–303, 2003. URL: https://www.sciencedirect.com/science/article/

pii/S0168900203013688, doi:https://doi.org/10.1016/S0168-9002(03)01368-8.

66

https://doi.org/10.1007/978-1-4614-7138-7
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
https://arxiv.org/abs/1806.01261
https://doi.org/10.48550/ARXIV.1806.01261
https://arxiv.org/abs/1810.02244
https://doi.org/10.48550/ARXIV.1810.02244
https://doi.org/10.48550/ARXIV.1810.02244
https://arxiv.org/abs/1704.01212
https://doi.org/10.48550/ARXIV.1704.01212
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
https://doi.org/10.48550/ARXIV.1606.09375
https://arxiv.org/abs/1609.02907
https://doi.org/10.48550/ARXIV.1609.02907
https://doi.org/10.48550/ARXIV.1609.02907
https://arxiv.org/abs/1810.00826
https://doi.org/10.48550/ARXIV.1810.00826
https://arxiv.org/abs/1710.10903
https://doi.org/10.48550/ARXIV.1710.10903
https://arxiv.org/abs/2105.14491
https://doi.org/10.48550/ARXIV.2105.14491
https://doi.org/10.48550/ARXIV.2105.14491
https://arxiv.org/abs/1904.02874
https://doi.org/10.48550/ARXIV.1904.02874
https://doi.org/10.5281/zenodo.3895855
https://github.com/aschmah/TRD-self-tracking
https://github.com/aschmah/TRD-self-tracking
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://www.sciencedirect.com/science/article/pii/S0168900203013688
https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8


[39] "AliRoot Core: AliHelix Class Reference", access on 10.06.2022. URL: http://alidoc.

cern.ch/AliRoot/master/class_ali_helix.html.

[40] Jens Wiechula. "Commissioning and Calibration of the ALICE-TPC". Dissertation, Goethe-
University of Frankfurt, 2008.

[41] Adam Paszke and Sam Gross et al. "PyTorch: An Imperative Style, High-Performance

Deep Learning Library". In Advances in Neural Information Processing Systems 32, pages

8024–8035. Curran Associates, Inc., 2019. URL: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[42] Matthias Fey and Jan Eric Lenssen. "Fast Graph Representation Learning with PyTorch

Geometric", 2019. URL: https://arxiv.org/abs/1903.02428, doi:10.48550/ARXIV.

1903.02428.

[43] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. "cuda", release: 10.02.1989, 2020.

URL: https://developer.nvidia.com/cuda-toolkit.

[44] Jim Pivarski and Pratyush Das et al. "scikit-hep/uproot3: 3.14.4", February 2021. doi:

10.5281/zenodo.4537826.

[45] F.F. Yao D. Eppstein, M.S. Paterson. "On Nearest-Neighbor Graphs", 1997. URL: https:

//doi.org/10.1007/PL00009293.

[46] Charles R. Harris and K. Jarrod Millman et al. "Array programming with NumPy". Na-
ture, 585(7825):357–362, September 2020. doi:10.1038/s41586-020-2649-2.

[47] F. Pedregosa and G. Varoquaux et al. "scikit-learn: Machine learning in Python". Journal
of Machine Learning Research, 12:2825–2830, 2011.

67

http://alidoc.cern.ch/AliRoot/master/class_ali_helix.html
http://alidoc.cern.ch/AliRoot/master/class_ali_helix.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1903.02428
https://doi.org/10.48550/ARXIV.1903.02428
https://doi.org/10.48550/ARXIV.1903.02428
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.5281/zenodo.4537826
https://doi.org/10.5281/zenodo.4537826
https://doi.org/10.1007/PL00009293
https://doi.org/10.1007/PL00009293
https://doi.org/10.1038/s41586-020-2649-2


List of acronyms

ADC Analog Digital Converter

ALICE A Large Ion Collider Experiment

AMS 02 Alpha Magnetic Spectrometer 02

AUC Area under Curve

BDT Boosted Decision Tree

CERN European Center for Nuclear Research

CNN Convolutional Neural Network

DCA Distance of Closest Approach

FCN Fully-connected network

GAPS General Antiparticle Spectrometer

GAT Graph Attention Network

GCN Graph Convolutional Network

GEM Gas Electron Multiplier

GN Graph Network

GNN Graph Neural Network

HEP High Energy Physics

ITS Inner Tracking System

LHC Large Hadron Collider

MC Monte Carlo

ML Machine Learning

MLP Multilayer perceptron

MPNN Message Passing Neural Network

MWPC Multiwire Proportional Chamber

NN-graph Nearest Neighbor-graph

PID Particle Identification

QGP Quark-Gluon Plasma

ReLU Rectified Linear Unit

RF Random Forest

ROC Receiver Operating Characteristic

TPC Time Projection Chamber

TR Transition Radiation

TRD Transition Radiation Detector

68



List of Figures

1 Schematic overview of the ALICE apparatus during LHC Run 2. . . . . . . . . . 3

2 Energy loss of negatively charged particles in the TPC as a function of particle

momentum/charge (p/Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Schematic cross-section of a TRD chamber. . . . . . . . . . . . . . . . . . . . . . . 6

4 Cumulative material budget in the detectors of the ALICE central barrel as a

function of radial distance for straight primary tracks. . . . . . . . . . . . . . . . 7

5 Process of convolution for a two-dimensional feature input. . . . . . . . . . . . . 11

6 Operational steps in a general graph network. . . . . . . . . . . . . . . . . . . . . 13

7 Functional principle of a message-passing neural network to perform graph-

level predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

8 Illustration of graph attention networks. . . . . . . . . . . . . . . . . . . . . . . . . 17

9 Three-dimensional display of a full p–Pb MC event. . . . . . . . . . . . . . . . . . 18

10 Illustration of tracklet assignments to given TPC tracks in the xy-plane of the

TRD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

11 Distribution of the number of assigned tracklets for the TPC tracks of signal

and background class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

12 Radial distribution of space points, which were considered as inelastic interac-

tion vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

13 Starting point for the GNN architecture during the pilot experiments. . . . . . . 26

14 Final network configuration after additional optimization steps. . . . . . . . . . . 29

15 Trends of the training and validation accuracies during the final training process

of both GNN models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

16 Radial distribution of interaction vertices of signal particles that are classified

as background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

17 Distribution of the mean distance of all assigned tracklets from the TPC track

for signal and background particles. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

18 Comparison of the GNN purities to the purity of both cut-based models in eight

different pTPC
T -bins at equal efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . 36

19 Mean accuracy decreases in the random forest model due to the individual

permutation of features among the instances. . . . . . . . . . . . . . . . . . . . . . 39

20 Comparison of the ROC and precision-recall curves of both GNNs with the

ones of the trained random forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

21 Comparison of the GNN purities to the purity of the random forest model in

eight different pTPC
T -bins at predefined efficiency levels of 70%, 80% and 90%. . . 42

22 Comparison of the GNN purities to the purity of the random forest model in

eight different pTPC
T -bins at predefined efficiency levels of 70%, 80% and 90%

with additional separation of different antinuclei species. . . . . . . . . . . . . . . 43

23 Illustration of the results of the working point determination for the GraphConv-

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

69



24 pTPC
T -distributions of different antinuclei. . . . . . . . . . . . . . . . . . . . . . . . 51

25 Comparison of the GNN purity to the purity of the cut-based model on the

mean tracklet distance in different pTPC
T -bins at equal efficiency for different

species of antinuclei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

26 Comparison of the GNN purity to the purity of the cut-based model on the

number of assigned tracklets in different pTPC
T -bins at equal efficiency for differ-

ent types of antinuclei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

27 ROC curves for the separate application of the random forest and the GNNs to

instances of different antinuclei species. . . . . . . . . . . . . . . . . . . . . . . . . 56

28 ROC curves for the separate application of the random forest and the GNNs to

instances of different transverse momentum pTPC
T . . . . . . . . . . . . . . . . . . . 57

29 ROC curves for the application of the random forest and the GNNs to 3He-

nuclei of different reconstructed transverse momentum pTPC
T . . . . . . . . . . . . 59

30 ROC curves for the application of the random forest and the GNNs to d-nuclei

of different reconstructed transverse momentum pTPC
T . . . . . . . . . . . . . . . . 60

31 ROC curves for the application of the random forest and the GNNs to t-nuclei

of different reconstructed transverse momentum pTPC
T . . . . . . . . . . . . . . . . 61

70



List of Tables

1 Impact of the cut on the number of assigned TRD tracklets on the abundance

of the signal and background class within the dataset. . . . . . . . . . . . . . . . 22

2 Results of pilot experiments with 5-NN graphs for three message-passing layers

using two graph convolutional methods. . . . . . . . . . . . . . . . . . . . . . . . 28

3 Results of pilot experiments with 5-NN graphs for three message-passing layers

using two different methods implementing a graph attention network. . . . . . . 28

4 Overview of the model performance of both GNNs after final training. . . . . . 32

5 Overview of the general performance of the two created cut-based models oper-

ating on the number of assigned tracklets and the mean distance of all assigned

tracklets of the given TPC track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Results of the hyperparameter search for the random forest, that was compared

against the different GNNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Overview of the random forest performance after training. . . . . . . . . . . . . . 39

8 AUCs of different classifiers during application on parts of the test set separated

for different antinuclei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9 AUCs of different classifiers during application on parts of the test set separated

for the reconstructed transverse momentum pTPC
T . . . . . . . . . . . . . . . . . . . 41

10 Results of pilot experiments with 5-NN graphs for two message-passing layers

using two graph convolutional methods. . . . . . . . . . . . . . . . . . . . . . . . 52

11 Results of pilot experiments with 5-NN graphs for two message-passing layers

using two different methods implementing a graph attention network. . . . . . . 52

12 Results of pilot experiments with 5-NN graphs for four message-passing layers

using two graph convolutional methods. . . . . . . . . . . . . . . . . . . . . . . . 52

13 Results of pilot experiments with 5-NN graphs for four message-passing layers

using two different methods implementing a graph attention network. . . . . . . 52

14 Results of pilot experiments with fully-connected graphs for two message-passing

layers using two graph convolutional methods. . . . . . . . . . . . . . . . . . . . 53

15 Results of pilot experiments with fully-connected graphs for two message-passing

layers using two different methods implementing a graph attention network. . . 53

16 Results of pilot experiments with fully-connected graphs for three message-

passing layers using two graph convolutional methods. . . . . . . . . . . . . . . . 53

17 Results of pilot experiments with fully-connected graphs for three message-

passing layers using two different methods implementing a graph attention

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

18 Results of pilot experiments with fully-connected graphs for four message-

passing layers using two graph convolutional methods. . . . . . . . . . . . . . . . 53

19 Results of pilot experiments with fully-connected graphs for four message-

passing layers using two different methods implementing a graph attention

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

71



Acknowledgement

First, I want to thank Prof. Dr. Klaus Reygers for giving me the opportunity to write my

bachelor thesis in the ALICE group and especially having the chance to work on such an

interesting topic. I have really enjoyed the constructive discussions with you and I am thankful

for you always providing support, when problems of any kind occurred.

I also want to thank Prof. Dr. Silvia Masciocchi for agreeing to be the second referee on

my thesis.

Furthermore, I want to thank M. Sc. Martin Krösen for his guidance throughout this thesis

and especially the constructive input on the sides of physics and machine learning. Thank you

very much for having always been available, even in the evenings and on weekends and the

time you have spent on proofreading my thesis.

I also want to thank Dr. Alexander Schmah, who provided the data baseline for this thesis

and who was always open and very patient in answering my questions.

Many thanks also go to B. Sc. Sven Hoppner, who helped me a lot at the beginning to get

acquainted with C++ and the TRD Self Tracking-code.

Last but not least, I want to thank my parents and my girlfriend Lara, who have always

supported me during the last three years of my studies and especially in the last months.

Without you, this would not have been possible!

72



Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 04.08.2022,

Maximilian Hammermann

73


	Introduction and motivation
	The ALICE experiment
	Inner Tracking System (ITS)
	Time Projection Chamber (TPC)
	Transition Radiation Detector (TRD)
	Construction of tracklets and calibration
	Material budget in the central barrel

	Deep learning and graph neural networks
	Deep learning terminology, fully-connected and convolutional neural networks
	Fully-connected networks
	Convolutional neural networks

	Framework for graph neural networks
	Message-passing neural networks
	Graph convolution
	Graph attention networks

	Data preselection
	Pilot experiments on the network architecture
	Graph construction from the preselected data
	First training steps

	Training of the final models
	Additional optimization of the final models
	Training procedure and training results
	Systematics of wrongly classified instances

	Comparison of graph neural networks against other classification approaches
	Cut-based models
	Creation of cut-based models
	Comparison of cut-based models with the GNNs

	Random forest
	Description of feature selection and training
	Overall performance comparison for different antinuclei and transverse momenta
	Purity comparison with the GNNs at different transverse momentum


	Working point determination for a GNN
	Summary and outlook
	Appendix
	pTTPC-distributions of preselected antinuclei
	Additional results from pilot experiments
	Comparison of cut-based models and GNNs for different antinuclei
	Comparison of random forest and GNNs
	ROC curves of random forest and GNNs during application to different antinuclei
	ROC curves of random forest and GNNs during application to particles of different transverse momentum
	ROC curves of random forest and GNNs during application to different antinuclei of different transverse momentum

	Additional calculations for the working point determination

	Bibliography
	List of acronyms
	List of figures
	List of tables

