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Abstract

Heavy-ion collisions at ultra-relativistic energies are used to study the physics of
strongly interacting matter under extreme conditions. Extremely high energy dens-
ities and temperatures are reached in these collisions and a phase of matter called
quark-gluon plasma (QGP) forms. Measurements of heavy-flavour hadron produc-
tion in high-energy collisions are used to study and characterise the QGP, as heavy
quarks (charm and beauty) are created before the QGP can form and therefore
interact with the medium and experience the whole evolution of the system. In
addition, heavy-flavour meson and baryon production measurements give insight
into hadronisation mechanisms in different collision systems. The Ξ+

c baryon has
not yet been measured in systems larger than proton-proton (pp) collisions, which
would be an important step towards further understanding charm production and
hadronisation.
This thesis presents a feasibility study for the reconstruction and the observation
of the Ξ+

c baryon in proton-lead (p-Pb) collisions at the centre-of-mass energy
√
sNN =5.02TeV recorded by the ALICE detector at the LHC. The Ξ+

c reconstruc-
tion is performed in the transverse momentum range 2< pT(Ξ

+
c ) < 12GeV/c, di-

vided into the three intervals: 2< pT(Ξ
+
c ) < 4GeV/c, 4< pT(Ξ

+
c ) < 6GeV/c and

6< pT(Ξ
+
c ) < 12GeV/c. The short-lived Ξ+

c baryon is reconstructed via its hadronic
decay into two positively charged pions and a Ξ− baryon, decaying into a negatively
charged pion and a Λ baryon, which further decays into a proton and a negatively
charged pion. The reconstruction of the decay is performed with the KFParticle
software package. Reconstructed signal and background are classified using the su-
pervised machine learning tool XGBoost. The signal is then extracted with fits to
the invariant mass spectrum. In this thesis, several Boosted-Decision-Tree (BDT)
models are trained with different training features and preselections and their per-
formances are compared. Throughout all analysed pT intervals a significant signal
is found in the Ξ+

c invariant mass spectrum, giving a strong indication that a full
analysis of Ξ+

c baryon production in p-Pb collisions is feasible.





Zusammenfassung

In Schwerionenkollisionen bei ultra-relativistischen Energien kann die Physik der
stark wechselwirkenden Materie unter extremen Bedingungen untersucht werden.
Dabei werden extrem hohe Energiedichten und Temperaturen erreicht und es bil-
det sich eine Materiephase, Quark-Gluon-Plasma (QGP) genannt wird. Darüber
hinaus eignet sich die Produktion von Heavy-Flavour Hadronen in hochenergetischen
Kollisionen zur Untersuchung und Beschreibung des QGP, da die schweren Quarks
vor der Entstehung des QGP erzeugt werden und daher mit dem Medium wechsel-
wirken und die Entwicklung des Systems begleiten. Um einen tieferen Einblick in
die Hadronisierungsmechanismen in verschiedenen Kollisionssystemen zu erhalten,
werden Messungen der Produktion von Baryonen und Mesonen, die Charm-Quarks
enthalten, durchgeführt. Das Ξ+

c - Baryon wurde bisher nicht in größeren Systemen
als Proton-Proton (pp) Kollisionen gemessen, was ein wichtiger Schritt zum detail-
lierteren Verständnis der Produktion von Baryonen und Mesonen mit Charm und
der Hadronisierung von Charm-Quarks wäre.
In dieser Arbeit wird eine Machbarkeitsstudie zur Rekonstruktion und Beobachtung
des Ξ+

c - Baryons in Proton-Blei (p-Pb) Kollisionen bei einer Schwerpunktsenergie
von
√
sNN =5.02TeV vorgestellt, die mit dem ALICE-Detektor am LHC aufeg-

zeichnet werden. Die Rekonstruktion des Ξ+
c - Baryons wird im Transversalimpuls-

bereich 2< pT(Ξ
+
c ) < 12GeV/c durchgeführt, der in drei Intervalle unterteilt ist:

2< pT(Ξ
+
c ) < 4GeV/c, 4< pT(Ξ

+
c ) < 6GeV/c und 6< pT(Ξ

+
c ) < 12GeV/c. Das

kurzlebige Ξ+
c - Baryon wird über seinen hadronischen Zerfallskanal in zwei positiv

geladene Pionen und ein Ξ− - Baryon rekonstruiert, das in ein negativ geladenes
Pion und ein Λ - Baryon zerfällt, welches wiederum in ein Proton und ein negativ
geladenes Pion zerfällt. Zur Rekonstruktion des Zerfalls und der Zerfallstopolo-
gie wird das Softwarepaket KFParticle verwendet. Die Klassifizierung von Signal
und Hintergrund erfolgt mithilfe des Machine Learning Pakets XGBoost und das
Signal wird anschließend durch eine Analyse der invarianten Masse extrahiert. Es
werden verschiedene Boosted-Decision-Tree (BDT) Modelle mit unterschiedlichen
Trainingsvariablen sowie Vorselektionen trainiert und ihre Leistungen verglichen.
In allen untersuchten pT-Intervallen wird ein signifikantes Signal im invarianten
Massenspektrum des Ξ+

c gefunden, was ein deutlicher Hinweis darauf ist, dass eine
vollständige Analyse des Ξ+

c - Baryons in p-Pb Kollisionen möglich ist.
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1 Introduction

1.1 Standard model and quantum

chromodynamics

The current understanding of matter in the visible universe, which is made from a
few fundamental particles governed by four fundamental forces, is best described by
the so-called Standard Model of particle physics (SM) [1]. The elementary particles
characterised by the SM are 12 fermions, which are matter particles of spin 1

2
and

different types of spin 1 field mediators called gauge bosons (photons, W and Z
bosons, and gluons), which are force carriers that mediate the fundamental interac-
tions between the fermions. The fermions are either quarks or leptons, each grouped
in pairs forming three generations with increasing mass. There are charged and
electrically neutral leptons, the latter are called neutrinos. All 12 fermions have
corresponding antiparticles, which have the same mass but opposite charge. The
SM describes the strong, the electromagnetic and the weak interaction. All leptons
undergo the weak force mediated by Z- and two charged W±-bosons, and charged
fermions additionally participate in the electromagnetic interaction mediated by
photons. Quarks engage in all four fundamental interactions.
The relativistic Quantum Field Theory of the strong interaction between quarks
mediated by gluons is called Quantum Chromodynamics (QCD). The equivalent of
electric charge associated with strong interactions of QCD is colour charge carried
by quarks, which come in 6 different flavours and also have mass and electric charge.
The underlying symmetry of QCD is an invariance under SU(3) local phase trans-
formations. The eight generators of this symmetry can be associated to the eight
types of massless, coloured gluons coupling to particles that have non-zero colour
charge. Since leptons are colour neutral, only quarks participate in the strong in-
teraction. The gluons carry colour and anticolour charge and can therefore also
self-interact. The effective strength of the strong interaction between colour charges
is determined by the coupling strength αs(Q

2). The strength between colour charges
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results from all possible processes, including higher-order corrections to the QCD
interaction vertex. The gluon–gluon self-interactions lead to higher order loop dia-
grams, which in turn leads to the strong coupling strength αs evolving with the
momentum transfer, Q2. The coupling becomes small for large momentum transfers
Q2 or small distances, and diverges at small Q2 or large distances. This leads to the
concepts of colour confinement and asymptotic freedom.
At small momentum transfer or large distances quarks are confined together inside
colourless bound states, called hadrons. This concept called colour confinement
states that only colourless composite particles can propagate as free particles. At
large momentum transfer or small distances the coupling becomes small and the
quarks and gluons can be treated as quasi-free particles. This concept is known as
asymptotic freedom, and perturbative Quantum Chromodynamics (pQCD) calcula-
tions become applicable.

1.2 Quark-gluon plasma

QCD predicts different phases of nuclear matter, which can be explained by the
evolution of αs with the energy scale. As shown in Figure 1.1, the different phases
of the strongly interacting matter depend on the change of the temperature T and
the baryo-chemical potential µB quantifying the net-baryon content of the system.
Ordinary nuclear matter exists at temperature T≈0 and µB=1 GeV. At low tem-

Figure 1.1: QCD phase diagram as function of the temperature T and the baryo-
chemical potential µB [2].
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peratures and low energy densities the quarks and gluons are confined. They only
exist in colour neutral hadrons. For sufficient high temperatures and/or densities,
quarks and gluons move freely over distances larger than the size of a nucleon and
a phase transition between hadronic matter and a medium of so-called quark–gluon
plasma (QGP) [3] is expected.
The quark–gluon plasma is a state of matter in which quarks and gluons can be
considered free. It is believed that in early stages the Universes existed in the form
of QGP. With ultra-relativistic heavy-ion (HI) collisions, it is possible to reproduce
the density and temperature of this matter in laboratory conditions. The heavy
ions reach nearly the speed of light and are therefore Lorentz contracted when they
collide at high energies. The partons inside the nuclei scatter in hard processes.
After the collision, the system undergoes a collective expansion and passes through
different stages [4], which are shown in a space-time diagram in Figure 1.2. The

Figure 1.2: Different stages of the evolution of a heavy-ion collision in space-time
[5].

two nuclei collide at t= 0, z= 0 and a fireball is created consisting of deconfined
quarks and gluons. At this pre-equilibrium stage, the constituents of the fireball
interact and the system thermalises, resulting in local equilibrium. After the expec-
ted thermalisation time of τ0 ≲ 1 fm/c, a thermalised QGP forms and the quarks
and gluons are no longer confined [6]. During the expansion, the system cools down
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as its energy density decreases. When the critical temperature TC is reached, the
quarks and gluons reconfine into hadrons. The hadron gas further expands while
inelastic collisions between the constituents still take place. At the chemical freeze-
out temperature Tch, the inelastic scattering between the hadrons ceases and the
hadron abundances are fixed. The system further expands and cools down until the
temperature falls below the kinetic freeze-out limit Tkin and the elastic interactions
also cease, leading to a fixed momentum distribution of the hadrons.

1.3 Charm production

1.3.1 Factorisation approach

In this thesis, open heavy-flavour hadrons, which are hadrons containing at least
one heavy quark (charm or beauty), are studied. Top quarks are not considered
because they cannot bind into hadronic states due to their short lifetime [1]. Charm
and beauty quarks have large masses [7] and are therefore produced only in the
initial hard scattering of high-energy collisions with large momentum transfer Q2 >

4m2
b,c. As stated earlier, the coupling strength αs is small at large momentum

transfer Q2 and the charm production can be determined by pQCD calculations.
The heavy quarks are created before the QGP can form, and therefore can be used
to study and describe the QGP because they interact with it and experience the
evolution of the system. At the LHC, open heavy flavour hadrons in Pb-Pb, p-
Pb and pp collisions are used to study the QGP. Although QGP is not expected
in pp collisions, the measurements serve as a reference for the other collisions and
are studied to gain more insight into charm baryon production and hadronisation
processes. The transverse momentum (pT) - differential production cross section of
hadronic collisions producing an open heavy-flavour hadron can be calculated using
the QCD factorisation approach [8]:

dσ

dpT

pp→HcX

=
∑

i,j=q,q̄g

fi
(
x1, Q

2
)
fj

(
x2, Q

2
)︸ ︷︷ ︸

PDF

· dσij→cc̄

dpT︸ ︷︷ ︸
Partonic Cross Section

· Dc→Hc(zc)︸ ︷︷ ︸
Fragmentation Function

,

(1.1)

where Hc refers to open heavy-flavour hadrons containing a charm quark c, and pT to
their transverse momentum. The parton distribution functions (PDFs) describe the
probability of finding a quark or gluon in the colliding hadrons with a specific fraction

4



of the total momentum. Because of the large mass of the charm quarks, the parton
hard-scattering cross section for the production of charm quarks can be computed
perturbatively. The fragmentation functions characterise the hadronisation of the
charm quark c into a particular hadron Hc with the momentum fraction zc. Unlike
the hard-scattering cross section, the PDFs and the FFs describe non-perturbative
processes and therefore have to be determined from measurements. The PDFs are
parameterised from deep inelastic e−p scatterings and the FFs are assumed to be
the same for all collision systems and are usually taken from e+e− collisions.
Hadron-to-hadron production ratios are used to study the hadronisation process,
since the PDFs and partonic interaction cross sections are independent of the final
measured hadron species and almost completely cancel in the ratios. The yield ratio
is therefore sensitive only to the hadronisation process described by the fragmenta-
tion functions.

1.3.2 Hadronisation

The hadronisation process is not yet fully understood, and various approaches, most
notably the fragmentation mechanism and coalescence, are used to describe it and
compared with measured data.
The fragmentation process is not affected by QGP and takes place in vacuum as
it occurs due to the colour confinement of separating quarks and antiquarks. As
the distance between two quarks increases, the QCD potential between them grows
linearly with the distance and forms a high tension string. The potential becomes
sufficient to form new quark-antiquark pairs from the vacuum, and the string frag-
ments into hadrons. Unlike fragmentation, coalescence describes the hadronisation
of partons by the recombination of quarks and is therefore not possible in vacuum,
but in a parton-rich environment. Heavy quarks in a deconfined medium, such as
the QGP, recombine with light quarks close in phase space to form hadrons.

1.3.3 Baryon-to-meson ratio

Analyses by the ALICE Collaboration report higher Λ+
c /D

0 baryon-to-meson ratios
in pp and p-Pb collisions [9], and Ξ0

c/D
0 and Ξ+

c /D
0 baryon-to-meson ratios in pp

collisions compared to previous measurements in e+e− and e−p collisions [10][11].
This enhanced production of baryons over mesons in hadronic collisions challenges
the assumption that the fragmentation fractions of charm quarks are universal across
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different collision systems. Measurements of the Λ+
c /D

0 ratio in pp and p-Pb colli-
sions at

√
sNN =5.02TeV measured by the ALICE Collaboration as a function of

pT are shown in the left panel of Figure 1.3. For both pp and p–Pb collisions, the

Figure 1.3: Λ+
c /D

0 ratio measured at
√
sNN =5.02TeV as function of pT [9]. Left:

Λ+
c /D

0 ratio in pp and p–Pb collisions, compared with the QCM model.
Right: Λ+

c /D
0 ratio in pp collisions, compared to different model predic-

tions.

Λ+
c /D

0 ratio decreases for low pT with large uncertainties and reaches a maximum
for intermediate pT, in the range 1< pT <3GeV/c for pp and 3< pT <5GeV/c for
p-Pb collisions. For low pT, the Λ+

c /D
0 yield ratio for pp collisions exceeds the ratio

for p-Pb collisions, while the peak of the ratio in p-Pb collisions is shifted towards
higher pT. Computing the average transverse momentum confirms this modified Λ+

c

production spectrum, as the mean value is significantly higher in p-Pb collisions
[9]. In contrast, the average transverse momentum for the D0 mesons is the same
in both collision systems [9]. The modified pT dependence of the Λ+

c /D
0 ratio in

p-Pb collisions compared to pp collisions indicates modifications of the pT shape
depending on the multiplicity of the collisions, which could be due to a contribution
of collective effect such as radial flow observed in heavy ion collisions. Nevertheless,
the pT-integrated Λ+

c /D
0 ratios of both collisions are consistent with each other,

indicating similar overall hadronisation fractions for pp and p-Pb collisions.
The right panel of Figure 1.3 shows the Λ+

c /D
0 ratio in pp collisions and model

calculations based on different hadronisation processes. PYTHIA 8 with the Mon-
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ash tune used in this analysis is tuned on charm production measurements in e+e−

collisions and predicts a value of about 0.1 throughout all pT values. The model un-
derestimates the Λ+

c /D
0 ratio by a factor of about 6 to 10 for low pT values and by a

factor of about 3 at high pT values. Models implementing different hadronisation ap-
proaches that enhance baryon production, like colour reconnection (CR) beyond the
leading-colour (LC) approximation and coalescence or the statistical hadronisation
model (SHM) including predictions by the relativistic quark model (RQM), seem to
reproduce the Λ+

c /D
0 yield ratio much better. All models are further explained in

Ref. [9].
Figure 1.4 shows the baryon-to-meson ratios Ξ+

c /D
0 and Ξ0

c/D
0 measured in pp

collisions at
√
s =13TeV compared to different model predictions. Both ratios are

consistent within their uncertainties and show a similar pT dependence, as they both
decrease for pT >3GeV/c. Also in this case, the predictions from PYTHIA 8 with
the Monash tuned on measurements in e+e− collisions significantly underestimate
the ratios. Unlike for the Λ+

c /D
0 ratio, models with CR beyond LC, SH including

RQM or coalescence are also unable to describe the Ξ+
c /D

0 and Ξ0
c/D

0 ratios well,
because they still underestimate the ratios by a factor of about 4 - 6 for pT <4GeV/c.
The Catania model, which implements coalescence along with fragmentation, seems
to best describe the trend of the measured results for the whole pT interval.
The ratio distributions of Λ+

c /D
0 in pp and p-Pb collisions (Figure 1.3) and of Ξ+

c /D
0

and Ξ0
c/D

0 in pp collisions (Figure 1.4) strongly indicate that the hadronisation of
charm quarks into baryons and mesons differs across different collision systems and
therefore is non-universal. An important step towards further understanding of
charm production and hadronisation are measurements of the Ξ+

c and Ξ0
c baryon in

larger systems and at even lower pT, which have not yet been performed.
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Figure 1.4: Ξ+
c /D

0 ratio (red) and Ξ0
c/D

0 ratio (blue) in pp collisions at
√
s=13TeV,

compared to different model predictions [11].
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2 The ALICE experiment

ALICE (A Large Ion Collider Experiment) is one of the main experiments at the
Large Hadron Collider (LHC) at the European Organization for Nuclear Research
(CERN). The LHC is the world’s most powerful and largest particle accelerator with
a circumference of 26.7 km [12]. The aim of ALICE is to study the collisions of heavy
ions at ultra-relativistic energies. Bunches of particles, like protons and lead ions,
are accelerated in the LHC and collide at the centre of the detector, the so-called
interaction point (IP). In heavy-ion collisions, extreme energy densities are realised
and a phase of matter called quark-gluon plasma (QGP) is created [13]. ALICE
is designed to investigate this phase of strongly interacting matter. The maximum
centre-of-mass energy achieved per nucleon–nucleon pair is

√
s=13.6TeV for pp and

√
sNN =5.36TeV for Pb–Pb in Run 3 [14], and

√
sNN =5.02TeV or

√
sNN =8.16TeV

for p–Pb collisions in Run 2 [15].

Figure 2.1: Schematic view of the ALICE detector during Run 2 [16].
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Figure 2.1 shows an overview of the ALICE detector and its subdetectors as it was
installed in Run 2. In total, the detector has a diameter of 16m and a weight of
10.000 t. There are 18 different subdetector systems, most of which are arranged
in the central barrel part of the detector and surrounded by a large solenoid mag-
net with a magnetic field strength of B= 0.5T parallel to the beam axis [13]. The
coordinate system used for ALICE is a right-handed orthogonal Cartesian system,
which is centred in the middle of the central barrel [17]. The z-axis is parallel to the
beam direction and the x-axis is perpendicular to the beam pipe pointing towards
the centre of the LHC, whereas the y-axis is pointing upwards. The inner singu-
lar part of the central barrel consists of two tracking detectors, the Inner Tracking
System (ITS) and Time Projection Chamber (TPC), which are surrounded by the
Transition Radiation Detector (TRD) and the Time of Flight Detector (TOF). The
three outermost detector parts are the High momentum particle identification de-
tector (HMPID) and two electromagnetic calorimeters: the Photon spectrometer
(PHOS) and the Electromagnetic calorimeter (EMCal). In Ref.[18] all detectors in
ALICE are further described in detail.
In order to describe the kinematics of a particle of known mass inside the detector,
the azimuth angle ϕ, the polar angle θ and the particle’s transverse momentum pT,
which is the momentum in xy-direction can be used. In high energy collisions, the
colliding particles and their constituents are Lorentz boosted along the beam axis.
Since the polar angle θ is not Lorentz-invariant along the z-axis it is replaced by the
rapidity y:

y =
1

2
ln
E + pzc

E − pzc
, (2.1)

where pz is the momentum in the longitudinal direction, E the energy of the particle
and c the speed of light.
A commonly used variable is the so-called pseudorapidity η:

η =
1

2
ln
|p|+ pz

|p| − pz
= ln

[
tan

(
θ

2

)]
. (2.2)

For high momentum particles, where E ≈ pc >> mc2, the pseudorapidity coincides
with the rapidity y. The central barrel covers the pseudorapidity range of |η|<0.9
[15].
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2.1 Inner Tracking System

The Inner Tracking System (ITS) is the innermost detector located in the central
barrel of ALICE. It consists of six layers of three different types of silicon-detectors
arranged around the beam pipe. The main functions of the ITS are to reconstruct
the primary vertex (PV), which is the measured collision point and to reconstruct
the decay points of short-lived particles, the secondary vertices. In addition the
ITS can also identify low-momentum particles via measurements of specific energy
loss. The two inner layers of the ITS are Silicon Pixel Detectors (SPD) used for a
first estimation of the position of the PV. For these layers a track density of up to
50 tracks/cm2 is expected for the heavy-ion collisions at LHC [13]. The third and
fourth layers are Silicon Drift Detectors (SDD), while the next two layers are Silicon
Strip Detectors (SSD). These four layers can be used for particle identification (PID)
of low momentum particles, as they provide a measurement of the specific ionisation
energy loss dE/dx [18]. The four outer layers and the high spatial resolution of the
two SPD layers can be used to measure the impact parameter of secondary tracks
from the weak decay of particles containing heavy-flavour quarks such as charm and
beauty, and to reconstruct their secondary vertices. The impact parameter is the
distance of closest approach (DCA) between the tracks and the PV.

2.2 Time Projection Chamber

The Time Projection Chamber (TPC) is the primary detector in ALICE for track re-
construction [13]. Together with the other detectors of the central barrel, it provides
precise charged-particle momentum measurements with good two-track separation
and PID. The TPC encloses the ITS and covers the full azimuth around the beam-
line and is divided longitudinally by a central high-voltage electrode with a uniform
electric field between the high-voltage electrode and the endplate electrodes. The
cylindrical field cage is filled with a NeCO2N2 or ArCO2N2 gas mixture [13], which
is ionised by charged particles passing through it. The electrons emerging from
the ionisation drift along the electric field towards the end-plates, which consist
of Multi-Wire Proportional Chambers (MWPC). The signal gets amplified at the
MWPC by further ionisation processes. An avalanche process starts and a mirror
signal is induced on the chamber backplanes that is read out by several readout pads.
The readout chambers contain 159 pad rows along the radial direction, leading to a
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maximum of 159 clusters in the TPC for a passing track. The charge induced signal
on a pad-row has to exceed a certain threshold and fulfill several quality criteria to
be detected as a cluster. Therefore, to determine the number of crossed rows, the
number of pad rows without signal but with clusters in both adjacent rows is added
to the number of clusters.
The PID information provided by the TPC is based on simultaneously measuring the
specific energy loss (dE/dx ), the charge of a particle and its momentum. The TPC
allows to reconstruct particles in a transverse momentum range of about 0.1GeV/c
to 100 GeV/c [13] while maintaining a good momentum resolution. To describe the
mean energy loss per unit path length of a particle with charge z passing through a
material with atomic number Z and mass number A, the Bethe-Bloch formula [19]
is used:〈

−dE
dx

〉
= Kz2

Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]
, (2.3)

where β is the particle velocity, γ the Lorentz factor, and me the electron mass.
Wmax is the maximum energy transferred to an electron in one collision, I is the
mean excitation energy and δ(βγ) is a density correction specific of the medium. To
get PID information, the measured energy loss in the TPC is compared with the
expected dE/dx for specific particle species and momenta, since the Bethe-Bloch
formula depends on the traversed medium and the particle βγ, where βγ = p

m
. A

parameterisation of the Bethe-Bloch formula [18] is used to describe the expected
mean energy loss of particles traversing the TPC:

f(βγ) =
P1

βP4

[
P2 − βP4 − ln

(
P3 +

1

(βγ)P5

)]
, (2.4)

where P1−5 are parameters from fits to measured data.
Figure 2.2a shows the distribution of the specific energy loss (dE

dx TPC) measured by
the TPC as a function of the particle momentum p in Pb-Pb collisions. To be able
to select individual particle species i, the deviation n between the measured and the
expected energy loss in terms of the measurement resolution σ is used:

nσ
i,TPC =

dE
dx TPC −

〈dE
dx

〉
i

σdE/dx
. (2.5)
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(a) (b)

Figure 2.2: a) Specific energy loss for different particle species measured by the TPC
in Pb-Pb collisions as function of the particle momentum. The lines
show the expected energy loss. b) The particle velocity β measured by
the TOF as function of the particle momentum in Pb-Pb collisions. Both
figures are from [18].

2.3 Time-of-Flight detector

The Time-Of-Flight (TOF) detector is a large array of Multi-gap Resistive-Plate
Chambers (MRPC), covering the full azimuth and providing PID information for
the intermediate momentum range. Each MRPC consists of two stacks of glass plates
that form a series of small gas gaps. A uniform electric field is generated over the
full gaseous volume. Similarly to the TPC, charged particles traversing the detector
ionise the gas between the glass plates of each MRPC. The emerging electrons are
accelerated by the electric field and induce signals in the pickup electrodes on the
outer surface [13]. The total signal is then calculated as the sum of all signals from
the gaps, leading to a time resolution down to 40 ps [13]. For PID the TOF measures
the flight times t of the particles from the interaction point to the TOF detector.
Since the velocity v of a particle depends on its momentum p and mass m, the
particle’s mass can be calculated from measuring p, t and L, which is the length
along the particle trajectory [20]:

β =
v

c
=

L

tc
=

1

(mc
p
)2 + 1

=⇒ m =
p

c

√
c2t2

L2
− 1. (2.6)

Figure 2.2b shows the TOF PID performance, where the measured velocity β is
plotted as a function of the particle momentum p measured by the TPC for Pb–Pb

13



collisions. By comparing the two Figures in 2.2 it becomes clear that at momenta
above 1GeV/c where the particle bands are crossing each other for the TPC, making
a separation impossible, the TOF detector can complement the PID. As for the
measurements in the TPC, the nσ

i,TOF TOF is used as a discriminating variable and
is defined as:

nσ
i,TOF =

|t− ⟨t⟩i |
σTOF

, (2.7)

where the deviation between the measured time of flight ti and the expected time
of flight ⟨t⟩ is divided by the TOF resolution σTOF .

2.4 Event reconstruction

An event is a snapshot of a collision described by a main interaction point, the PV,
and the tracks emerging from this collision measured by the detector. Particles and
their decay products induce signals measured by the different detectors. For the
event reconstruction these signals are combined, making it possible to reconstruct
the full trajectory of the particle. In the central barrel the tracking procedure
starts with the clusterisation, converting the detector signals into clusters, which
are characterized by positions, signal amplitudes and their associated errors [18].
First the clusters in the SPD are used to determine a preliminary interaction vertex.
The interaction vertex is defined as the point where a maximum number of tracklets,
which are pairs of clusters in the SPD, converge. The actual track reconstruction
in ALICE is accomplished by an inward-outward-inward approach and starts with
finding tracks in the TPC. Therefore the preliminary interaction vertex is used along
with clusters at high radius in the TPC to build track seeds. The track seed are built
in two passes, once with and once without constraint on the determined interaction
vertex [18]. The seeds are then propagated inwards to the inner TPC radius and
the track parameters are repeatedly updated with each new found cluster using the
Kalman Filter algorithm [21]. The 159 tangential pad rows in the TPC readout
chambers allow a track to theoretically produce 159 clusters. Therefore tracks with
less than 20 out of the 159 maximal possible clusters are rejected and not further
considered. These reconstructed TPC tracks are then propagated to the outermost
ITS layer and are used as a starting point for track finding in the ITS, similarly to
the procedure in the TPC. As the reconstruction efficiency in the TPC decreases
for low momenta and many low momentum tracks are not reaching the TPC, a
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standalone ITS reconstruction is performed with the clusters that are not used for
the ITS-TPC tracks.
The second step starts with extrapolating the reconstructed tracks to their point of
closest approach to the preliminary interaction vertex. Then the tracks are refitted in
the outwards direction, until the fitting reaches the TRD. The track is then matched
with a TRD tracklet and later with clusters in the TOF and with signals in the
Electromagnetic Calorimeter (EMCal), the High Momentum Particle Identification
Detector (HMPID) and the Photon Spectrometer (PHOS).
At the final stage of the track reconstruction, all tracks are again refitted inwards
to the interaction vertex, starting from the outer radius of the TPC. The final track
properties like the position, direction, inverse curvature, together with the covariance
matrix are determined. At the end of the event reconstruction procedure the final
position of the PV is determined by a precise vertex fit with the global tracks.
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3 Analysis methods

3.1 Decay reconstruction with the Kalman Filter

Particle package

The Kalman Filter Particle package (KFParticle package) [22] is developed to re-
construct the full decay chain and the decay topologies of short-lived particles based
on the Kalman-Filter method [23]. Unlike traditional vertexing packages that focus
only on the reconstruction of the production and decay vertices, the KFParticle
package additionally generates an estimate of the decayed particle’s parameters and
associated covariance matrix [23]. The Kalman Filter (KF) algorithm is a mathem-
atical iterative procedure for estimating unknown variables. For this, the algorithm
starts with a certain initial approximation of the estimator and than refines it with
each additional measurement [21]. The KF algorithm consists of three steps. The
first step is the initial approximation of a state vector r0 and its covariance matrix
C0. For the reconstruction of a decayed mother particle this refers to an initial
approximation of the position of its decay point and an estimation of its momentum
and energy. The parameters of the particle are stored in the so-called state vector:

r = (x, y, z, px, py, pz, E)T , (3.1)

where (x, y, z)T is the position along the trajectory, (px, py, pz)T is the particle mo-
mentum and E its energy [21]. The respective covariance matrix contains the para-
meter uncertainties. As the process continues, the parameter s = l

p
is added to the

state vector, where l is the length of the particle trajectory and p is the momentum
[23]. In the second step of the algorithm, predictions of the evolution of r and C
are made. In this process, the state vector of one daughter particle is extrapolated
to its point of closest approximation to the initial approximated decay vertex of the
mother particle. The final step is the filtering, where the state vector is updated
for each measurement. Refitting with all previous measurements gives an optimal
estimate of the vector according to these measurements. This means that the prop-
erties of the daughter particles are used to update the parameters of the mother
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particle. When all daughter particles are included in the procedure, the optimal
state vector of the mother particle is obtained by geometrical fitting.
To improve the precision of the measurement, several constraints treated as one-
dimensional measurements by the Kalman Filter [23] can be applied on the features
of the particle. In the reconstruction of secondary vertices, a so-called mass con-
straint is used, which requires the mother particle to have a certain mass. An
additional constraint can be made on the vertex of the reconstructed particle. This
topological constraint is used to align the particle so that it points to its expected
production vertex or any another vertex.

3.1.1 Output variables

Different quantities describing the vertex fit quality and the decay topology can be
extracted after the reconstruction and used as criteria for the selection of specific
reconstructed particle candidates.
For the reconstruction of a decayed particle by its daughters, a geometrical fitting
procedure is performed. The variable χ2

geo/NDF , where NDF is the number of
degrees of freedom corresponding to the number of measurements used for the fit-
ting, expressed the quality of this fit. It describes whether trajectories of daughter
particles intersect within their uncertainties [24]. Small values of χ2

geo/NDF indic-
ate a high probability that the daughter particle trajectories intersect within their
uncertainties and therefore indicate a high likelihood that they emerge from a com-
mon vertex. The χ2

topo/NDF estimates the probability that a particle is actually
produced at its assigned production vertex in the case where a topological constraint
has been used to assign the candidate to that vertex. A small χ2

topo/NDF indicates
a high probability of the hypothesis that the particle is produced at its assigned
vertex within the uncertainties of the reconstructed trajectory and vertex [24].

3.2 Machine learning techniques

Machine learning (ML) techniques are an important tool for analyzing data gener-
ated in high-energy physics experiments, as they can be used to extract information
from large data samples. Machine learning algorithms can solve regression and
classification tasks. In this analysis supervised ML is used for the binary classifica-
tion of signal and background of Ξ+

c candidates measured in p-Pb collisions at the
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centre-of-mass energy
√
sNN =5.02TeV.

For supervised ML the input data set has to be labelled. To solve a classification
task, the learning goal of the model is to estimate a function that maps the input
instances to a set of class labels using the labelled input data and its characteristics.
During training, the algorithm learns the correlations between the input variables
and their label to fit a model that correctly describes unlabelled data. The model
is then tested with an independent data sample to ensure that the algorithm makes
correct predictions on unknown data and does not fit the training data set perfectly
well without being generalisable. The ML algorithms often used in high-energy
physics are Boosted-Decision Trees (BDT), which are a robust classification tool
because they handle incomplete or imbalanced data sets well [25].

Figure 3.1: Single decision tree for binary classification of signal (green) and back-
ground (blue) candidates.

Single decision trees perform the classification by repeatedly splitting the dataset
into smaller subsets that have a better class separation. Figure 3.1 shows a single
decision tree of a two class problem separating signal and background, with each
branch representing a certain subset. The initial node contains all candidates. The
separation of background and signal candidates is done by applying selections on
different features (xi) of the candidates so that after each selection the subsets split
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into two smaller sets. The outcome of the decision tree is several final branches,
called leaves, which contain subsets that are classified as signal or background,
depending on which candidates are dominant in them. Since single decision trees,
also known as weak learners, are unstable, so-called boosting is used to improve the
classification by combining multiple weak learners [25].
In this analysis the python boosting algorithm XGBoost is used, and booster para-
meters, which control the structure of the algorithm, are optimized in a bayesian
approach as describes in section 4.3.2.
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4 Data analysis and results

The Ξ+
c baryon is reconstructed via its hadronic decay into two positively charged

pions and a Ξ− baryon. The Ξ− baryon decays into a negatively charged pion and
a Λ baryon, which further decays into a proton and a negatively charged pion. The
mass of the Ξ+

c , given by the Particle Data Group, is MΞ+
c

=(2467.71 ± 0.23)MeV/c2

[7]. The Ξ+
c baryon is a short-lived particle, with a decay length of τc=136.6µm

[7], hence it is not directly detectable in the detector due to its short lifetime.
The goal of this analysis is to perform a feasibility study investigating the pos-
sibility of reconstructing and observing the Ξ+

c in p-Pb collisions. To reconstruct
the decay chain and the decay topologies the KFParticle package (described in
sec. 3.1), developed for the reconstruction of short-lived particles, is used [22].
The classification of signal and background is performed using supervised Machine
Learning (ML), namely the XGBoost library, working with Boosted Decision Trees
(BDTs). The Ξ+

c reconstruction is performed in the transverse momentum range
2< pT(Ξ

+
c ) < 12GeV/c, divided into the three intervals: 2< pT(Ξ

+
c ) < 4GeV/c,

4< pT(Ξ
+
c ) < 6GeV/c and 6< pT(Ξ

+
c ) < 12GeV/c.

4.1 Candidate reconstruction and selection

4.1.1 Event selection

Prior to particle reconstruction, the events relevant to the analysis are selected
by applying the selection criteria described in the following. The events are p-Pb
collisions at the centre-of-mass energy

√
sNN = 5.02TeV collected by ALICE during

LHC Run2 in 2016. To avoid edge effects, only events whose z-coordinate of the
reconstructed primary vertex (PV), which is the measured collision point, lies within
the range of ± 10 cm from the nominal interaction point are selected. This ensures
uniform detector acceptance. Furthermore, so-called pileup events, recorded events
including multiple collisions, are rejected. Since these pileup events have multiple
vertices, they can be removed by correlating the information on the reconstructed
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tracks of the TPC and the ITS [18]. In total about 550 million minimum-bias
triggered events are selected, corresponding to an integrated luminosity of Lint =

(263 ± 8)µb−1. In addition to the selected data events, signal generated in Monte
Carlo (MC) simulations is needed to perform the ML training and the reconstruction
efficiency calculation. The MC events are generated using PYTHIA 8 with Monash
tune [26], simulating the detector conditions, during the p-Pb data taking. For p–Pb
collisions, an underlying p–Pb event generated with the HIJING 1.36 generator [27]
was added on top of the PYTHIA 8 event to simulate events with more than one
nucleon–nucleon collision. The MC is heavy flavour enhanced, as the events are
produced by injecting a cc̄ pair. The signal candidates are taken from these events,
as each event has to contain at least one Ξ+

c baryon, decaying via the hadronic decay
of interest.

4.1.2 Decay reconstruction and track preselection

The reconstruction of the Ξ+
c is performed with the KFParticle package. The tracks

used for reconstruction are preselected to reject poor quality tracks.
First, the Λ baryon is reconstructed. Since neutral particles are not detected in
the detector, the Λ baryon is not tracked before decaying. Its neutral decay vertex
is displaced from the primary vertex. Neutral particles, decaying into oppositely
charged particles, like the Λ baryon, are called V 0 candidates, as they leave a V-
shaped signature in the detector. The V 0 reconstruction of the Λ starts with the
selection of oppositely charge tracks of protons and pions. The particle identification
(PID) of these daughter tracks is realised by the specific energy loss measurement in
the TPC and only protons and pions with |nσTPC| < 3 are selected. Then cascade
candidates like the Ξ− are reconstructed. To form a Ξ− the Λ baryon is combined
with a secondary π− track and the same PID selection as before, |nσTPC| < 3, is
applied for the pion. If information from the TOF detector is available for the pion
tracks, it is used under the selection |nσTOF| < 3. In order to select good quality
candidates and to reject background away from the peak region, the reconstructed
Ξ− mass is required to lie in the range of ± 5MeV/c2 around the mass of the Ξ−

(1321.71 ± 0.07MeV/c2) [7]. Finally, the selected Ξ− candidates are combined with
the tracks corresponding to the two positively charged pions. These pion tracks
undergo the same selection criteria for the TOF and the TPC used before. The
transverse momenta of the two decay pions coming from the Ξ+

c are constrained
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to be higher than 0.3. This removes the large combinatorial background for low
momenta. Further studies on the selection of these pions’ transverse momenta will
be discussed in the following chapters.
Besides these selections, topological and kinematic constraints are applied to the re-
constructed Ξ+

c candidates to reject what is most probably only background. These
preselection criteria are shown in Table 4.1. The pointing angle (PA) is defined as
the angle between the line connecting the decay vertex of a reconstructed particle
with its assigned production vertex and its momentum vector. By definition, cor-
rectly assigned production vertices correlate with a small pointing angle. Therefore
the selection PA(Λ → Ξ−)< 0.5 is used. Since the pseudorapidity coverage of the
detectors is limited, the pseudorapidity selection |η(Ξ+

c )| < 0.8 is made.
The variables χ2

topo and χ2
geo describe the vertex fit quality of the specific reconstruc-

ted particle candidates, and are further explained in chapter 3. Only candidates
with χ2

geo(Ξ
+
c ) < 50 and χ2

topo(Ξ
+
c → PV) < 50 are selected.

Table 4.1: Preselection criteria.

Variable Criterion

PA(Λ→ Ξ−) < 0.5
|η(Ξ+

c )| < 0.8
χ2

geo(Ξ
+
c ) >0. and < 50.

χ2
topo(Ξ

+
c → PV) >0. and < 50.

χ2
topo(Ξ

− → PV) >0.
pT(π

+ ← Ξ+
c ) > 0.3GeV/c

4.2 Determination of expected signal

In order to have a first understanding of the feasibility of the analysis, the amount of
expected Ξ+

c signal, and its significance on top of the large combinatorial background
coming from the p-Pb data, is computed starting from pp measurements.
The expected number of signal candidates (s) is determined by rearranging the
equation for calculating the pT-differential production cross section d2σ

dpTdy |p p of the
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Ξ+
c measured in pp collisions [11]:

NΞ+
c ,Ξ−

raw = 2 · 208 d2σ

dpTdy

∣∣∣∣
p p
·∆pT∆y · (Acc× ε) · BR · Lint, (4.1)

where BR is the total branching ratio of the decay chain, and Lint is the integrated
luminosity. The factor 2 accounts for the presence of both particles and antiparticles
in the raw yields, and ∆y∆pT accounts for the widths of the rapidity and transverse
momentum intervals. The rapidity interval is ∆y =1.6, assuming the Ξ+

c rapidity
distribution to be uniform in the range |y| < 0.8. The factor (Acc×ε) is the product
of the geometrical acceptance (Acc) and the reconstruction and selection efficiency
(ε) for prompt Ξ+

c candidates in the Ξ+
c → Ξ−π+π+ channel. The factor 208 is the

mass number of lead ion. With some exceptions, it can be assumed that heavy-
ion collisions can be considered as a superposition of many binary nucleon-nucleon
interactions [28]. Under this assumption the mass number of lead is used to scale
the known production cross-section of Ξ+

c measured in pp collisions so that it can
be used as a proxy for the production cross section in p-Pb collisions.

Ξ𝑐
+ in pp collisions

Figure 4.1: The pT-differential production cross section of prompt Ξ+
c baryons

in pp collisions at
√
s = 13 TeV, fitted with a Tsallis function (red

line) [29]. The values of the cross section are taken from [11].

As the analysis is performed in three different pT intervals, the cross sections at
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pT = 3GeV/c, pT = 5GeV/c and pT = 9GeV/c are required. Therefore the pT-
differential production cross section of prompt Ξ+

c baryons in pp collisions at
√
s =

13TeV taken from previous analysis [11] is fitted with a Tsallis-function [29]. The
fit is shown in Figure 4.1. The required cross section values are extracted from this
fit.
The branching ratio BR is defined as the fraction of a particular decay mode.
Therefore, the BR of the analysed decay of the Ξ+

c is calculated considering the
individual decay components of the Ξ− and the Λ. The final branching ratio is
BR= (1.83± 0.08)%.
For this analysis, the total efficiency is calculated by dividing the number of re-
constructed and preselected candidates by the number of generated prompt Ξ+

c

candidates in MC. The calculated efficiencies and the expected number of signal
candidates (s) for each of the three pT intervals, with the preselections described in
section 4.1.2, are reported in Figure 4.2a and 4.2b. The efficiencies for all pT inter-
vals are low in this analysis, which makes signal extraction challenging. The lowest
efficiency is 0.005 for the pT interval of 2 - 4 GeV/c, while the highest efficiency is
0.04, obtained for the pT interval of 6 - 12GeV/c.
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Figure 4.2: Efficiency (left) and number of expected signal candidates (right) for the
discussed preselections.

To examine if the expected signal emerges from the large combinatorial background,
the so-called pseudo-significance (S ) is calculated. The pseudo-significance is defined
by the number of expected signal candidates (s) and the background candidates (b):
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S =
s√
s+ b

. (4.2)

A significance higher than 3 indicates a signal peak structure on top of the back-
ground spectrum and therefore provides information on whether the extracted signal
can be described as a statistical fluctuation or due to real signal. To estimate the
number of background candidates, the invariant mass spectrum of the real p-Pb data
sample with applied preselections is used. The background candidates of interest lie
in the signal region defined by the 3σ range around the mean of the signal peak.
The σ is determined by a Gaussian fit to the MC candidates, as shown in Figure
4.3a. To obtain the number of background candidates, the signal region is excluded
from the invariant mass spectrum of the data sample and the two side-bands of the
spectrum are fitted with a second order polynomial. The polynomial is extrapolated
to the signal region and the integral below the fit in this region is used to estimate
the number of background candidates. Figure 4.3b shows the background fit for the
pT interval of 4 - 6 GeV/c.
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Figure 4.3: Invariant mass distribution of the Ξ+
c for 4< pT <6GeV/c.

The number of background candidates for the different pT intervals are reported in
Figure 4.4a. Together with the numbers of expected signal candidates the pseudo-
significances for the different pT intervals can be calculated. The values of these
significances are shown in Figure 4.4b. The significances range from 2 to 4 and
increase for higher pT. For low pT the combinatorial background is large and signal
has an expected significance of about two. Even though the expected significance
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for the lowest pT interval is not higher than three, the pseudo-significances can be
interpreted as an indication that the signal extraction of the Ξ+

c is possible for the
analysed data, as the significances might be improved by the use of BDT models.
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Figure 4.4: Number of estimated background candidates (left) and Pseudo-
significance (right) for the preselections discussed.

4.3 Machine learning

Since the signal of the Ξ+
c is rare for p-Pb collisions, the previously described preselec-

tions can be improved by using machine learning techniques for the separation of
reconstructed signal candidates from combinatorial background. In this analysis,
the gradient boosting algorithm XGBoost and thus Boosted Decision Trees (BDT)
are used for this binary classification task. Different BDT models are trained for
the three pT intervals of the reconstructed Ξ+

c separately. Then, the trained models
are applied to independent data samples for testing to see whether the model is
generalisable and not just a good fit to the training data set. Before training, a
set of input features and model hyperparameters have to be selected and optimised.
The training of the model based on those variables combines the different selection
features into one response variable, the BDT probability.

4.3.1 Input sample and training variables

The analysis is conducted for prompt Ξ+
c candidates, which are produced in the

primary collision and decay via the decay channel Ξ+
c → Ξ−π+π+. A small fraction
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of 10% of this decay channels of interest, decay via a resonance Ξ+
c → Ξ(1530)0π+ →

Ξ−π+π+ [7]. The training and testing of the model is performed with an input
sample of background and signal data candidates. While the signal comes from
simulated Ξ+

c events, the background is selected from real data candidates. To
ensure that the background sample does not contain any true signal candidates, the
signal region is excluded by selecting only candidates with an invariant mass outside
the range 2.411 to 2.525 GeV/c2. The available MC sample contains resonant and
direct decay candidates. However, there are many more background candidates from
the data than signal candidates provided by the MC sample. Due to this limitation
of simulated events, only 20% of the real data is used to gather the background
candidates, while the whole MC sample is exploited for the signal candidates. The
proportion of signal to background for the training of the models is 1:2. An exception
is the pT interval between 6 - 12GeV/c. For this interval, the number of background
candidates is low, and all candidates are considered. The total numbers of candidates
used for testing and training for the different pT intervals are shown in Table 4.2.
The input sample is randomly divided into two independent parts with 60% of the
data for training and 40% for testing.

Table 4.2: Number of signal and background candidates for
the BDT training and testing.

pT (GeV/c) 2-4 4-6 6-12

Prompt, direct candidates 6895 7962 8301
Prompt, resonant candidates 2128 2846 3330
Background 18046 21616 23262

The training variables of the BDT model, used as classification criteria, are selected
before the training. As the number of variables increases, the separation between
background and signal might improve, but the model also becomes more complex
and therefore less generalisable in case of limited statistics in the training sample.
To avoid overtraining, only training features with the largest impact on the model
performance are used. The variable’s impact on the model output is defined by
their feature importance, depending on how often the variables are used in the
BDT process. Furthermore it has to be checked whether the training variables
correlate with the Ξ+

c invariant mass. Correlations with the Ξ+
c mass for background
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candidates should be avoided, as they can modify the background shape of the
invariant mass spectrum, artificially enhancing or reducing the extracted signal.
However, possible correlations between the training variables that occur only in
the background or in the signal can further improve the signal and background
separation. In this analysis, the variables used for the Ξ+

c analysed in pp collisions
[11] are used as a starting point for selecting optimal training variables. The signal
and background distributions of all the variables used in this analysis are shown in
Figure 4.5. Some of the distributions show a significant difference between signal
and background, indicating high separation power of the variables. Throughout this
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Figure 4.5: Signal (green) and background (blue) distributions of all
available decay features in the range 4 < pT < 6 GeV/c,
normalised to the number of candidates.

analysis the most important feature is the pointing angle (PA) of the Ξ+
c , which is

defined as the angle between the line connecting the decay vertex of the reconstructed
Ξ+
c with the PV and its momentum vector. For real and correctly reconstructed Ξ+

c

the value of the PA should be small. Since the Ξ+
c has a very short lifetime and

therefore decays close to its production vertex, the PA of the Ξ− to the PV should be
small too. Even though Ξ+

c is a short-lived particle, the distribution of its PA shown
in Figure 4.5 indicates that the reconstruction of the decay vertex is still possible
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since the signal distribution strongly increases for smaller values and differs from the
background distribution. The distance of closest approach (DCA) between the two
decay pion tracks in three dimensions and the DCA of each of them to the PV, as well
as the sum of the DCA between the two pions and the DCA between the pions and
the Ξ− in xy-direction are also used. The DCA between the Ξ− daughter candidates
in xy-direction can also be used as an input feature, becoming less important for
higher momenta. The reconstructed primary vertex is used as a constraint to the
reconstructed tracks. The χ2

topo/NDF characterises whether the momentum vector
of the Ξ+

c candidate points back to the reconstructed PV, and is calculated by the
KFParticle algorithm [22]. For high momenta, the particles are Lorentz-boosted
and have a decay vertex further away from the PV. For these candidates, the decay
length of the Ξ+

c can be used to separate signal and background, replacing the DCA
of the Ξ− daughters.
Figure 4.6 shows the correlations for the background and signal samples. No strong
correlations between the training features and the invariant mass of the Ξ+

c are
observed.
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Figure 4.6: Correlation matrix of the training features in the range 4< pT <6GeV/c.
Correlations are indicated in red, anticorrelations in blue.

4.3.2 Hyperparameters

In addition to the training variables, a set of hyperparameters has to be chosen
and optimised for the BDT model. In machine learning, a hyperparameter is a
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parameter used to control the learning process. The set of hyperparameters for
the training is optimised to exploit the best performance of the BDT process. One
possible optimisation procedure is the bayesian optimisation, which is applied in
this analysis. Bayesian optimisation is an iterative procedure scanning specific sets
of hyperparameters and incorporating information from prior evaluations to choose
the next set. To avoid overfitting or selection bias the cross-validation method k -
fold is used [30]. In k -fold cross validation, the data sample is randomly split into
k equally sized folds. Then k -1 folds are used for training so that each parameter
set is evaluated k -1 times while the remaining fold is retained for testing. The
hyperparameters are only scanned in predefined spaces, which need to be chosen so
that the optimisation process does not always converge to the lower or upper end of
the given interval. This process is repeated k times under permutation of the folds,
so that each fold is used once for testing. The k results can then be averaged to
produce a single estimation. When choosing the parameter ranges different aspects
like memory consumption, the risk of overfitting, and conservatism of the resulting
model have to be considered. The hyperparameter optimisation in this analysis
is conducted for the parameter ranges listed in Table 4.3, where for example the
parameter range for the tree depth is restricted to 1 - 3 to avoid overtraining. For
each of the models discussed in this thesis, the parameters are re-optimised, but the
parameter ranges stay the same.

Table 4.3: Parameter ranges for the hyperparameter op-
timisation

Parameter Range

Max. depth (1,3)
Learning rate (0.01, 0.1)
Estimators (100,1000)
Min. child weight (1,10)
Subsample ratio of rows (0.8,1)
Subsample ratio of columns (0.8,1)

Here, only the optimised sets of hyperparameters referring to the final models for
the different pT intervals discussed in section 4.4.3.1, 4.4.3.2 and 4.4.3.3 are listed in
Table 4.4.
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Table 4.4: Optimised Hyperparameters

pT (GeV/c) 2-4 4-6 6-12

Max. depth 2 3 3
Learning rate 0.04 0.04 0.06
Estimators 363 240 480
Min. child weight 2.3 7.0 5.1
Subsample ratio of rows 0.87 0.81 0.93
Subsample ratio of columns 0.89 0.83 0.96

4.4 Machine learning models

In the process of this analysis, several models with different training variables and
preselections are used for the signal extraction. The models are trained, tested and
applied to each pT interval separately.

4.4.1 First models - loose preselection, basic training features

The machine learning part of this analysis starts with a first set of models, trained
with loose preselections and six different training features. The preselections are the
same as discussed in chapter 4.1.2, except that only decay pions with pT >0.4GeV/c
are selected, as in the previous analysis of Ξ+

c in pp collisions [11]. The six variables
selected for the first models are already used in the previous analysis [11] for the
Ξ+
c signal extraction in pp collisions for low pT ranges and are therefore selected

here to check if they are a good choice for extracting the Ξ+
c in p-Pb collisions.

The feature importance of the training variables for the different pT intervals are
shown in Figure 4.7. The PA of the Ξ+

c to the PV is the most important feature for
all pT intervals, followed by the χ2

topo of the Ξ+
c , except for the highest pT interval

of 6 - 12GeV/c, where the the DCA between the two decay pion tracks is more
important. The DCA between the Ξ− daughter candidates in xy-direction is the
third most important feature for low pT intervals, becoming less important for higher
momenta. In the BDT process, the trained models are applied to the test set. To
ensure that the model is neither overtrained nor undertrained the so-called learning
curves are computed. The learning curves are defined as the root-mean-square error
(RMSE) of the training set and the test set. The RMSE is the difference between the
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Figure 4.7: Feature importance ranking of the selected training variables for the first
set of BDT models in different pT ranges.

values from the model prediction and the observation, as a function of the training
set size. The RMSE of the training set is close to zero, when only few instances
are used for the training, as the fit is trivial and a nearly perfect description of the
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data is possible. When more instances are added to the training, the error increases
as the fluctuations increase. For a training set with few instances, the model fails
to correctly describe the test set, leading to an increased RMSE. For an increasing
training set size, the error of the test set decreases, as the model performance and
therefore the description of the test data improves. For an optimal model, the
deviation between the training set and test set should be negligible. The two curves
should stabilise at a certain set size and converge at a common value. The learning
curves for the three models trained in the different pT intervals are shown in Figure
4.8. The RMSE seems to stabilize for a training size with about 4000 instances
and the two curves converge. The learning curves demonstrate that the number of
candidates used for the training and testing provides a stable model that is neither
undertrained nor overtrained.

Training set size

R
M

SE

This thesis

(a) 2 < pT < 4 GeV/c

Training set size

R
M

SE
This thesis

(b) 4 < pT < 6 GeV/c

Training set size

R
M

SE

This thesis

(c) 6 < pT < 12 GeV/c

Figure 4.8: Learning curves: Root-mean-square error (RMSE) of training set (red)
and test set (blue) as function of the training set size for the first set of
BDT models in different pT ranges.
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An additional ML output that can be used to check the performance of the BDT
model is the so-called Receiver Operating Characteristic (ROC). ROC is a probab-
ility curve, while AUC, the Area Under the ROC curve represents the ability of the
model to classify the candidates correctly. In binary classification tasks the possible
test results are true and false positives and negatives. The true positive rate (TPR)
is defined as the fraction of the true positive, the correctly classified instances, and
all instances of the signal class, the true positive and the false negative. The false
positive rate (FPR) is the fraction of false positives, the wrongly classified instances,
and all instances of the background class, the false positives and the true negatives.
Therefore the TPR can be referred to as efficiency, while the FPR represents the
error rate (1 - purity). The ROC curves for the training and the test set are shown
in Figure 4.9. To obtain the curve, the true positive rate (TPR) is plotted as a
function of the false positive rate (FPR) for different classification values. The grey
line marks describes a random classifier, where the model prediction is correct in
half of the cases. The curve of the test set should not deviate significantly from
the curve of the training set to ensure a stable model performance without over- or
underfitting. Strongly deviating curves show that the model might be too complex
and thus not generalisable. Here, the model might also become not generalisable
because the statistic of the data sample is too small. Since the AUC is interpreted
as the probability that a true positive is correctly classified, the better the model
can distinguish between signal and background, the larger it becomes.
The BDT model combines various selection features into a single response variable,
the BDT probability. The model classifies each candidate of the training and the
test set as background or signal and assigns it a certain BDT probability. In ideal
models, the signal distribution would peak at one and decrease at lower probabilities,
while the background would behave oppositely, peaking at zero. Additionally, the
validation data sample should not deviate significantly from the training set to
ensure a good model performance without over- or underfitting. In the process of
the analysis trained models are applied to the full data samples for each pT interval
and a BDT output probability is chosen, below which all Ξ+

c candidates are rejected.
The resulting BDT probability outputs of the trained models for the different pT

ranges are shown in Figure 4.10. The distribution of the test set follows the training
set distribution. Even though the background and signal candidates peak at low
and high probabilities, respectively, the signal does not decrease at low probabilities.
Since the Ξ+

c baryon is a short lived particle with the decay length τc=136.6µm,
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Figure 4.9: Receiver Operating Characteristic (ROC) curves of the training set and
the test set for the first set of BDT models in different pT ranges.

vertexing is possible but more difficult, especially for low pT. This can be seen in the
separation of the background and signal BDT probability distributions that become
more significant for higher pT.
The trained models are applied to the full data sample and after the selection of
the candidates through the application of a BDT probability the Ξ+

c raw signal
candidates are extracted via a fit to the invariant mass distribution. The fit combines
a Gaussian fit to the signal region, defined by the 3σ range around the mean, and an
exponential function to model the background. The width of the Gaussian function
is fixed to the simulated MC to improve the stability of the fit. The overall fit is
indicated by the blue, and the exponential fit of the background is described by the
red line. For each fit, the number of signal (S ) and background (B) candidates in the
signal region, the signal-to-background ratio (S/B), the significance (s), the mean
and the width are reported in the figures. In Figure 4.11, the fit results of the BDT
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Figure 4.10: Model output probability for signal (red) and background (blue) can-
didates in the training set (bars) and the test set (full markers) for the
first set of BDT models in different pT ranges.

selections with the highest significances for the different pT intervals are shown. In
order for the signal not to be considered a fluctuation over the large background,
the signal peak must have a significance higher than 3. Only for the pT interval
6 - 12GeV/c significant signal peaks were found for different BDT selections, with
the highest significance for a BDT probability of 0.5. In general, the optimal BDT
probability selection should be chosen using a blind approach without looking at
the real data to avoid picking up statistical fluctuations. However, in this specific
feasibility study the emergence of the signal peak over the background in real data
is studied, and therefore no blind selection is performed.
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Figure 4.11: Invariant mass spectrum of Ξ+
c candidates for different pT intervals.

The number of extracted signal (s) and background candidates (b) are
reported with the signal-to-background ratio (s/b) in the signal region
and the signal significance (S ).

4.4.2 Models trained with preselections on the pT of the two

decay pions coming from the Ξ+
c

To improve the signal and background separation for the pT intervals 2 - 4GeV/c and
4 - 6GeV/c, new BDT models with modified preselections are trained. To understand
the effect of preselections on the transverse momentum of the two decay pions, the
pT distributions of the MC signal and the background from real data for both pions
are plotted. To ensure that the real data do not contain true signal candidates, the
signal region is excluded by selecting only candidates with an invariant mass outside
the range 2.411 - 2.525GeV/c. Figure 4.12 shows the distributions for all three pT

intervals. For both pions, the combinatorial background distribution is more peaked
at small pT values and is more steeply falling than the MC distribution. Thus, the
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Figure 4.12: pT spectra of the two decay pions for signal (green) and background
candidates (blue) in the three different pT(Ξ

+
c ) intervals.
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shape of the pT distribution for the real candidates is harder than the one of the
background, making it possible to reject background while preserving real signal
candidates by applying selections on the pT of the decay pions. Furthermore, the
distributions indicate that pions with low and high pT are stored separately, resulting
in a hard and a soft spectrum for the pions. In this work π1 refers to the pions with
larger pT in the decay reconstruction, while the pions of the soft pT spectrum are
referred to as π0. The two different spectra indicate that it is reasonable to apply
different preselections on the pT of each of the two pions. However, the next set
of models is trained with the same selection applied to both pions to explore the
different pion pT selections before choosing individual selection criteria later. The
models are trained with the same six training variables used before (see Figure 4.7)
but with different preselections on the transverse momentum of the two pions. Five
selections have been tested ranging from selecting pions with momentum higher
than 0.6GeV/c to 1GeV/c, each corresponding to a new model. The range is
chosen based on the distributions because the background exceeds the signal at
lower transverse momenta. In the pT(π1) spectrum, the background distribution falls
below the MC data at a pT value of 1GeV/c, while for the π0 this occurs at about
0.6GeV/c. The transverse momenta of the two pions are not included in the BDT
model because they correlate with the Ξ+

c mass for background candidates. Such
correlations must be avoided for training features, as ML learning can apply non-liner
selection, potentially leading to a modification of the background shape that might
enhance or reduce the extracted signal. Therefore, the variables have to be exploited
by applying preselections on them. The other preselections remain the same as listed
in Table 4.1. The modified preselection on the pT of the two pions hardly changes
the feature importance of the variables, and the models’ performances, as can be
seen in chapter 4.4.1.
Figure 4.13 and Figure 4.14 show the invariant mass spectrum for the preselections
with the highest signal significance for the two pT intervals and different BDT se-
lections. For the pT interval 2 - 4GeV/c, selecting decay pions with a transverse mo-
mentum higher than 0.7GeV/c indicates a signal peak, while for all other preselec-
tions on the momentum no signal was visible.
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Figure 4.13: Invariant mass spectrum and fit of Ξ+
c candidates in 2< pT <4GeV/c

for the BDT model only selecting decay pions with pT >0.7GeV/c.
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Figure 4.14: Invariant mass spectrum and fit of Ξ+
c candidates in 4< pT <6GeV/c

for the BDT model only selecting decay pions with pT >1GeV/c.

Figure 4.13 shows the mass spectrum for the BDT probabilities 0.4 and 0.5 with
a signal significances of 3.5. Despite the high significance of the extracted signal,
this observation should be interpreted with caution. The mean value of the peak at
BDT probability 0.4 is significantly shifted from the known mass MΞ+

c
=(2467.71 ±

0.23)MeV/c2 [7], with a deviation of about 4σ. Furthermore, the signal peak is not
visible for all other BDT probabilities. The uncertainty of the mean includes only
statistical uncertainties, since it results from the fitting procedure. Therefore, the σ

deviation also includes only statistical uncertainties.
The distributions for the pT interval 4 - 6GeV/c do not show any significant sig-
nal peak. Figure 4.14 presents the invariant mass spectrum of decay pions with
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transverse momentum higher than 1GeV/c for BDT probabilities 0.3 and 0.5. The
distributions show strong fluctuations, which make a reliable signal extraction im-
possible.

4.4.3 Models with additional training features and modified

preselections on the pT of the two decay pions

To further improve the separation of signal and background, new training features
are chosen, and the preselections on pT of the decay pions are varied. The DCA
between each of the two pions and the PV in xy-direction can also be exploited by
including it as a training feature. Preselecting the DCA would also be possible but
not as effective since the background and MC peak are superimposed, making it
difficult to exclude much background without losing too many signal candidates.
As discussed earlier, the pT spectra of both decay pions (Figure 4.12) indicate that
different preselections for the pT values of each of the two pions might improve the
signal extraction. One possible way to do this is to apply preselections on the sum
of the pT values. Therefore, the distribution of the sum of the pT values of both
decay pions, pT,sum = pT(π0) + pT(π1), is shown in Figure 4.15.
The MC distribution of the sum slowly decreases for high pT, while the background
peaks for low pT and then steeply decreases and falls below the signal distribution
for a pT sum of 1.5GeV/c. In particular, for the pT interval of 4 - 6GeV/c, selections
of the sum might work better, since the previous preselections did not significantly
improve the signal extraction.
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Figure 4.15: pT(π
+
0 ) + pT(π

+
1 ) distribution for signal (green) and background can-

didates (blue) in different pT intervals.
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To test the extent to which selecting pion pairs with a pT sum higher than 1.5GeV/c
would reject true signal candidates, the distribution of the MC data before and
after selection for the pT interval 4 - 6 GeV/c is shown in Figure 4.16. The pions
of the hard spectrum are plotted separately from the pions of the soft spectrum.
As expected, more pions of the hard spectrum (π1) are rejected upon selection,
resulting in a peak shifted to higher values. The peak of the distribution of the soft
spectrum becomes slightly lower and shifted after selection, but not as much as the
π1 distribution. Instead of using the same model conditions for all pT intervals, the
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Figure 4.16: pT distribution of the decay pions for MC candidates, be-
fore (pink, blue) and after (green, dark blue) the preselec-
tion pT(π

+
0 ) + pT(π

+
1 )>1.5GeV/c in 4 < pT <6GeV/c.

preselections and the training features are tuned separately now. The six training
features used in 4.4.1 are chosen according to the training features for low pT in
[11]. For higher pT values, the decay length of the Ξ+

c becomes more important as a
feature variable, since the particles are Lorentz-boosted and decay further away from
the PV. Therefore, the decay length is added as a new variable replacing the DCA
of the Ξ− daughters in the xy-direction, which was the least important variable for
higher pT ranges. This approach is also used in the previous analysis [11], where the
same variables are exchanged. Furthermore, the distance between the Ξ− production
and its decay vertex, normalised by the associated uncertainty of the decay vertex,
referred to as ldl(Ξ−), is added as a training feature. Even though this variable is
not used in [11], its high feature importance can be seen there. Additionally, both
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variables, the DCA between each decay pions and the PV are included. For all
following models, the preselections described in Table 4.1 apply, except changes in
the selection of the pT of the two decay pions.

4.4.3.1 Models trained in 2 < pT(Ξ
+
c )<4 GeV/c

Four different models are trained in the pT interval 2 - 4GeV/c. Preselections ad-
ditional to those listed in Table 4.1 and all training features used for the following
models are reported in Table 4.5.

Table 4.5: Training features and additional selection criteria for the
models trained in 2< pT <4GeV/c.

model Nr. 1st 2nd 3rd 4th

DCA(π0, π1) × × × ×
DCAxy(π0, π1) + DCAxy(π

−,Ξ−) × × × ×
PA(Ξ+

c → PV) × × × ×
PA(Ξ− → PV) × × × ×
χ2

topo(Ξ
+
c ) × × × ×

DCAxy(Λ,π−) × ×
ldl(Ξ−) × ×
Lxy(Ξ

+
c ) × ×

DCA(π+,PV) × × × ×

pT(π0) >0.7 >0.7
pT(π1) >1 >0.7 >0.7
pT(π0) + pT(π1) >1.2
PA(Ξ+

c → PV) <1.5
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1st model Figure 4.12 indicates that stronger selections on the pT(π
+
1 ), the trans-

verse momentum of the hard-spectrum pions, may be useful. Therefore, the next
model for the pT interval 2 - 4GeV/c is trained with the additional variables intro-
duced in the previous section and a selection only on the pT(π

+
1 ) selecting pions

with pT(π
+
1 )>1GeV/c. The feature importance of the training variables for the

new model are shown in Figure 4.17a. The BDT output probability is depicted in
Figure 4.17b. Within their statistical uncertainties, the distribution of the test set
follows the training set distribution, which is a sign of a stable model performance
without overfitting or underfitting.
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(b) Model output probability for signal and back-
ground in the training and test set.

Figure 4.17: Feature importance and BDT probability.

The application of this new model did not allow to extract the signal with high
significance. The significances for different BDT probabilities are reported in Figure
4.18. For the BDT probability at 0.3, the significance increases and reaches a value of
about 4. However, since it decreases rapidly for lower and higher BDT probabilities,
it can be concluded that the high significance is only due to statistical fluctuations.
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Figure 4.18: Signal significance as function of the BDT probability.

2nd model A second model is trained with the same variables and a preselection
applied on the sum of the transverse momenta of both pions (pT,sum = pT(π0) +

pT(π1)), rather than to each momentum individually. Based on the distribution
depicted in Figure 4.15a, only pion pairs with a pT sum higher than 1.2GeV/c are
selected. The invariant mass spectrum for different BDT probabilities is shown in
Figure 4.19. Again, the invariant mass spectrum does not shows any significant
signal peak.
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(b) BDT probability >0.8

Figure 4.19: Invariant mass spectrum and fit of Ξ+
c candidates.
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3rd model The new variables and preselections do not seem to improve the signal
extraction for low pT. Therefore, the next model is trained with the DCA of the
Ξ− daughters in xy-direction and without the decay length of the Ξ+

c and the ldl of
the Ξ−. The DCA between the two decay pions and the PV are retained because
their distributions indicate a clear separation of background and signal, even for
low pT. Since a significant signal peak was found in the invariant mass spectrum
of the model that selected only decay pions with pT >0.7GeV/c (see Figure 4.13b),
the same preselection is applied for the next model. The third model is therefore
trained with the six variables used in chapter 4.4.1, plus the DCA between the two
decay pions and the PV, and with the preselection pT >0.7GeV/c applied on both
pions (see 4.5). The invariant mass spectrum depicted in Figure 4.20, shows high
statistical fluctuations. Although there is evidence of a signal emerging from the
background, the mean of the Gaussian for both BDT probabilities again differs by
about 4σ from the mass of the Ξ+

c reported in [7]. Again, it has to be noted, that the
uncertainties of the mean reported in Figure 4.20 are only from the fitting procedure.
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(b) BDT probability > 0.7

Figure 4.20: Invariant mass spectrum and fit of Ξ+
c candidates for the BDT model

only selecting decay pions with pT >0.7GeV/c.

4th model Throughout all models, the pointing angle of the Ξ+
c to the PV was

the most dominant training feature, with a relative importance much higher than
that of all other features. To test whether signal extraction improves by exploiting
the separation power of the other features more, a preselection is applied on the PA
of the Ξ+

c to the PV. Figure 4.21 shows the distribution of the PA for the MC and
background candidates. It can be seen that the MC candidates tend to have lower
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values, while the background is distributed nearly uniformly.
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Figure 4.21: PA of Ξ+
c to the PV for signal (green) and background candid-

ates (blue) in 2<pT <4GeV/c.

The next model is trained with the same variables and pT selections for the decay
pions as before, but with an additional selection of the PA of the Ξ+

c , selecting only
candidates with a pointing angle smaller than 1.5. The feature importance of the
variables is reported in Figure 4.22a, indicating a changed order compared to the
previous rankings. The χ2

topo of the Ξ+
c and both DCA between the two decay pions

and the PV gain importance, while the DCA between the two pions itself becomes
the least important feature. The ROC curve in Figure 4.22b shows a deviation
between the curve of the test set and the training set, indicating a decreased model
performance. This can be explained by the preselection applied on the PA of the Ξ+

c

to the PV. This preselection significantly reduces the number of signal candidates
available for testing and training of the model, making it less generalisable. The
same can be seen in the BDT output probability, which is shown in Figure 4.23.
The distribution of the test and the training set differ from each other and have
large statistical uncertainties.
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(b) Receiver Operating Characteristic (ROC) curves
of the training set and the test set.

Figure 4.22: Feature importance and ROC of the model only selecting decay pions
with pT >0.7GeV/c and Ξ+

c candidates with PA smaller than 1.5.

Figure 4.23: Output probability for signal and back-
ground in the training and test set.

The invariant mass spectrum and the fit results for the BDT probability selections
of 0.3, 0.4 and 0.5 are shown in Figure 4.24, indicating significant signal peaks. The
highest significance of about 4 is achieved for the BDT probability of 0.3. However,
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the mean again deviates from the mass of the Ξ+
c [7], as already seen for the 3rd

model. For the BDT probability 0.3, the mean deviates by about 3σ, while for
the other two BDT probabilities the deviation is only around 2σ. Again, it has
to be noted, that the uncertainties of the means reported in Figure 4.24, are from
the fitting procedure and include only statistical uncertainties. Even though these
deviations are not significant, they indicate high statistical fluctuations. For further
analysis, systematic studies about this deviation of the mean at low pT should be
performed. Despite this small variation, there is good indication that even in this
pT interval the signal extraction might be possible, however probably with large
statistical and systematic uncertainties.
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Figure 4.24: Invariant mass spectrum and fit of Ξ+
c candidates for the BDT model.
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4.4.3.2 Models trained in 4 < pT(Ξ
+
c ) < 6GeV/c

1st model Since the signal extraction for the pT interval 4 - 6GeV/c did not work
with the BDT models tested so far, new models are trained with the new training fea-
tures. For the first model, a selection is applied only to the pT of the hard-spectrum
pions, selecting only pions with pT(π1)>0.9GeV/c. The feature importance of the
variables is shown in Figure 4.25. As expected, the decay length of Ξ+

c has a greater
impact for the higher momentum range. It is the fourth most important feature in
the ranking, whereas it was the least important for lower pT (see Figure 4.17a).
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Figure 4.25: Feature importance ranking of the
training variables.

The significances for different BDT probability selections from 0.3 to 0.7 are reported
in Figure 4.26. A signal significance higher than 3 is only achieved for the probability
selection of 0.6. For higher and lower BDT probability selection the significance
decreases.
The invariant mass spectrum and the fit results for the probability selection at 0.6
and 0.7 are shown in Figure 4.27. As the significant peak structure disappears for
all other BDT probabilities, it could simply be due to statistical fluctuations.
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Figure 4.26: Signal significance as function of the BDT output probability.
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Figure 4.27: Invariant mass spectrum and fit of Ξ+
c candidates.

2nd model Based on the information on the distributions of the sum of the pT of
both pions (see 4.15b), the next model is trained only with decay pion pairs whose
pT sum is higher than 1.5GeV/c. The training variables remain the same. The
feature importance of the variables is shown in Figure 4.28a, where the decay length
of Ξ+

c is even more important compared to the previous model.
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(b) Model output probability for signal and back-
ground in the training and test set.

Figure 4.28: Feature importance and output probability.

As seen in Figure 4.28b the BDT probability distributions of the signal in red and the
background in blue. However, the distribution of the test set follows the distribution
of the training set, indicating stable model performance.
The signal significances for different BDT probability selections from 0.1 to 0.5 are
depicted in Figure 4.29. For probabilities below 0.5, the significance is higher than
3. The best signal significance is achieved for the BDT probabilities 0.2 and 0.3.
The invariant mass spectrum and the fit results for this probabilities are shown in
Figure 4.30. Both invariant mass fits have a significance of about 3, indicating a
possible signal extraction. The significances are the highest reached in this analysis
in the pT interval 4 - 6GeV/c. However, the mean of the fits deviates from the known
mass of the Ξ+

c [7] by about 2σ and even shows variations among the different BDT
probability selections, indicating high statistical uncertainties.
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Figure 4.29: Signal significance as function of the BDT output probability.
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Figure 4.30: Invariant mass spectrum and fit of Ξ+
c candidates.
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4.4.3.3 Models trained in 6 < pT(Ξ
+
c ) < 12GeV/c

For high transverse momentum, the signal extraction is easier because the combin-
atorial background becomes less and the secondary vertex is more displaced from
the PV and therefore better reconstructed. As seen in Figure 4.11c, a significant
signal peak for the pT interval 6 - 12 GeV/c was already found with the first set of
models. Nevertheless, the new variables and a preselection on the sum of the pT of
the two pions are also tested in this pT range. Based on the distribution in Figure
4.15c, only pion pairs whose pT sum is higher than 1.3GeV/c are selected. The
feature importance ranking of the variables is depicted in Figure 4.31a, confirming
the importance of the decay length of the Ξ+

c for high pT. The output probability
of the model is shown in Figure 4.31b and indicates a good model performance, as
the distribution of the test set follows the training set.
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(b) Model output probability for signal and back-
ground in the training and test set.

Figure 4.31: Feature importance and output probability.

The signal significances of the invariant mass spectrum for different BDT probabil-
ities from 0.3 to 0.7 are reported in Figure 4.32. The significance has values between
4 and 5 for BDT probability selections from 0.5 to 0.7, where the model is able
to reject a lot of background while preserving enough signal to be extracted. The
invariant mass spectrum for the probabilities 0.5 and 0.6 with the fit results are
shown in Figure 4.33. A signal significance of up to 5 is achieved. The mean of the

55



fit barely deviates from the Ξ+
c mass [7], which improves the signal extraction of the

previously tested model.
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Figure 4.32: Signal significance as function of the BDT output probability.
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Figure 4.33: Invariant mass spectrum and fit of Ξ+
c candidates for the BDT model.
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5 Conclusion and outlook

The goal of this analysis was to perform a feasibility study investigating the possibil-
ity of measuring the Ξ+

c baryon in p-Pb collisions at
√
sNN = 5.02 TeV with ALICE.

The Ξ+
c baryon was reconstructed via its hadronic decay into two π+ and a Ξ− ba-

ryon, decaying into a negatively charged pion and a Λ baryon, which further decays
into a proton and a negatively charged pion. The analysis was performed using the
KFParticle package for the reconstruction and a machine learning approach based
on XGBoost for signal and background classification. Several Boosted-Decision-Tree
models were trained with different training features and preselections and their per-
formances were compared. Throughout all analysed pT intervals a significant signal
peak was found in the Ξ+

c invariant mass spectrum (Figure 5.1).
For the lowest pT interval 2 - 4GeV/c, the best signal significance is achieved with
the 4th model trained with the variables and preselections reported in Table 4.5.
A significance between 3 and 4 is reached for BDT probability selections of 0.3,
0.4 and 0.5 as shown in Figure 4.24 and Figure 5.1a. However, the mean of the
Gaussian fit of the signal peak significantly differs by up to 3σ from the known
mass of the Ξ+

c , MΞ+
c

=(2467.71 ± 0.23)MeV/c2 [7]. Even though these deviations
are not significant, they indicate high statistical fluctuations and should further be
investigated to understand any possible systematic effect on the final measurement.
For higher pT the final models were trained with the variables shown in Figure 4.28a
and Figure 4.31a. Instead of applying preselections on the transverse momentum
of each of the decay pions, as done for low pT, a preselection is applied on the pT

sum of both pions (pT,sum = pT(π0) + pT(π1)). Since the pT spectra of both decay
pions (Figure 4.12) indicate that pions with low and high pT are stored separately,
different preselections for the momentum of each of the two pions seem reasonable.
This is implemented by applying preselections on the sum of the pT values, which
have been shown to be better than individual preselections on both pT values. For
the pT interval 4 - 6GeV/c only pion pairs with a pT sum higher than 1.5 GeV/c
were selected. A signal significance of about 3 was reached for a BDT probability
selections of 0.2 and 0.3 in the pT interval 4 - 6GeV/c. The corresponding invariant
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mass spectrum is shown in Figure 4.28 and Figure 5.1b. Again, the mean of the fits
deviates from the known mass of the Ξ+

c [7], this time by about 2σ. The mean also
shows variations among the different BDT probability selections, indicating high
statistical uncertainties. For the pT interval 6 - 12GeV/c the pT sum of the two pi-
ons was selected to be greater than 1.3GeV/c. A signal significance of about 5 was
obtained for this pT interval with BDT probability selection 0.6 (Figure 5.1c). The
mean of the fit barely deviates from the known Ξ+

c mass. Surprisingly, the preselec-
tion on the pT sum for the pT interval 6 - 12GeV/c is looser than the preselection for
the pT interval 4 - 6GeV/c. This is unexpected since the momentum of both pions is
shifted to higher values for high pT. However, since the combinatorial background
is generally smaller for high pT, a looser preselection is apparently sufficient for the
signal extraction. Overall, the highest signal significance was obtained for high pT.
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Figure 5.1: Invariant mass spectrum and fit of Ξ+
c candidates for the final BDT

models.
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The significant signal peaks found in all analysed pT intervals give a strong indication
that a full analysis of the Ξ+

c baryon in p-Pb collision is feasible. If a full analysis is
performed in the future, the small deviation in the mass mean should be investigated
to understand any possible systematic effect on the final measurement. Systematic
uncertainties were not evaluated in this work and a more comprehensive uncertainty
analysis would be important for future analyses. Furthermore, the selection on the
BDT output probability by choosing the one with highest signal significance may
lead to the amplification of statistical fluctuations. To avoid this possible bias, a
blind optimisation of the selection on the output probability, the so-called working
point procedure [11], should be used in further analyses.
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