
Department of Physics and Astronomy

Heidelberg University

Bachelor Thesis in Physics

submitted by

Sarah Marie Michel
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Abstract

During the Long Shutdown 3 (2026-2029) of the LHC at CERN, the ALICE experiment

will upgrade the three innermost vertexing layers of its Inner Tracking System (ITS2) with

truly cylindrical, bendable wafer-scale silicon sensors. The first stitched sensor prototype,

called the Monolithic Stitched Sensor (MOSS), consists of ten stitched Repeated Sensor

Units (RSUs).

This study focuses on smaller test chips called BabyMOSS, each containing a single RSU.

The electrical performance of the BabyMOSS is evaluated through threshold scans across

various DAC parameter configurations. The results are complemented by a dedicated

test beam campaign, which provides insights into noise characteristics and cluster size

behavior under in-beam conditions.

The study presents results for the sub-matrices of BabyMOSS, some of which contain

different front-end electronics. These results highlight the impact of front-end design on

noise levels and cluster size trends. The findings confirm the expected small cluster sizes,

characteristic of the drift-dominated sensor, both with and without reverse bias applied

between the diode and substrate. Notably, in the absence of reverse bias, peculiar noise

patterns are observed, which are currently investigated by a complementary, separate

study.

This work contributes to the optimization of stitched sensor design and provides valuable

insights into the effects of various front-end design choices, helping to enhance future

iterations of the detector.

Zusammenfassung

Während des Long Shutdown 3 (2026-2029) des LHC am CERN, wird das ALICE-

Experiment die drei innersten Schichten seines Inner Tracking Systems (ITS2) mit wirklich

zylindrischen, biegbaren Siliziumsensoren im Wafermaßstab aufrüsten. Der erste Stitched-

Prototyp des Sensors, genannt Monolithic Stitched Sensor (MOSS), besteht aus zehn

miteinander verbundenen Repeated Sensor Units (RSUs).

Diese Studie konzentriert sich auf kleinere Testchips, die als BabyMOSS bezeichnet werden

und jeweils eine einzelne RSU enthalten. Das elektrische Verhalten des BabyMOSS wird

durch Schwellenscans über verschiedene DAC-Parameterkonfigurationen untersucht. Die

Ergebnisse werden durch eine dedizierte Testbeam-Kampagne ergänzt, die Einblicke in

Rauschcharakteristika und Clustergrößenverhalten unter Bedingungen im Teilchenstrahl

liefert.

Die Studie präsentiert Ergebnisse für die Sub-Matrizen von BabyMOSS, von denen einige

unterschiedliche Front-End-Elektronik enthalten. Diese Ergebnisse zeigen den Einfluss des



Front-End-Designs auf Rauschpegel und Clustergrößentrends. Die Ergebnisse bestätigen

die erwarteten kleinen Clustergrößen, die charakteristisch für den driftdominierten Sensor

sind, sowohl mit als auch ohne angelegte Sperrspannung zwischen der Diode und dem

Substrat. Bemerkenswerterweise werden ohne angelegte Sperrspannung ungewöhnliche

Rauschmuster beobachtet, die derzeit durch eine ergänzende, separate Studie untersucht

werden.

Diese Arbeit trägt zur Optimierung des Designs der Sensoren bei und liefert wertvolle

Einblicke in die Auswirkungen verschiedener Front-End-Designs, die zur Verbesserung

zukünftiger Iterationen des Detektors beitragen.
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1 Interaction of Charged Particles with Matter

For a particle to be detected, it has to interact with matter. The detection of charged

particles employs several processes of interaction with matter. These processes include

ionization, excitation, bremsstrahlung, Cherenkov radiation and transition radiation and

usually several subsequent interactions occur when a charged particle traverses the detector

material [1].

This chapter focuses on the most important interaction processes regarding the energy loss

of heavy charged particles and electrons, as well as multiple Coulomb scattering. When

speaking about heavy charged particles, charged particles with a mass higher than the

electron mass are referred to, thus excluding electrons and positrons [2].

1.1 Energy Loss by Ionization and Excitation

1.1.1 Energy Loss of Heavy Charged Particles

The dominant interaction processes for heavy charged particles with matter are ionization

and excitation. Both ionization and excitation are Coulomb interactions, where the

heavy charged particle electromagnetically interacts with an electron from an atom of the

traversed material. If the atom gets excited, a bound electron of the atom reaches higher

energy levels. When the excited atom returns to its initial state, it emits a photon in a

process called de-excitation. If the atom gets ionized, however, the electron is completely

removed from the atom. In general, ionization is the more relevant process regarding

energy loss [2].

The average energy loss per path length of heavy charged particles in matter can be

described by the Bethe-Bloch formula. This formula characterizes how the particles are

stopped in matter, which is why the average energy loss is also called the stopping power.

Here, the average energy loss is normalized to the density of the material in order to

enable the comparison of the stopping power across different materials [1, 2]:
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Constants:

NA Avogadro number

re electron radius

me electron mass

κ = 4πNAr
2
emec

2 constant

Properties of the heavy charged particle:

z charge in units of elementary charge

β v
c

γ 1
1−β2 = Lorenz factor

Emax
kin = 2mec

2γ2β2 maximum energy transferred in a single collision

Properties of the material:

ρ density of the material

Z atomic number

A atomic mass

I mean excitation energy

δ density correction

Figure 1: Stopping power for positive muons in copper [3].

The Bethe-Bloch formula is a function of βγ = p/Mc and valid for the range of

0.5 < βγ < 500.

An example of the stopping power, including the Bethe-Bloch range, is shown in Fig. 1.
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In the low βγ region of the Bethe-Bloch curve, the energy loss increases as the momentum

of the incident particle decreases. This is due to the longer effective interaction time for

slower particles. Since the momentum transfer is proportional to the interaction time, the

momentum transfer increases and so does the energy loss. In this range, the energy loss

is proportional to β−5/3. If the momentum of the incident particle decreases further, its

velocity can get close to the velocity of shell electrons and the assumption of electrons at

rest loses its validity. At this point shell corrections must be taken into account.

For a momentum of βγ ≈ 3 − 4, the energy loss is minimal and the incident particle

is called Minimum Ionizing Particle (MIP). MIPs can be used as reference for detector

calibration [2].

For higher βγ, the energy loss increases again. On the one hand, the maximum energy

transfer in a single collision increases with γ. On the other hand, the increased energy loss

correlates to a relativistic raise. The transverse electric field increases with γ, leading to an

increased minimum possible energy transfer in the collision. However, the increase of the

electric field is limited by the shielding of nearby atoms caused by the polarization of the

medium. This process is referred to as density effect and is considered in the Bethe-Bloch

formula with the term δ(βγ) [1].

In the high-momentum range, the stopping power grows proportional to ln(βγ) until

it approaches a constant value, known as the Fermi plateau, because the maximum

transferred energy stops to increase [2].

For even higher energies of the incident particle, radiative effects get more important than

the energy loss by ionization [3].

The stopping power is dependent on the material and the incident particle. Regard-

ing the material, the average energy loss is proportional to Z
A
. For the incident particle,

the Bethe-Bloch curve depends on βγ = p
Mc

with p as the momentum and M as the mass

of the heavy charged particle [2].

Ultimately, the stopping power determines the range of the incident particle in the

material. The amount of energy loss constantly changes with the decreasing momentum of

the particle and follows the Bethe-Bloch curve in the backwards direction. This results in

the Bragg peak, where the β−5/3 dependency of the Bethe-Bloch curve for low momenta

leads to a high energy transfer over a relatively short distance before the energy loss drops

very low [1].

It is important to keep in mind that the stopping power depends on the average energy

loss. The statistical fluctuations in energy loss are described by the Landau distribution,

which displays the distribution of energy loss in individual collisions. This distribution is

valid for materials with moderate thickness. In Fig. 2, straggling functions of the Landau

3



distribution are shown, which describe the actual energy loss ∆ of a particle traversing a

material with the thickness x. The width w is defined as the full-width half maximum.

The asymmetric Landau distribution consists of a Gaussian distribution and a tail towards

higher energy losses. Sometimes, ionization results in electrons with particularly high

energy, the δ-electrons. In this instance, the highly-relativistic heavy charged particle

transfers almost all its energy to a single electron. These δ-electrons cause the tail in the

Landau distribution. Because of this tail, the most probable energy loss differs from the

average energy loss [2].

Figure 2: Straggling functions in silicon for 500 MeV pions, normalized to unity at the
most probable value ∆p/x [3].

1.1.2 Energy Loss of Electrons and Positrons

If the incident particle is an electron or positron and not a heavy charged particle, the

Bethe-Bloch formula must be modified. In these cases, the incident particle has the same

mass as the target particle and therefore the maximum transferred energy in a single

collision does not equal the total kinetic energy T of the incident particle, but only half of

it.

Additionally, if the incident particle is an electron, it becomes indistinguishable from the

target particle after the collision, resulting in quantum mechanical effects. In this case,

the stopping power relates to the faster of the two resulting electrons.

The modified Bethe-Bloch formula for electrons therefore includes a term for quantum

mechanical corrections F (γ):
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If the incident particle is a positron, annihilation processes can occur at low energies,

which increases the energy loss [2, 3].

Regarding light particles, bremsstrahlung becomes relevant already at relatively low

energies and contributes to the energy loss in addition to ionization. Bremsstrahlung

represents the deceleration of fast charged particles in the Coulomb field of an atomic

nucleus. This is an electromagnetic interaction and a photon is emitted in the process.

In Eq. 4, the formula for bremsstrahlung with an electron as incident particle is shown.(
−dE
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Here, α is the fine structure constant and E is the energy of the incoming particle. For

electrons as the incoming particle, this equation can be shortened to:(
−dE

dx

)
Brem

=
E

X0

(5)

X0 is the radiation length, which is a property of the material and describes the distance

after which the energy of an electron is reduced to 37% of its initial energy E0 in the

specific material:

E ′ =
E0

e
≈ 0.37 · E0 (6)

Here, e is Euler‘s number [2].

In Fig. 3, the total energy loss for electrons, as a combination of ionization and

bremsstrahlung, is displayed. The critical energy can be defined as the energy at which

the energy loss by ionization and bremsstrahlung contribute to the total energy loss in

equal parts. Another definition by Rossi describes the critical energy as the one where the

energy loss by bremsstrahlung equals the energy loss by ionization per radiation length

[3].
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Figure 3: Energy loss of electrons in copper by ionization and bremsstrahlung [3].

1.2 Multiple Coulomb Scattering

When a charged particle traverses matter, it undergoes a large number of scattering

processes where it is scattered by small angles, which leads to an overall deflection. This is

called multiple scattering and is caused by the Coulomb fields of the nuclei of the material.

The energy loss through multiple scattering is negligible, but it limits the momentum and

tracking resolution of detectors [2].

For single collisions, the Coulomb scattering can be described by the Rutherford cross

section:
dσ

dΩ
= z2Z2α2h̄2 1

β2p2
1

4sin4(θ/2)
(7)

In this equation, θ is the scattering angle and Z is the atomic number of the matter.

Properties of the incident particle are z as the charge, β as the velocity and p as the

momentum. α is the fine structure constant and h̄ is the reduced Planck constant [2].

For a sufficiently thick material, where the number of scattering processes is at least 20,

the multiple Coulomb scattering can be described by the Molière theory. According to

the Molière theory, the distribution for small scattering angles can be approximated by a

Gaussian distribution. This distribution is specified by the standard deviation θ0 of the

angle θplane. The spatial scattering angle θplane is the angle between the incident trajectory

of the particle and the trajectory after the particle traversed the scattering volume, as

displayed in Fig. 4 [1].
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Figure 4: Multiple scattering of an incident particle traversing matter [3].

The parameter θ0 can be approximated by the Highland formula:

θ0 =
√

< θ2plane > =
13.6MeV/c

pβ
z

√
x

X0

[
1 + 0.038 · ln

(
x

X0

)]
(8)

Here, x represents the thickness and X0 the radiation length of the scattering material.

The Highland formula indicates an increase of larger scattering angles for lower velocity

and lower mass of the incident particle. Accordingly, electrons can be scattered at much

larger angles than heavy particles [2].
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2 ALICE at the LHC

ALICE (A Large Ion Collider Experiment) is a heavy-ion detector at the CERN Large

Hadron Collider (LHC) [4].

Today, the LHC is the largest particle accelerator in the world with a 27 km long accelera-

tion ring. Inside the ring, two particle beams are guided by a strong magnetic field created

by superconducting electromagnets. The two beams can be collided at four interaction

points, one of them being inside the ALICE detector [5].

The ALICE detector itself is 26 m long, 16 m high and 16 m wide and weighs 10000 tons.

The purpose of ALICE is to explore the strongly interacting matter at extreme conditions,

meaning high temperatures and energy densities. At these extreme conditions, a phase of

matter called quark-gluon plasma (QGP) is formed, the characterization of which is the

focus of the ALICE project. The high temperatures and energy densities are achieved by

colliding heavy nuclei at the highest possible energies that can be provided by the LHC

[4].

2.1 Detector Layout of ALICE

In order to be able to determine the properties of the QGP, the ALICE detector needs to

capture the number, type, mass, energy and direction of the particles coming out of the

QGP. For this purpose, several subdetectors are needed [4].

In Fig. 5 the ALICE 2 detector is shown, which is currently in operation.

Figure 5: ALICE 2 detector systems [6].
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The ALICE 2 detector includes a central barrel, a forward muon spectrometer and addi-

tional specialization detectors. The central barrel is responsible for detecting hadrons,

electrons and photons and covers a polar angle from 45° to 135°. It is encased by a solenoid

magnet, which provides a magnetic field of 0.5 T, forcing charged particles on a curved

trajectory [4].

At this point, the two innermost detectors of the central barrel are discussed, since these

detector layers are of main interest regarding the tracking of charged particles with low

transverse momentum, which this study is focused on.

The vertex detector consists of the Inner Tracking System (ITS), which is responsi-

ble for reconstructing primary and secondary vertices, tracking and identifying charged

particles with low transverse momentum pT as well as improving the momentum resolution

of charged particles at high pT [4].

During the LHC Long Shutdown 2 (LS2, 2019-2021), the ITS was upgraded to the ITS2,

leading to improved vertexing and tracking performance [7].

The ITS2 consists of seven approximately cylindrical silicon detector layers, where the

three innermost layers build the Inner Barrel Module. Monolithic Active Pixel Sensors

(MAPS), discussed in chapter 3, are used for the ITS2, which are referred to as ALPIDES

(ALice PIxel DEtecor). In total, there are 24 thousand Monolithic Active Pixel Sensors

installed, which cover a total active surface of 10m2 [8].

The next layer in the detector is formed by the Time Projection Chamber (TPC), which

is the primary detector for the tracking of charged particles and particle identification in

the central barrel of ALICE. The TPC is filled with gas, which is ionized by traversing

charged particles. The electrons produced by ionization get amplified by Gas Electron

Multipliers (GEMs) and drift towards the end plates, where the position and the time of

arrival are read out. With this information the trajectory of the charged particle can be

reconstructed. By measuring the specific energy loss dE/dx of the charged particle, the

particle can be identified [4].

2.2 The Inner Tracking System 3 (ITS3)

Since 2022, the LHC Run 3 is running with the ITS2 implemented in ALICE. As the

sensor technology of the ITS2, ALPIDE has demonstrated exceptional performance in

terms of signal-to-noise ratio, spatial resolution, material budget, and readout speed [7].

However, the rapidly advancing CMOS imaging technology facilitates further development

of the MAPS. Instead of the 180 nm CMOS technology used for ALPIDE, 65 nm technol-

ogy can be used for the new sensors, enabling a more dense circuitry and a production on
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larger wafers with a diameter of 300mm [8].

Additionally, new CMOS imaging sensor technology allows for the application of stitching,

which is described in chapter 4, and therefore the creation of larger sensors. These new

features make the creation of a large curved sensor possible. The first stitched prototype

sensor is referred to as Monolithic Stitched Sensor (MOSS) and further explored in chapter

4 [7].

During the Long Shutdown 3 (LS3, 2026-2029) the Inner Barrel Module of the ITS2 will

be replaced with truly cylindrical layers of bendable wafer-scale silicon sensors, creating

the ITS3 [8, 9].

The four remaining layers of the ITS2, which are further away from the interaction point,

will not be replaced. The ITS3 detector layout is shown in Fig. 6. The three concentric

cylindrical layers are split into two halves, which consist of one large sensor each, resulting

in six sensors total [8].

Figure 6: ITS3 detector layout [8].

The result of the upgraded sensors is a nearly massless detector consisting of wafer-scale

silicon sensors with a size of up to 10 cm× 26 cm. With the new sensors, the material

budget can be reduced from 0.35%X0 to 0.07%X0 per layer [7, 8].

The thickness of the sensors stays at about 50 µm and the truly cylindrical detector layers

are supported by carbon foam, eliminating the need for staves as mechanical support.

Moreover, water cooling can be eliminated and replaced with cooling by forced air flow.

The innermost detector layer of the ITS3 can be positioned closer to the interaction point

than the one of the ITS2, at a distance of 19mm from the collision point and only 2mm

10



from the beam pipe.

Resulting from the reduced material budget and the closeness to the interaction point,

the detector will provide a spatial resolution improved by a factor of two compared to

the ITS2 and a higher efficiency regarding the track reconstruction of low-momentum

particles. The improved precision for reconstructing the decay topologies of heavy-flavor

hadrons and dileptons will allow for a better understanding of the quark-gluon plasma

formed in heavy-ion collisions.

Because the layers of ITS3 are closer to the interaction point than those of the ITS2, the

flux of particles crossing the innermost layer will increase by 70%. Despite this increased

particle flux, the hit occupancy stays relatively low due to the high granularity of the

sensors, thus not overstraining the tracking capabilities. Correlating to the increased

particle flux, the radiation load also increases by about 70%, but still remains well below

the levels for which the 65 nm technology has been verified to maintain its performance

[8].

11



3 Monolithic Active Pixel Sensors (MAPS)

Monolithic Active Pixel Sensors are made of silicon and utilize ionization to detect particles.

When an ionizing particle traverses the semiconductive material, electron-hole pairs are

created instead of electron-ion pairs, which are formed in gaseous detectors. In order to

create one electron-hole pair in silicon, 3.6 eV are needed. In gaseous detectors, 30 eV

are required to form one electron-ion pair. Therefore, the number of charges generated,

i.e. the ionization yield, is about ten times higher in silicon, resulting in a better energy

resolution and higher sensitivity [10].

In this chapter, the relevant properties of silicon and how it is used to create a Monolithic

Active Pixel Sensor are explored.

3.1 Properties of Silicon

In order to understand the properties of a semiconductor like silicon, the energy band

structure of crystalline solids is of great importance. In the periodic potential of a crystal

lattice, there are quasi-continuous energy ranges that electrons are allowed to occupy.

These energy ranges are called energy bands, which are separated by forbidden zones,

also known as band gaps. The size of the band gap depends on the lattice constant

and the binding forces of the crystal lattice. When an energy band is fully occupied by

electrons, the electrons in that band do not contribute to the electrical conductivity of the

crystalline solid. Hence, only the highest energy bands are of importance for the electrical

conductivity of a crystal, while the lower energy bands, which are occupied according

to Pauli’s Principle, can be neglected. The two highest-lying energy bands consist of

the valence band and the conduction band above, with the band gap EG between them [11].

In Fig. 7, the band structures of insulators, semiconductors and conductors are schemati-

cally demonstrated.

In insulators, the valence band is entirely occupied, leaving the conduction band empty.

The strong interatomic bonds of the valence band electrons in insulators cause the energy

gap to be very large, which hinders electrons from being thermally excited into the

conduction band. No current can flow.

In conductors, i.e. metals, the conduction band is partially occupied or both energy bands

overlap, leading to electrical conductivity.

In semiconductors, the interatomic bonds are weaker than in insulators and therefore

the energy gap is smaller. In the case of silicon, the energy gap consists of typically

1.12 eV [1]. At a temperature of T = 0K, the valence band is fully occupied, leading

to isolating properties of the semiconductor. However, electrons from the valence band

can be thermally excited into the conduction band for non-zero temperatures T > 0K.

12



The absence of an electron in the conduction band is called a hole, which appears as a

positive charge because of the missing negative charge of the electron. The electrons in

the conduction band and the holes in the valence band are free charge carriers, which

enable the electrical conductivity of the semiconductor [1, 11].

Figure 7: Occupation of valence and conduction band for insulators, semiconductors and
conductors [1].

3.2 Intrinsic and Extrinsic Semiconductors

For intrinsic semiconductors, the concentration of electrons n equals the concentration of

holes p. This concentration is also known as the intrinsic charge carrier concentration ni:

ni = n = p (9)

The mobility of electrons µn in semiconductors is generally higher than the mobility of

holes µp.

With these parameters, the electrical conductivity σ of an intrinsic semiconductor can be

calculated as follows [11]:

σ = e(nµn + pµp) (10)

σi = ni · e(µn + µp) (11)

In intrinsic silicon, a carrier concentration of ni ≈ 1.01 · 1010 cm−3 can be found [1].

The mobility of electrons in silicon amounts to 1450 cm2/Vs and the mobility of holes

to 500 cm2/Vs [1]. Using these values, the electrical conductivity of silicon results in

σi ≈ 2.8 · 10−4 (Ωm)−1 [1].

In order to change the electrical properties of semiconductors, the material can be

doped, creating extrinsic semiconductors. In the process of doping, impurity atoms are

incorporated into the semiconductor.

When pentavalent elements, such as arsenic, are introduced into a tetravalent semicon-

ductor like silicon, the pentavalent atoms act as donors, leading to an excess of electrons
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(Fig. 8). The energy levels of these donors appear close below the conduction band,

causing donor electrons to be more easily excited into the conduction band. The resulting

semiconductor with n >> p is called n-type semiconductor.

When trivalent elements, like boron, are introduced into a tetravalent semiconductor, the

impurity atoms act as acceptors, leading to an excess of holes (Fig. 8). The energy levels

of acceptors appear just above the valence band, which causes electrons from the valence

band to be more easily excited into the acceptor levels, leaving holes in the valence band.

This doped semiconductor with p >> n is called p-type semiconductor [1, 11].

Figure 8: Schematic illustration of n- and p-type semiconductors [1].

In doped semiconductors, the unequal electron and hole densities cause one type of charge

carriers to be more abundant than the other. These charge carriers are then called majority

carriers, while the other, fewer carriers are called the minority carriers. Accordingly, in

the p-doped semiconductor material, the majority carriers are holes, leaving electrons as

minority carriers. In the n-doped material, the majority carriers are electrons and the

minority carriers are holes [1].

3.3 The pn Junction

When combining p- and n-type semiconductor materials, pn junctions form.

The steep concentration gradient of charge carriers at the boundary between p- and

n-doped materials leads to the diffusion of electrons from the n-type to the p-type side and

holes from the p-type to the n-type side. As a result, electrons and holes recombine near

the boundary of the pn junction, creating a depletion zone where there are no free charge

carriers. The atoms become ionized after the recombination of electrons and holes in the

depletion region. This leads to a negative space charge in the p-doped side and a positive

space charge in the n-doped side of the depletion region. Consequently, an intrinsic electric

field forms, that causes a drift of charge carriers opposite to the direction of diffusion.
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This creates a stationary equilibrium between the drift current and diffusion current [1].

The drift and diffusion currents are illustrated in Fig. 9, as well as an exemplary doping

concentration for a pn junction with the corresponding charge carrier density, space-charge

density, electric field and potential.

Figure 9: (left) Simplified illustration of the energy levels across a pn junction in equilibrium
[1].
(right) Illustration of the doping concentration, space-charge density, field, and potential
of a pn junction [1].

The potential difference of the space charge is called the built-in voltage, which consists

of 0.6V for silicon [1].

For the equilibrium, when no external voltage is present, the charge density ρ(x) depends

on the doping and can be described as:

ρ(x) =

−eNA for − xp < x < 0,

+eND for 0 < x < xn.
(12)

Here, xn and xp represent the depths of the space charge zones, while NA and ND

are the acceptor and donor impurity concentrations. Outside the depletion region, the

semiconductor remains electrically neutral and the following boundary condition applies:

E(−xp) = E(+xn) = 0 (13)

The neutrality condition of the semiconductor determines, that the number of charge
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carriers in both parts of the depletion region must be equal:

NAxp = NDxn (14)

With Eq. 12, 13 and 14 and the one-dimensional Maxwell equation, the electrical field

can be calculated as:

E(x) = −dφ(x)

dx
=


−eNA

ε
(x+ xp), −xp < x < 0,

+eND

ε
(x− xn), 0 < x < xn.

(15)

ε is the dielectric constant [1].

An external voltage can be utilized to disturb the equilibrium and change the width of the

depletion region. For silicon sensors, reverse bias is used to increase the depleted volume.

In reverse bias mode, the external voltage follows the direction of the built-in voltage,

which leads to a growing electrostatic potential. This reduces the diffusion current and as

a result, the depletion region widens.

The capacitance of the junction can be derived from the following equation:

C = ε · A
d
= ε · A

xn + xp

(16)

Here, A is the junction area and d the thickness of the depleted region. Therefore, the

junction capacitance decreases for increasing thickness of the depletion region, realized by

applying reverse bias [1, 12].

3.4 Metal-Oxide-Semiconductor Field-Effect Transistors

The metal-oxide-semiconductor field-effect transistor (MOSFET) acts as an electronic

switch or amplifier by controlling the current that flows between its drain and source. A

schematic of the MOSFET is displayed in Fig. 10.

There are two types of MOSFETs: NMOS and PMOS. NMOS refers to the n-type

MOSFET with a channel between source and drain formed by electrons and controlled

via a positive gate bias. The PMOS describes the p-type MOSFET with a channel of

holes that is steered via a negative gate bias. In the following, the working principle of

a MOSFET is described for the NMOS, for which a schematic is provided in Fig. 10.

However, all characteristics are also applicable to the PMOS counterpart.
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The n-type MOSFET possesses a p-type substrate, which in this case consists of p-

doped Silicon. Two n+-regions, designated as the source and drain, are implemented on

this substrate, forming two pn junctions. In between the source and the drain, a layer of

SiO2 is located that acts as an insulator. A metal contact on top of this insulator, which

is referred to as the gate, can be supplied with a bias voltage, effectively creating a MOS

capacitor. When a positive voltage is applied to the gate, the holes of the p-substrate

are repelled from the vicinity of the insulator layer, leaving behind negatively charged

acceptor ions. Essentially, a depletion region is created. If the gate voltage VG exceeds a

threshold voltage Vth, minority charge carriers (electrons) are attracted to the area below

the gate, forming a conductive channel, which enables a current to flow from source to

drain. The channel width and therefore the flowing current increases for increasing gate

voltage. Other parameters that influence the behavior of the transistor are the channel

length, the insulator thickness, the junction depth and the substrate doping [13, 14].

Figure 10: Schematics of a MOSFET [13].

3.5 Working Principle of MAPS

Monolithic Active Pixel Sensors (MAPS) are sensors for visible light as well as ionizing

particles and utilized as particle tracking systems in various particle physics experiments.

These MAPS are sensors based on silicon semiconductor technology and complementary

metal-oxide-semiconductor (CMOS) technology. The CMOS technology is used for the

in-pixel electronics, which consists of complementary logic in which both NMOS transistors

and PMOS transistors are implemented on the same substrate. In MAPS, the silicon

pixel sensor is integrated with the CMOS electronics circuitry, which is why the sensor is

called monolithic [1, 15].
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Figure 11: Schematic cross section of ALPIDE as an example for a MAPS [15].

In Fig. 11 the cross section of an exemplary MAPS can be seen, which depicts an ALPIDE.

Above a highly p-doped silicon substrate (P++), which primarily acts as mechanical

support, the less p-doped epitaxial layer (P-) is located, which forms the active volume

of the sensor. At the top of the epitaxial layer, a collection diode is implemented, which

consists of an n-well in the p-doped epitaxial layer. The resulting pn junction causes

the formation of a depletion region, which is expandable by applying a reversed bias

voltage between the n-well and the P++ substrate. The CMOS technology on the sensor

is realized by implementing the transistors in oppositely doped wells to ensure proper

functionality. Consequently, NMOS transistors are embedded inside p-wells and PMOS

transistors inside n-wells. In order to avoid pn junctions to be formed by n-wells and

the p-doped epitaxial layer, which would create diodes in competition to the collection

diode, the n-wells are enclosed in additional deep p-wells. The utilization of deep p-wells

is specific to the ALPIDE and also the MOSS design.

When a particle traverses the epitaxial layer, displayed in Fig. 11 by the black arrow,

electron-hole pairs are generated by ionization. When the produced electrons, which are

displayed in Fig. 11 by the dotted lines, are located in an undepleted region, diffusion is

the dominating process. As soon as electrons enter the depletion region, drift dominates

due to the present space charge, which causes the electrons to drift towards the collection

diode. The charge travelling close to the collection diode induces a signal voltage by

discharging the pixel capacitance. This signal voltage ∆Vsignal depends on the collected

charge Q and the pixel capacitance C:

∆Vsignal =
Q

C
(17)

The pixel capacitance C results from the junction capacitance of the collection diode

(Eq. 16) and the parasitic capacitance of the circuitry. A high Q/C ratio lowers the

power consumption of the in-pixel electronics and improves the signal-to-noise ratio.

Applying reverse bias between the collection diode and the substrate, which expands the
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depletion region, reduces the junction capacitance and therefore the pixel capacitance,

which elevates the Q/C ratio. A smaller n-well of the collection diode leads to a reduced

pixel capacitance, but at the same time to less collected charge. When increasing the

thickness of the epitaxial layer, more charge can be deposited by traversing particles.

However, a thicker epitaxial layer correlates with more undepleted space, resulting in

more domination of the diffusion process, resulting in reduced charge collection efficiency

as well as reduced radiation hardness [12, 16].

The induced signal voltage in the collection diode is further shaped and processed by

the CMOS in-pixel circuitry. Due to the signal voltage from the diode, the presence of a

traversing, ionizing particle can be detected [15].
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4 The Monolithic Stitched Sensor (MOSS)

The Monolithic Stitched Sensor (MOSS) is a MAPS developed for the upgrade of the

Inner Tracking System of the ALICE project (ITS3), which pioneers new grounds as a

bendable wafer-scale sensor. The MOSS represents not yet the final chip for the ITS3, but

the first stitched prototype with dimensions of 14mm× 259mm. The primary aim for the

MOSS is to explore the stitching technique, the yield and the electrical performance [17].

In this chapter, the design, production, architecture and the analog in-pixel front-end

electronics of MOSS are explored, along with the characteristics of BabyMOSS, a smaller

test chip that is described later in this chapter.

4.1 Pixel Design

Fig. 12 shows the cross section of the pixel design used for the MOSS.

The predecessor sensor ALPIDE (Fig. 11) was produced with the 180 nm CMOS imaging

process of Tower Partners Semiconductor Co., Ltd. (TPSCo) [18] with an epitaxial layer

of 25 µm width [8]. The MOSS, which is produced with 65 nm technology by the same

company, has a thinner epitaxial layer in comparison with 10 µm [8]. Consequently, the

extension of the depletion is more limited for the MOSS and thus the pixel design needs to

be adjusted. The primary difference to the pixel design of ALPIDE is the implementation

of a low dose deep n-type implant with a gap near the pixel edges. This achieves full

depletion of the epitaxial layer with the help of reverse bias, which can be applied between

the collection diode and the substrate.

As a result, the charge collection depends dominantly on drift compared to diffusion. This

reduces charge sharing with neighboring pixels, but increases the detection efficiency [8].

Figure 12: Cross section of the pixel design of MOSS not to scale [8].
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4.2 Production and Chip Architecture of MOSS and BabyMOSS

The MOSS is a Monolithic Active Pixel Sensor produced with TPSCo 65 nm CMOS

technology on silicon wafers of 300mm diameter [8].

The process used for implementing the CMOS circuitry on the wafer is photolithography.

During this process, a layer of photoresist is applied to the wafer and the pattern of a

masking reticle is transferred to the wafer by exposing the reticle to UV light. Further

information on photolithography can be found in [19].

The dominant limiting factor to the resolution is diffraction and coherent light is used to

attenuate this diffraction. The necessity of coherent light establishes an upper limit on

the size of the masking reticles and the pattern of the reticle is repeatedly transferred

until the entire wafer is covered [19].

As a result, the length and width of a chip is limited by the reticle size to a few centime-

ters. In order to create a sensor that exceeds these limits, a technique called stitching is

employed. For stitching, every lithography step is aligned with the preceding one. Contin-

uous metal traces can then bridge the lithography boundaries and create interconnections

between the chips [17].

For creating the MOSS, ten Repeated Sensor Units (RSUs) are stitched together in

one dimension. One RSU consists of a chip with endcaps at the short edges. These

endcaps are connected to the chip via a stitched communication backbone that traverses

the whole RSU in longitudinal direction. In order to then stitch RSUs together, metal

stripes connect the left endcap of one RSU with the right endcap of the next RSU. In the

end, the RSUs can be supplied, controlled and read out in longitudinal direction via the

stitching and interfaces on the far left endcap.

Additionally, there is also the possibility to supply, control and read out the individual

RSUs via the long edges [8].

Each RSU is divided in two half units, designated as the top unit and bottom unit,

which are fully standalone functional. Each unit consists of four equally sized pixel

matrices, or regions, with varying pixel pitches between the top and bottom unit. The top

unit comprises regions containing 256× 256 larger pixels with a pitch of 22.5 µm, whereas

a region of the bottom unit contains 320× 320 finer pixels with a pitch of 18 µm. The full

MOSS with ten RSUs comprises 6.72 million pixels [8].

In Fig. 13, the MOSS, a single RSU and the readout schematics of MOSS are displayed.
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Figure 13: Structure of MOSS [20].

Given that the MOSS has a length of 259mm, which is almost as long as the 300mm

wafer it is produced on, only six MOSS can fit on a single wafer. The remaining space on

the wafer is utilized for the fabrication of test chips consisting of individual RSUs. This is

illustrated in Fig. 14.

These test chips are referred to as BabyMOSS and the only difference to an RSU of MOSS

is that the endcaps are not stitched to other endcaps.

Figure 14: Picture of a wafer that contains six MOSS and several test chips [8].

The BabyMOSS is the sensor examined in this study. The regions of the top unit are

referred to as top 0, top 1, top 2 and top 3. The regions of the bottom unit are referred

to as bottom 0, bottom 1, bottom 2 and bottom 3.

In plots of data from BabyMOSS, the results for the eight regions are displayed separately,

mirroring the arrangement of the pixel matrices on the sensor.
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The specific BabyMOSS that is employed in this study is the babyMOSS-1_2_W22C7.

This BabyMOSS possesses a malfunctioning region, which is region top 0. For this

region, the readout gets stuck at row 0 when executing a scan, which is why the region is

permanently disabled and not examined within this study.

4.3 Analog In-Pixel Front-End

The analog in-pixel front-end electronics is responsible for the initial processing of the

analog signal from the collection diode before its conversion to a digital signal. This

processing comprises amplification, pulse shaping and discrimination of the signal [1].

A schematic of the analog in-pixel front-end can be observed in Fig. 15. For NMOS

transistors, the arrow points toward the source and for PMOS transistors the arrow points

away from the source [14]. The transistors are numbered from M0 to M11. The red labels

at the transistors name the 8-bit Digital-to-Analog Converters (DACs), which can be

manually configured to adjust the behavior of the corresponding transistor.

Figure 15: Simplified schematic of the analog in-pixel front-end [20].

In this study, the April 2024 DAC settings for the BabyMOSS are used for laboratory

scans and test beam data taking, which are referred to as the default DACs going forward.

These settings were determined through testing before a standard has been defined. The

DAC settings are listed in Tab. 1 as well as the standard DACs that were released by

CERN in July 2024. The behavior of the BabyMOSS for the DACs utilized in this study

is expected to exhibit some variations to the behavior with the standard DACs.
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April 2024 DACs July 2024 Standard DACs
(Default DACs)

IBIAS 25 62
IBIASN 40 100
IDB 25 50

IRESET 10 10
VCASB 15 15
VCASN 51 64

VPULSEH 42 70
VSHIFT 191 192

Table 1: DAC settings for BabyMOSS

For testing purposes, there are differences in the front-end electronics implemented for

different regions. The individual differences for each region are specified in Fig. 16.

Figure 16: Differences in the front-end electronics within the RSU [20].

24



5 Laboratory Scans

In Fig. 17, the BabyMOSS test system for laboratory scans is depicted. The BabyMOSS

sensor is wire-bonded to a carrier card and secured inside a black plastic casing. Fig. 18

displays the BabyMOSS on the carrier card without the protective casing. The carrier

card, which hosts and connects the sensor, is connected to a raiser board, which is in turn

connected to a DAQ board.

The DAQ board supplies the BabyMOSS with power, communicates with the sensor and

provides the readout via a field-programmable gate array (FPGA), which is programmed

with custom firmware. The DAQ board is connected to the computer via USB.

The raiser board acts as an interface between the DAQ board and the carrier card and

is utilized for controlling and reading out the BabyMOSS. By using adapter boards like

this raiser board, already existing DAQ boards can be utilized for a multitude of setups [21].

The DAQ board can be connected to a 0Ω shunt, which shortens the substrate and

the nwell diode, putting them both at the same potential. This effectively results in 0V

reverse bias for the BabyMOSS. The DAQ board can also be connected to the power

supply, which provides a reverse bias of −1.2V, leading to an expanded depletion region

within the sensor, as described in chapter 3.5. The reverse bias is set via the parameter

VBB.

Figure 17: BabyMOSS laboratory test system.

25



Figure 18: The BabyMOSS mounted on the carrier card.

5.1 Threshold Scan

The in-pixel front-end circuitry, introduced in chapter 4.3, operates with a continuously

active discriminating amplifier. A signal, in the form of a voltage drop, gets discriminated

after being amplified and shaped in the in-pixel front-end electronics. The discriminator

decides if a signal is further processed, depending on whether or not the signal exceeds a

charge threshold that is set by the user. Upon receiving a strobe signal (which can be

given by an external trigger or initiated by an internal sequencer), the discriminated signal

is latched into in-pixel memory and a hit is recorded for the respective pixel, resulting in

binary pixel hit data [8, 22].

Chapter 3.5 describes how an impinging particle can create a signal voltage by generating

electron-hole pairs.

A number of on-chip DACs control the signal shape and detection threshold. For fixed

DAC settings, the sensor detection threshold is fixed at a specific value. To assess this

value, threshold scans are performed using the pulsing circuitry available in each pixel.

A small capacitor is used to inject a controlled amount of charge prior to the amplifier.

The procedure involves sequentially injecting test charges Qinj into the pixel front-end in

steps of 1 DAC unit. These test charges are produced by a pulsing voltage VPULSE, which

is applied over the capacitor with the capacitance Cinj. After each pulse, the capacitor

discharges, depositing a controlled amount of charge Qinj into the pixel, given by:

Qinj = Cinj · VPULSE = Cinj · (VPULSEH − VPULSEL) (18)
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For each Qinj value, the charge is injected a number Ninj of times. A number of those

injections will pass the set threshold and assert the response of the pixel. The probability

to have a response, given by the ratio Nhit/Ninj, resembles an S-curve and is shown in

Fig. 19 as a function of the injected charge. The point where the hit fraction is 50% is

defined as the threshold of the pixel under test. This can be repeated for all pixels in the

matrix. Due to manufacturing variations, the 50% point will have a spread [12].

For the BabyMOSS, VPULSEL defaults to 0 and VPULSEH is set with the correspond-

ing DAC parameter VPULSEH.

The DAC range of VPULSEH is NDAC = 256 [23] and the voltage range VDAC = 1.2V, spe-

cific to the 65 nm CMOS technology. The design value for the capacitance is Cinj= 240 aF

[24]. Conservatively, the uncertainty is estimated to be 50%. The exact value for the

capacitance is still under investigation. The uncertainty of VDAC can be assumed to be

negligible compared to the uncertainty of Cinj caused by the production process. With

these values, the number of electrons per DAC of VPULSEH can be determined:

Ne =
VDAC · Cinj

NDAC

≈ (7± 3.5) e (19)

Since the exact value of the capacitance is still under investigation, the charge will generally

be expressed in units of DAC of the VPULSEH parameter.
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Figure 19: The principle of a threshold scan on a pixel sensor. (a) Three separate signals,
one of which exceeds the set threshold value. No noise is present in the system. (b) Above
the set value of the threshold, the hit probability is 100%, showing a sharp onset, due
to the lack of noise. (c) Three signals, one of which has an uncertainty band, due to the
noise present in the system. (d) The subsequent hit probability gets smeared around the
charge threshold due to the noise present [1].

Fig. 19 illustrates the concept of a threshold scan for a single pixel. Panels (a) and

(c) show exemplary signals of injected charge with varying amplitudes relative to the

discriminator threshold, while panels (b) and (c) show the corresponding hit probability

as a function of the charge.

Under ideal conditions where no noise is present, as shown in panels (a) and (b), the

detector registers no hits when the injected charge is below the discriminator threshold.

Once the injected charge exceeds the threshold, the hit probability has a sharp onset.

However, in real-world scenarios, temporal electronic noise is present, which describes

time-dependent fluctuations of the signal, as illustrated in panels (c) and (d). The noise

introduces fluctuations in the signals, resulting in a gradual, S-shaped transition of the

hit probability curve rather than a sharp step. This noise is typically Gaussian, which

allows the hit probability to be modeled using a Gaussian error function:

Nhit

Ninj

=
1

2

[
1 + erf

(
Qinj − µ√

2σ

)]
(20)

The threshold value, defined as the charge at which the pixel asserts a hit fraction of 50%,

is extracted from the inflexion point of the S-curve, represented by µ, while the width σ

quantifies the noise [1, 12].
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The threshold is set globally for the whole pixel matrix by the combination of DAC values

chosen by the operator. In order to characterize the pixel sensor as a whole, the average

threshold is calculated using the distributions of all single pixel thresholds.

Results of a threshold scan conducted with the BabyMOSS for the default DACs (Tab. 1)

can be seen in Fig. 20. In this study, the VPULSEH covers the range of 0 to 70 DAC

units in steps of 1 DAC and 25 injections per VPULSEH value were used. The temporal

noise distributions are displayed in Fig. 21. Since the BabyMOSS is still an experimental

sensor and the readout via the the stitched backbone is currently under development, the

control and readout of the sensor takes place via the long edge.

Figure 20: Threshold distributions for the default DACs at VBB = 0V. In dark blue,
the y-errors represent the normalized bin errors, while the x-errors correspond to the bin
width. The panels depict the eight regions of the BabyMOSS.
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Figure 21: Noise distributions for the default DACs at VBB = 0V. In dark blue, the
y-errors represent the normalized bin errors, while the x-errors correspond to the bin
width. The panels depict the eight regions of the BabyMOSS.

The mean (x̄) and the standard deviation (σx) are calculated as follows with n as the

number of entries, which represent the total number of pixels in the pixel matrix:

x̄ =
1

n

n∑
i=1

xi (21)

σx =

√√√√ 1

n

n∑
i=1

(xi − x̄)2 (22)

The normalized bin errors, represented by σyi , are calculated based on Poisson statistics

with Ni as the bin count and ∆x as the bin width:

σyi =

√
Ni

n ·∆x
(23)

Region top 0 is malfunctioning and disabled as previously mentioned in chapter 4.2. For

the remaining regions, the average thresholds vary between 24 and 36 DAC units, which

equals to a charge of about 168± 84 to 252± 126 electrons (Eq. 19). This difference

is caused by the variations in the front-end electronics of the eight regions, which were

implemented for testing purposes (Fig. 16). Each region results in an individual threshold

for the same global DAC settings. Ideally, each region would be assigned a specific set of

DACs in order to achieve a uniform threshold over the whole sensor, which would be of
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advantage for the comparison of the behavior of the different regions. At the time of this

study, only global settings could be set for the BabyMOSS. Recently, the possibility to

apply specific DAC settings per region became available. Later in this study, different

datasets are combined to obtain a global threshold.

The spread of the threshold distributions, quantified by the standard deviation, stays at

about 4 DAC units for all regions except for region top 3, which has a standard deviation

of 5.08 DAC units.

The average temporal pixel noise is located in a range of 3 to 4 DAC units, with region top

3 exhibiting the highest average noise. Additionally, region top 3 displays the larges spread

of the temporal noise distribution with 0.40 DAC units, while the standard deviation

stays near 0.30 DAC units for the remaining regions.

Overall, region top 3 stands out as the region with the highest noise per pixel and the

broadest distribution of pixel thresholds around the mean. These effects are considered

to be due to the larger common-source transistor used in the analog in-pixel front-end

electronics of this region.

The distributions of threshold and noise resemble a Gaussian distribution. Consequently, a

Gaussian function is fitted to the distribution with the mean µ and the standard deviation

σ:

f(x) = a · exp
(
−1

2

(x− µ)2

σ2

)
(24)

To measure the goodness of the fit, χ2
red is calculated for each fit:

χ2
red =

1

doF

m∑
i=1

(
yi − yfit,i

σyi

)2

(25)

In this equation, m represents the number of bins on the x-axis and doF is an abbreviation

for the number of degrees of freedom, which is calculated as the number of fit parameters

subtracted from the number of data points.

We expect a value of χ2
red ≈ 1 for a good fit. However, the produced χ2

red for both threshold

and noise distributions exceeds this value.

For the noise distributions, the χ2
red ranges from 4.13 to 27.02, indicating a deviation from

the Gaussian distribution for all regions. For the highest χ2
red of 27.02 in region top 3,

the tail of the noise distribution towards higher DAC units visibly exceeds the Gaussian

distribution, which implies that some pixels exhibit an especially high temporal noise.

For the threshold distributions, the χ2
red ranges from 3.72 to 65.75, indicating that all

distributions are not well represented by a Gaussian. The variance of χ2
red in between the

regions is influenced by the changes in transistor structures and layouts.
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The width and shape of the threshold distributions stem primarily from pixel-to-pixel

differences. These pixel-to-pixel differences arise from production-related variations in the

transistors of the in-pixel electronics, which occur in a spatially stable pattern throughout

the sensor. The resulting unwanted variations in the behavior of the pixels are referred to

as fixed-pattern noise (FPN) [12]. Due to the stable pattern of the FPN, the threshold and

noise distributions resemble a Gaussian distribution. However, deviations from perfect

Gaussian distributions are expected due to manufacturing variations, which result in a

stable but presumably not perfectly uniform pattern.

Additionally, it was observed for BabyMOSS that the 2D distribution of average thresholds

displays four stripes of pixels with lower thresholds in all regions (Fig. 22). This is known

to occur for BabyMOSS, but not for MOSS.

In both sensors, parallel power tracks are implemented, with one track connecting to

a given RSU. At the edge of one RSU all power tracks hop to the track next to it,

which is referred to as power-hopping. For BabyMOSS, which consists of one RSU,

only one metal power-hopping line is needed and wire-bonded, leaving the remaining

unused power-hopping lines floating. This causes coupling noise in the circuit, which in

turn results in stripes of pixels that exhibit lower thresholds. Wire-bonding the unused

power-hopping lines to ground has been demonstrated to result in a significant reduction of

the stripes, leaving only very thin stripes of pixels exhibiting lower thresholds. Compared

to the average threshold exhibited by pixels outside of these stripes, the threshold within

the stripes is lower by approximately 2 to 3 DAC units [25]. This effect is still under

investigation.

In the end, these pixel stripes of lower threshold can be expected to have an influence on

the threshold distribution. However, if this were the primary cause for the deviation of

the threshold distribution from a Gaussian fit, one would expect to observe an increased

number of pixels in the lower threshold tail, causing a discrepancy from the fit. Yet, the

data in fact tends to fall below the fit in the lower tail of the threshold distribution and

above the fit for the higher threshold tail, which is especially visible in region bottom

3, where χ2
red is the highest. This indicates that the origin for the deviation from the

Gaussian distribution remains within manufacturing variations of the FPN.

Considering that the Gaussian fit does not describe the threshold distribution sufficiently,

the average threshold retrieved from the data directly represents the characteristics of the

pixel matrices more accurately. Therefore, these values will be utilized for further analysis

whenever the average threshold is considered.
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Figure 22: 2D distributions of average thresholds for the default DACs at VBB = 0V.
The panels depict the eight regions of the BabyMOSS.

Fig. 23 depicts the noisy pixels detected while performing the threshold scan using the

default DACs, which produce the thresholds displayed in Fig. 20. A pixel is classified

as noisy if it exceeds a predefined fake-hit rate. The fake-hit rate is the number of hits

per pixel per unit time (or per event) in the absence of any external stimuli. During the

threshold scan, the pulsing is executed row by row and if a pixel fires, even though it is

not located in the row that currently is injected with charge, the detected hit is considered

a fake-hit. However, the fake-hit rate should only be interpreted as an estimator, since

capacitive coupling between pixels can act as an external stimulus when neighboring rows

are pulsed. To classify pixels as noisy, the estimated critical fake-hit rate is set to one

hit per pixel per hour, motivated by the approximate duration of the threshold scan for

default DACs. Ultimately, all pixels identified as noisy are masked, meaning they are

excluded from further data analysis.

In Fig. 23, an especially high number of noisy pixels is visible for region bottom 3 with

a further increased number of noisy pixels within the stripes of lower threshold. The

exact amount of noisy pixels can be found in Tab. 2. The reason for this occurring

only for region bottom 3 can be traced back to the lower overall threshold of this region.

For the applied DAC settings, this region exhibits the lowest mean threshold overall,

approximately 5 DAC units lower than the second-lowest threshold.

Leaving aside the striped pattern previously explained, the distribution of noisy pixels

in the bottom 3 region seems to indicate an increase in the second half of the matrix,
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towards larger column numbers. This is unexpected and further investigated in chapter 7.

Fig. 24 shows the distribution of bad pixels, which are pixels that do not exhibit any

response at all. These pixels are permanently defective and excluded from the data

analysis. The only region to exhibit bad pixels, excluding the disabled region top 0, is

region top 3. Region top 3 exhibits 44 bad pixels (Tab. 2), which amounts to 0.07%

of the total pixel count. The amount of bad pixels within this region seems to increase

marginally for higher rows.

Figure 23: Distribution of noisy pixels for the default DACs at VBB = 0V. The panels
depict the eight regions of the BabyMOSS.

34



Figure 24: Distribution of bad pixels for the default DACs at VBB = 0V. The panels
depict the eight regions of the BabyMOSS.

Region # noisy pixels # bad pixels
Top 0 NaN NaN
Top 1 1 0
Top 2 2 0
Top 3 2 44

Bottom 0 39 0
Bottom 1 9 0
Bottom 2 13 0
Bottom 3 1396 0

Table 2: Noisy and bad pixels for the default DACs at VBB = 0V.

5.2 Exploration of the Threshold Range of BabyMOSS

For the MOSS and therefore also BabyMOSS, the threshold is primarily dependent on

the front-end DAC called VCASB (Fig. 15). In order to characterize the BabyMOSS, the

exploration of the parameter space and the associated behavior of the sensor is important.

Therefore, a range of thresholds for VBB = 0V and VBB = −1.2V is examined by varying

the VCASB value.

For an increasing VCASB value the threshold decreases and hence the fake-hit rate

increases. As VCASB continues to rise, the fake-hit rate has a sharp onset, and a limit is

reached when the increasing data load (due to the extra fake hits being read) becomes

unmanageable, causing the threshold scan to fail. At this point, the last working VCASB
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value is chosen as the upper limit. The lower VCASB limit is evaluated and chosen

in relation to the upper limit, with the aim of selecting a VCASB value that remains

comfortably below the optimal threshold.

For VBB = 0V, the highest value is VCASB = 28DACunits and the lowest value is set

to VCASB = 5DACunits with the standard value of VCASB = 15DACunits well within

this range.

For VBB = −1.2V, the upper limit is VCASB = 104DACunits and the lower limit is set

to VCASB = 75DACunits. When this range was determined, no standard VCASB value

was known for VBB = −1.2V. Later, colleagues from the ITS3 collaboration provided a

standard value of VCASB = 84DACunits, which lies within the explored parameter range.

When reverse bias is applied, the depletion region expands and the pixel capacitance is

reduced, as discussed in chapter 3.5. As a result, the signal voltage increases for the same

amount of collected charge compared to the case without reverse bias. Consequently,

different VCASB settings are applied when reverse bias is present, in order to adapt the

signal discrimination to the new charge-to-voltage conversion.

Performing a threshold scan of all regions and pixels using the default DAC settings takes

up approximately one hour. In order to make the threshold characterization for varying

VCASB settings more time efficient, five rows evenly distributed over each region are

used to determine a representative threshold. By carefully selecting these rows, it was

avoided to place them within a stripe of pixels that show a lower threshold. Due to the

pixels being pulsed row by row when performing the threshold scan, only using five rows

for the scan reduces the scan time by about 98%. Selecting these five rows are shown

to be enough to be representative of the full matrix, while reducing the scanning time

dramatically. The threshold distributions for five rows can be seen in Fig. 25, using the

same settings as for the full threshold scan (Fig. 20). As previously stated, the average

threshold is derived directly from the data and no Gaussian distribution is fitted.

The average threshold values for the scan covering only five rows and for the full scan,

along with the difference between them, are presented in Tab. 3. The average thresholds

are rounded to whole numbers, because the threshold cannot be controlled with a precision

finer than 1DACunit. The threshold values for a full scan and for a scan with five rows

show deviations up to a maximum of 1DACunit. This deviation, corresponding to the

smallest measurable unit, is expected and considered the error of the average threshold

conducted with only five rows.
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Figure 25: Threshold distributions when scanning five rows for the default DACs at
VBB = 0V. The panels depict the eight regions of the BabyMOSS.

Region Thresholdfull scan (DAC) Thresholdfive rows (DAC) ∆threshold (DAC)
Top 0 NaN NaN -
Top 1 34 33 1
Top 2 33 33 0
Top 3 36 36 0

Bottom 0 30 30 0
Bottom 1 29 29 0
Bottom 2 30 31 1
Bottom 3 24 24 0

Table 3: Comparison of average thresholds for a full scan with the results of a scan of five
rows.

The average threshold for every scan with VBB = 0V is plotted against the VCASB value

in Fig. 26, while in Fig. 27, the results of the threshold scans done with VBB = −1.2V

can be observed.

The relation between the average threshold and VCASB is antiproportional: A higher

VCASB value results in a smaller discrimination threshold and vice versa. Increasing

the VCASB value raises the gate voltage of the corresponding transistor, whose general

mode of operation is discussed in chapter 3.4. This, in turn, influences the drain current.

However, the overall relation between the threshold and VCASB value cannot be directly

inferred from this effect alone, as it is shaped by the complex interaction of currents

and voltages within the in-pixel front-end, introduced in chapter 4.3. Therefore, a more
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detailed analysis would be required to determine the exact relation between VCASB and

the threshold.

An exponential fit of threshold versus VCASB has been demonstrated to provide an

accurate description of the data. The χ2
red values (Eq. 25) are displayed in Tab. 4. These

values span a range of 0.01 to 0.11, indicating that the residuals between data and fit are

much smaller than the error on the average threshold, which is limited by the smallest

measurable unit. Overall, the exponential fit closely follows the trend of the data and

seems to capture the dependency accurately.

The common thresholds for all regions, which are the threshold values that all regions

of the BabyMOSS reach for the scanned VCASB settings, are highlighted in the plots

as the green area. For VBB = 0V, the thresholds of 24 to 33 DAC units can be reached

throughout each region and for VBB = −1.2V the threshold range of 22 to 29 DAC units

is common for all regions.

In chapter 7.4, the fitted data will be used to match every region to the same threshold.

This is done by determining the specific VCASB value each region needs to be set to, in

order to achieve the desired threshold throughout the whole sensor. Over the entire range

common for all regions, the VCASB values corresponding to the fitted threshold values

are retrieved.

Figure 26: Average thresholds plotted against VCASB values for default DACs at
VBB = 0V. The panels depict the eight regions of the BabyMOSS.
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Figure 27: Average thresholds plotted against VCASB for default DACs at VBB = −1.2V.
The panels depict the eight regions of the BabyMOSS.

Region χ2
red for VBB = 0V χ2

red for VBB = −1.2V
Top 0 NaN NaN
Top 1 0.05 0.11
Top 2 0.02 0.01
Top 3 0.03 0.01

Bottom 0 0.10 0.13
Bottom 1 0.01 0.02
Bottom 2 0.01 0.01
Bottom 3 0.06 0.06

Table 4: χ2
red values of the average threshold conducted with a scan of five rows.
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6 Test Beam

In April 2024, there has been the opportunity to include the BabyMOSS in a test beam

campaign at DESY (Deutsches Elektronen-Synchrotron) in Hamburg, Germany. The

objective was to further examine the behavior of the BabyMOSS in response to varying

operating points. For these operation points, different charge thresholds are used with

and without applied reverse bias. In this chapter, the test beam facility is introduced and

details of the test beam campaign are provided.

6.1 DESY II Test Beam Facility

The DESY test beam facility provides beam lines driven by the DESY II synchrotron,

which has a circumference of 292.8m and accelerates electrons. A bunch of about 1010

electrons is injected into the circular beam pipe after being accelerated to an energy of

Emin = 0.45GeV by a linear preaccelerator called LINAC II. Inside DESY II, the particles

get accelerated to a maximum energy of Emax = 6.3GeV and the beam is stored with

sinusoidal beam energy ranging from Emin to Emax. The bending magnets, driven by a

sinusoidally oscillating current, follow 80ms magnet cycles. After one DESY II cycle,

which consists of two magnet cycles, the beam is dumped. Fig. 28 displays the oscillating

DESY II beam energy, as well as the beam intensity. Because of the deceleration and

the subsequent beam losses, a decrease in beam intensity can be observed for the second

magnet cycle [26].

Figure 28: Schematic of the sinusoidal beam energy of DESY II (black) with the corre-
sponding beam intensity (grey) in the background [26].

For the DESY II test beam facility, whose layout is sketched in Fig. 29, the primary beam

is not directly extracted from DESY II. Instead, a primary target consisting of carbon
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fiber is permanently placed in the orbit of DESY II and intercepts the beam, which leads

to the creation of bremsstrahlung photons. These photons are generated by electrons

with the respective energies of the DESY II cycle and travel through an extraction pipe

and an aluminum exit window out of the DESY II vacuum. Next, the photons travel

through air before reaching the conversion target, which leads to the creation of electrons

and positrons through pair production. Afterward, the electrons and positrons enter a

high vacuum beam line, where they reach a dipole magnet, which deflects the particle

trajectories depending on the momentum and charge of the respective particle. The

polarity and strength of the magnetic field of the dipole magnet can be adjusted and

together with the help of a configurable primary collimator, a beam consisting of the

desired particle type and momentum is transmitted further while all remaining particles

are rejected. This beam passes through a beam shutter before reaching the test beam

area, where the particle rate is monitored by a beam counter consisting of two scintillators

and the beam is shaped by a fixed secondary lead collimator.

Due to the oscillating energy of the primary beam, the particle rate reduces when selecting

higher test beam energies. When selecting lower energies, the higher particle rate leads to

an increase of the amount of data being collected. However, lower energies also cause an

increase in multiple scattering within the particle detectors (Eq. 8). The selected test

beam energy is determined depending on the individual requirements of the test beam

campaign.

In DESY II, three primary targets are implemented creating three independent beam

lines, which are referred to as TB21, TB22 and TB24 [26].

The test beam, which is referenced in this study, was conducted at beam line T24.

Figure 29: DESY II Test Beam Facility [26].
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6.2 Test Beam Campaign

When running a test beam campaign, the device under test (DUT) is generally placed

inside a structure called beam telescope. This beam telescope is comprised of multiple

detectors with known properties positioned in front of and behind the DUT, providing

spatial resolution and timing. The sensors of the telescope, typically consisting of six

planes, provide reference data for the DUT, which enables the tracking of particle trajec-

tories along the sensor planes.

However, the test beam campaign conducted at the DESY test beam facility in April

2024 targeted multiple research projects and therefore BabyMOSS did not represent the

primary DUT. The primary DUT was placed inside a telescope consisting of six ALPIDE

planes with a scintillator positioned in front of the telescope, that provides timing in the

sense of an event start signal. Behind the telescope, a second scintillator was implemented

before the additionally tested devices. The BabyMOSS is positioned behind the second

scintillator and at the very end, three planes of Outer Barrel Modules (OBM) are placed.

The complete setup is displayed in Fig. 30 and Fig. 31 shows a close up of the BabyMOSS,

mounted on the carrier card and connected to a raiser board and DAQ board. The

BabyMOSS sensor is connected as described in chapter 5.

Figure 30: Complete test beam setup at beam line T24 of the DESY test beam facility in
April 2024.
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Figure 31: Close up of BabyMOSS with the scintillator in front at the test beam campaign
in April 2024.

The implementation of scintillators enables limiting the readout and storage of the data

collected by the pixel sensors to times when there is a high chance of a particle actually

traversing the beam. The scintillators are of roughly the same size as the pixel detectors

and placed in geometrical overlap before the sensor with respect to the beam. When the

scintillator registers a particle hit, a trigger signal is distributed to all connected pixel

sensors. In response to the trigger signal, the pixel sensor starts reading out the data.

During this time, a busy signal is sent to the trigger board, which blocks following trigger

signals from being distributed while the pixel sensors are occupied [27].

For the test beam setup described above, the first scintillator provides trigger signals

in coincidence with the second scintillator for the telescope setup by daisy-chaining the

DAQ boards in a master-slave configuration. Additionally, the second scintillator provides

trigger signals for the BabyMOSS and the three OBM planes. The busy signal used to

create trigger signals for the BabyMOSS and the OBM planes differs from the busy signal

used for the telescope due to the longer readout time of the OBM planes. Since the

priority of the test beam campaign was to investigate the DUT with the aim of taking as

much data as possible, the choice was made to use separate trigger signals as opposed to

synchronized ones.

Furthermore, no global clock could be employed to assign timestamps to the individual

events. Only the timestamps supplied by the clock of the data-taking computer are

assigned to each event. Potentially non-synchronized and granularity lacking timestamps

complicate the retroactive synchronization of the events detected by the telescope to the

ones detected by the BabyMOSS, which is why the cluster size analysis in chapter 7 is
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conducted using BabyMOSS as a standalone system.

The data acquisition software framework called EUDAQ2 is utilized for this test beam

[28]. This framework facilitates the configuration and control of the data acquisition, as

well as the collection of data produced by the detectors and its storage in a raw data file.
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7 Test Beam Data Analysis

After the test beam campaign with the BabyMOSS, the stored data is analyzed using the

test beam data reconstruction framework Corryvreckan [29]. The Corryvreckan framework,

which is written in modern C++, possesses a modular event reconstruction chain. This

property is what leads to the versatility of the framework. When analyzing data with

Corryvreckan, the raw data from the EUDAQ2 files first is decoded and processed by

EventLoader modules. Events are constructed from the data by using the trigger identifi-

cation number (ID) to assign detected hits to a Corryvreckan event. A hit is detected by a

pixel, when a signal voltage exceeds the user-defined discriminator threshold, as described

in chapter 5.1.

In order to accurately examine the detector characteristics using the test beam data,

signals from pixels that exhibit an exceptionally high fake-hit rate are unwanted and

should therefore be excluded from the further data analysis. The Corryvreckan module

MaskCreator provides a method to mask such pixels, based on the comparison of the

individual hit rates of the pixels to the global hit rate of the pixel matrix. Since the

BabyMOSS consists of multiple pixel matrices of varying behavior, which are treated as

independent sensors, the application of the MaskCreator module poses difficulties and a

different approach for the pixel masking is explored in chapter 7.1.

Using the masked data, the cluster sizes of the sensor are analyzed in chapter 7.2. A

cluster is produced when an impinging particle causes multiple pixels to register a hit,

which then build the cluster. The total number of the pixels detecting a hit associated to

the same particle define the cluster size. This occurs due to a process referred to as charge

sharing, where the diffusion of the generated charge leads to fractions of the charge being

collected in neighboring pixels. Corryvreckan provides a module called Clustering4D,

which uses positional information to detect clusters and calculates the position of a cluster

as the mean value of the pixel coordinates [29, 30].

Besides examining the cluster size distribution for the BabyMOSS with and without

reverse bias, the development of the mean cluster size is analyzed in chapter 7.3 for an

increasing VCASB value, which steers the threshold of the pixels.

However, the regions of the BabyMOSS exhibit different thresholds for the same VCASB

setting as a result of the variations of the analog in-pixel front-end electronics. This is

why the threshold scans of chapter 5 are utilized to match the different regions of the

BabyMOSS to the same thresholds in chapter 7.4. This enables the comparison between

different regions at similar operating points.

The test beam data analysis is performed on two different datasets, which were taken with

and without reverse bias. Without reverse bias applied, 20 runs with 100 k events per run

have been recorded for each VCASB setting during a test beam run using a 2.4GeV/c
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particle beam. In contrast, the data taken with VBB = −1.2V was recorded during a

test beam run using a 4.8GeV/c particle beam and only 10 runs have been recorded with

100 k events per run and per VCASB setting. The average energy loss per path length by

ionization for the highly relativistic 2.4GeV/c and 4.8GeV/c electrons is approximately

the same due to the high Lorentz gamma factor of the electrons in this regime.

Region top 0 is malfunctioning and not examined in this study, as discussed in chapter

4.2.

7.1 Pixel Masking and Analysis of Hit Count Distributions

As previously mentioned in chapter 5, pixel sensors potentially exhibit a number of pixels

with an exceptionally high hit rate compared to the average pixel of the matrix. Such

behavior can origin for example from a lower in-pixel threshold due to defects arising

during the manufacturing process or subsequent damage. A fake-hit can then be initiated

without external stimulation, but through thermal noise. Consequently, pixels with a

relatively high fake-hit rate have the potential to bias the sensor characterization. This is

why such pixels need to be masked, which effectively excludes them from the further data

analysis.

The Corryvreckan framework provides a MaskCreator module, which can be used to

mask unwanted pixels that demonstrate atypically high hit rates. Within this module,

the frequency method can be used to mask pixels based on comparison of their individual

firing rate to the global pixel firing rate, which is calculated over one reference run. For

the BabyMOSS, each region is treated as an independent sensor and the global firing rate

is calculated for each region individually. A pixel is designated as noisy, when its hit rate

exceeds the global hit rate multiplied by the so-called frequency cut. The frequency cut

value is chosen by the user depending on the individual prerequisites and requirements.

All pixels that are identified as noisy are written to a mask file and excluded in subsequent

Corryvreckan analysis procedures [29, 30].

To review the results from this masking procedure, generated hitmaps can be used, which

display the recorded hits of the analyzed dataset in a 2D histogram. When applying this

masking method to the BabyMOSS data taken at the DESY test beam campaign, one

reference run was used to generate the mask file, which was then applied for all 20 runs

per VCASB setting taken without reverse bias or 10 runs per VCASB setting with reverse

bias. When reviewing the hitmaps, it became apparent, that using one reference run to

create the masking for all runs does not consistently capture all pixels with atypically

high hit rates. It was observed, that certain runs still resulted in hitmaps exhibiting single

pixels with extremely high hit rates. Consequently, a method of masking using the entire
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dataset of one setting would ensure a more reliable masking.

Moreover, it became apparent, that choosing one frequency cut value, which is applied

to all eight regions of the sensor, results in drastically different hitmaps for each region

regarding the maximum hit count and the number of pixels that can be observed to exhibit

high hit counts. Every region of the sensor shows varying behavior due to differences

in the in-pixel front-end electronics, as described in chapter 4.3, which includes varying

thresholds for the same DAC settings, as discussed in chapter 5.1. When one region has

more pixels with a very high hit rate, the global hit rate of this region increases. This

in turn raises the maximum firing rate a pixel is allowed to exhibit, before it is masked.

As a result, the critical hit rate used for the masking of pixels varies between the regions

and cannot be individually adapted to each region, since the frequency cut value is set

uniformly for the BabyMOSS, while the global hit rate of the regions differs.

Ultimately, the MaskCreator module is a simplistic method to mask noisy pixels and

relies on a quiet sensor. To utilize the entire dataset of each setting for pixel masking and

gain a better understanding of the individual behavior of the regions regarding hit rates,

which allows for a more educated masking process, another method is applied.

For this other method, a python code is written to define the masking specifically for the

BabyMOSS. The data processing is explained using exemplary settings based on given stan-

dards for the VCASB value, which were introduced in chapter 5: VCASB = 15DACunits

for VBB = 0V and VCASB = 84DACunits for VBB = −1.2V.
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7.1.1 Exemplary Analysis without Reverse Bias

Figure 32: Distribution of the number of pixels per hit count in two million events for
VCASB = 15DACunits at VBB = 0V. The bin width equals one hit count. All pixels
above the cutoff point are masked. The panels depict the eight regions of the BabyMOSS.

Region Cutoff hit rate (pixel−1event−1)
Top 0 -
Top 1 8 · 10−6

Top 2 7 · 10−6

Top 3 6.5 · 10−6

Bottom 0 5.5 · 10−6

Bottom 1 18 · 10−6

Bottom 2 5 · 10−6

Bottom 3 89 · 10−6

Table 5: Critical hit rate used to identify noisy pixels for each region of the BabyMOSS
at VBB = 0V and VCASB = 15 DAC units.

Firstly, the raw test beam data of two million events is read with Corryvreckan. In order

to better understand the behavior of the BabyMOSS and to determine the pixels that

need to be masked, the number of pixels is plotted against the hit count in two million

events (Fig. 32). Each pixel of the sensor records a specific number of hits in two million

events. The plot displays the total number of pixels corresponding to a specific hit count.

The sum of all pixel counts in one region results in the total number of pixels in the matrix.

In an effort to improve the visibility of the most important parts of the distribution, the

x-axis does not show the complete range of hit counts present for each region, but only

the lower section. The order of magnitude of the total hit count range for each region can
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be extracted from the hitmaps in Fig. 33. The threshold, which is given in DAC units, is

displayed above each region. The threshold values for each region were determined with

the laboratory scans described in chapter 5. The thresholds are again displayed in all

following plots of chapter 7.1.1.

The distributions of the pixels per hit count for the different regions of the sensor display

varying behavior. Region top 1 and 2 exhibit a rise in pixel counts before a decline, with

the peak of pixel counts representing the most probable hit count value for a given pixel

in the matrix, which is referred to as the mode. The distribution around the mode is

a consequence of the random impingement of particles on the sensor. After the decline,

pixels with further increasing hit counts only appear sporadically. The other regions also

display this peak in pixel counts, but the decline of the distribution transitions into a tail

of pixels with higher hit counts. These regions exhibit a larger fraction of pixels with hit

counts much higher than the mode.

Since some regions exhibit this tail in the distribution, classifying pixels as noisy becomes

more complex compared to cases where pixels show only sporadically exceptionally high

hit counts, indicative of defective pixels. These outlier pixels of high hit counts can then

be separated more distinctly and associated to a high fake-hit rate. For the masking, a

cutoff point of the hit count is set for each region and all pixels that exhibit a higher hit

count are classified as noisy and masked. The cutoff point is chosen to be at the highest

hit count exhibited by 10 pixels. After this cutoff point, each hit count corresponds to

fewer than 10 pixels. This results in the masking of the occasionally appearing pixels of

high hit counts for region top 1 and 2, as well as the cutoff of a large fraction of the tail

of pixels with increasing hit counts, which can be associated with fake hits. In Fig. 32,

this cutoff point is illustrated through the vertical red line and all pixels that are located

on the right side of this line are masked by extracting their coordinates and writing them

into a mask file. The resulting critical hit rates from the cutoff hit count are calculated

for each region by division with the total number of events and displayed in Tab. 5. The

number of masked pixels per region is also displayed in Fig. 32 and ranges from 8 to 736,

which demonstrates the varying behavior of the regions. In all cases, the proportion of

masked pixels stays below 0.01% of the total number of pixels, indicating that the data is

not majorly biased through this masking process.

The region with the most masked pixels and the largest tail is region bottom 3, while this

is also the region with the lowest threshold given a common VCASB setting for all regions.

This indicates that the observed tail in the distribution, corresponding to pixels exhibiting

exceptionally high hit rates, is due to the relatively high sensitivity of the pixels. For the

higher thresholds the other regions exhibit, the tail of the distribution generally decreases

in comparison.

In contrast, region top 3, which is assigned the highest threshold, shows a relatively large
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tail, indicating differences in behavior compared to the other regions due to differences

in the in-pixel front-end electronics. However, this behavior could also be influenced by

differences between the threshold, that was measured by doing laboratory scans, and the

actual threshold of the region during the data taking at the test beam.

For one, the different environmental conditions can influence the threshold of the sensor.

While this would apply to all regions of the sensor, a varying reaction to the changes in

environmental conditions due to the varying in-pixel front-end electronics cannot be ruled

out. Different front-end designs can respond differently to e.g. the same temperature

variation. Following the test beam campaign, the threshold of the MOSS, and consequently

the BabyMOSS, has been demonstrated to be sensitive to temperature. The dependency

between threshold and temperature can be estimated to about 0.3DAC per 1 ◦C [31].

This is why more recent versions of the raiser board have the possibility to measure the

room temperature, while the one used in this study was of a previous version and did not

have this capability.

Additionally, a bandgap reference voltage and current is used by the DACs to convert

digital signals into analog ones. A reference voltage is important for most integrated

circuits as it enables reliable and predictable performances. A bandgap reference circuit

operates by combining a voltage that decreases linearly with temperature with another

that increases linearly with temperature. This results in a reference voltage that is

first-order independent of temperature with a value close to the bandgap voltage of silicon

[32]. Bandgap trimming is used to modify this reference voltage by means of a complex

network of resistors and digital decoder, as well as a direct adjustment of the bandgap

outputs. For the MOSS and BabyMOSS, the bandgap circuitry provides a reference

voltage which should be trimmed to about 416mV and a reference current of 10.2 µA [20].

Variations in the bandgap trimming can lead to variations in the reference voltage and

current, which influence the analog signals produced by the DACs and thus change the

discriminator thresholds of the sensor. No data regarding the exact bandgap trimming

was documented during the test beam, which was conducted using preliminary software,

which raises the possibility that a discrepancy exists between the bandgap trimming for

the test beam and for the laboratory scans.
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Figure 33: Hitmaps for VCASB = 15DACunits at VBB = 0V before masking. The data
taken for two million events is analyzed and the panels depict the eight regions of the
BabyMOSS.

Figure 34: Hitmaps for VCASB = 15DACunits at VBB = 0V after masking. The data
taken for two million events is analyzed and the panels depict the eight regions of the
BabyMOSS.

The effect the applied masking has on the order of magnitude of the maximum hit count

of each region for the analyzed dataset can be observed in Fig. 33 and Fig. 34. The

Figures display the recorded hits for two million events in a 2D histogram before and after

the masking was applied. The 2D grids of these hitmaps represent the pixel matrices,

where every pixel is assigned a color according to their recorded hit count.

Before the masking, the hit count ranges of the different regions span several orders of

magnitude. Region top 2 displays a maximum hit count in the order of 101 hits per pixel,

forming the lower limit of hit count ranges across the regions. Region bottom 3 shows

a maximum hit count in the order of 104 hits per pixel, which creates the upper limit

51



of hit count ranges. After the masking was applied, which excludes the pixels with the

highest hit counts from the data as previously discussed, most regions display maximum

hit counts in the order of 101 hits per pixel. Only region bottom 3 shows a maximum hit

count in the order of 102 hits per pixel, which is higher compared to the other regions,

but to be expected considering the low threshold and therefore high fake-hit rate for this

region at this setting, which cannot be entirely accounted for by the masking process

without risking to bias the data. However, some unexpected behavior can be observed for

region bottom 0 and bottom 3, as both display a not perfectly uniform distribution of

detected hits.

Figure 35: Hit count projected onto the x-axis for VCASB = 15DACunits at VBB = 0V
before masking. The data taken for two million events is analyzed and the panels depict
the eight regions of the BabyMOSS.
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Figure 36: Hit count projected onto the x-axis for VCASB = 15DACunits at VBB = 0V
after masking. The data taken for two million events is analyzed and the panels depict
the eight regions of the BabyMOSS.

In order to get a better understanding on the distribution of the recorded hits, Fig. 35

and Fig. 36 display the hit counts projected onto the x-axis before and after the masking.

Here, the hit counts of all the pixels in each column are summed up and plotted in a

logarithmic scale. When comparing the distributions before and after the masking, the

spikes of especially high hit counts disappear and the distribution becomes more flat,

as expected. It is clearly visible both with and without masking that region bottom 0

detects less hits over a narrow stripe of pixels on the far left side. For every dataset taken

with varying VCASB settings, the stripe of pixels detecting less hits in region bottom 0

appears. It can be assumed that this stripe appears due to this area being covered by

something placed before the BabyMOSS in the test beam set up. This coverage may be

related to the scintillator mount, which was placed directly in front of the BabyMOSS as

can be observed in Fig. 30.

Far more unusual is the drastic change in hit counts from the left side to the right side in

region bottom 3. The number of detected hits rises steeply at the midpoint of the region

and then stabilizes at a hit count that is approximately one magnitude higher than that

of the left side of the sensor. It seems, that the pixels on the right side of the matrix have

a lower effective threshold compared to the pixels on the left side of the matrix, which

increases the probability to detect fake hits induced by noise. The behavior of exhibiting

a left-to-right asymmetry regarding the fake-hit rate was already observed by Styliani

Paniskaki [33] [34] and is not specific for one region, but dependent on the threshold of

the region.

Besides BabyMOSS, MOSS has also shown a left-to-right asymmetry regarding the fake-hit
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rate. Preliminary results of separate studies suggest that the observed effects are related

to the choice of strobe signal length and its distribution across the matrix [35]. This

correlation was observed after the test beam campaign of this study was conducted and is

under current investigation.

For the dataset of VCASB = 15DACunits, the left-to-right asymmetry only occurs for

region bottom 3 due to the low threshold this region has for the set DACs. When in-

creasing the VCASB value and therefore decreasing the discriminator threshold of the

pixels, the left-to-right asymmetry can be observed also for other regions of the Baby-

MOSS. As an example, the hit count projection for the highest VCASB value analyzed

of the test beam for all regions without reverse bias can be found in the appendix (Fig. 54).

7.1.2 Exemplary Analysis with Reverse Bias

When a reverse bias of VBB = −1.2V is applied between the collection diode and the

substrate of the pixels, the pixels become fully depleted. When a particle traverses a

pixel, the generated electron-hole pairs are quickly separated by the electric field in the

depletion region, preventing recombination and reducing charge loss. Due to the larger

drift region for applied reverse bias, the charge collection time is reduced. Moreover,

the larger depletion region results in a reduced junction capacitance, which allows for a

larger voltage signal to be detected from same amount of collected charge, as explained in

chapter 3.5. This, in turn, leads to an improved signal-to-noise ratio [2, 16].

Figure 37: Distribution of the number of pixels per hit count in one million events for
VCASB = 84DACunits at VBB = −1.2V. The bin width equals one hit count. All pixels
above the cutoff point are masked. The panels depict the eight regions of the BabyMOSS.
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Region Cutoff hit rate (pixel−1event−1)
Top 0 -
Top 1 8 · 10−6

Top 2 8 · 10−6

Top 3 7 · 10−6

Bottom 0 7 · 10−6

Bottom 1 8 · 10−6

Bottom 2 7 · 10−6

Bottom 3 6 · 10−6

Table 6: Critical hit rate used to identify noisy pixels for each region of the BabyMOSS
at VBB = −1.2V and VCASB = 84 DAC units.

The dataset analyzed in this section was recorded with an applied reverse bias and adjusted

VCASB value, as discussed in chapter 5.2. The data is processed in the same manner

as the dataset taken without reverse bias. The one million events are first read with

Corryvreckan. Fig. 37 displays the number of pixels per hit count in one million events for

the BabyMOSS with VCASB = 84DACunits at VBB = −1.2V. The threshold, given in

DAC units, is again displayed above each region for this and all following plots of chapter

7.1.2. In contrast to the results without reverse bias, the distributions display no tail

corresponding to pixels with exceptionally high hit counts compared to the mode, even

though the pixel thresholds are in a similar range. The cutoff point, represented by the

vertical red line in Fig. 37, is again set to be at the highest hit count exhibited by 10

pixels. The resulting critical hit rates from the cutoff hit count are displayed in Tab. 6.

Pixels exhibiting higher hit counts are written to the mask file and excluded from the

further data analysis. In comparison to the case without reverse bias, the number of

masked pixels is generally smaller and ranges from 1 to 15, staying below 0.001% of the

total number of pixels for all regions.

The absence of tails in the distributions of pixel counts over the hit count, which correlates

with the lower number of masked pixels, can be attributed to an overall lower amount of

fake hits being recorded compared to the case without applied reverse bias due to the

improved signal-to-noise ratio.
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Figure 38: Hitmaps for VCASB = 84DACunits at VBB = −1.2V before masking. The
data taken for one million events is analyzed and the panels depict the eight regions of
the BabyMOSS.

Figure 39: Hitmaps for VCASB = 84DACunits at VBB = −1.2V after masking. The
data taken for one million events is analyzed and the panels depict the eight regions of
the BabyMOSS.

The hitmaps of data taken for one million events prior to the masking are displayed in

Fig. 38 and after the masking in Fig. 39.

Once again, a stripe with decreased hit rate on the left side can be observed for region

bottom 0, supporting the previous conclusion that this appears due to this area being

covered by something placed in front of the sensor. However, no left-to-right asymmetry

can be observed, even for region bottom 3, which again exhibits the lowest threshold.
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Figure 40: Hit count projected onto the x-axis for VCASB = 84DACunits at
VBB = −1.2V before masking. The data taken for one million events is analyzed and
the panels depict the eight regions of the BabyMOSS.

Figure 41: Hit count projected onto the x-axis for VCASB = 84DACunits at
VBB = −1.2V after masking. The data taken for one million events is analyzed and the
panels depict the eight regions of the BabyMOSS.

Fig. 40 and Fig. 41 display the hit count projection onto the x-axis for one million events

before and after masking. Due to the improved signal-to-noise ratio for applied reverse

bias, no distinct spikes in hit counts are visible even before the masking of noisy pixels. As

in Fig. 36, a stripe of decreased hit rate can be observed in bottom 0, but no left-to-right

asymmetry in hit counts can be observed. Indeed, no left-to-right asymmetry in hit counts

as seen with reverse bias can be observed even for higher VCASB settings and therefore
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lower thresholds. As an example, the hit count projection onto the x-axis for the highest

VCASB analyzed of the test beam for all regions can be found in the appendix (Fig. 55),

which shows no left-to-right asymmetry with a steep rise at the midpoint of the pixel

matrix. The left-to-right asymmetry of the fake-hit rate appears to only visibly influence

the hit count distribution over the pixel matrices when when no reverse bias is applied.

This can be attributed to the improved signal-to-noise ratio for applied reverse bias, which

occurs due to the reduced junction capacitance of the expanded depletion region.

7.2 Cluster Size Distributions

The expected spatial resolution of a sensor in the absence of charge sharing between pixels

is referred to as binary resolution, where the impact position of a particle is assumed to

be at the center of the pixel that detects the hit. It is calculated as follows [1]:

σbinary =
pixel pitch√

12
(26)

The top unit of BabyMOSS has pixels with a pitch of 22.5 µm, which results in a binary

resolution of 6.5 µm. For the bottom unit, which has a pixel pitch of 18 µm, the binary

resolution is at 5.2 µm.

The spatial resolution can be further improved, when charge sharing between pixels is

present, causing clusters to be formed. When a cluster of pixels is associated with one hit,

the impact position can be determined by calculating the center of gravity of the cluster,

leading to a sub-pixel position estimation of the impinging particle. Therefore, studying

clusters in BabyMOSS is of particular interest.

The previously masked data of the test beam is used to analyze the cluster size dis-

tributions of the sensor with and without reverse bias for the given standard VCASB

settings.

When a particle traverses a pixel sensor and deposits charge, as described in chapter 3.5,

electrons and holes are produced. When the charge is generated in an undepleted region

of the pixel, diffusion is the dominating process. After entering the depletion region of the

pixel, drift dominates and charge drifts towards the collection diode. Since the pixels in

the pixel matrix of the sensor are not isolated from each other, the charge can be shared

between multiple pixels due to diffusion or capacitive coupling during the drift process.

As a result, multiple pixels are able to detect a signal from the same particle and form

a cluster. The cluster size refers to the number of pixels participating in such a cluster.

Corryvreckan provides a module called Clustering4D, which uses positional information

to detect clusters.
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Figure 42: Cluster size distribution for VCASB = 15DACunits at VBB = 0V after
masking. The data taken for two million events is analyzed and the panels depict the
eight regions of the BabyMOSS.

Figure 43: Cluster size distribution for VCASB = 84DACunits at VBB = −1.2V after
masking. The data taken for one million events is analyzed and the panels depict the
eight regions of the BabyMOSS.

Fig. 42 displays the cluster size distribution of data taken in two million events for

VCASB = 15DACunits and VBB = 0V. Fig. 43 displays the cluster size distribution

of data taken in one million events for VCASB = 84DACunits and VBB = −1.2V. The

mean and standard deviation are calculated using Eq. 21 and 22 with n as the total
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number of clusters. The uncertainty of the mean is calculated as follows:

σmean =
std dev√

n
(27)

The uncertainty of the standard deviation can be derived using the following equation

[36]:

σstd dev =
std dev√
2 · (n− 1)

(28)

The one-pixel cluster makes up over 80% and in some cases even over 90% of the cluster

size distribution both with and without reverse bias. The two-pixel clusters generally

make up around 10% of the distribution, while three- and four-pixel clusters barely reach

1%. Cluster sizes above appear only occasionally. Consequently, the mean cluster size

remains between 1 and 2 pixels. The error of the mean stays at 0.001 pixels without

reverse bias and partly increases to 0.002 pixels with reverse bias. This elevation of the

error stems from the reduced amount of data available for the case with applied reverse

bias. Overall, the small relative error amounts to approximately 0.1%.

The generally low cluster sizes detected for BabyMOSS can be attributed to the thin

epitaxial layer and large depletion region in relatively small pixels. This results in a sensor,

which is drift dominated and with short distances between the point of charge generation

and charge collection, causing the charge to be collected mainly in one pixel.

When comparing the cluster size distributions with and without reverse bias, small dif-

ferences are to be expected since the thresholds of the regions tend to be slightly higher

with reverse bias applied using the provided standard setting for VCASB of 84DACunits.

A higher threshold reduces the probability to detect clusters with multiple pixels, due

to the low amount of charge that is collected by each diode, when the charge is shared

between multiple pixels. As a result, the mean cluster size decreases in the regions top 1

and 2, as well as in the regions bottom 0, 1 and 2, with reductions ranging from 0.008 to

0.046 pixels.

Additionally, when the depletion region is expanded, the diffusion process can be neglected

as a transport process since it occurs on a much longer timescale compared to the drift

process. For a fully depleted sensor, a decrease in the average cluster size would be

expected, since it becomes more probable that the deposited charge is fully collected by

the nearest diode through drift, resulting in one-pixel clusters. On the other hand, even

without reverse bias there is a significant contribution from the drift process due to the

small pixel size and thin epitaxial layer, which already results in low cluster sizes.

However, region top 3 and bottom 3 exhibit an increase of the mean cluster size of

0.023 and 0.111 pixels, respectively, when reverse bias is applied. This can be associated

with a decreased fake-hit rate. Since an increased fake-hit rate leads to an increased
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production of one-pixel clusters, a shift of the average cluster size towards lower values

can be expected with no reverse bias applied. Both region top 3 and bottom 3 exhibit a

tail in the distribution of pixel counts against hit count, corresponding to a large fraction

of pixels with exceptionally high hit counts compared to the mode, when no reverse bias

is applied (Fig. 32). No such tail in the distribution can be observed with reverse bias

(Fig. 37). Consequently, both regions have a higher number of masked pixels without

reverse bias and can be expected to exhibit a higher fake-hit rate even after the masking.

This is more extreme for region bottom 3, which exhibits a left-to-right asymmetry in hit

counts, as displayed in Fig. 36.

This effect can also be expected to cause the lower average cluster size for bottom region

3 compared to the other regions when no reverse bias is applied (Fig. 42). To further

validate the decrease in average cluster size originating from an increased number of fake

hits, particle track reconstruction using a beam telescope of multiple pixel sensors could

be employed to distinguish clusters produced by impinging particles from those caused by

fake hits.

7.3 Exploration of the Average Cluster Size over the VCASB

Range

The VCASB DAC setting can be adjusted in order to modify the discrimination threshold

of the pixels. For an increasing VCASB value, the threshold decreases and smaller signal

voltages cause a hit to be detected. This, in turn, influences the cluster sizes detected

with the pixel sensor. The globally set VCASB settings result in varying thresholds for

each region due to differences in the in-pixel front-end electronics (Fig. 16). Therefore,

exploring the average cluster sizes of the regions of BabyMOSS over the VCASB range

determined in chapter 5 not only enables the analysis of the average cluster size for varying

thresholds, but also a comparison between the regions of the BabyMOSS.
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Figure 44: Average cluster size plotted against VCASB at VBB = 0V. The average
cluster size is plotted against the VCASB value in red and the number of clusters per
event is plotted against the VCASB value in blue. For each VCASB value, two million
events were used in the data taking process and masking was applied using the method
described in 7.1. The panels depict the eight regions of the BabyMOSS.

Figure 45: Average cluster size plotted against VCASB at VBB = −1.2V. The average
cluster size is plotted against the VCASB value in red and the number of clusters per
event is plotted against the VCASB value in blue. For each VCASB value, one million
events were used in the data taking process and masking was applied using the method
described in 7.1. The panels depict the eight regions of the BabyMOSS.

In Fig. 44 and Fig. 45, the average cluster size and the number of clusters per event

are plotted against the VCASB values. The number of clusters per event is used as an

indirect measure for the amount of recorded fake hits, as fake hits produce one-pixel clus-

ters and for an increasing number of detected fake hits more clusters are detected per event.
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Fig. 44 depicts the average cluster size and the number of clusters per event with-

out applied reverse bias. The measurement starts at VCASB = 5DACunits, i.e. the

highest threshold. As the VCASB value increases and the threshold decreases, the number

of fake hits and consequently the amount of data taken per pixel per event at high VCASB

values increases. Accordingly, a rising number of clusters per pixel per event can be

observed in Fig. 44. This makes the data analysis increasingly more time inefficient and

approaches the limits of possible data analysis, which is why the data taken at the test

beam is analyzed up to VCASB = 21DACunits.

In order to extend the lower threshold range for matching the different regions of the

sensor to the same operating points in chapter 7.4, two additional VCASB settings are

analyzed for the top half unit, that generally exhibits higher threshold values compared

to the bottom unit as shown in Fig. 26.

At first, the average cluster size rises steadily for increasing VCASB values throughout

all regions. Due to the decreasing threshold, less charge needs to be collected by each

diode in order for the signal to exceed the threshold, which increases the probability of

detecting clusters containing multiple pixels. As a result, the average cluster size rises

until it approaches a maximum, where the lowest threshold is reached that does not

yet result in a rise of the number of clusters per event due to an increased fake-hit rate.

The maximum average cluster size is located between 1.15 and 1.20 pixels for all regions.

After reaching this maximum, the mean cluster size starts declining steeply. At the same

time, the number of detected clusters per event at each VCASB setting starts rising.

This indicates, that fake hits start dominating compared to hits generated by impinging

particles due to the decreasing threshold. At which VCASB setting the decline in mean

cluster size begins is dependent on the corresponding effective threshold of the region.

For example, region bottom 3 exhibits the lowest threshold for the same global VCASB

settings compared to all other regions (Fig. 26) and the decline therefore starts at lower

VCASB settings for this region.

In Fig. 45, the mean cluster size and the number of clusters per event are plotted

against the VCASB values with reverse bias applied. The test beam data with reverse

bias is analyzed from VCASB = 75DACunits up to VCASB = 102DACunits. As seen

for the case without reverse bias, the average cluster size rises for increasing VCASB

values due to the decreasing threshold and the therefore increasing probability of detecting

clusters of multiple pixels.

The average cluster size climbs for some regions above the value of 1.2 pixels, which was

the approximate maximum cluster size observed without reverse bias (Fig. 44). This can

be attributed to the number of clusters per event only starting to rise, when the average

cluster size approaches a value of 1.3 pixels, as seen for region top 3 and bottom 1 (Fig.
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45). Region top 3 and bottom 1 both display a maximum of the average cluster size

between 1.25 and 1.30 pixels, before the decline of the mean cluster size begins. Again,

this decline is accompanied by a rise in the number of clusters per event, due to the

increasing amount of fake hits. All other regions don’t reach a decline in average cluster

size and also don’t show an incline in the number of clusters per event in the tested range.

The overall higher maximum in average cluster size when reverse bias is applied can be

attributed to the improved signal-to-noise ratio, which was discussed in chapter 7.1.2.

The improved signal-to-noise ratio results in fake hits starting to dominate only when a

threshold is reached, that allows for larger cluster sizes to be detected.

7.4 Average Cluster Sizes for Matched Thresholds

In order to be able to compare the average cluster sizes between the regions for the

same thresholds, i.e. working points, the results of chapter 5.2 are used to select VCASB

settings for each region, which correspond to the same or a similar operating point. For

the available VCASB range, the lowest and highest possible threshold is determined, that

can be reached with every region. These thresholds, along with one in the middle, serve

as the working points to which the eight regions of the BabyMOSS are set to. Without

reverse bias, this results in the thresholds of 28, 31 and 33 DAC units. With reverse bias

applied, the thresholds of 24, 27 and 29 DAC units are used. One DAC unit corresponds

to 7± 3.5 electrons (Eq. 19). The determined VCASB values of each region corresponding

to these thresholds are used to select the required dataset for each region.

It is important to keep in mind, that the thresholds measured in the laboratory scans

might differ from the thresholds the BabyMOSS exhibited during the test beam campaign

due to the corresponding environmental conditions and possible differences in bandgap

trimming, as discussed in chapter 7.1.1.
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7.4.1 Analysis for Matched Thresholds without Reverse Bias

Figure 46: Hitmaps for a threshold of 28 DAC units at VBB = 0V. The data taken for
two million events is analyzed and masking was applied using the method described in
7.1. The panels depict the eight regions of the BabyMOSS.

Figure 47: Hitmaps for a threshold of 31 DAC units at VBB = 0V. The data taken for
two million events is analyzed and masking was applied using the method described in
7.1. The panels depict the eight regions of the BabyMOSS.
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Figure 48: Hitmaps for a threshold of 33 DAC units at VBB = 0V. The data taken for
two million events is analyzed and masking was applied using the method described in
7.1. The panels depict the eight regions of the BabyMOSS.

Fig. 46 to 48 display hitmaps corresponding to increasing thresholds of 28 DAC units, 31

DAC units and 33 DAC units respectively. In order to enable better comparison between

the hitmaps for matched thresholds, a logarithmic color scale of the same range was chosen

to display the hit counts. Above each region, the selected VCASB value is displayed and

the data taken with this VCASB setting is used for this specific region. For regions that

have shown lower thresholds compared to the other regions for the same VCASB settings,

the threshold needs to be elevated in comparison and therefore the VCASB setting is

lowered. Since region bottom 3 has the lowest threshold in comparison to the other regions

at the same VCASB setting (Fig. 26), it is now assigned the lowest VCASB value.

In turn, for regions that exhibit higher thresholds compared to the other regions for the

same VCASB setting due to differences in the front-end circuitry, the threshold needs to

be lowered and therefore the assigned VCASB setting is higher. As region top 3 has the

highest threshold when comparing the regions at the same VCASB settings, as depicted

e.g in Fig. 34, it is now assigned the highest VCASB value.

As region bottom 0 to 2 have the same front-end (Fig. 16), they are expected to have

roughly the same response. Indeed, the VCASB settings for region bottom 0, 1 and 2

are around the same value for a specific threshold with deviations of about ±1DACunit

that can be attributed to the uncertainty of the measured threshold of 1DACunit, which

originates from performing the threshold scan using only five rows of the pixel matrix, as

discussed in chapter 5.2.

The regions display differing behavior in hit counts, even for approximately the same

threshold. Region top 3 exhibits a left-to-right asymmetry in hit counts, as well as an

increasing hit count for higher rows, especially for the threshold of 28 DAC units. This
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region already exhibited a relatively high number of noisy pixels in relation to its threshold,

as discussed in chapter 7.1.1. For region top 1, a left-to-right asymmetry can also be

observed for a threshold of 28 DAC units. This behavior can be associated with differences

in the front-end electronics, as well as possible deviations of the measured thresholds of

the regions from the actual thresholds at the test beam due to environmental differences

or deviations in the bandgap trimming.

Besides, region top 1 displays a higher average hit count over the whole matrix compared

to other regions and especially region bottom 3, which displays a lower hit count compared

to other regions for each threshold setting. For one, this can be attributed to the lower

number of pixels in the pixel matrices of the top unit. Due to the larger pixel pitch, a

region in the top unit has 256 x 256 pixels compared to 320 x 320 pixels a region of the

bottom unit possesses. Consequently, a pixel of the top unit is expected to show a higher

hit rate than a pixel of the bottom unit for the same number of hits detected over the

whole region. Additionally, the beam profile is expected to not be uniform over the whole

BabyMOSS. When analyzing both units separately, the highest hit count over the whole

matrix is visible for region top 1 and bottom 1 respectively, with a decreasing hit count

for increasing region numbers. For the bottom unit, region bottom 0 also seems to display

a decreasing number of hit counts, without taking the stripe of lower hit counts to the far

left into account. This can be attributed to the beam being centered on the location of

the regions top and bottom 1 and when moving away from the beam center, fewer hits

induced by particles are detected.

Figure 49: Average cluster size plotted against the threshold in DAC units at VBB = 0V
with 1 DAC unit as the threshold error. The panels depict the eight regions of the
BabyMOSS.

In Fig. 49, the average cluster sizes are plotted against the threshold using the data
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displayed in the previous hitmaps. The error on the threshold of 1 DAC unit originates

from the dominating threshold uncertainty introduced by scanning only five rows of the

whole pixel matrix, as discussed in chapter 5.2. The error on the average cluster size is in

the vicinity of 0.001, as discussed in chapter 7.2, which is significantly smaller than the

displayed scale increments of 0.05 and therefore not visually represented. The bottom unit

displays a similar behavior for all regions with slightly decreasing average cluster size for

higher thresholds, starting below 1.20 pixels and ending near 1.15 pixels. This is consistent

with the expectation, that region bottom 0 to 2 show similar responses for the same

thresholds due to having the same in-pixel front-end design. The decrease appears because

a larger signal is needed to exceed the threshold and therefore the probability to detect

clusters containing multiple pixels decreases. The top unit displays this behavior only for

region top 2. Region top 1 shows first an increased average cluster size for the threshold

of 31 DAC units and then a decreased average cluster size for a threshold of 33 DAC units.

The slightly lower mean cluster size at a threshold of 28 DAC units can be attributed

to the increased fake-hit count this region shows with a left-to-right asymmetry for this

threshold setting (Fig. 46). The pixels with exceptionally high hit counts compared to

the most probable hit count can be associated with fake hits, as discussed in chapter 7.1,

which produce one-pixel clusters and therefore result in a decrease of the mean cluster

size. However, the values for average cluster size stay in the region between 1.15 and 1.20

pixels for region top 1. The largest discrepancy from the behavior of the other regions

can be found for region top 3, exhibiting an increase in average cluster size due to the

decreasing contribution of fake hits that can be observed for the corresponding hitmaps.

The lowest threshold of 28 DAC units results in a visible left-to-right asymmetry in hit

counts for region top 3 (Fig. 46) corresponding to an increased amount of recorded fake

hits. For a threshold of 31 DAC units, this left-to-right asymmetry decreases (Fig. 47).

For the highest threshold of 33 DAC units, no left-to-right asymmetry can be observed

(Fig. 48) and the reduced amount of recorded fake hits, which produce one-pixel clusters,

results in a higher average cluster size.
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7.4.2 Analysis for Matched Thresholds with Reverse Bias

Figure 50: Hitmaps for a threshold of 24 DAC units at VBB = −1.2V. The data taken
for one million events is analyzed and masking was applied using the method described in
7.1. The panels depict the eight regions of the BabyMOSS.

Figure 51: Hitmaps for a threshold of 27 DAC units at VBB = −1.2V. The data taken
for one million events is analyzed and masking was applied using the method described in
7.1. The panels depict the eight regions of the BabyMOSS.
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Figure 52: Hitmaps for a threshold of 29 DAC units at VBB = −1.2V. The data taken
for one million events is analyzed and masking was applied using the method described in
7.1. The panels depict the eight regions of the BabyMOSS.

For applied reverse bias, Fig. 50 to and 52 display the hitmaps corresponding to an

increasing threshold of 24 DAC units, 27 DAC units and 29 DAC units respectively. Again,

a logarithmic color scale of the same range was chosen and the selected VCASB value is

displayed above each region.

Region bottom 0, 1 and 2, which have the same front-end design, show deviations in

VCASB settings of ± 1 or 2DACunits for the same selected threshold, which can be

associated with the uncertainty of the measured threshold.

No left-to-right asymmetry in hit counts can be observed for applied reverse bias due to

the improved signal-to-noise ratio, which was discussed in chapter 7.1.2. Region top 3

displays pixels of the highest hit count, which are distributed increasingly toward the top

right edge. This is mainly prominent at a threshold of 24 DAC units and decreases for

higher thresholds as the fake-hit rate decreases. Again, regions of the top unit generally

display higher hit counts than regions of the bottom unit due to the lower number of

pixels, which are of a larger pixel pitch. As expected, the beam is again centered toward

region 1 for both units and fewer particle hits are detected when moving further away

from this region.
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Figure 53: Average cluster size plotted against the threshold in DAC units at
VBB = −1.2V with 1 DAC unit as the threshold error. The panels depict the eight
regions of the BabyMOSS.

In Fig. 53, the mean cluster size is plotted against the threshold using the selected data

shown in the previous hitmaps. Consistent with the observed variations in behavior

displayed in Fig. 45, the average cluster sizes of the regions display differences up to about

0.25 pixels for a specific threshold. The highest average cluster size displayed for each

region varies between 1.15 and almost 1.30 pixels. Most regions show a slight decrease in

average cluster size for higher thresholds, since more collected charge is needed for a hit to

be detected, which reduces the probability of detecting clusters of a size above one pixel.

In contrast to the case without reverse bias, region top 1 exhibits now also a decreasing

cluster size for increasing thresholds. However, region top 3 again shows a steep increase

in average cluster size associated with the reduction of fake hits for increasing thresholds.

While the differences in average cluster size between the regions can mostly be associated

with differences in the front-end, region bottom 0, 1 and 2 are expected to show similar

behavior for the same applied threshold, as they have the same in-pixel front-end electronics.

However, these regions exhibit varying average cluster sizes for the selected thresholds

with deviations ranging from 0.03 to 0.12 pixels. Variations in behavior for these regions

can also be observed for the average cluster size plotted against the measured VCASB

range (Fig. 45). Repeated measurements with calibrated thresholds should be performed

to enable a direct comparison between the regions and to assess whether this behavior

persists.
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8 Conclusion and Outlook

During the Long Shutdown 3 (2026-2029) of the LHC at CERN, the ALICE experiment

will upgrade the Inner Tracking System (ITS2) to the next-generation ITS3. In this

upgrade, the three innermost vertexing layers of the ITS2 Inner Barrel will be replaced

with truly cylindrical layers made of bendable wafer-scale silicon sensors. This upgrade

reduces the material budget per each layer, as well as allowing the layers to be placed

closer to the interaction point, therefore improving the spatial resolution and the track

reconstruction efficiency of low-momentum particles.

The large curved sensors for the ITS3 will be produced using the TPSCo 65 nm CMOS

technology, which allows for denser circuitry and larger wafers compared to the prede-

cessor sensors ALPIDE, which are produced by the same company with 180 nm CMOS

technology. Since wafer-scale sensors cannot be created directly due to photolithography

constraints, a new procedure called stitching is used, where the mask is periodically

exposed and aligned creating seamless transitions between regions. A first large stitched

sensor prototype called MOSS (Monolithic Stitched Sensor) was produced in a first en-

gineering run. It has a design featuring ten pixel sub-matrices, called Repeated Sensor

Units (RSUs), with data and power lines that are stitched across the larger sensor. Each

RSU is divided in two standalone half-units (top and bottom), each in turn containing

four sub-matrices, also referred to as regions. The top and bottom regions have different

pixel pitches and therefore a different number of pixels for the same area. For the top

unit, each region consists of 256× 256 square pixels, each having a pitch of 22.5 µm, while

regions of the bottom unit have 320× 320, each with a pitch of 18 µm. Each sub-matrix

is characterized by different circuit densities and front-end designs. This combination

of different pixel pitches and design optimizations was selected to study the impact of

various front-end architectures on charge collection efficiency and to identify the optimal

balance between circuit density and performance. Each wafer contains six MOSS sensors,

as well as smaller test chips. One such test chip, known as BabyMOSS, consists of an in-

dividual RSU. The performance characterization of one such sensor is the aim of this study.

Threshold scans

The specific BabyMOSS sensor studied in this thesis is the babyMOSS-1_2_W22C7, which

is hosted by a carrier card, connected to a raiser board that serves as an adapter board,

which is then connected to a DAQ board. The region top 0 of the studied BabyMOSS

is non-functional. A series of threshold scans were performed on the BabyMOSS sensor,

confirming its electrical functionality of the remaining regions. For the default DAC

settings in the case of no reverse bias applied (Tab. 1), both the threshold and temporal

noise distribution of each region were analyzed. Due to production-related variations in

the transistors of the in-pixel electronics, which is referred to as fixed-pattern noise, the
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threshold distributions should resemble a Gaussian distribution. However, the resulting

χ2
red from fitting the data to a Gaussian function indicate a poor fit, which is primarily

attributed to manufacturing variations. Additionally, stripes of pixels exhibiting lower

thresholds were observed in 2D distributions of the average thresholds (Fig. 22). These

stripes, which are known to be visible for BabyMOSS but not MOSS with pixels of a

lower threshold by approximately 2 to 3 DAC units, have been observed to correlate with

floating power-hopping lines and are still under investigation. By comparing Gaussian fits

of threshold distributions from BabyMOSS to ones conducted for MOSS, the influence of

these stripes on the distributions could be further examined.

Due to the differences in the front-end, each region of the sensor displays varying behavior

when global DAC settings are applied with individual thresholds that span over a range

of 12 DAC units, which converts to a charge of 84± 42 electrons. The uncertainty of the

charge stems from the uncertainty of the design value of the capacitance of the capacitor

used to inject the charge. The exact value of the capacitance is still under investigation.

Regions that exhibit lower thresholds than others for the same applied settings can be

associated with an increase in the number of noisy pixels. This is distinctly visible for

region bottom 3 of the BabyMOSS for the applied default DACs (Fig. 23).

Recently, applying specific DAC settings for each region has become possible. This

enables the calibration of the BabyMOSS to one desired global threshold, which is of great

advantage for the comparison of the behavior of the eight regions in terms of particle

detection.

The thresholds of the BabyMOSS were explored for the case when no reverse bias is

applied, as well as for a reverse bias of −1.2V applied between the collection diode and

the substrate. This was done over a range of globally set VCASB values, which is the

primary DAC used for controlling the discrimination threshold. In order to improve the

time efficiency of the threshold scans, five rows of each pixel matrix were used to perform

one threshold scan for each setting, instead of the full matrix scan. This was shown to be

enough to reproduce the representative value that the full matrix scan gives. The average

threshold was plotted against VCASB for both cases with and without applied reverse bias

and the overall antiproportional behavior allows to steer the threshold via the VCASB

value. (Figs. 26 and 27). Overall, the BabyMOSS sensor exhibited consistent behavior

with previous BabyMOSS studies, apart from the malfunctioning region, confirming its

functionality and suitability for further development.

Test beam campaign at the DESY II test beam facility

In order to further examine the behavior of the BabyMOSS in response to varying op-

erating points, the sensor was included in a test beam campaign at the DESY II test

beam facility in April 2024. Due to multiple research projects being targeted with this

test beam campaign, the BabyMOSS did not represent the primary DUT and was not
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placed inside a beam telescope, which would have enabled track-based analysis using

other reference sensors. The BabyMOSS was placed behind a scintillator, which provided

trigger signals. Due to the sensor not being the primary focus of the test beam, a total of

two million events were recorded with a beam of 2.4GeV/c electrons with no reverse bias

applied, and one million events were recorded with a beam of 4.8GeV/c electrons while

this time the sensor was reverse biased at −1.2V. This allows the study of the cluster

size and noise behavior during in-beam conditions.

Investigation of hit count distributions and pixel masking

When analyzing the test beam data taken with no reverse bias applied, a left-to-right

asymmetry in hit counts can be observed, which appears in regions especially for high

VCASB values, which result in low thresholds (Fig. 54). This can be attributed to

an increased fake-hit rate for the right half of the pixel matrix due to a lower effective

threshold. This left-to-right asymmetry in the fake-hit rate was already observed for

MOSS and BabyMOSS and correlates with the value and the distribution of the strobe

signal over the matrix. This effect is currently under investigation. No left-to-right

asymmetry is visible when reverse bias is applied and the sensor is fully depleted, which

can be associated with the improved signal-to-noise ratio (Fig. 41).

A first step in the analysis of the test beam data is noisy pixel masking. Pixels that have

exceptionally high count compared to the average pixels in the matrix are identified and

masked, in order not to bias the analysis. A customized masking method was applied to the

recorded data in order to use the entire dataset of each setting for the masking and to get

a better understanding of the individual behavior of the regions of the BabyMOSS, which

allows for a more educated masking process. The total number of pixels corresponding to

a specific hit count was plotted. For the exemplary setting without reverse bias, regions

which exhibit a left-to-right asymmetry in hit counts resulted in an increasing amount

of pixels that are assigned to high hit counts in relation to the most probable hit count

for the region (Fig. 32). Pixels were classified as noisy and masked, when their hit count

exceeded a cutoff point, which was set to be at the highest hit count exhibited by ten

pixels. As a result, a large fraction of the pixels with high hit counts are masked for regions

that show a tail in the distribution towards higher hit counts, caused by an increasing

number of recorded fake hits. For regions without this tail, only the sporadic outlier pixels

are masked. The amount of noisy pixels has been observed to not only depend on the

presence of a left-to-right asymmetry caused by the low threshold of the region, but also

on the individual behavior of the regions due to the variations of the front-end electronics.

However, this observation might be biased by differences between the actual thresholds of

the regions during the data taking and the measured thresholds conducted by performing

laboratory scans for globally set VCASB values. These differences may be caused by

environmental changes, particularly temperature variations, to which both the MOSS
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and BabyMOSS have been shown to be sensitive. The dependency between threshold

and temperature can be estimated to about 0.3DAC per 1 ◦C. The temperature was not

controlled or measured at the test beam, where data was taken over long periods of time

with possible influences of the day-night cycle. For the laboratory scans, the temperature

was also not controlled or measured, leading to possible differences to the test beam

conditions. In order to account for changes in temperature, more recent versions of the

raiser board provide the possibility to measure the room temperature during the operation

of the chip. Additionally, differences in bandgap trimming at the test beam and the labo-

ratory scans cannot be ruled out. The bandgap trimming influences the reference voltage

and current used by the DACs to convert digital signals to analog ones. This, in turn,

influences the set discrimination threshold, which can therefore possibly exhibit differences.

Cluster size analysis

The data with noisy pixels masked was used to analyze the cluster sizes. The total

number of the pixels detecting a hit associated to the same particle define the cluster

size and the position of a cluster is calculated using the center of gravity method. When

analyzing the cluster size distributions for given standard VCASB settings, both in the

case where no reverse bias voltage is applied and when it is, the predominant cluster is the

one-pixel cluster due to the drift dominated collection mechanism. They account for about

80− 90% of the total clusters. The rest is made by two-pixel clusters (about 10%) and

less than 1% by larger clusters. Consequently, the mean cluster size stays between one

and two pixels. The generally low cluster sizes detected for BabyMOSS can be attributed

to the thin epitaxial layer and large depletion region of the relatively small pixels, which

result in a drift dominated sensor, with strong electric fields and short distances between

the point of charge generation and charge collection. In comparison, pixel sensors such

as ALPIDE produced with a standard process and thicker epitaxial layer, which are

dominated by diffusion, exhibit average cluster sizes between two and three pixels, which

allows for an improvement of the binary resolution (approximately 8 µm in the case of the

ALPIDE sensor with a pixel pitch of ∼ 30 µm) to a spatial resolution below 5 µm [12].

In the case of the BabyMOSS, clustering can be expected to have a smaller impact on the

intrinsic spatial resolution. For the BabyMOSS, the binary resolution amounts to 6.5 µm
for the top unit and 5.2 µm for the bottom unit. Due to the predominant cluster size of

one, the spatial resolution can be expected to be close to the binary resolution, as there is

little to no charge sharing. To achieve a intrinsic spatial resolution comparable to the

ALPIDE sensors (5 µm), the smaller pixel pitch is required, made possible by the smaller

feature size of the transistors in 65 nm CMOS technology. Due to the reduced material

budget and the closer proximity of the sensors to the interaction point, the overall spatial

resolution is still improved for the ITS3.

In order to analyze the behavior of the average cluster sizes for varying thresholds, the
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average cluster sizes were plotted against the VCASB DAC settings (Figs. 44 and 45).

In the case where no reverse bias is applied, the maximum mean cluster size is located

between 1.15 and 1.20 pixels for all regions and limited by the increasing fake-hit rate for

decreasing thresholds, which results in the increased production of one-pixel clusters. With

reverse bias applied, the signal-to-noise ratio is improved and the number of recorded fake

hits begins to dominate only at lower thresholds, which is why a maximum average cluster

size in the vicinity of 1.30 pixels can be observed. By implementing the BabyMOSS as a

device under test (DUT) in a beam telescope, which enables tracking particle trajectories,

clusters could be assigned to specific traversing particles and the associated cluster sizes

could be better determined by excluding clusters produced by fake hits over the matrix.

Laboratory threshold scans were used to match the thresholds of each region for better

comparison by selecting the corresponding VCASB settings. Without reverse bias applied,

the average cluster sizes matched to the thresholds show similar behavior with values

between approximately 1.15 and 1.20 pixels for most regions. However, region top 3

exhibits lower average cluster sizes associated with an increased fake-hit rate compared

to the other regions (Fig. 49), indicating that a higher threshold for this region would

reduce the bias introduced by fake hits. With reverse bias applied to achieve full depletion

of the sensor, more variations of the cluster sizes between the regions can be observed

due to differences of the in-pixel front-end design of the regions. However, region bottom

0, 1 and 2 are expected to behave similarly, as they have the same front-end. Yet, they

show deviations in the average cluster size for specific thresholds ranging from 0.03 to

0.12 pixels (Fig. 53). Repeated measurements with calibrated thresholds would allow for

a direct comparison of the cluster size trends between the regions and could help assess

whether this behavior persists.

Outlook

The characterization of the BabyMOSS has provided valuable insights into the behavior

of threshold and noise, as well as cluster size distributions. Additional studies of the

BabyMOSS and MOSS as the DUT in test beams with controlled environmental conditions

and directly calibrated thresholds would enable precise particle tracking beneficial for

the cluster size analysis. Moreover, ongoing studies examine the correlation between the

choice of strobe length and fake-hit rate, aiming to optimize the operating regime of the

sensor in order to reduce the impact of noise on the data. Further investigations of MOSS

and BabyMOSS enable the optimization of the detector design, which is crucial for the

performance of the ALICE ITS3.
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Appendix

Figure 54: Hit count projected onto the x-axis for VCASB = 21DACunits at VBB = 0V
after masking. The hit count projections show a left-to-right asymmetry for multiple
regions due to the low thresholds.

Figure 55: Hit count projected onto the x-axis for VCASB = 102DACunits at
VBB = −1.2V after masking. No left-to-right asymmetry as seen without reverse bias
can be observed. Only region top 3 exhibits a steady increase in hit counts to the right
side, but without a division into two distinct sides with different behavior.
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