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Abstract

This analysis presents a measurement of the branching fraction of the rare loop-level
decay B0

s → ϕγ relative to the tree-level decay B0
s → J/ψϕ. Possible deviations in the

value of the branching fraction from theoretical Standard Model predictions could in-
dicate contributions from New Physics. The used dataset was collected by the LHCb
experiment during Run 1 and Run 2, corresponding to an integrated luminosity of
Lint = 9 fb−1 of pp collisions.
To efficiently select signal decays, a multivariate analysis was carried out. In total,
636± 27 B0

s → ϕγ decays are reconstructed. Using efficiencies determined from Monte
Carlo simulations as well as the world-average of the branching fraction of the normal-
ization channel, the total branching fraction is measured to

B(B0
s → ϕγ) =

(
xxx± 0.17stat. ± 0.14sys.

)
× 10−5,

where the uncertainties are of statistical and systematic nature, respectively. Since this
analysis is in a preliminary stage, the results are blinded by omitting the central values.
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Kurzfassung

Diese Analyse bestimmt das Verzweigungsverhältnis des seltenen Zerfalls B0
s → ϕγ rel-

ativ zu dem resonanten Zerfall B0
s → J/ψϕ. Abweichungen des gemessenen Wertes

gegenüber den theoretischen Vorhersagen des Standardmodells könnten auf Beiträge
Neuer Physik hinweisen. Die ausgewerteten Daten wurden während Run 1 und Run 2
des LHCb Experiments aufgenommen und entsprechen einer integrierten Luminosität
von Lint = 9 fb−1 von pp-Kollisionen.
Zur Selektion des Zerfallssignals wurde eine multivariate Analyse durchgeführt. In-
sgesamt wurden 636 ± 27 B0

s → ϕγ Zerfälle rekonstruiert. Unter Verwendung von
auf Monte Carlo Simulationen bestimmten Effizienzen und dem Weltdurchschnitt des
Verzweigungsverhältnisses des Vergleichskanals, wurde das totale Verzweigungsver-
hältnis von B0

s → ϕγ zu

B(B0
s → ϕγ) =

(
xxx± 0.17stat. ± 0.14sys.

)
× 10−5

bestimmt. Die angegebenen Fehler sind statistischer respektive systematischer Natur.
Da sich die Analyse in einem vorläufigen Stadium befindet, werden die endgültigen
Werte nicht angegeben.
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1 Introduction

1 Introduction

Our modern-day understanding of particle physics is based on one fundamental model:
the Standard Model (SM). This model was developed in the 1960s when Glashow, Salem,
and Weinberg proposed the electroweak theory that unified the electromagnetic and the
weak force in a single theory. Their theory was first confirmed when neutral weak cur-
rents were found at the Gargamelle Bubble Chamber at CERN in 1973. Since then, var-
ious experiments have been carried out in order to test the predictions of the Standard
Model as well as to determine its parameters, e.g. particle masses and coupling con-
stants. While no significant deviations from the theoretical predictions were found, the
Standard Model cannot explain phenomena such as matter-antimatter asymmetry and
needs to be expanded as the observation of neutrino oscillations shows. Oscillations
are only possible if the particles involved have mass eigenstates - until the discovery of
neutrino oscillations, neutrinos were assumed to be massless in the SM.

The search for New Physics (NP) - physics beyond the Standard Model - is divided into
two different approaches: the direct approach tries to directly produce yet unknown
particles not included in the SM through high-energy collisions, while the indirect ap-
proach searches for virtual contributions of such new particles at loop level. Rare de-
cays are an excellent possibility for searching for such contributions. The transition of
a b quark to a s quark is suppressed in the SM as it is only allowed at loop-level and
therefore is susceptible to contributions from heavy particles. The LHCb experiment at
CERN is designed for the study of hadrons involving a b quark and is ideally suited for
precision measurements of b→ s decays. In this thesis, the rare decay B0

s → ϕγ and the
normalization channel B0

s → J/ψϕ are studied using the dataset collected during Run
1 and Run 2 at the LHC, corresponding to an integrated luminosity of 3 fb−1 and 6 fb−1,
respectively.

This thesis is structured as follows: First, an introduction to the Standard Model and
the physics behind rare decays is given in Section 2. The LHCb detector is presented
in Section 4. The analysis strategy of the data, which is prepared via selection cuts
(Section 5) and a multivariate analysis (Section 6), is outlined in Section 3. The process
of fitting the reconstructed mass distribution of the B meson is documented in detail
in Section 7. The determination of the cut efficiencies and subsequent calculation of the
branching fraction is described in Section 8.1 and Section 8.2, respectively.
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2 Theoretical Background

2 Theoretical Background

This section gives a brief overview of the physics underlying rare decays and the moti-
vation for this research field, starting with an introduction to the Standard Model largely
based on [1].

2.1 The Standard Model

The Standard Model of particle physics is an effective gauge quantum field theory (QFT)
that incorporates the electroweak theory and Quantum Chromodynamics (QCD). It has
been tested extensively through experimental searches and has successfully predicted
the elementary particles including the Higgs-Boson discovered in 2012. With this latest
discovery, the search for New Physics beyond the Standard Model has become one of
the main foci of particle physics.

2.2 Fundamental Particles

The fundamental particles in the Standard Model are the twelve fermions, the five gauge
bosons, and the Higgs boson. All fermions have a spin of 1

2
and follow Fermi-Dirac

statistics. As the description of their dynamics is subject to the Dirac equation of rela-
tivistic quantum mechanics, each fermion has a corresponding anti-particle of the same
mass but of opposite quantum numbers. The fermions can be divided further into the
leptons and the quarks which have differing physical properties and are listed in Ta-
ble 1. Leptons interact weakly and in the case of the three particles e, µ and τ , that pos-
sess an electric charge of 1e, also via the electromagnetic force. Quark interactions are
dominated by the strong force, but can also occur via the weak and the electromagnetic
force as quarks carry electric and colour charge. Quarks with an electric charge of +2

3
e

are referred to as up-type quarks, while quarks with an electric charge of −1
3
e are called

down-type quarks. The fermions are categorized into three generations, where each
succeeding generation has a higher mass but the same fundamental interactions. The
first and only stable generation consists of the up and down quark as well as the elec-
tron and the electron neutrino. Due to colour confinement, quarks cannot exist as free
particles but only as colourless mesons or baryons depending on whether the hadrons
consist of a combination of a quark and an anti-quark or of three quarks, respectively.
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2 Theoretical Background

Leptons Quarks
Particle Q[e] Mass[GeV] Particle Q[e] Mass[GeV]

First electron e− -1 0.0005 up u +2/3 0.002
generation neutrino νe 0 < 10−10 down d -1/3 0.005
Second muon µ− -1 0.106 charm c +2/3 1.3
generation neutrino νµ 0 < 10−10 strange s -1/3 0.09
Third tau τ− -1 1.78 top t +2/3 173
generation neutrino ντ 0 < 10−10 bottom b -1/3 4.2

Table 1: The fundamental fermions sorted into the three generations and into quarks
and leptons. The values are taken from [2]. The neutrino upper mass bounds are based

on the sum of all flavours.

Boson Spin Q[e] Mass[GeV] coupling
Photon γ 1 0 0 electromagnetic
W± 1 ±1 80.4 weak, electromagnetic
Z0 1 0 91.2 weak
Gluon g 1 0 0 strong
Higgs H0 0 0 125 mass

Table 2: The fundamental gauge bosons and the Higgs boson [2].

The three forces, electromagnetic, strong, and weak, are mediated by the exchange of
the five gauge bosons. The gauge bosons have spin 1 and therefore follow Einstein-Bose
statistics. The Higgs Boson is the only scalar boson (spin 0) in the SM and gives the fun-
damental particles their masses via the mechanism of spontaneous symmetry breaking.
A summary of the boson properties is given in Table 2.

2.2.1 Fundamental Forces

The three fundamental forces in the Standard Model are all described by their respective
field theory and can be characterized by their gauge bosons, strength and range. The
field theory corresponding to the electromagnetic force is called Quantum Electrody-
namics (QED). Due to the massless photon serving as a mediator, the interaction range
is spatially infinite, although the strength decreases with the inverse of the distance.
In interactions via the electromagnetic force, which is charge-conserving, only charged
particles participate.
This is not the case for the weak interaction, in which all fundamental particles can par-
ticipate. Since it is mediated by massive bosons, its interaction range is limited. The W

3



2 Theoretical Background

bosons, responsible for the flavour-changing weak-charged current, couple to fermions
with a difference of one unit in the electric charge, while the electrically neutral Z boson
mediates the weak-neutral currents. All three bosons carry weak charge and can there-
fore couple to each other, while the W bosons due to their electric charge can also couple
to the photon. The weak and the electromagnetic force are unified in the electroweak
theory.
The strong force, described by Quantum Chromodynamics (QCD), is limited to interac-
tions between particles carrying colour charge, which is solely a property of gluons and
quarks. It is mediated by an octet of charged gluons that carry a combination of colour
and anti-colour of which there are three (red, green, blue and anti-red, anti-green, anti-
blue). Since coulour-charged particles cannot exist independently, quarks coupled with
gluons form colour-neutral hadron states. For a hadron to be colour-neutral, it either
has to be composed of a quark carrying a colour together with an anti-quark carrying
the respective anti-colour or of quarks that together cover all three different colours.

2.3 Flavour Physics in the Standard Model

Flavour physics is the research field dealing with the weak interaction of quarks and lep-
tons. Weak-charged currents change both flavour and charge, while weak neutral cur-
rents conserve both charge and flavour. In contrast to the universal coupling strength
of the weak interaction of charged leptons, the coupling strengths vary for different
quark flavours. This experimental observation motivates the notion that the flavour
eigenstates of quarks are not equal to their mass eigenstates. The relation between the
different eigenstates is given by the unitary Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix d

′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 . (2.1)

The probability of an eigenstate i transitioning into an eigenstate j is proportional to∣∣Vij∣∣2. At tree-level, only the transition from an up-type quark flavour to a down-type
quark flavour via a W-Boson and vice versa is allowed. Additionally, the transition
of flavours within a generation is favoured over the transition between different gen-
erations resulting in a near-diagonal form of the CKM matrix [1]. This hierarchy is
emphasized by the Wolfenstein parametrization that writes the CKM matrix as a Taylor
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2 Theoretical Background

expansion in a newly introduced parameter λ. In total, the Wolfenstein parametrization
has four physical parameters: λ,A, ρ and the complex phase η [3].Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O
(
λ4
)

(2.2)

Up to O
(
λ3
)
, the complex components of the CKM Matrix are included solely in the

matrix elements Vub and Vtd. In order for CP violation to occur, the complex phase η in
these two elements has to be non-zero. The Wolfenstein parameters are determined by
a global fit on all available experimental measurements to [4]:

λ = 0.225 00± 0.000 67, A = 0.826+0.018
−0.015,

ρ̄ = ρ(1− λ2

2
) = 0.159± 0.010, η̄ = η(1− λ2

2
) = 0.348± 0.010.

2.4 Search for New Physics

The indirect approach to searches for New Physics focuses on processes that could pos-
sibly be influenced by new particles - such as weak interactions. In both charged cur-
rent (CC) and flavour-changing neutral current (FCNC) processes the quark flavour
changes. However, the electric charge is conserved for the FCNCs. Consequently, FC-
NCs can only occur at loop-level. At loop-level, these processes are suppressed by their
CKM matrix elements and by the mass difference of the quarks in the loop (GIM mech-
anism). Interactions via charged currents can take place at tree-level and therefore also
dominate in weak decays [5]. Processes that transition via FCNCs, such as rare decays
or neutral meson mixing, are a good search target for particles beyond the Standard
Model, as New Physics can give significant contributions that would affect observables
like the branching ratio of rare decays.

2.4.1 Rare DecayB0
s → ϕγ

One advantage of using rare decays involving the decay of a B meson lies in the clean
signature of a well-observable displaced secondary vertex due to the relatively long life-
times of the B mesons. Additionally, attributable to the large production cross-section

5
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b c

s s

c

s

s s

b s

ℓ+

ℓ−

t
W±

γ
γ

B0
s

J/ψ

ϕ

B0
s ϕ

Figure 1: Lowest order Feynman graphs of the decays B0
s → J/ψϕ (left) and B0

s → ϕγ
(right). The J/ψ can decay further into J/ψ → e+e−, the ϕ via ϕ→ K+K−. For
B0
s → ϕγ, the photon is reconstructed via the displayed γ → e+e− conversions in

material.

of bb̄ quark pairs at high energies, statistically powerful datasets can be recorded.
Inclusive radiative rare decays of the type B → Xsγ that involve the transition of a b
quark to a s quark are well suited for the search for potential New Physics contributions.
They are easier to predict theoretically than fully hadronic rare decays and are very sus-
ceptible to New Physics. A Feynman graph of the studied radiative rare decayB0

s → ϕγ,
where the ϕ meson can further decay via ϕ → K+K−, is displayed in Figure 1. Using
γ → e+e− conversions in material, the γ is reconstructed from the electron and positron
tracks. The decay can be used to determine the CKM element Vts, as the top quark is
the heaviest quark in the loop and therefore dominates the transition amplitude. The
amplitude is proportional to the corresponding CKM elements, the couplings, and the
ratio mt

mW
. Here, mt is the mass of the top quark and mW is the mass of the W boson.

While transitions of the type b → sγ were first discovered by the CLEO experiment,
B0
s → ϕγ was first observed by the B-factory Belle [6] and has already been studied at

the LHCb using Run 1 data [7]. In both cases, the photon was reconstructed from energy
deposits in the Electromagnetic Calorimeter. In this analysis, using the complete Run 1
and Run 2 data, the branching fraction is determined relative to the dominant tree-level
decay B0

s → J/ψϕ (Figure 1), where J/ψ and ϕ can further decay via J/ψ → e+e− and
ϕ→ K+K−. This decay, with the same final state particles as the rare decay, was chosen
in order to maximize the cancellation of experimental systematic uncertainties. The cur-
rent theoretical prediction as well as the experimental world-average of the branching
fraction of B0

s → ϕγ are listed in Table 3, the world-average of the branching fraction of
B0
s → J/ψϕ can be found in Table 4.

6



2 Theoretical Background

Branching Fraction
SM prediction NNLO1 method (4.3± 1.4)× 10−5

Experimental values
world-average (3.4± 0.4)× 10−5

Belle (3.6± 0.5± 0.7)× 10−5

LHCb (1 fb−1) (3.38± 0.34± 0.20)× 10−5

Table 3: Theoretical and experimental literature values for the branching fraction of the
rare decay B0

s → ϕγ. The theoretical value is obtained from [8] and the world-average
experimental value from [2]. The uncertainties on the experimental values found by

Belle [6] and by the LHCb, using 1 fb−1 of data collected during Run 1 [7], are statistical
and systematic uncertainties, respectively.

Value Branching Fraction
Experimental (world-average) (1.04± 0.04)× 10−5

Table 4: World-average experimental literature value for the branching fraction of the
tree-level decay B0

s → J/ψϕ [2].

1next to next to leading order
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3 Outline of the Analysis Strategy

The aim of this thesis is the determination of the total branching fraction of the rare
loop-level B meson decay B0

s → ϕγ using the tree-level decay B0
s → J/ψϕ as the nor-

malization channel. The J/ψ further decays into e+e− and the ϕ into K+K−. The γ is
reconstructed from γ → e+e− conversions in material. Due to the same final state parti-
cles as in theB0

s → ϕγ decay, the use ofB0
s → J/ψϕ as a normalization channel proves to

be advantageous: Factors such as the PID efficiencies or the σbb̄ production cross section
as well as most systematic uncertainties cancel each other out, increasing the precision
of the branching fraction measurement. Additionally, the total branching fraction of
B0
s → J/ψϕ has already been determined - also by the LHCb - with an uncertainty of

3.8%.
The analysis consists of the following steps:

1. Dataset Stripping: The dataset is produced by the LHCb Collaboration having un-
dergone the stripping process, which is a loose preselection choosing the channels
relevant to the analysis. This is done to reduce the data to a manageable size.

2. Signal Selection:
a. Signal Preselection: In order to extract the signal and to minimize the combi-

natorial background, loose cuts are applied.
b. Multivariate Analysis: A Multivariate Analysis is carried out to further re-

duce the combinatorial background. An XGBoost Classifier is trained on the
preselected data sample and the classifier output is optimized for both the
normalization channel and the rare mode.

3. Signal Yield Determination: On Monte Carlo simulations, a fit model is deter-
mined. Using Maximum Likelihood Fits the signal yields are obtained by fitting
the mass distributions for B0

s → ϕγ(→ e+e−) and for B0
s → J/ψ(→ e+e−)ϕ candi-

dates.
4. Efficiency Determination: The signal selection cut efficiencies for both channels

are calculated using Monte Carlo simulated samples.
5. Branching Fraction Calculation: Using the signal yields and the efficiencies, the

relative branching fraction is calculated by

B(B0
s → ϕγ)

B(B0
s → J/ψ(→ e+e−)ϕ)

=
N(B0

s → ϕγ)

N(B0
s → J/ψ(→ e+e−)ϕ)

×
ϵJ/ψϕ
ϵϕγ

. (3.1)

8



3 Outline of the Analysis Strategy

N is the respective signal yield, and ϵ is the respective reconstruction cut selection
efficiency for the normalization channel and the rare mode. The total branching
fraction B(B0

s → ϕγ) is obtained by multiplying with the total branching fraction
B(B0

s → J/ψ(→ e+e−)ϕ).

Since this analysis uses the full available data taken by the LHCb detector and a full
determination of the systematic uncertainties is beyond the scope of this thesis, the re-
sults of the efficiency and branching fraction calculation are blinded by omitting the
calculated central value and only giving the associated uncertainties. This still allows
the comparison with the theoretical and the present experimental prediction.

9



4 The LHCb Detector

4 The LHCb Detector

The Large Hadron Collider is a proton-proton (pp) collider at CERN located near Geneva
on the Swiss-French border. It operated at center-of-mass energies of

√
s = 7 TeV in

2011,
√
s = 8 TeV in 2012 and

√
s = 13 TeV from 2015 to 2018. The Large Hadron Col-

lider beauty experiment (LHCb) is a detector at the LHC with the investigation of CP
violation and rare decays as its main focus. It mainly studies decays involving bottom
(hence the name) and charm quarks. In this section, a brief overview of the detector
layout will be given, followed by an introduction to the tracking, particle identification,
and trigger system.

4.1 Overview

The LHCb detector (Figure 3) is a single-arm forward spectrometer with a length of
20m that is designed for forward tracking. This particular layout was chosen in order
to accommodate for the characteristic production of bb̄ quark pairs at small angles to
the beamline in either the forward or the backward direction. As illustration, the polar
angles of b and b̄ quarks simulated for

√
s = 14TeV are given in Figure 2. The LHCb de-

tector covers an angular range of 10 to 300(250) mrad in the horizontal magnetic bending
(vertical non-bending) plane, which allows for approximately 20 % of all produced pairs
to be reconstructed [9]. A right-handed coordinate system is used, with the z-axis in the
direction of the beamline, y in the vertical direction, and x in the horizontal direction.

0
/4π

/2π
/4π3

π

0
/4π

/2π
/4π3

π  [rad]1θ

 [rad]2θ

1θ

2θ

b

b

z

LHCb MC
 = 14 TeVs

Figure 2: Simulation of the polar angles of b and b̄ quarks at
√
s = 14TeV using

PYTHIA8 and CTEQ6 NLO [10].
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4 The LHCb Detector

Figure 3: Side view of the LHCb detector in the y-z-plane [11].

4.2 Magnet

For the momentum measurement of charged particles traversing the detector, the cur-
vature of the charged tracks inside a magnetic field is used. In LHCb’s case, this is
a warm dipole magnet made up of two saddle-shaped coils symmetrically mounted
in a window-frame yoke with increasing pole gap (see Figure 4) in order to meet the
required detector acceptance. It produces a vertical magnetic field with an integrated
power of 4Tm for 10m tracks in z-direction and extends into the Ring-Imaging-Cherenkov
system with a field of 2mT [11]. For data-taking, the polarity is reversed regularly
(MagUp and MagDown), thereby minimizing effects due to detector and subsequent in-
teraction asymmetries [12].

4.3 Tracking System

In order to determine the transverse momentum from the curvature of the track, the
track has to first be reconstructed. Additionally, an excellent vertex resolution is re-
quired to determine the origin of particles and to achieve a good invariant mass resolu-
tion. At the LHCb, this is accomplished by the tracking system consisting of the Vertex
Locator, the Silicon Tracker, and the Outer Tracker.
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Figure 4: Perspective view of the LHCb dipole magnet [11].

Vertex Locator (VELO): The VELO is a silicon microstrip detector that is placed in close
proximity (7 mm) to the beam at the interaction point [13]. It consists of two halves with
slight overlap for full angular coverage that are retracted for safety purposes during
beam injection. The semi-circular modules in each half are placed in the beam direction
and contain one sensor for measuring the R-coordinate and one for the ϕ-coordinate.
Its measurement of track coordinates is essential for the identification of the primary
vertex and of the distinctive displaced secondary vertex for b-hadron decays.

Silicon Tracker (ST): The Silicon Tracker refers to two silicon microstrip detectors with
200 µm strip pitch and a single-hit resolution of 50 µm, the Tracker Turicensis (TT) and
the Inner Tracker (IT). The TT is positioned upstream of the magnet and covers the
full detector acceptance, while the IT at the center of the Tracking stations T1 - T3 only
covers the region close to the beam where track multiplicity is the highest. Each module
of the two detectors is made up of 4 slightly overlapping detection layers with a x-u-
v-x geometry. In the first and last layer, the strips are placed vertically, while in the
second and third layer, the strips have a rotation of −5 and +5 ◦, respectively, in order
to measure the transverse momentum component [11].

Outer Tracker (OT): The outer regions of the T1 - T3 are covered by a gaseous straw
tube detector - the Outer Tracker. The drift-time detector for charged particles has a
x-coordinate resolution of 200 µm and its geometry is similar to IT’s and TT’s x-u-v-x
geometry [14]. IT and OT combined fully cover the acceptance of LHCb.
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4.4 Particle Identification System

Particle Identification is an essential requirement for this analysis as it allows the distinc-
tion between decays with the same decay topology and the reduction of backgrounds
from misidentified decays.
Ring-Imaging-Cherenkov system (RICH): The Ring-Imaging-Cherenkov system aims
to identify charged hadrons by using two detectors. RICH1, situated upstream of the
magnet, covers the lower spectrum of momentum of 2-40GeV and the complete angu-
lar acceptance. RICH2, downstream of the magnet only identifies particles with a high
momentum of 15-100GeV and therefore only covers the angular range of 15-120mrad.
The detectors measure the velocity-dependent Cherenkov angle cos θ = 1

βn
, at which

Cherenkov photons are emitted by particles traversing material with the refractive in-
dex n at speeds exceeding the speed of light in the radiator [15]. Figure 5 shows the
Cherenkov angle for different charged hadrons. Together with the track momentum
measured by the tracking system, the mass of the particles can be estimated.

Figure 5: Cherenkov angles in dependency of the track momentum for different
particles in RICH 1 [15].

Calorimeter system: The calorimeter system’s task is the identification of hadrons,
electrons, and photons as well as the measurement of their energy [16]. Energy is de-
posited either by hadronic showers in the case of hadrons or by EM-showers induced
by bremsstrahlung and pair production in the case of charged particles and photons.

• Scintillating Pad Detector (SPD): The SPD is the first layer of the calorimeter
in which a hit indicates the presence of a charged particle and thus allows the
separation of electrons and photons.
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• PreShower Detector (PS): The PS is also a scintillating pad detector that has a
15 mm thick layer of lead in front of its scintillators. This layer marks the start
of an EM-shower thereby allowing to distinguish between charged hadrons and
electrons or photons.

• Electromagnetic Calorimeter (ECAL): The ECAL measures the transverse energy
of particles as well as their shower position and consists of 4 mm thick scintillator
plates that alternate with 2 mm thick lead absorbers. To contain the complete EM
shower and thereby optimize the energy resolution the calorimeter covers a total
of 25 radiation lengths.

• Hadronic Calorimeter (HCAL): The HCAL is a succession of iron absorbers with
active scintillator material and is placed parallel to the beam axis. Even though the
HCAL only covers 5.6 interaction lengths and therefore does not contain the full
hadronic shower, the length suffices in order to give an estimate of the measured
transverse energy and shower shape.

The increase in particle density for the regions close to the beamline is reflected in the
segmentation of the calorimeters as seen in Figure 6. Smaller calorimeter cells are placed
closer to the beam line - the granularity decreases with the distance from the beamline.

Figure 6: Segmentation of calorimeter cells of LHCb’s SPD, PS, ECAL (left) and HCAL
(right) [16].

Muon system: The muon system is comprised of 5 detector stations placed along the
beam axis. The first station M1 is located upstream of the calorimeter in order to
improve the pT measurement in the L0 trigger. M2-5 are placed downstream of the
calorimeter with 80 cm thick iron absorbers placed in between each station and are
mainly used for identifying and tracing the muons. As such, potential muon tracks
are first verified with M2-5. M1 and M2-3 have a high spatial resolution along the x-
axis and are therefore used for the measurement of the transverse momentum, pT , of
the muons. M4-5 mainly serve to identify particles with high pT , as only muons with a
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minimum momentum of 6 GeV can pass through all 5 stations [17].

4.5 Trigger System

In order to process the magnitude of data produced in the pp collisions, a trigger sys-
tem is required. At the LHCb, it is designed to differentiate between b and c decays
and backgrounds from light quarks. The trigger system is split into two levels, the
hardware-based Level-0 Trigger and the software-based High-Level Trigger (HLT).

4.5.1 Level-0 Trigger

The goal of the L0 Trigger level is to reduce the bunch crossing rate of 40MHz to 1
MHz with which the full detector can be read out within the fixed latency time of 4
µs. Information from the calorimeter system is processed in the L0-calorimeter trigger,
where the transverse energy ET is calculated for clusters in 2x2 cells in the ECAL and
the HCAL:

ET =
4∑
i=1

Ei sin θi (4.1)

θi corresponds to the angle between the z-axis and the line connecting the cell center to
the mean position of the pp collision. Using additional information from the SPD and
the PS, events with high momentum hadrons, electrons, and photons are identified and
accepted if their energy passes a certain threshold [18].
With the data from the muon system the muon trigger searches for events with hits in
a straight line through the five stations and with origin in proximity to the interaction
point in the y-z-plane. For a candidate to be accepted, either the pT from the muon with
the highest pT has to exceed the L0Muon pT threshold or the product of the pT from the
muons with the largest and second-largest value surpasses the L0DiMuon threshold.

4.5.2 High Level Trigger

The High Level Trigger (HLT) is a software trigger that runs on an Event Filter Farm
and possesses two stages. Due to time constraints, only a partial event reconstruction
is performed during the first trigger stage HLT1. For this, track segments are recon-
structed from the VELO and are then extended in the tracking stations. Only detached
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tracks with significant transverse momentum pT pass the HLT1 stage.
The second stage HLT2 runs the particle identification using the full information from
the RICH and calorimeter system. The HLT reduces the data rate from 1 MHz to 3-5 kHz

in Run 1 [19] and to 12.5 kHz in Run 2 [20] which is then saved to storage. Since Run
2, the two HLT stages are able to run asynchronously which allows for the data from
HLT1 to be used for direct calibration and alignment of the detector thereby improving
the reconstruction [18, 20].

4.6 Recovery of Bremsstrahlung Photons at LHCb

In interactions with the detector material, electrons can lose energy via the emission
of a photon thereby leading to a reduction in momentum resolution and tracking effi-
ciency for the electrons. A distinction is drawn between two kinds of bremsstrahlung
photons: If the photon is emitted after the electron has passed the magnetic field, the
electron’s momentum determination is not affected, since the curvature of the track re-
mains unchanged. However, if the photon emission occurs before the electron traverses
the magnetic field, the momentum measurement is biased. The loss in energy due to
emitted bremsstrahlung radiation reduces the momentum of the electron, thereby im-
pacting the curvature of the electron track. This reflects itself in a poorer resolution of
the invariant mass distribution. Thus, bremsstrahlung reconstruction is necessary.

Figure 7: Photon reconstruction process as seen from the top of the detector [21].
Photons emitted by bremsstrahlung are marked with red dashed lines. The green

region denoted Brems. search window corresponds to the extrapolated window in
which a photon cluster is associated to the corresponding electron.
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If the emitted photon is out of the ECAL or does not have the required energy to start
a shower, it cannot be reconstructed. In the case of the production of a shower with its
energy exceeding a certain energy threshold, the shower cluster can be reconstructed.
In order to associate a photon cluster to its electron, the photon cluster has to be lo-
cated in the ECAL area between the assumed electron track extrapolated solely using
VELO information and the assumed electron track extrapolated using VELO and TT
information [22]. This process is outlined in Figure 7. The momentum measurement is
corrected by adding the energy of the photon cluster in the ECAL to the momentum of
the associated electron.
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5 Data Analysis

This section documents the dataset and the variables in this analysis. Initial stripping
and preselection cuts are discussed.

5.1 Dataset and Monte Carlo Simulation

The data used in this thesis was collected by the LHCb experiment during the years
2011 to 2012 (Run 1) and 2015 to 2018 (Run 2) with two different magnet polarities
(MagUp and MagDown). During those years, the center-of-mass energy increased from
√
s = 7TeV in 2011 to

√
s = 8TeV in 2012 to

√
s = 13TeV from 2015 on. The correspond-

ing integrated luminosity for Run 1 is 3 fb−1 and 6 fb−1 for Run 2. Due to the changes
in the center-of-mass energies and in the detector configurations, the full dataset is split
into three smaller sub-samples. The Run 1 dataset is made up of the data recorded in
the years 2011 and 2012. Run 2, part 1, summarizes 2015 and 2016 data, while Run 2,
part 2, includes the 2017 and 2018 data.
In addition to the recorded data, Monte Carlo (MC) simulations for both the normaliza-
tion channel and the rare decay are used. Before utilizing the simulations, the events
have to pass the same reconstruction and selection as the dataset. Each data sub-sample
has its corresponding Monte Carlo simulation - MC 2012 corresponds to the Run 1
dataset, MC 2016 to Run 2 part 1 and MC 2018 to Run 2 part 2. Monte Carlo simulations
serve as a proxy for the signal of the corresponding dataset and have the advantage that
even rare decays can be produced with high statistics. They simulate signal events by
taking theoretical predictions and experimental observations as well as the detector ge-
ometry and its acceptance into account. In Table 5, the Monte Carlo simulations along
with the number of generated events are listed.

5.1.1 Definition of Variables

The meaning of the variables used during the course of this analysis is explained below.
Mass of particle X: The invariant mass of a particle X is calculated from the four-
momentum p =

(
E, px, py, pz

)T , where E is the energy and p⃗ =
(
px, py, pz

)T is the mo-
mentum vector, by:

mX =

√
p2
X .
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year Decay # Simulated Events ϵ (Gen. level)

2012

J/ψϕ up 1008410 0.16614
J/ψϕ down 1004107 0.16614
ϕγ up 500901 0.26147
ϕγ down 502669 0.26147

2016

J/ψϕ up 1988734 0.16614
J/ψϕ down 2091446 0.16614
ϕγ up 2002026 0.270145
ϕγ down 2004513 0.270145

2018

J/ψϕ up 5002902 0.177295
J/ψϕ down 4991002 0.177295
ϕγ up 2037824 0.2700
ϕγ down 2006224 0.2700

Table 5: Number of simulated Monte Carlo events and their corresponding generation
efficiency for samples used in this analysis. Up and down refer to the polarity of the

magnet.

Transverse Momentum: The momentum component perpendicular to the beam line,
z-direction in LHCb’s case, is defined as:

pT =
√
p2x + p2y.

Impact Parameter: The impact parameter (IP) is given by the minimal distance be-
tween a reconstructed particle track and the primary vertex (PV). Its χ2

IP measures the
likelihood of the track originating from the vertex by taking the difference of the χ2 of
the vertex before and after the reconstructed track was added.
Vertex χ2: The χ2 fit of the decay vertex is a measure for its fit quality.
Direction Angle: The direction angle (DIRA) is the cosine of the angle between the
reconstructed momentum vector and the particle’s flight direction that is described by
the vector pointing from the primary vertex to the decay vertex.
Flight Distance: The flight distance is the distance the particle has traveled before de-
caying - e.g. the distance between production and decay vertex.
PID/DLL: The PID-system generates a Likelihood function L for each particle. The dif-
ference of the logarithmic likelihood of a given particle X to the logarithmic likelihood
of a pion

∆ ln(L(X − π)) = lnL(X)− lnL(π) = ln

(
L(X)

L(π)

)
(5.1)
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Type Requirement
Global Event Cut nSPDHits < 600

B

|m−mPDG
B | < 1500MeV

DIRA > 0.9995

χ2
IP(PV) < 25

end vertex χ2/ndf < 9

PV χ2 separation > 100

ϕ
985MeV < mϕ < 1100MeV

pT > 400MeV

origin vertex χ2/ndf < 25

K
DLLKπ > −5 (only data)

χ2
IP(PV) > 9

ee
m < 5000MeV

end vertex χ2/ndf < 9

origin vertex χ2 separation > 16

e
DLLeπ > 0 (only data)

pT > 300MeV

χ2
IP(PV) > 9

Table 6: Overview of the cuts applied during the stripping process. The utilized
stripping line is Bu2LLKeeLine2.

is referred to as Delta Log Likelihood DLLXπ or PIDX, where X denotes the particle
hypothesis.

5.2 Stripping Process

After event reconstruction, the decay candidates have to pass a first selection also called
stripping, which selects events based on their decay topology. This reduces the dataset
to only the decays with the correct final states. In this analysis, the stripping line
Bu2LLKeeLine2 is used, which imposes the requirements listed in Table 6 on the decay
particles.

5.3 Trigger Configuration

The signal candidates are additionally required to pass the trigger system (described in
Section 4.5). The specific trigger lines used in this analysis are listed in Appendix A. An
event is stored as Triggered On Signal (TOS) with respect to the fired trigger line if a final
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state particle of the signal candidate is responsible for firing the trigger. If an event is
triggered independently of the final state particles, e.g. by another particle in the event
unassociated with the signal candidate, this event is referred to as Triggered Independent
of Signal (TIS) with respect to the trigger line. The L0 trigger lines select events with
the respective particle having a high momentum. HLT1TrackAllL0 requires events to
have triggered at least one L0 trigger line and additionally imposes higher pT and χ2

IP

criteria. HLT2’s topological lines trigger on partially reconstructed b decays, where at
least two charged daughter particles exist. Input particles that have passed preliminary
cuts on the track quality are reconstructed to two- or three-body objects with the input
particles required to pass a cut on the distance of closest approach [23]. Finally, a multi-
variate analysis (BDT in Run 1) trained on kinematic and topological variables is carried
out on these objects and a cut on the MVA output is applied.

5.4 Preselection

After passing the stripping selection the reconstructed B0
s meson mass distribution is

still dominated by combinatorial background (see Figure 8(a)), e.g. the random combi-
nation of measured particle tracks, thus forming a false signal. This outlines the need
for a proper signal selection starting with the application of preselection cuts. The cho-
sen preselection cuts are outlined in Table 7. Here, advantage is taken of the narrow ϕ

resonance, since this allows the placement of a tight cut around the peak location. The
spectrum of theB0

s mass after preselection is portrayed in Figure 8(b). While there is still
a large amount of combinatorial background, a peak is now visible in the mass region
of 5100 - 5500MeV corresponding to the dominating B0

s → J/ψ(→ e+e−)ϕ decay. The
mass distributions with the q2 cuts applied for the normalization channel and the rare
mode are displayed in Figure 8(c) and Figure 8(d), respectively. The mass distribution
for the rare mode, especially, still shows a large amount of combinatorial background
that has to be further reduced.
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(a) B0
s meson mass distribution after stripping.
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(b) B0
s meson mass distribution after preselec-

tion without additional cut on q2.

4000 4500 5000 5500 6000 6500
) [MeV]0

s
 m(B

0

200

400

600

800

1000

 E
nt

rie
s

(c) B0
s meson mass distribution after preselec-

tion with the q2 cut (6-11GeV2) for the normal-
ization channel applied.
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(d) B0
s meson mass distribution after preselec-

tion with the q2 cut (< 0.0001GeV2) for the rare
mode applied.

Figure 8: B0
s meson mass distributions before and after preselection.

variable normalization channel rare mode
m(ϕ) (1019.461± 12.000)MeV
e± PIDe > 2
K± PIDK > 0
q2 6-11GeV2 < 0.0001GeV2

Table 7: Overview of the preselection cuts and the additional q2 cut applied to separate
normalization channel and rare mode.
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6 Multivariate Analysis

In order to further and more efficiently reject combinatorial background, an Extreme
Gradient Boosting (XGBoost) model is trained. The model uses data with multiple cor-
related features xi to give a prediction of the target variable yi.

6.1 Introduction to Extreme Gradient Boosting (XGBoost)

The basis of the model are the Classification and Regression Trees (CART). In a tree, the
training data sample is split into subsamples at every node using binary variable deci-
sions, e.g. ((xj)i > 0). This process is repeated at every node until a stop criterion such
as the maximum depth of the tree is reached. The final sub-samples are stored in leaves
in the tree and are assigned a score with the real value w.
CARTs and Boosted Decision Trees (BDTs) are at risk of learning specific statistical fluc-
tuations in the training sample resulting in a very good classification performance on
the training data - but not on another independent training sample. In this case, the
model has lost its predictive power since it trains on noise. The effect of overtraining is
alleviated by using the method of Boosting. A forest of trees, all derived from the same
training sample, is grown, where events that were misclassified in one tree have their
weights increased and are then given to the next new tree. The total prediction of an
ensemble of K CARTs fk is then given by

ŷi =
K∑
k=1

fk(x⃗i). (6.1)

The training is done additively. Only one tree is added at a time and the already learned
trees remain fixed. Consequently, the same applies for optimizing the trees. The opti-
mization of a tree occurs by minimizing the objective function

L = L(θ⃗) + Ω(θ⃗) (6.2)

where L(θ⃗) denotes the loss function measuring the difference between the prediction
ŷi and the real value yi and Ω(θ⃗) denotes the weight w-dependent regularization term
that limits the complexity of the model to avoid overfitting. θ⃗ are the parameters of the
algorithm e.g. the model trains to find the parameters θ⃗ that best describe the data xi
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and the target variable yi. The exact minimization process is presented in detail in [24].

6.2 Creating the Training Sample

The data sample used to train an XGBoost Model is made up of a pure signal and back-
ground sample. Since the signal of the rare decay is not yet visible on the data, the signal
of the normalization channel is used as a proxy for training the BDT. An overview of
the cuts applied to the total dataset from Run 1 and Run 2 in order to produce the signal
and background sample is given in Table 8. For the signal sample, the cuts vary little
from the preselection cuts - with the exception of the new variable cut on the B0

s mass
distribution calculated with a constraint on the J/ψ mass and the tightened cut on the
q2 region. These last cuts were introduced to ensure a signal sample with negligible
background contribution. The J/ψ mass constraint allows for a more precise B0

s mass
reconstruction since placing this constraint corrects the momentum and bremsstrahlung
radiation losses of the leptonic final state particles. In particular, the cut onm(Bs,J/ψDTF

)

ensures that there is no contribution from partially reconstructed events, where one or
several final state particles of a B meson decay are not reconstructed.
The background sample is taken from the upper mass side band wherem(B0

s ) > 5500MeV.
The lower mass sideband is not included in the background sample since it contains
partially reconstructed events.

variable signal sample background sample
m(ϕ) (1019.461± 12.000)MeV
e± PIDe > 2
K± PIDK > 0
q2 (9.36± 0.60)GeV2 < 8GeV2

m(Bs,J/ψDTF
) 5300 - 5450MeV -

m(B0
s ) - > 5500MeV

Table 8: Overview of the cuts applied to render the signal and background sample for
the multivariate analysis. "-" means no cuts were applied on the variable for this sample.

6.3 BDT Input Features

Besides a signal and a background sample, the BDT needs variables to train on. In order
to achieve a good suppression of background, those variables should show different be-

24



6 Multivariate Analysis

haviour in their signal and background distributions.
Typically this is to be expected for vertex quality and impact parameter variables. B0

s

mesons are produced at the primary vertex, which means the B0
s impact parameter and

its χ2 value should be small for signal events. The opposite is the case for the kaons and
electrons coming from the detachedB0

s vertices. The expected behaviour of high impact
parameter and high χ2

IP values for the signal sample is shown in Figure 9(d). The cut-off
for lower χ2

IP values is a result of the stripping selection.
Another category of variables with separated signal and background distributions are
kinematic variables based on momentum information. As is visible in Figure 9(a),
events from heavy particles like the B0

s meson have higher transverse momenta than
events from the upper mass sideband. All variables used in the training of the BDT have
similar well-distinguished signal and background distributions (see Appendix B.1) and
are listed in Table 9.
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Figure 9: Signal and Background Distributions for select variables used in training.
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Impact Parameter χ2 (χ2
IP) pT Vertex χ2 Flight Distance (FD) FD χ2 (χ2

FD)
B0
s B0

s B0
s B0

s B0
s

K± ϕ
e±

Table 9: Training variables used in the multivariate analysis.

6.4 k-Folding

For proper training and validation, three statistically independent data samples are
needed. One data sample is used for parameter optimization (training), one for per-
formance validation (testing), and one for application (overtraining detection) [25]. For
implementation on the dataset defined in Section 6.2 a k-Fold approach is implemented.
The dataset is divided into k = 10 sub-samples (also referred to as folds) of approxi-
mately the same size. For training, 8 out of those 10 folds are used, 1 fold is used for
testing, and 1 for application. The process of training, testing, and application is re-
peated k-times by rotating the folds making up the three needed samples so that every
sample serves once as a test and once as an application sample.
The output of the BDT Classifier is a continuous spectrum from 0 to 1 (see Figure 10)
for all events, where 0 signifies background-like and 1 signifies signal-like. The cut for
suppression of the combinatorial background is placed on the BDT Classifier output;
the process of finding the optimal cut will be discussed in Section 6.6.
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Figure 10: Plot of the BDT Classifier Output for Run 1 and Run 2 Data.
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6.5 Evaluating Model Performance

To evaluate the BDT’s performance and check for possible overtraining, the Receiver Op-
erating Characteristic (ROC) curve, a performance measurement for classification prob-
lems, is used (see Figure 11(b)). The curve plots the false positive rate (also 1-specificity),
e.g. the ratio of events that were wrongly classified as signal over all background events,
against the true positive rate (also called sensitivity), e.g. the ratio of events that were
correctly classified as signal over all signal events. The area under the ROC curve (AUC)
is a measure of separability and gives an estimate of how good the model is at distin-
guishing between two classes. At an AUC of 1, a model separates perfectly between
signal and background [26].
While the ROC curve of the test sample at times lies slightly below the ROC curve of
the train sample, there is not too much loss in the model’s prediction power as can be
seen by the very good AUC score of 0.994, which is the same for train and test sample.
Similar conclusions can be drawn from comparing the signal and background distribu-
tions of the train sample (markers with errorbars) and the test sample in Figure 11(a).
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Figure 11: BDT Classifier Output for the XGBoost Model and its ROC Curve.
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6.6 Optimization of the BDT Cut

To further reduce the combinatorial background a selection cut is placed on the output
of the BDT for Run 1 and Run 2 data. The optimal BDT cut is first determined for the
normalization channel and later, using the upper mass sideband for the B0

s mass, also
for the rare mode. This is done by maximizing the Figure-of-Merit (FoM)

FoM =
S√
S +B

(6.3)

with S being the signal yield and B the background yield.
Normalization Channel: For the normalization channel, which only takes events in a
q2 range of 6 - 11GeV2 into consideration, the overall signal and background yields are
estimated by fitting the B0

s mass distribution in the range of 4.6 - 6.2GeV. The signal
and background yields used for the calculation of the FoM are extrapolated from the 2-σ
region around the location of the peak. The fit model of a double-sided Crystalball, two
Gaussians, and an exponential term used to describe the invariant mass distribution of
the B0

s meson is explained in detail in Section 7.3.1.
Rare Mode: The expected signal yield on the rare mode is estimated by scaling the yield
of the normalization channel with the relative branching fraction of B0

s → ϕγ(→ e+e−)

and B0
s → J/ψ(→ e+e−)ϕ:

Sϕγ = SJ/ψϕ ×
B(B0

s → ϕγ)

B(B0
s → J/ψϕ) · B(J/ψ → e+e−)

×
ϵMC
ϕγ

ϵMC
J/ψϕ

. (6.4)

The efficiencies are estimations based on the Monte Carlo simulations. A more accurate
calculation, taking every selection cut into account, is presented in Section 8.1. For the
background yield, the number of events in the upper mass sideband (m(B0

s ) > 5.5GeV)
independent of the BDT output cut in the normalization channel (NJ/ψϕ) and in the rare
mode (Nϕγ) is determined. The background yield on the rare mode is then calculated
by

Bϕγ = BJ/ψϕ ×
Nϕγ(m(B0

s ) > 5.5GeV)

NJ/ψϕ(m(B0
s ) > 5.5GeV)

. (6.5)

Figure 12 shows the Figure-of-Merit in dependency of the BDT output cut for the nor-
malization channel and the rare mode.
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Figure 12: Figure-of-Merit (FoM) in dependency of the cut on the BDT output for both
normalization channel and rare mode.

In the normalization channel, the distribution exhibits a visible decrease in the value of
the FoM for higher BDT output cuts. This decrease is shifted to larger BDT cut values
in the rare mode. In Figure 12(b) only the statistical uncertainties on the Figure-of-
Merit are displayed. However, the measurement is also affected by the uncertainties
on the branching fractions and the efficiencies which are not shown since they correlate
for each measurement. The optimal BDT cuts are chosen to be the cuts with a local
maximum in the distribution. This is 0.32 for the normalization channel and 0.82 for the
rare mode.
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7 Extraction of Signal Yields

This section documents the determination of the signal yields on both rare mode and
normalization channel via Unbinned Maximum Likelihood fits.

7.1 Unbinned Maximum Likelihood Method

All fits in this thesis are implemented using the Unbinned Maximum Likelihood Method.
The probability of describing a set of n independently distributed observations x1...xn
with a set of unknown parameters a1...amis given by the Likelihood Function

L =
n∏
i=0

p(xi; a1...am). (7.1)

Here, p is the known probability density function (pdf ) normalized to unity:∫
p(x; a1...am)dx = 1. The optimal parameters â1...âm are estimated by maximizing

the Likelihood [27]. In order to avoid numerical problems during the calculation, the
negative Log Likelihood

− lnL = −
n∑
i=1

ln p(xi; a1...am). (7.2)

is minimized. The uncertainty on the estimate of a parameter is given by the square
root of its corresponding diagonal element in the covariance matrix. The covariance
matrix, in turn, is computed by taking the inverse of the Hessian matrix which is the
matrix of the second derivatives of the objective function, the negative Log Likelihood,
evaluated at the parameters estimate âi. The required minimization of the negative
Log Likelihood and the subsequent uncertainty calculation is carried out by Python’s
iMinuit package.

7.2 sPlotMethod

The sPlotmethod is a statistical tool for analyzing datasets consisting of different sources
of events (i.e. signal and background). This technique uses a so-called discriminating
variable to unfold the distribution of the so-called control variables with respect to the
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7 Extraction of Signal Yields

different event sources. The term discriminating refers to a variable for which both sig-
nal and background distributions are known. In order to carry out the sPlot method,
the control variable has to be uncorrelated with the discriminating variable. To obtain
knowledge about the event types in the discriminating variable - here the invariant
mass of the B0

s meson - a Maximum Likelihood Fit for the event yields is performed.
The result of the sPlot technique, the sWeights, are then calculated by

sP(m) =
VssPs(m) + VsbPb(m)

NsPs(m) +NbPb(m)
, (7.3)

whereNi denotes the respective yield, Pi(m) the respective pdf describing the two event
sources, and m is the discriminating variable. Vss and Vsb are elements of the covariance
matrix and are determined by inverting the inverted covariance matrix where the ele-
ments are given by

V −1
ij =

∑
m

Pi(m)Pj(m)

(NsPs(m) +NbPb(m))2
. (7.4)

A more generalized description can be found in [28]. sPlots can be utilized as a means to
test the agreement between signal distributions on data and on MC simulation. For this,
the input variables of the multivariate analysis chosen in Section 6.3 are used as control
variables. The signal and background yields required for the calculation of the weights
are extracted using the fit procedure described in Section 7.3.1. Signal and background
distribution were obtained by using sWeights and bWeights, respectively, and along with
the simulated events and the unweighted data of each variable are shown in Figure 13
and Appendix B.2. For the kinematic variables of the B0

s and the ϕ meson, deviations
of the simulated events to the s-weighted data can be observed. This is a known phe-
nomenon that most likely occurs because the B meson production is not modeled per-
fectly. The impact parameters, especially for the electrons and kaons, along with the fit
quality of the flight distance only show very small differences. While these deviations
do not affect the training of the BDT due to the utilization of data, they might influence
the efficiency calculation.

7.3 Signal Fit on MC and Data

The fit analysis uses both the Monte Carlo simulated events and the datasets. The Monte
Carlo simulations are utilized to determine the majority of the fit model parameters,
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(b) χ2 of the E2 Impact Parameter.
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(c) χ2 of the B0
s decay vertex fit.
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Figure 13: Select BDT variable distributions from MC simulations (blue), unweighted
data (black), data weighted with sWeights (red) and data weighted with bWeights.

which are then applied to the data to fit the signal yields for both the normalization
channel and the rare mode. The model from the MC 2012 is transferred to data from
2011 and 2012, the model from the MC 2016 to data from 2015 and 2016, and the model
from the MC 2018 to data from 2017 and 2018. This is done to take changes in the
detector configuration and in the center-of-mass energies into account. It is important
to note that the simulated events have to pass the same stripping, preselection, and BDT
classifier output selection as the data.
In addition, the MC simulated and the dataset events are further separated into three
subsets depending on the number of reconstructed bremsstrahlung photons (0, 1, or 2).
This is necessary since the emission of photons by bremsstrahlung leads to smearing in
the mass distribution, resulting in each subset having a slightly different mass shape.
Most noticeably, the distribution is less asymmetric for a larger amount of recovered
bremsstrahlung photons. The fit procedure as described in Section 7.3.1 and 7.3.2 is
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7 Extraction of Signal Yields

inspired by the analysis in [29].

7.3.1 Signal Fit on Normalization Channel

On both Monte Carlo simulated events and data of the normalization channel an addi-
tional cut on the J/ψ mass constrained B0

s mass of m(B0
s,J/ψDTF

) > 5200MeV is applied,
thereby reducing the lower mass tail through the exclusion of partially-reconstructed
background. The normalization channel is selected by cutting on q2 in the range of
6 to 11GeV2.
A central aspect of all performed mass fits is the double-sided Crystalball2 (DSCB) func-
tion which models the experimental resolution of the mass distribution taking the de-
tector resolution into account [30]. It is composed of a Gaussian core distribution and
two power-law tails to either side of the core:

f(x; βl,ml, βh,mh, µ, σ) = N ·


Al · (Bl − x−µ

σ
)−ml , for x−µ

σ
≤ −βl

exp
(
− (x−µ)2

2σ
2

)
, for − βl <

x−µ
σ

< βr

Ah · (Bh +
x−µ
σ

)−mh , for x−µ
σ

≥ βr

(7.5)

with

Al,h =

(
ml,h

βl,h

)
· exp

(
−|β|2

2

)
, (7.6)

Bl,h =
ml,h∣∣βl,h∣∣ − ∣∣βl,h∣∣. (7.7)

N is a numerically determined normalization factor, that normalizes the DSCB in the fit
range and is simply the inverse of the integrated DSCB in the fit range. The parameter
µ marks the location of the peak of the mass distribution and σ gives the width of the
Gaussian distribution. For the tails, ml and mh denote the exponents of the power-law
tails to the left and the right side, respectively, while βl and βh determine the mass value
where the Gaussian core distribution ends and the respective power-law tail sets in.
The left tail models the energy loss due to bremsstrahlung photons produced by the
electrons. The right tail describes the overestimation of reconstructed photon energies
by the detector.

2named after the Crystal Ball Collaboration, which first introduced this function
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7 Extraction of Signal Yields

The fit model for the signal is completed by a Gaussian on the left side of the Gaussian
core distribution as well as an additional Gaussian on the right side that help model
the mass distribution tails. The right-handed Gaussian is only implemented for the
subsets containing events with one or two reconstructed photons as the right tail is
more pronounced for these datasets. The mass distribution of the simulated events in
the fit range M(B0

s ) ∈ [4.5, 5.9]GeV is thus described by

Fs = (1− fgr − fgl · (1-fgr)) · DSCB(M ; βl,ml, βh,mh, µ, σ)

+ fgl · (1− fgr) · Gauss(M ;µ− µl,shift, σgl) + fgr · Gauss(M ;µ+ µr,shift, σgr),
(7.8)

where M is the mass, fgl (fgr) is the fraction of the left(right)-handed Gaussian, σgl (σgr)
its width and µl,shift (µr,shift) the difference between the peak position of the Gaussian
and the core distribution. The fit results on the individual subsets of the Monte Carlo
simulated events are displayed in Appendix C.1. The datasets containing one or two re-
constructed photons are described well by the chosen fit model. Though there are slight
deviations visible at the beginning of the right tail, these are not significant. However,
these differences grow more pronounced for the datasets without a reconstructed pho-
ton and therefore overestimate the data of Run 2 part 2 significantly in the mass region
around 5.4GeV. Nevertheless, this deviation is expected to only have a small effect on
the determination of the signal yields.
For modeling the signal on data, the fit parameters derived from the Monte Carlo sim-
ulation are either fixed or, in the case of the tail parameters, constrained by adding a
Gaussian penalty term. A mass shift with the mass peak on data then described by
MData = MMC +Mshift is applied to the peak position and the width of the core distribu-
tion is scaled by pscale: σData = σMC · pscale. Additionally, the fraction of the right-handed
Gaussian is scaled with a correction term fg: fgr, Data = fgr, MC · fg.
The combinatorial background is modeled by a simple exponential function, where λ is
the decay constant and Nexp the corresponding normalization factor:

Fb =
1

Nexp
· exp (−λ ·M) . (7.9)

Thus, the complete fit model for both signal and background from 4.5 to 6.2GeV is
defined as

FJ/ψϕ =
Ns

Ns +Nb

· Fs(M ; βl,ml, βh,mh,mshift, pscale, fg) +
Nb

Ns +Nb

· Fb(M ;λ). (7.10)
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7 Extraction of Signal Yields

Ns andNb denote the signal and background yield respectively. For the subset with 0 re-
constructed photons, the right-handed Gaussian and its correction term on data is omit-
ted. Each individual fit on data can be found in Appendix C.2. Interestingly enough,
the previously observed overestimation of the peak on the Monte Carlo simulation and
the subsequent decrease in the right tail on the simulated events have significantly de-
creased in the case of the Run 2 part 2 sample and is hardly visible for Run 1 and Run 2
part 1 data.
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(a) 2011 and 2012 data.
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(b) 2015 and 2016 data.
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(c) 2017 and 2018 data.
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(d) Total data.

Figure 14: Mass Fits on normalization channel for 2011/12, 2015/16, 2017/18 Data and
total mass fit on all data.
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The mass fits for all three time periods (see Figure 14) are obtained by the addition of
the separate fits of the subsets split by the amount of reconstructed photons. The fit on
all available data is then the addition of the fits of the three time periods. In Table 10 the
extrapolated signal and background yields are listed for the three time periods and for
the complete dataset.

7.3.2 Signal Fit on Rare Mode

For the fits on the rare mode, only events within the q2-region of q2 < 0.0001GeV2 are
considered. Due to the negligible contribution of events with two reconstructed pho-
tons, the data was only split into two subsets with either no or a single reconstructed
photon. The low amount of events with two reconstructed photons is explained by the
near collinear production of the positron and electron in γ → e+e− conversions and the
subsequent emission of bremsstrahlung in the same direction. Consequently, both pho-
tons produce a hit in the same ECAL cluster and are reconstructed as a single photon.
In the rare mode, the signal fit consists solely of a double-sided Crystalball function. The
tail parameters βl,ml, βh,mh, the peak position µ and the distribution width σ are deter-
mined using Monte Carlo simulated events in the mass range ofM(B0

s ) ∈ [4.7, 5.75]GeV.
All fits on simulated events can be seen in Figure 24 in Appendix D.1. Except for out-
liers due to the low statistics, the fit models the simulated signal events well. The fit
procedure on data of the rare mode is quite similar to that of the normalization chan-
nel: The tail parameters are constrained using a Gaussian penalty term in the negative
Log-Likelihood function and a shift parameter Mshift is added for the mass. The scal-
ing of the width of the Gaussian distribution is calculated using the results from the
normalization channel:

σData
ϕγ =

σDataϕγ

σMC
J/ψϕ

· σDataJ/ψϕ. (7.11)

The same exponential term is fit to the combinatorial background. The total fit model
applied on the data in a mass range of 4.9 to 6.2GeV is simplified to

Fϕγ =
Ns

Ns +Nb

·DSCB(M ; βl,ml, βh,mh,MMC +Mshift, σ
Data
ϕγ )+

Nb

Ns +Nb

·Fb(M,λ). (7.12)

The data fits are shown in Appendix D.2, the total fits for the individual time periods
independent of the amount of reconstructed photons in Figure 15. Compared to the
normalization channel, the fraction of background events in the signal range is higher.
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7 Extraction of Signal Yields

dataset decay Nsignal Nbackground

Run 1 B0
s → ϕγ 120± 11 9± 5

B0
s → J/ψϕ 11 985± 115 810± 46

Run 2, part 1 B0
s → ϕγ 160± 14 29± 8

B0
s → J/ψϕ 18 879± 143 786± 50

Run 2, part 2 B0
s → ϕγ 356± 20 26± 10

B0
s → J/ψϕ 36 664± 198 1403± 63∑ B0
s → ϕγ 636± 27 64± 14

B0
s → J/ψϕ 67 528± 270 2999± 92

Table 10: Signal and background yields for all datasets for normalization channel and
rare mode. The uncertainties are the uncertainties on the fit results.

Nevertheless, the description of the mass distribution of the data via the fit model is
similar to the description of the simulated events. Here, low statistics play their part in
the good agreement between data and fit. The signal and background yields of the rare
mode are listed together with the results of the normalization channel in Table 10.
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(a) 2011 and 2012 data.
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(b) 2015 and 2016 data.
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(c) 2017 and 2018 data.
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(d) Total data.

Figure 15: Mass Fits on rare mode for 2011/12, 2015/16, 2017/18 Data and total mass
fit on all data.
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8 Determination of the Branching Fraction

8 Determination of the Branching Fraction

This section covers the calculation of the branching fraction B0
s → ϕγ using the sig-

nal yields from Section 7.3 and the signal selection efficiencies, which have yet to be
determined. The relative branching fraction is obtained first and with the help of the
normalization channel B0

s → J/ψ(→ e+e−)ϕ the total branching fraction is calculated.

8.1 Signal Efficiencies

In order to obtain a clean sample on the data and determine the signal yields from this
clean sample, selection cuts are applied. The signal efficiency describes the amount of
signal events that are reconstructed and selected relative to the total number of signal
decays initially produced. It is convenient to obtain the efficiency from Monte Carlo
simulations where the overall number of signal events is simply the number of sim-
ulated events. The efficiencies for the rare decay and the normalization channel are
calculated by

ϵϕγ =
NMC
sel. (B

0
s → ϕγ(→ e+e−))

NMC
sim.(B

0
s → ϕγ(→ e+e−))

(8.1)

and

ϵJ/ψϕ =
NMC
sel. (B

0
s → J/ψ(→ e+e−)ϕ)

NMC
sim.(B

0
s → J/ψ(→ e+e−)ϕ)

(8.2)

where NMC
sel. stands for the number of events that have passed reconstruction and selec-

tion and NMC
sim. for the simulated number of events in the MC simulation. The results are

listed in Table 11 with the central values blinded as discussed in Section 3.

Decay Channel efficiency

2012 B0
s → ϕγ (xxx± 0.33)× 10−5

B0
s → J/ψϕ (xxxx± 0.015)× 10−3

2016 B0
s → ϕγ (xxx± 0.24)× 10−5

B0
s → J/ψϕ (xxxx± 0.014)× 10−3

2018 B0
s → ϕγ (xxx± 0.25)× 10−5

B0
s → J/ψϕ (xxxx± 0.010)× 10−3

Table 11: Calculated efficiencies for rare decay and normalization channel for all three
Monte Carlo simulations (blinded).
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8.2 Branching Fraction Fit

With the signal yields determined in Section 7.3 and the derived efficiencies from Ta-
ble 11, the relative branching fraction of B0

s → ϕγ to B0
s → J/ψ(→ e+e−)ϕ is expressed

as
B(B0

s → ϕγ)

B(B0
s → J/ψ(→ e+e−)ϕ)

=
N(B0

s → ϕγ)

N(B0
s → J/ψ(→ e+e−)ϕ)

×
ϵJ/ψϕ
ϵϕγ

. (8.3)

In order to combine the three individual measurements of the relative branching frac-
tion obtained from Run 1, Run 2, part 1, and Run 2, part 2, an Unbinned Maximum
Likelihood Fit is performed using

pdf =
3∑
i=1

1√
2πσ2

i

· exp
(
−(µ− x2i )

2σ2
i

)
, (8.4)

where xi denotes the relative branching fraction and σi the respective error on the rel-
ative branching fraction in the respective data sub-sample. The fit returns a relative
branching fraction of

B(B0
s → ϕγ)

B(B0
s → J/ψ(→ e+e−)ϕ)

= (xxx± 0.28)× 10−1.

The total branching fraction of B0
s → ϕγ can then be determined by multiplying the

relative branching fraction with the total branching fraction ofB0
s → J/ψ(→ e+e−)ϕ. For

this, the values of the branching fractions ofB0
s → J/ψϕ and J/ψ → e+e−are needed [2].

B(B0
s → J/ψϕ) = (1.04± 0.04)× 10−3

B(J/ψ → e+e−) = (5.971± 0.032)× 10−2

The total branching fraction of B0
s → ϕγ is calculated to:

B(B0
s → ϕγ) = (xxx± 0.17stat.)× 10−5.

The high statistics of Run 1 and Run 2 combined are reflected in the low statistical un-
certainty. With 0.17 × 10−5 it is competitive with previously measured uncertainties by
Belle (0.5×10−5) and by LHCb (0.34×10−5) using 1 fb−1 of Run 1 data. A more thorough
analysis of the complete LHCb data may be able to further improve the results.
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8.3 Systematic Uncertainties

The branching fraction is subject to not only statistical errors but also systematics. How-
ever, the time frame of this thesis does not allow for an in-depth analysis of systematic
uncertainties. As such, the main focus lies on the uncertainty stemming from the total
branching fraction measurement of the normalization channel B0

s → J/ψ(→ e+e−)ϕ.
The inclusion of this error returns a systematic uncertainty of 0.14× 10−5.
Since other sources of systematics are not taken into account, this represents an under-
estimation of the total systematic uncertainties. Other sources in this analysis would
include the description of the invariant mass distribution via the chosen fit model. Al-
ternative fit models such as a polynomial function for the combinatorial background or
a Johnson SU distribution for the signal could provide an estimate for this uncertainty.
Additionally, a study of potential background processes could describe the systematic
uncertainty due to background pollution in the signal distribution. Another systematic
uncertainty comes from the efficiency calculation on the uncorrected Monte Carlo sim-
ulations that include the preselection, signal selection, and trigger efficiencies. These
efficiencies could be determined individually. The trigger efficiency can be calculated
from data using the so-called TISTOS method [31]. Finally, the Monte Carlo simulations
could be further corrected for the distinct differences between data and simulation as
seen in Section 7.2.
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9 Conclusion and Outlook

A measurement of the branching fraction of the rare radiative decay B0
s → ϕγ relative

to the tree-level decay B0
s → J/ψϕ, where J/ψ → e+e−, is presented. This rare decay is

strongly suppressed in the Standard Model and is therefore a sensitive probe for New
Physics. Data taken by the LHCb experiment in the years 2011 at

√
s = 7TeV, 2012

at
√
s = 8TeV and 2015 to 2018 at

√
s = 13TeV corresponding to a total integrated

luminosity of Lint = 9 fb−1 is used. Since the full available dataset is utilized for this
preliminary analysis, the results for the efficiencies and the overall branching fraction
are blinded.
To isolate the signal of the rare decay and suppress the vast combinatorial background,
two stages of selection cuts, a loose preselection, and a multivariate analysis, using
normalization channel data as a proxy for the signal, have been implemented. Monte
Carlo simulated events are used to determine the selection efficiencies and to obtain a
fit model for the B0

s mass distribution. On data, the signal yields for both the rare mode
and the normalization channel are obtained via unbinned maximum likelihood fits. A
total of 636 ± 27 B0

s → ϕγ decays are reconstructed. The total branching fraction is
measured to

B(B0
s → ϕγ) =

(
xxx± 0.17stat. ± 0.14sys.

)
× 10−5.

The statistical uncertainty is comparable to the uncertainties determined in previous
studies of this decay, by Belle and, using 1 fb−1 of data, also by LHCb. As systematic
uncertainty, only the uncertainty on the branching fraction of the normalization chan-
nel is considered leading to an underestimation of the overall systematic uncertainty.
Therefore, a full study of systematic uncertainties is necessary but beyond the scope
of this thesis. Additionally, a study of potential background processes, e.g. partially
reconstructed background, with which the fit model and the selection process could be
improved would be advantageous. Using the sPlot technique and plotting the variables
used for training the BDT, some deviations between Monte Carlo simulated events and
signal distribution are observed. Correcting the Monte Carlo simulations, especially in
regard to B0

s meson and kinematics-related variables, could improve the selection effi-
ciency determination and potentially the fit parameters derived from simulated events.
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A Trigger Lines

Trigger Level Trigger Line

L0

Bs_L0ElectronDecision_TIS or
Bs_L0MuonDecision_TIS or
Bs_L0HadronDecision_TIS or
E1_L0ElectronDecision_TOS or
E2_L0ElectronDecision_TOS

Hlt1 Bs_Hlt1TrackMVADecision_TOS

Hlt2

Bs_Hlt2Topo2BodyDecision_TOS or
Bs_Hlt2Topo3BodyDecision_TOS or

Bs_Hlt2TopoE2BodyDecision_TOS 3 or
Bs_Hlt2TopoE3BodyDecision_TOS3

(a)

L0 Trigger Lines for Run 1 and 2 and HLT Trigger Lines for Run 2.

Trigger Level Trigger Line
Hlt1 Bs_Hlt1TrackAllL0Decision_TOS

Hlt2

Bs_Hlt2Topo2BodyBBDTDecision_TOS or
Bs_Hlt2Topo3BodyBBDTDecision_TOS or
Bs_Hlt2TopoE2BodyBBDTDecision_TOS or
Bs_Hlt2TopoE3BodyBBDTDecision_TOS

(b)

HLT Trigger Lines for Run 1.

Table 12: Applied Trigger Configurations.

3 These trigger lines were not used for the 2015 data due to unavailability.
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B Plots of BDT Variables

B.1 Signal and Background Distribution of BDT Variables
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Figure 16: Signal and Background Distributions for variables of mesons and leptons
used in training the XGBoost Model.

50



B.2 sPlots of BDT Variables
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Figure 17: BDT variable distributions from MC simulations (blue), unweighted data
(black), data weighted with sWeights (red), and data weighted with bWeights.
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C B0
s → J/ψ(→ e+e−)ϕ Mass Distribution Fits

C.1 Fits for Monte Carlo Simulations
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(c) 2012: 2 γ.

Figure 18: Fits to the mass distribution of the normalization channel for 2012 Monte
Carlo simulations

52



4.6 4.8 5.0 5.2 5.4 5.6 5.8
m(B0

s ) [GeV]

0

200

400

600

800

1000

Ev
en

ts
/(6

.5
 M

eV
)

low = 0.168 ± 0.003
mlow = 52.33 ± 1.28

high = 5.97 ± 0.1
mhigh = 270.0 ± 21.0
loc = 5.3361 ± 0.0004
scale = 0.0252 ± 0.0003
locshift, lh = 0.344 ± 0.005
scalelh = 0.1812 ± 0.0027
flh, gauss = 0.127 ± 0.007

DSCB + LH-Gaussian
DSCB
LH-Gaussian
Monte Carlo

4.6 4.8 5.0 5.2 5.4 5.6 5.8
5
0
5

Re
sid

ua
ls 

[
]

(a) 2016: 0 γ.
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(b) 2016: 1 γ.
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(c) 2016: 2 γ.

Figure 19: Fits to the mass distribution of the normalization channel for 2016 Monte
Carlo simulations.
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(a) 2018: 0 γ.

4.6 4.8 5.0 5.2 5.4 5.6 5.8
m(B0

s ) [GeV]

0

1000

2000

3000

4000

Ev
en

ts
/(5

 M
eV

)

low = 0.396 ± 0.005
mlow = 36.0 ± 22.0

high = 1.31 ± 0.03
mhigh = 13.0 ± 6.0
loc = 5.33522 ± 0.00018
scale = 0.0445 ± 0.0003
locshift, lh = 0.284 ± 0.01
scalelh = 0.223 ± 0.005
locshift, rh = 0.11 ± 0.00024
scalerh = 0.107 ± 0.003
frh, gauss = 0.037 ± 0.003
flh, gauss = 0.178 ± 0.015

DSCB + LH- + RH-Gaussian
DSCB 
LH-Gaussian
RH-Gaussian
Monte Carlo

4.6 4.8 5.0 5.2 5.4 5.6 5.8
5
0
5

Re
sid

ua
ls 

[
]

(b) 2018: 1 γ.
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(c) 2018: 2 γ.

Figure 20: Fits to the mass distribution of the normalization channel for 2018 Monte
Carlo simulations.
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C.2 Fits for Data
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(a) Data: 0 γ.
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(b) Data: 1 γ.
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(c) Data: 2 γ.

Figure 21: Fits to the mass distribution of the normalization channel for Run 1 Data.
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(a) Data: 0 γ.
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(b) Data: 1 γ.
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(c) Data: 2 γ.

Figure 22: Fits to the mass distribution of the normalization channel for Run 2 Part 1
Data.
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(a) Data: 0 γ.
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(b) Data: 1 γ.
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(c) Data: 2 γ.

Figure 23: Fits to the mass distribution of the normalization channel for Run 2 Part 2
Data.
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D B0
s → ϕγ(→ e+e−) Mass Distribution Fits

D.1 Fits for Monte Carlo Simulations
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(a) 2012: 0 γ.
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(b) 2012: 1 γ.
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(c) 2016: 0 γ.
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(d) 2016: 1 γ.
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(e) 2018: 0 γ.
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(f) 2018: 1 γ.

Figure 24: Fits to the mass distribution of the rare mode for Monte Carlo simulations
split into the respective years and the number of reconstructed bremsstrahlung

photons.
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D.2 Fits for Data
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(a) 2012: 0 γ.
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(b) 2012: 1 γ.
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(c) 2016: 0 γ.
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(d) 2016: 1 γ.
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(e) 2018: 0 γ.
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(f) 2018: 1 γ.

Figure 25: Fits to the mass distribution of the rare mode on Data split into the
respective years and the number of reconstructed bremsstrahlung photons.
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