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Abstract

The study of charm baryon production is crucial to understand charm hadronisation processes in a
parton-rich environment. In order to extract signal even in low transverse momentum (pT) regions
where the signal-to-background ratio is rapidly decreasing, a precise reconstruction of the entire
decay chain is of upmost importance.

The Kalman Filter (KF) Particle package gives a fast reconstruction of complex decay topologies
providing a full description of the decay particle both at its production and decay vertex. It is
suitable even for high-density track environments. In addition to that, the KF Particle package
supports the use of geometrical, mass and topological constraints in the reconstruction process and
includes the complete treatment of tracking and vertexing uncertainties.

In this work, the KF Particle package was used to reconstruct the Ξ+
c baryon from its decay

to Ξ−π+π+ in simulated proton-proton collisions at a centre-of-mass energy of
√
s = 13 TeV in

the ALICE detector at the LHC. In this thesis, the effect of geometrical, mass and topological
constraints on the secondary vertex, pT and mass resolution of the reconstructed Ξ+

c baryon will
be demonstrated.



Zusammenfassung

Messungen des Produktionswirkungsquerschnitts von Baryonen mit Charm-Anteil sind wichtig für
das Verständnis von Hadronisierungsmechanismen von Charm-Quarks. Um ein Signal auch bei
geringen Transversalimpulsen, bei denen das Verhältnis vom Signal zum kombinatorischen Hinter-
grund rapide abnimmt, zu detektieren, ist eine präzise Rekonstruktion der gesamten Zerfallskette
entscheidend.

Das Kalman Filter (KF) Particle Softwarepaket gewährleistet selbst bei komplexen Zerfall-
stopologien eine schnelle Rekonstruktion eines zerfallenen Teilchens sowohl an dessen Produktions-
als auch Zerfallsvertex. Es eignet sich auch für Bereiche mit hohen Teilchendichten und führt eine
vollständige Fehlerabschätzung der zu bestimmenden Parameter durch. Darüber hinaus ermöglicht
es Zwangsbedingungen an die Zerfallstopologie und die Masse von kurzlebigen Teichen zu stellen.

In dieser Arbeit wurde die Rekonstruktion des Ξ+
c -Baryons mit Hilfe des KF Particle Pakets

anhand des Zerfalls Ξ+
c → Ξ−π+π+ in simulierten Proton-Proton Kollisionen bei einer Schwer-

punktsenergie von
√
s = 13TeV im ALICE Detektor untersucht. Dabei werden die Auswirkungen

von Bedingungen an die Zerfallstopologie und die Masse von Tocherteilchen auf die Auflösung des
Zerfallvertex sowie des Transversalimpuls- und Massenspektrum des Ξ+

c Baryon untersucht.
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1 Motivation

High-energy hadronic collisions are used to study the fundamental nature of strongly interacting
matter and characterise its underlying theory of Quantum Chromodynamics (QCD). Hadrons con-
taining charm (c) or beauty (b) quarks are known as heavy-flavour hadrons and measurements of
their production in proton-proton (pp) collisions provide an important test of pertubative QCD.
Moreover, they serve as a valuable reference for production measurements in heavy-ion collisions,
where heavy-flavour hadrons can be used as a sensitive probe for the quark-gluon plasma (QGP),
a hot nuclear matter state predicted at extremely high temperatures and/or densities.

The production cross section ratio of charmed baryons and mesons is sensitive to the so-called
fragmentation functions, which describe the probability of a charm quark to hadronise into a specific
hadron species and have been assumed to be universal across different collision systems. However,
measurements at the LHC in pp and p-Pb collisions tend to indicate a deviation from measurements
in e+e− and e−p collisions and thus a non-universal charm fragmentation. In order to systematically
study the modification of the fragmentation for different collision systems, the measurements need
to be as precise as possible over the entire pT range. Extending the measurements of the production
cross section to low pT would also allow for a more precise measurement of the total charm and
beauty cross section[7].

The latest pT-differential cross section measurement of the Ξ+
c baryon [7] (see fig. 1) in pp-

collisions at a centre-of-mass energy of
√
s = 13TeV recorded by the ALICE detector was performed

in the transverse momentum range of 3 < pT < 12GeV/c. It used the KF Particle package,
developed for the CBM experiment at GSI and implemented for ALICE, for the full reconstruction
of the Ξ+

c decay chain. The reconstructed particle candidates were selected based on the decay
topology using the machine learning tool XGBoost. Nevertheless, it was not possible to extract
signal with high significance from the invariant mass spectrum for 2 < pT < 3GeV/c. For low
transverse momentum, the production rates, especially for light primary particles such as pions,
kaons and protons, increase dramatically. The event multiplicity is even much higher in heavy-ion
collisions. Selecting the right daughter tracks coming from a heavy-flavour decay from thousands
of primary tracks is very challenging [7].

In this thesis, a systematic study of the application of mass and topological constraints in the
reconstruction of a heavy-flavour decay chain is presented. The effects on the secondary vertex,
mass and pT resolution are shown such that the candidate selection and background rejection can
be improved, possibly enabling the analysis of heavy-flavour hadrons for low pT and heavy-ion
collisions.
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Figure 1: pT differential cross section of prompt Ξ+
c and Ξ0

c baryons in pp collisions at
√
s = 13TeV.

The Ξ0
c production cross section (blue) was obtained from a combined measurement of Ξ0

c → Ξ−e+νe
Ξ0
c → Ξ−π+ in the transverse momentum interval 1 < pT < 12GeV/c. The black full markers

show the published results of the analysis of Ξ+
c → Ξ−π+π+ in the range 4 < pT < 12GeV/c

using standard reconstruction and analysis techniques. The unpublished attempt to extend the
measurement to the 3 < pT < 4GeV/c interval is depicted by the black open marker. The results
of the analysis from [7] using the KF Particle package and XGBoost is shown by red markers. The
obtained production cross section for 3 < pT < 4GeV/c coincides with the published measurement
for the Ξ0

c production cross section [7].
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2 Tracking of charged particles in the ALICE detector

2.1 Overview of the ALICE detector

ALICE (A Large Ion Collider Experiment) is a general-purpose heavy-ion detector at the Large
Hadron Collider (LHC) which focuses on the physics of strongly interacting matter. Its dimensions
are 16× 16× 26m3 and it weighs in total approximately 10 000 t [1]. It consists of a central barrel
part designed to measure hadrons, electrons and photons and a forward muon spectrometer. The
entire central barrel module is embedded in a large solenoid magnet reused from the L3 experiment
at LEP which provides a magnetic field of 0.5T. The forward muon spectrometer consists of a
dipole magnet, absorbers as well as tracking and triggering chambers [1].

Figure 2: The ALICE experiment at the CERN LHC [10].

In the following, a short description of the central barrel detectors and their main purpose is
given, going radially from the inside out. The first four detectors cover the full azimuth, while
the latter three share the outer cylindrical volume. Since data simulated for the ALICE setup in
the data-taking period from 2016 to 2018, called Run 2, is used in the analysis, recent detector
upgrades after 2018 are not considered.

- The Inner Tracking System (ITS) is a silicon vertex detector and composed of six tracking
layers. The first two layers are Silicon Pixel Detectors (SPD), followed by two Silicon Drift
Detectors (SDD) and two Silicon Strip Detectors (SDD). It is mainly used for the recon-
struction of the primary vertex (PV), secondary vertices (SV) from heavy-flavour or strange
particle decays and particle trajectories. It enables to track particles with momenta down to
80MeV/c [6] and to improve the angle and momentum resolution for particles reconstructed
by the other main tracking detector, the TPC (see below). The analogue readout of the four
outer layers can be used for charged particle identification via measurement of the specific
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ionisation energy loss for low-momentum particles. The position, spatial resolution and main
purpose of each ITS detector layer are listed in table 1.

Type r [cm] ±z [cm] spatial resolution rϕ [µm] spatial resolution z [µm] main purpose

pixel 3.9 14.1 12 100 tracking, vertexing
pixel 7.6 14.1 12 100 tracking, vertexing

drift 15.0 22.2 35 25 tracking, PID
drift 23.9 29.7 35 25 tracking, PID

strips 38 43.1 20 830 tracking, PID
strips 43 48.9 20 830 tracking, PID

Table 1: Overview of specifications of the individual ITS layers [1].

- The Time-Projection Chamber (TPC) is used for tracking and particle identification via the
measurement of the specific ionisation energy loss dE/dx. It is 5m [1] long and covers the
cylindrical volume from 87 < r < 247 cm [1]. The inner radius of the TPC is determined
by the maximum acceptable track density, whereas the outer radius is defined by the length
required for achieving a dE/dx resolution of better than 5 − 7%. The drift volume of 90m3

[1] is filled with a Ne− CO2 mixture. The TPC is divided into two parts by a central cathode
which is kept at a voltage of −100 kV [6]. Charged particles free electrons by ionising the
TPC gas, which then drift towards the segmented end planes of the TPC. For the applied
voltage and maximum drift distance of half of the TPC length, the maximum drift time of
the electrons is about 90µs [1]. Using the timing information of the signal to reconstruct the
position along the beamline, the three-dimensional position of the charged-particle track can
be reconstructed.

- The Transition Radiation Detector (TRD) is used to provide electron identification in the
central barrel and consists of six layers of Xe− CO2-filled gas chambers, each followed by
a fibre/foam radiator. Above 1GeV/c [1], transition radiation from electrons passing the
fibre/foam radiator can be used together with the information from the specific energy loss
in the gas mixture to differentiate pions from electrons. Below this momentum threshold,
electrons can be identified via specific energy loss measurements in the TPC. The TRD is
also used for tracking in the central barrel in order to improve the transverse momentum
resolution at high momenta.

- The Time-of-Flight (TOF) detector is used for particle identification at intermediate mo-
menta, below about 2.5GeV/c for pions and kaons and up to 4GeV/c for protons [1].

- The Photon Spectrometer (PHOS) is an electromagnetic calorimeter with high resolution and
high granularity, which consists of dense scintillating PbWO4 crystals and is designed to
measure photons.

- The Electromagnetic Calorimeter (EMCal) is a sampling calorimeter consisting of alternating
layers of lead absorbers and scintillators. It is much larger than PHOS, but has a lower
granularity and energy resolution. The EMCal is optimised to measure jet production rates
and fragmentation functions in conjunction with the other charged particle tracking in the
other central barrel detectors.

- The High Momentum Particle Identification Detector (HMPID) consists of ring imaging
Cherenkov detectors with liquid C6F14 radiator. It is used to improve the charged hadron
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identification towards higher momenta.

In addition to the central barrel detectors, there are also other smaller forward detectors such as
the V0 detector, a plastic scintillator mainly used for triggering. For data taking in pp collisions,
the so-called minimum bias trigger requiring signals in the V0 and, depending on the type of the
trigger, the SPD is used. The other forward detectors and the muon spectrometer will not be
discussed in detail [1, 6].

The ALICE coordinate system, defined as a right-handed orthogonal Cartesian coordinate sys-
tem, is illustrated in fig. 3: Its origin lies at the Interaction Point (IP) 2 of the LHC with the z-axis
aligned parallel to the magnetic field and mean beam direction. The x-axis points horizontally
to the centre of the LHC, the y-axis vertically upwards [6]. Therefore, the central barrel tracking
detectors are totally radially symmetrical in the xy-plane.

Figure 3: Sketch of the ALICE coordinate system [8].

2.2 Central Barrel Tracking

The procedure of finding tracks in the central barrel starts with the clusterisation step: The data
of each detector are separately converted into clusters characterised by the positions, signal ampli-
tudes, signal times and their corresponding errors. These clusters are interpreted as the crossing
point of an associated track. Using the two innermost ITS layers, the interaction vertex is prelim-
inarily determined as the space point to which the maximum number of tracklets, which are lines
defined by two clusters in each SPD layer, converge. The track finding and fitting is then performed
in three stages and follows an inward-outward-inward scheme.

The first inward stage starts with finding tracks in the TPC. Since the TPC readout chambers
have 159 tangential pad rows, a track can produce 159 clusters within the TPC volume in the ideal
case. Track seeds are built from two TPC clusters at large radii and the vertex point. In order
to reconstruct tracks which do not originate from the interaction vertex, additional track seeds are
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built from three TPC cluster at large radii without the vertex constraint. These seeds are then
propagated inward and updated with the nearest cluster fulfilling a certain proximity cut using the
Kalman filter algorithm (see section 3.2). Only tracks with at least 20 clusters are accepted. Based
on the specific energy loss in the TPC gas, a preliminary particle identification is performed such
that the most-probable mass can be used for the ionisation energy loss correction calculations in
the following tracking steps.

The TPC tracks are then propagated to the outermost ITS layer and used as seeds for track
finding in the ITS. These seeds are again propagated inward and updated at each ITS layer by
all clusters within a proximity cut with the Kalman filter algorithm. As a result, each TPC track
produces a tree of track hypotheses in the ITS which are sorted according to their reduced χ2. The
candidates with the highest quality from each tree are checked for cluster sharing among each other.
If shared clusters are found, an attempt is made to find alternative candidates in the involved trees.
Finally, the highest quality candidate from each hypothesis tree is added to the reconstructed event.
As the reconstruction efficiency in the TPC drops at low transverse momentum due to energy loss
and multiple scattering in the detector material (see section 2.3), a standalone ITS reconstruction
is performed with the clusters that were not used in the ITS-TPC tracks. The corresponding seeds
are created from two cluster in the three innermost ITS layers and the interaction vertex point,
propagated to the outer ITS layers and updated with clusters within a proximity cut. All of the
track hypotheses are refitted by a Kalman filter and the track with the best fit χ2 is accepted.

After the reconstruction in the ITS is completed, all tracks are extrapolated to their point of
closest approach (PCA) to the preliminary interaction vertex. Using the clusters found at the
previous stage, the tracks are refitted by the Kalman filter in the outward direction. At each step,
the track length integral and the time of flight expected for different particle species (e, µ, π,K, p) are
updated. Once the track reaches the outer layers of the TPC, an attempt is made to match tracks
reaching the TRD and possibly the TOF with tracklets in the TRD and TOF respectively. The
track length integration and time-of-flight calculation used for particle identification are stopped
at this point. The tracks are propagated further for matching with signals in the calorimeters and
HMPID. Finally, all tracks are propagated inwards from the outer radius of the TPC and refitted
with the previously found clusters in the TPC and ITS.

Global tracks reconstructed in the ITS and TPC are used after the track fit to determine the
interaction vertex with a higher precision. Therefore, the tracks are extrapolated to the point
of closest approach to the nominal beam line. After removing far outliers, a precise vertex fit is
performed. The transverse vertex position is improved by adding the so-called diamond constraint :
The nominal beam position is added as an independent measurement with errors corresponding to
the transverse size of the luminous region.

Once the tracks and interaction vertex have been found, a search for photon conversions and
secondary vertices from particle decays is performed. For this, tracks with a distance of closest
approach (DCA) to the interaction vertex exceeding a certain minimum value are selected. So-
called V 0 candidates are identified from unlike-sign pairs of such tracks passing certain cuts on
their DCA and PCA. After finding V0 candidates such as K0

S and Λ0, a search of cascade decays
(e.g. Ξ−) is performed by adding a secondary track within a certain proximity cut to a V 0 candidate.
More complex secondary vertices from hadronic interactions are later reconstructed at the analysis
level by identifying groups of two or more tracks originating from a common space point [6].

2.3 Multiple scattering

When a charged particle is traversing a medium, it is deflected by many small-angle scattering
processes. The dominant interaction process is Coulomb scattering from the nuclei of the medium,
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but the strong interaction will also contribute hadronic projectiles. For many small-angle scatter
processes, the net scattering angular distribution is Gaussian according to the central limit theorem.
It states that the average of N independent random variables x1, ..., xN , which are each distributed
according to a probability density function (PDF) with finite variance, can be approximated by a
Gaussian distribution in the limit of N → ∞ regardless of the underlying PDFs. However, so-
called hard scatter events produce non-Gaussian tails. The root mean square (rms) width of the
central part covering 98% of the angular distribution projected into the plane perpendicular to the
scattering medium is given by

θrms
plane =

13.6MeV

βcp
· z ·

√
x

X0
·
[
1 + 0.038 ln

(
xz2

X0β2

)]
∝ 1

p
. (1)

eq. (1) describes a particle with momentum p, velocity βc and charge number z passing through
a medium of thickness x/X0 in units of the radiation length. The radiation length of a material
is defined as the mean distance over which a high-energy electron loses all but 1

e of its energy by
bremsstrahlung. Hence, higher-momentum particles are less affected by multiple scattering than
low-momentum particles [11, 4].

2.4 Tracks of charged particles in a magnetic field

The momentum vector of a charged particle can be determined by measuring its trajectory in a
magnetic field. A particle with charge q = z · e, mass m, velocity v⃗ and Lorentz factor γ will be
deflected by the Lorentz force.

F⃗L = ˙⃗p = q ·
(
v⃗ × B⃗

)
(2)

Using p⃗ = γmv⃗ and γ̇ = 0 since the magnetic field does not change the energy of the particle
E = γm, eq. (2) can be rewritten as

˙⃗v =
q

γm

(
v⃗ × B⃗

)
(3)

The solution of the differential equation in eq. (3) describes a rotating velocity vector v⃗T in the
plane perpendicular to the magnetic field B⃗ while the component parallel to B⃗ remains unchanged.
Thus, the particle trajectory in space is given by a helix lying on the surface of a cylinder, which is
aligned coaxially with the magnetic field. Its projection on the plane perpendicular to B⃗ describes
a circle with radius

R =
pT
|q| ·B

. (4)

Thus, the transverse and absolute momentum of the charged particle are given by the curvature
radius R and the angle θ between the instantaneous momentum direction and the direction of the
magnetic field:

pT = |q| ·B ·R

p =
pT
sin θ

(5)

Since ALICE uses a solenoid magnet with the direction of the magnetic field pointing along the
beam axis, θ is simply the polar angle (see fig. 3) of the particle relative to the beam. The resolution
of the measured transverse momentum can typically be described by the common parametrisation

σpT
pT

=

√(
σpT
pT

)2

meas

+

(
σpT
pT

)2

scat

≡
√
(apT)2 + b2. (6)
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The first contribution scales linearly with pT and is caused by the limited resolution of the position
measurements, which complicates the measurement of small curvatures of the track corresponding
to a high-momentum particle. The second, constant contribution is due to multiple scattering in
the detector material and dominates the transverse momentum resolution for low pT [3].
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3 Event reconstruction with the KF Particle package

3.1 Event reconstruction in high-energy physics

An event is a snapshot recorded by a detector corresponding to one integration time of the detector
at a trigger. More than one collision of particles can happen within this time interval, but these
so-called pileup events are typically excluded from physics analysis. Modern experiments in high-
energy physics operate at very high track densities with a particular interest for very rare signals.
Therefore, the reconstruction of events in high-energy physics requires both high accuracy and
high speed in order to analyse large amounts of data with a good probability of detecting these
rare signals. The reconstruction of an event includes the finding and fitting of particle tracks, the
alignment of detectors and the determination of the event vertices from reconstructed tracks among
others. Many of those tasks involve fit problems which can be characterised as finding the most
probable value of an unknown quantity using measurements of this quantity [2, 12].

The Kalman filter is a recursive fit algorithm for the analysis of linear discrete dynamic systems
described by a set of parameters. It gives an optimal estimation of those parameters and can even
be applied to nonlinear fit problems provided the model describing the system has been linearised
in advance. The most common application of the Kalman filter in high energy physics is the fit of
tracks of charged particles. The trajectory of a charged particle is affected by multiple scattering
and energy losses by ionisation and excitation in the detector material as well as non-homogeneities
of the magnetic field in the detector. Using the least squares method to fit the particle trajectory,
it is almost impossible to take all these effects into account since new parameters have to be
introduced and fitted for every effect. In contrast, these effects can be easily treated by the Kalman
filter as the measurements in high-energy physics experiments are usually done by different sub-
detectors separated in space: The particle track is linearised and effects of the detector material
are added only in the neighbourhood of each measurement. All the nonlinear effects can be taken
into account when transporting a particle from one measurement to the next. In addition to that,
measurements can be added and removed independently allowing to refine the estimates of the
parameters without repeating the entire fit procedure. This makes the use of the Kalman filter
natural for the reconstruction of high-energy physics events [2, 12].

3.2 The Kalman filter algorithm

Let the state vector rt be the vector of the parameters that should be estimated by the fit algorithm.
The so-called estimator is the function of the data sample that returns the estimate of the state
vector. In practice, estimators can be defined by more or less complex mathematical procedures
or numerical algorithms. The goal of the fit procedure is then to find the best linear unbiased
estimator r of the state vector rt according to a given set of measurements {mk}k=1,...,n. The
properties of this desired optimal estimator are defined in the following way:

- unbiased : The mean value of the error of the estimator ϵr = r− rt is ⟨ϵr⟩ = 0.

- linear : The estimator depends linearly on the measurements mk.

- best : The estimator has the minimal mean squared error σ2
r = ⟨ϵrT · ϵr⟩ among all other

estimators.

Here ⟨.⟩ denotes the mathematical expectation value [2, 4].
First of all, it is assumed that each measurement mk depends linearly on the state vector rt:

mk = Hk · rt + ηk (7)

9



Hk is a known linear operator represented by a matrix and called model of measurement. The
measurement errors ηk are random variables each fulfilling the following assumptions:

⟨ηk⟩ = 0 ∀k unbiased

⟨ηk · ηT
k ⟩ = Vk ∀k covariance matrix is known

⟨ηk · ηT
l ⟩ = 0 ∀k ̸= l errors of different measurements are uncorrelated

Furthermore, random effects may change the values of the physical parameters in the state vector.
For example, a charged particle moving through the detector experiences multiple scattering and
energy losses altering its track parameters. Therefore the state vector is allowed to change from
one measurement to the next in a random way:

rtk = Ak · rtk−1 + νk (8)

Ak is a known linear operator represented by a matrix called extrapolator and describes deter-
ministic changes between the state vectors at the (k − 1)-th measurement rtk−1 and at the k-th
measurement rtk. On the contrary, νk is a random variable called process noise between the (k−1)-
th and k-th measurements fulfilling the following assumptions:

⟨νk⟩ = 0 ∀k unbiased

⟨νk · νT
k ⟩ = Qk ∀k covariance matrix is known

⟨νk · νT
l ⟩ = 0 ∀k ̸= l different process noises are uncorrelated

⟨νk · ηT
l ⟩ = 0 ∀k, l process noises and measurement errors are uncorrelated

Since the state vector changes between different measurements, the goal of the fit procedure is to
find the best linear unbiased estimator rn of the state vector rtn, which corresponds to the last
measurement mn [2].

The Kalman filter algorithm in its most general form consists of the following steps:

1. Initialisation step: In this first step, an approximate value r0 of the state vector is chosen
and the covariance matrix and χ2-deviation is set to

C0 = I · inf
χ2
0 = 0

(9)

where inf represents a large positive number. This choice of covariance matrix minimises the
influence of the initial approximation on the final optimum estimation.

2. Extrapolation step: When the state vector rt changes between the (k − 1)-th and k-th
measurement, the current best estimation rk−1 changes in the same manner upon transfer to
the k-th measurement:

r̃k = Ak · rk−1

C̃k = AkCk−1A
T
k +Qk

(10)

r̃k and C̃k are the best estimator and the corresponding covariance matrix of the state vector
rtk obtained in the previous step according to the first (k−1) measurements and extrapolated
to the k-th measurement.
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3. Filtration step: In this final step, the estimator r̃k is updated with the k-th measurementmk

in order to obtain the estimator rk of the state vector r
t
k according to the first k measurements:

Sk =
(
Vk +HkC̃kH

T
k

)−1
weighting matrix

Kk = C̃k ·HT
k · Sk gain matrix

ζk = mk −Hk · r̃k residual

rk = r̃k +Kk · ζk
Ck = C̃k −KkHk · C̃k

χ2
k = χ2

k−1 + ζTk · Sk · ζk

(11)

Here the inverse covariance matrix of the residual Sk, also called weighting matrix, is used to
calculate the gain matrix Kk. The gain matrix determines the contribution of the residual ζk
to the updated estimator rk: Measurements with larger weight, i.e. smaller covariance matrix
Vk, will correct the estimation of the state vector stronger. On the contrary, the correction
will be negligible when the state vector is known already with a high accuracy, i.e. small
covariance matrix C̃k. χ

2
k is the total χ2-deviation of the estimator rk obtained from the first

k measurements following a χ2-distribution with a specific number of degrees of freedom. It
can therefore be used for the characterisation of the fit quality.

The extrapolation and filtration steps are repeated for each measurement such that after the filtra-
tion of the last measurement mn the desired best estimator rn (with the corresponding covariance
matrix Cn) is obtained [2, 12].

In practice, the measurement model eq. (7) and the extrapolation eq. (8) are often nonlinear.
However, after linearising all the equations the Kalman filter fitting algorithm can be applied
unchanged. When for instance the measurement mk depends non-linearly on the state vector rtk,
the model of measurement needs to be linearised (denoted by =̇) at a certain state vector rlink as
point of linearisation:

mk

(
rtk
)
= hk

(
rtk
)
+ ηk=̇ hk

(
rlink

)
+Hk ·

(
rtk − rlink

)
+ ηk

with the Jacobian (Hk)ij =

(
∂(hk(rk))i
∂(rk)j

) ∣∣∣∣
rk=rlink

(12)

The same procedure can be applied to a nonlinear extrapolation equation:

r̃tk = ak
(
rtk−1

)
=̇ ak

(
rlink−1

)
+Ak ·

(
rtk−1 − rlink−1

)
with the Jacobian (Ak)ij =

(
∂(ak(rk−1))i
∂(rk−1)j

) ∣∣∣∣
rk−1=rlink−1

(13)

The Kalman filter with the nonlinear model of measurement is called the extended Kalman filter.
Only the equation for the residual ζk of the equations of filtration (11) then has to be modified
with regards to the linear case:

ζk = mk −
[
hk

(
rlink

)
+Hk ·

(
r̃k − rlink

)]
(14)

The result of a fit with the extended Kalman filter depends on the choice of the point of linearisation.
There are two different approaches: The point of linearisation does not explicitly appear in eq. (14)
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by being set to the current track estimator rlink = r̃k in the implicit linearisation, whereas the point
of linearisation rlink is explicitly set in the so-called explicit linearisation. The implicit linearisation
can be very imprecise since the estimator depends only on k−1 measurements and thus can be very
far from the true values. In addition to that, the linearisation cannot be improved by using better
initial parameters as the initial information is already lost when processing the second measurement.
Using the explicit linearisation, however, the fit can be iterated using the best estimator rn from
the previous iteration as point of linearisation for the next one. As a result, the fit is more accurate
without requiring extra time or complexity within one iteration [2].

3.3 The KF Particle package

The KF Particle package is a specific software package for the complete reconstruction of short-
lived particles and decay chains based on the Kalman filter mathematics. The major advantage of
this package is that mother and daughter particles are described with the same state vector

r = (x, y, z, px, py, pz, E, s)T , s =
L

p
(15)

which contains the three components of momentum (px, py, pz) and the energy E of the respective
particle parameterised at the coordinates (x, y, z). If the production vertex is known, the distance
between the production and decay vertex of the particle in the laboratory coordinate system L
normalised to its momentum p is added to the state vector. This parameter s is used to transport
the particle between the decay and production vertices. The chosen normalisation of s is convenient
since the direction of the particle motion is assigned to the momentum vector. As these parameters
describe the real particles themselves, the KF Particle Package is independent from the geometry
or operational conditions of the experiment. After the optimal estimator of the state vector in
eq. (15) is obtained, additional physical parameters of the particle such as mass, momentum, decay
length, life time and rapidity can be easily calculated with the KF Particle package [12, 2].

In order to optimally use the computing resources and achieve a high speed of calculations, the
KF Particle package is implemented in single precision (float32 format) and fully SIMDized: SIMD
stands for Single Instruction, Multiple Data, meaning that the same instruction is performed on a
set of data simultaneously [12].

The KF Particle package was implemented in the following analysis for the reconstruction of
short-lived particles. The information of the event characteristics, reconstructed tracks, primary
vertex as well as V0 and cascade candidates obtained from the central barrel tracking described
in section 2.2 are stored in the so-called Analysis Object Data (AOD). The track objects were
not refitted with the KF Particle package, but simply copied from the AOD file and transformed
into a KF Particle object with the parametrisation of eq. (15). All the secondary vertices and
the parameters of short-lived particles were then once again reconstructed with the KF Particle
package (see section 3.4). The primary vertex stored in the AOD file was not refitted with the
KF Particle package for this analysis. However, the KF Particle package was used once to add
a charmed hadron to the primary vertex and remove the measurements of its daughter particles
without repeating the entire fit procedure. For aligning a reconstructed mother particle with the
primary event vertex, the default AOD PV was used.

3.4 Reconstruction of short-lived particles

Long-lived particles have a lifetime large enough to cross the tracking detector system of the exper-
iment and to be registered directly. In contrast, short-lived particles decay before or short within
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the tracking system and can only be registered indirectly by measuring the daughter particles.
Therefore, the position, momentum and energy of the mother particle at the decay vertex have to
be reconstructed using the estimates of all n daughter particles obtained after the track fit. For this
purpose, the mother particle is described by the state vector of the KF Particle package eq. (15)
without the parameter s = L

p ,

r = (x, y, z, px, py, pz, E)T =

(
v
p

)
, (16)

where the variables have been summarised in the vector of the decay vertex position v and the
4-momentum vector of the mother particle p [2, 12].

The parameters of the k-th daughter particle given at a certain parametrisation point vd
k are

denoted by:

rdk =

(
vd
k

pd
k

)
(17)

All daughter particles are then transported to the decay vertex position in order to be used as
measurements mk by the Kalman filter algorithm:

mk = rdk +

 pd
k

pd
k ×B · qk

0

 · sdk +O ((sdk)2) (18)

Here sdk =
ldk
pdk

is the unknown length from the parametrisation point vd
k of the daughter particle to

the decay vertex v, B the magnetic field value at vd
k and qk the charge of the daughter particle.

O
(
(sdk)

2
)
describes higher order deviations of the daughter particle trajectory from a straight line

in a magnetic field.
Linearising at sdk = 0, the measurement mk and the corresponding covariance matrix Vk of the
daughter particle parameters at the decay vertex are given by:

mk = rdk

Vk =

(
Vv

k

(
Vvp

k

)T
Vvp

k Vp
k

)
= Cd

k +

 pd
k

pd
k ×B · qk

0

 ·
 pd

k

pd
k ×B · qk

0

T

· σ2
s

(19)

It is sufficient to take 10-times the distance between the parametrisation point vd
k and an initially

assumed decay vertex position v0 divided by the daughter particle momentum pdk as σs [2].
Moreover, daughter particles can be selected by calculating the χ2 probability that the k-th particle
rdk originated from the initially assumed decay vertex v0 and thus is likely to be a daughter particle:

χ2
d =

(
vd
k − v0

)T
·
(
Cv0

+Vv
k

)−1
·
(
vd
k − v0

)
(20)

Here, Cv0
is the corresponding covariance matrix of the initial vertex guess v0. Then, only particles

passing the χ2 cut are added to the mother particle [2].
Since the measurement of the k-th daughter particle and the state vector of the mother par-

ticle contain the coordinates of the decay vertex, their true values are related via the following
measurement equation:

(I,O) ·mt
k = (I,O) · rtk−1 (21)
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Thus, the estimator of the state vector from the first k particles rk−1 is filtered by the measurement
mk according to the filtration eq. (11) with

r̃k ≡ rk−1

C̃k ≡ Ck−1

mk ≡ (I,O) · rdk = vd
k

Vk ≡ (I,O) ·Vk · (I,O)T = Vv
k

(22)

After this filtration step, the 4-momentum of the daughter particle is added to the 4-momentum
of the mother particle (see [2] for details). This process is repeated for all daughter particles. For
the first daughter particle, the measurement m1 is simply copied into the state vector r1 since the
parameters of the mother particle have not yet been determined [2].

After the mother particle is reconstructed at the decay vertex, the parameter

s =
L

p
(23)

is added to the the state vector when the production vertex of the mother particle is known. L is
the length of the particle trajectory in the laboratory system between the decay vertex and a given
production vertex: This can either be the primary event vertex or a secondary vertex of a prior
decay. In the latter case, the secondary vertex is fitted first using the mother particle and then the
mother particle is fitted to the reconstructed vertex. Then all parameters of the mother particle
are transported from the decay to the production vertex where it is filtered using the production
vertex as a measurement [2].

3.5 Mass and topological constraint

The precision of a particle’s parameters and its decay vertex resolution can be improved by taking
assumptions, expressed in terms of constraints applied on the state vector, into account. Two
constraints are implemented in the KF Particle package: The topological constraint, aligning a
mother particle with the already known primary (or more general parent) vertex, and the mass
constraint, setting the mass of the mother particle to a specific value when a combination of particles
originating from the secondary vertex are known to originate from a narrow width mass state [2].

Constraints are in general applied after the filtration of the state vector by the measurements.
Typically, every constraint is treated as a one-dimensional measurement with the value zero and
null error:

0 = Hc · rc + 0 (24)

This measurement is then filtered in an additional filtration step of the Kalman filter algorithm
according to eq. (11) with a corresponding measurement model Hc. In the case of nonlinear con-
straints, the penalty, eq. (24), is linearised as any other model of measurement and the filtering
equations are applied. When a mother particle decays close to its parent vertex for example, the
curvature of the trajectory in the magnetic field of the detector can be neglected and the topological
constraint then connects the mother particle with the parent vertex by a straight line [2].

The mass constraint in case of the state vector of the KF Particle Package eq. (15) in particular
is a nonlinear problem:

f(r) = E2 −
(
p2x + p2y + p2z

)
−M2 = 0 (25)

Here M2 is the invariant mass to be set. By linearising the condition in eq. (25), the distribution
of the mass of reconstructed mother particles will follow a broadened distribution centred at M2
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with tails around the peak. Therefore a nonlinear mass constraint based on the Lagrange method
has been implemented in the KF Particle package guaranteeing the exact constraint on the particle
mass. The mass constraint can also be written as

f(r) =
(
xT,pT, E

)
·

O O 0
O −I 0
0 0 1

 ·
x
p
E

−m2
0 = rT ·M · r−m2

0 = 0 (26)

with x = (x, y, z)T and p = (px, py, pz)
T. The Lagrangian for the mass constraint can then be

defined as
L = (rc − r)T(rc − r) + λ · f(rc) (27)

where r is an initial state vector and rc is the final state vector with a mass constraint set on.
By minimising the Lagrangian with regards to rc, one obtains an expression for the updated state
vector rc:

∂L

∂rc

!
= 0 ⇒ rc = (I + λM)−1 · r (28)

Inserting this expression for rc into eq. (26) results in the following equation for the Lagrange
multiplier λ with p2 = p2x + p2y + p2z:

f(λ) = −M2 · λ4 + (E2 − p2 + 2M2) · λ2 − 2(E2 + p2) · λ+ (E2 − p2 −M2) = 0 (29)

This equation cannot be solved analytically in general, but numerically with Newton’s method:
The solution is found iteratively according to

λn = λn−1 −
f(λn−1)

f ′(λn−1)
(30)

starting with the solution of the quadratic equation without the λ4-term in eq. (29) as initial value
λ0 since the mass correction is assumed to be small [12].

In order to fully appreciate the effect of applying a mass constraint in the reconstruction of
a decay chain, consider the case where a daughter particle B of a mother particle A decays itself
into multiple daughter particles. The B-candidate has itself a broadened mass distribution with
Gaussian contributions due to the measurement uncertainties of its daughter particles. This intro-
duces an additional uncertainty to the mass of the reconstructed A-candidate. However, the mass
resolution of the A-candidate can be significantly improved by setting a mass constraint on particle
B. Moreover, the more reliably the mass of candidate B is exactly set to its true value, the better
is the mass resolution of particle A [12].
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4 Methodology for the analysis

4.1 Residuals and pulls

The quality check of a track or vertex fit is performed on simulated events by comparing the fitted
parameters to their corresponding simulated values. For each parameter two histograms for the
so-called residuals and pulls are produced: The residual is the difference between the fitted value
p and simulated value pt of the parameter under consideration, the pull is the residual normalised
to the expected uncertainty σp obtained from the covariance matrix of the fit:

residual = p− pt

pull =
p− pt

σp

(31)

The residual has the dimension of the parameter under consideration whereas the pull is dimen-
sionless. If the residual and pull distribution of a parameter are centred at zero, the parameter
has been reconstructed without a bias. Moreover, if the pull distribution follows approximately
a Gaussian distribution with standard deviation σ = 1 (and µ = 0), also called standard normal
distribution, the uncertainties of the fitted parameters have been estimated correctly. The dis-
persion of the residual is called resolution. It characterises rather the detector than the precision
of the fit algorithm since the effects of approximations and linearsations of the measurement and
extrapolation equations in the Kalman filter become negligible after several iterations of the fit [2,
4].

In order to estimate the resolution of the reconstructed primary event vertex as well as the
decay vertex and parameters of a short-lived charmed hadron reconstructed with the KF Particle
package, the residual and pull distribution of the PV, SV and transverse momentum of the heavy-
flavour hadron are analysed. For this, multi-Gaussian fit functions are examined in section 4.3.
Different fit functions for the parameter estimation of the mass distribution of the charmed hadron
are discussed in section 4.4.

4.2 Least squares method for binned histograms

The most frequently adopted method to estimate parameters of a distribution according to a set of
measurements is the so-called maximum likelihood method : Given a sample (x1, ..., xn) of n random
variables whose probability density function (PDF) has a known form depending on m parameters
θ = (θ1, ..., θm), the likelihood function L(x1, ..., xn|θ) is defined as the probability density at the
point (x1, ...xn) for certain values of the parameters θ. The maximum likelihood estimator returns
the values θ̂ = (θ̂1, ..., θ̂m) for which the likelihood function evaluated at the measured sample
(x1, ..., xn) is maximum [4].

Consider a set of n measurements (y1 ± σ1, ..., yn ± σn) where each measurement corresponds
to a value xi of a variable x. It is assumed that the model for the dependence of y on the variable
x is given by a function f(x,θ). If the measurements yi are distributed around the value f(xi,θ)
according to a Gaussian distribution with standard deviation equal to the measurement error,
maximising the Likelihood L (y1, ..yn|θ) is equivalent to minimising

χ2(θ) =

n∑
i=1

(yi − f(xi,θ))
2

σ2
i

. (32)

The method of minimising the χ2 variable in eq. (32) in order to obtain an estimate of the parameters
θ is referred to as least squares method. The minimum χ2 value obtained in a fit of the data sample,
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χ̂2, is expected to follow a χ2 distribution with a number of degrees of freedom k equal to the number
of measurements n minus the number of fit parameters m, k = n−m:

fχ2(x; k) =
x

k
2
−1 · e−

x
2

2
k
2 · Γ

(
k
2

)
E(x) = ⟨x⟩ = k

Var(x) = ⟨x2⟩ − ⟨x⟩2 = 2k

(33)

One advantage of the least squares method is that the minimum χ2 value can be used as measure-
ment of the goodness of fit, for instance by calculating the reduced χ2 value:

χ̂2
red =

χ̂2

k
(34)

Since χ̂2 is known to follow a χ2 distribution with k degrees of freedom, the expectation value and
variance of the reduced χ2-value are given by:

E
(
χ̂2
red

)
=

E(χ̂2)

k
=

k

k
= 1 (35)

Var(χ̂2
red) =

Var(χ̂2)

k2
=

2k

k2
=

2

k
(36)

For a large number of of degrees of freedom k due to a large number of measurements n a, the
χ2-distribution becomes approximately Gaussian. Taking the square root of the variance of the
reduced χ2 value as standard deviation of this approximately Gaussian peak, σ =

√
2/k, it can be

tested whether the deviation of the χ2
red value from 1 is statistically significant [4].

The maximum likelihood method uses the complete set of information given by the entire
measurement sample. This may cause problems with regards to the necessary computing power
and machine precision or it is simply not preferable to use the entire sample. Thus, the sample’s
information is frequently summarised by binning the distribution of the random variable and using
the number of entries in each single bin as information (ni, ..., nN ), where the number of intervals N
is typically significantly smaller than the number of measurements n. If the measurement sample
is composed of independent extractions from a given random distribution, the number of entries in
each interval follows a Poisson distribution:

fP(n; ν) = e−ν · ν
n

n!
E(n) = ⟨n⟩ = ν

Var(n) = ⟨n2⟩ − ⟨n⟩2 = ν

(37)

The corresponding mean ν is given by the expected number of entries in that bin:

µi(θ) =

∫ xup
i

xlow
i

f(x;θ) dx ≈ f(x̄i;θ) ·∆xi (38)

Here
[
xlowi , xupi

]
is the interval corresponding to the ith bin. For sufficiently fine binning, the

expected number of entries can be approximated by multiplying the value of the PDF at the centre
of the bin x̄i = (xupi + xlowi )/2 with width ∆xi. Furthermore, the Poisson distributions can be
approximated by Gaussian distributions for sufficiently large number of entries in each bin: Using
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the expected number of entries µi(θ) or the observed number of entries ni respectively as variances,
the following χ2 variables can be defined:

χ2
P =

N∑
i=1

(ni − µi(θ))
2

µi(θ)
Pearson’s χ2 (39)

χ2
N =

N∑
i=1

(ni − µi(θ))
2

ni
Neyman’s χ2 (40)

The minimum (Pearson’s or Neyman’s) χ2 values obtained in a least squares fit of the histogram
follow a χ2 distribution with the number of degrees of freedom k equal to the number of bins N
minus the number of fit parameters m. Therefore, they can be used for parameter estimation and
determination of the goodness of fit as described above. In the following analysis, the optimal set of
parameters and the corresponding covariance matrix are estimated with a nonlinear least squares
fit using the scipy.optimize.curve fit function. Since scipy.optimize.curve fit uses the observed
numbers of entries ni as variances, only Neyman’s χ2 values will be calculated for the estimation
of the goodness of fit [4].

The Gaussian approximation does not hold for small number of entries and a Poissonian model
should be applied in this case: If the number of measurements is sufficiently large and the assumed
model correct,

χ2
λ = −2 ln

(
N∏
i=1

fP (ni|µi(θ))

fP(ni|ni)

)
(41)

follows a χ2-distribution the number of degrees of freedom k equal to the number of binsN minus the
number of fit parameters m. However, the Gaussian approximation is assumed to be sufficient since
the number of entries is sufficiently large in the peak region of the distributions under consideration
in this analysis. Moreover, only bins with 5 or more entries will be used for fitting in order to avoid
problems with the Gaussian approximation in bins with few entries. The bins with small number
of entries lie only in the tails of the distributions under consideration and thus, only statistical
outliers will be omitted from the fit. Furthermore, the ratio of the number of entries in each bin ni

to the expected values µi(θ) will be checked in order to determine in which part of the distribution
possible deviations arise: The ratios should be consistent with one within their uncertainties in
the peak region, but small deviations in the tail where the statistical fluctuations are high are not
significant [4].

4.3 Multi-Gaussian fits

In order to detect a possible dependency from the resolution of one parameter on another one,
the analysis of the pull and residual distributions has been performed in different intervals of this
parameter. For instance, the primary vertex resolution is determined as a function of the number
of tracks contributing to the vertex fit, the so-called number of contributors. For events with short-
lived particles on the other hand, the secondary vertex resolution and parameters of the mother
particle are analysed as a function of the transverse momentum pT of the mother particle. One might
expect that the residual and pull distributions of a parameter for a single interval are distributed
according to a Gaussian function. However, a single Gaussian function is not sufficient to properly
describe the underlying distribution, as its tails in particular are underestimated. Therefore a sum
of multiple Gaussians is fitted to the corresponding distributions. Since the resolution of a vertex or
physical parameter of a decayed particle depends on the uncertainty of the individual tracks used for
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their reconstruction, the resolution of the parameter under consideration might differ significantly
even for the exact same interval of number of contributors or transverse momentum:

- Short-lived particles decaying before or shortly within the tracking system have to be recon-
structed from their daughter particles. Having none or only few direct measurements, the
uncertainties of the track parameters of the mother particle are comparably large.

- Since multiple scattering is a random process, one or more track used for reconstruction of a
vertex or short-lived particle might be extraordinarily affected and its uncertainty increased.
This might especially be the case when events with similar number of contributors are selected,
but the number of low-momentum particles, which are affected more by multiple scattering,
varies.

- Particles passing through dead areas or outside the acceptance of a sub-detector have a
reduced number of measurements and possibly a shorter length of measured track, increasing
the uncertainties of the corresponding track parameters. For a small number of tracks used
for reconstruction of a vertex or decayed particle, the resolution of the fitted parameters may
be decisively determined by the number of tracks reconstructed from very few measurements.

As a result, events from the exact same interval of number of contributors or transverse momentum
can be divided into different classes characterised by e.g. the number of short-lived particles or
tracks with very poor resolution. However, not for every possible combination of the effects de-
scribed above an additional Gaussian distribution is fitted as many of these classes have a similar
resolution or the statistics are insufficient such that only outliers in the tails of the distribution
might be noticeable. With regards to computing effort and in order to avoid overfitting (especially
of statistical fluctuations in the tails of the residual and pull distributions), an additional Gaussian
is added to the fit function until it properly describes the data.

Let n be the number of individual Gaussian distributions, then the overall fit function is given
by

fn (x;A1, ..., An, µ1, ..., µn, σ1, ..., σn) =
n∑

i=1

Ai√
2π · σi

· exp
(
−(x− µi)

2

2σ2
i

)
(42)

The Ai are normalisation factors with the dimension of number of events Ni× binwidth b, µi the
mean values and σi the standard deviations of the individual Gaussians.

The mean values µi and standard deviations σi of the individual Gaussians are weighted with
the normalisation constants Ai in order to estimate the position and width of the peak of the
underlying distribution:

µw =

∑n
i=1Ai · µi∑n

i=1Ai

σw =

∑n
i=1Ai · σi∑n

i=1Ai

(43)

This is equivalent to using the number of events associated to each Gaussian

Ni =
Ai

b
(44)

as weights since the factor 1/b cancels from eq. (43). The uncertainties of the weighted parameters
are calculated with Gaussian error propagation taking all the correlations of the various variables
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Figure 4: Fit of a single-Gaussian, double-Gaussian and triple-Gaussian to the SV residual dis-
tribution for Ξ+

c candidates (corresponding to case 5 in table 3) with transverse momentum
5 ≤ pT < 6GeV/c (left). The ratio of the histogram with respect to the value of the corre-
sponding fit function is plotted on the right.

into account. By writing

x = (A1, ..., An, σ1, ..., σn)

V =



(∆A1)
2 cov(A1, A2) cov(A1, A3) cov(A1, σ1) cov(A1, σ2) cov(A1, σ3)

cov(A1, A2) (∆A2)
2 cov(A2, A3) cov(A2, σ1) cov(A2, σ2) cov(A2, σ3)

cov(A1, A3) cov(A2, A3) (∆A3)
2 cov(A3, σ1) cov(A3, σ2) cov(A3, σ3)

cov(A1, σ1) cov(A2, σ1) cov(A3, σ1) (∆σ1)
2 cov(σ1, σ2) cov(σ1, σ3)

cov(A1, σ2) cov(A2, σ2) cov(A3, σ2) cov(σ1, σ2) (∆σ2)
2 cov(σ2, σ3)

cov(A1, σ3) cov(A2, σ3) cov(A3, σ3) cov(σ1, σ3) cov(σ2, σ3) (∆σ3)
2


(45)

the uncertainty can be calculated in the following way:

(∆σw)
2 =

n∑
i,j=1

∂σw
∂xi
· ∂σw
∂xj

·Vij (46)

The additional terms in the 6 × 6 dimensional covariance matrix for a triple-Gaussian in eq. (45)
with respect to the 4× 4 dimensional covariance matrix for a double-Gaussian are marked in red.
As a result, the uncertainty of the weighted standard deviation for the double-Gaussian distribution
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σDG
w is given by:

s2 = A1 +A2

w2 = A1σ1 +A2σ2

s42 ·
(
∆σDG

w

)2
= (σ1 − σ2)

2
[
(A1∆A2)

2 + (A2∆A1)
2
]

+ 2 cov(A1, A2) · (w2 − s2 · σ1) · (w2 − s2 · σ2)
+ s22 ·

[
(A1∆σ1)

2 + (A2∆σ2)
2 + 2A1A2 · cov(σ1, σ2)

]
− 2 s2 ·

{
A1 · [cov(A1, σ1) · (w2 − s2 · σ1) + cov(A2, σ1) · (w2 − s2 · σ2)]

+A2 · [cov(A1, σ2) · (w2 − s2 · σ1) + cov(A2, σ2) · (w2 − s2 · σ2)]
}

(47)

The formula of the uncertainty of the weighted standard deviation of a triple-Gaussian distribution
is given in the appendix, eq. (59), and the corresponding formulas for the weighted mean are easily
obtained by replacing σi ←→ µi.

4.4 Fit functions for the mass distribution

The mass of the reconstructed Ξ+
c baryon is analysed in different transverse momentum intervals of

the Ξ+
c baryon. If the detector resolution is much smaller than the particles decay width, the mass

distribution of a decayed particle follows a so-called Breit-Wigner distribution: It arises from the
square of the propagator of the virtual particle which mediates the decay. However, if the decay
width of the particle cannot be resolved by the detector, its mass distribution follows a Gaussian
distribution which width is determined by the detector resolution. The convolution of the Breit-
Wigner and Gaussian distribution, the Voigt profile, takes both of these effects into account when
the particle’s decay width and the detector resolution are similar in magnitude. In order to obtain
a suitable description of the underlying mass distribution, all of these three fit functions were
examined [4].

Firstly, the Gaussian distribution (G) is defined by

fG(x;NG, µG, σ) =
NG√
2π · σ

· exp
(
−(x− µG)

2

2σ2

)
(48)

with the parameters µG and σ being the mean and standard deviation respectively. It is normalised
to unity for NG = 1 and its full width at half maximum (FWHM) is given by

FWHMG = 2
√
2 ln(2) · σ (49)

Secondly, the Breit-Wigner distribution (BW) is given by

fBW(x;NBW, x0, γ) =
NBW

π

γ

(x− x0)2 + γ2
(50)

and normalised to unity for NBW = 1. The parameter x0 determines the position of the maximum
of the distribution and the parameter γ determines the half width at half maximum (HWHM) such
that

FWHMBW = 2γ (51)

The mean and variance of a Breit-Wigner distribution are undefined since the integrals of x·fBW(x)
and x2 · fBW(x) themselves are undefined [4].
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Finally, the Voigt profile (V) is a convolution of a Gaussian and a Breit-Wigner distribution:

fV(x;µG, σ, x0, γ) =

∫ +∞

−∞
dν̃ fG(ν̃) · fBW(x− ν̃) dν̃

=

∫ +∞

−∞
dν̃

1√
2πσ

exp

(
−(ν̃ − µG)

2

2σ2

)
· 1
π

γ

(x− ν̃ − x0)2 + γ2

(52)

The convolution integral defining the Voigt profile in eq. (52) cannot be evaluated analytically.
Therefore eq. (52) has to be rewritten: Starting with the variable transformation ν̃ = ν + µG with
dν̃ = dν and defining µV := µG + x0 as the centre of the Voigt profile results in:

fV(x;µV, σ, γ) =
γ

π3/2

∫ +∞

−∞
dν

1√
2σ

exp

(
− ν2

2σ2

)
· 1

(x− ν − µV)2 + γ2

=
γ

π3/2

∫ +∞

−∞
dν

1√
2σ

exp

(
− ν2

2σ2

)
· 1

2σ2 ·
[(

x−µV√
2σ
− ν√

2σ

)2
+ γ2

2σ2

]
Performing the additional variable transformation t := ν√

2σ
with dt = dν√

2σ
and introducing the

dimensionless variables

a =
x− µV√

2σ

b =
γ√
2σ

(53)

leads to

fV(a, b) =
1√
2πσ

· b
π

∫ +∞

−∞
dt

e−t2

(a− t)2 + b2
=

1√
2πσ

·K(a, b) (54)

By defining the complex number z := a+ ib the function K(a, b) can be identified as the real part
of the complex function

W (z) =
i

π

∫ +∞

−∞
dt

e−t2

z − t

=
i

π

∫ +∞

−∞
dt

e−t2

a+ ib− t

=
i

π

∫ +∞

−∞
dt

e−t2 · [(a− t)− ib]

[(a− t) + ib] [(a− t)− ib]

=
b

π

∫ +∞

−∞
dt

e−t2

(a− t)2 + b2︸ ︷︷ ︸
=Re(W(z))

+i · 1
π

∫ +∞

−∞
dt

e−t2 · (a− t)

(a− t)2 + b2︸ ︷︷ ︸
=Im(W(z))

which is related to the complex error function erf(z) via

w(z) = e−z2 · [1− erf(−iz)]

w(z) =

{
W (z) y > 0

W (z) + 2e−z2 y < 0
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All in all, the convolution integral defining the Voigt profile in eq. (52) can be related to the complex
error function. Although it cannot be evaluated analytically as well, robust numerical algorithms
for the complex error function can be used to evaluate the Voigt profile enabling a fit of the Voigt
function to data in the following way:

fV(x;NV, µV, σ, γ) =
NV√
2π · σ

· Re
[
w

(
x− µV + iγ√

2 · σ

)]
(55)

Again, eq. (55) is normalised to unity for NV = 1 [9].
The Gaussian and Breit-Wigner distributions (eq. (48) and eq. (50), respectively) as well as the

Voigt profile eq. (55) were fitted to the mass distribution of the reconstructed Ξ+
c baryon for each

pT interval (see as an example fig. 5). On the left panel of fig. 5 the histogram of the mass and the
corresponding fit functions are plotted, whereas on the right panel of fig. 5 the ratio of the histogram
and the fit function is shown. In addition, the corresponding reduced χ2

red values are reported in the
legend as an overall measure of the fit quality. The fitted Breit-Wigner distribution is too narrow
and too high in the peak region and overestimates the tails. In contrast, the Gaussian distribution
describes the peak very well, but largely underestimates the tails of the mass distribution. This
is also reflected by the large deviations of χ2

red,BW = 33.12 and χ2
red,G = 6.56 from 1. The Voigt

profile however describes the underlying distribution over the entire range of the mass distribution
with a χ2

red value of 1.46. Taking σ =
√
2/100 ≈ 0.14 as standard deviation of the χ2

red value, its
deviation from 1 corresponds to 3.25σ. One could argue that this is statistically significant, but
the deviations mainly arise from the tail of the mass distribution with low statistics. Moreover, the
ratio of the histogram to the fit function almost always overlap with one within their uncertainties
and therefore does not deviate more than 3σ from one. fig. 5 shows one of the cases with a higher
χ2
red value, in fact almost all other χ2

red values are smaller. The fitted Voigt profiles provide the
best description of the mass distributions and are therefore used for the following analysis.

The position of the centre of the Voigt profile µV is directly obtained from the fit and the
corresponding error from the estimated covariance matrix of the fit parameters. The FWHM of
the Voigt profile can be estimated from the fit parameters for σ and γ according to the so-called
Kielkopf approximation

FWHMV = 0.5343 · FWHMBW +

√
0.2169 · FWHMBW

2 + FWHMG
2

= 1.0686γ + 2
√

0.2169γ2 + 2 ln(2) · σ2
(56)

which is accurate up to 0.023% [5].
In order to obtain an estimate for the maximum total uncertainty of the FWHM of the Voigt

profile, the error for the FWHM of the Voigt profile due to the (co-) variances of the parameters of
the fit function calculated analogue to eq. (46) is added in quadrature to the maximum uncertainty
of the approximation formula marked in red:

(∆FWHMV)
2 =

(4 ln(2)σ)2 · (∆σ)2

0.2169γ2 + 2 ln(2) · σ2
+

(1.0686 + 2 · 0.2169γ)2 · (∆γ)2

0.2169γ2 + 2 ln(2) · σ2

+
2 (1.0686 + 2 · 0.2169γ) · (4 ln(2)σ) · cov(σ, γ)

0.2169γ2 + 2 ln(2) · σ2
+ 0.00232

(57)
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Figure 5: Fits of a Gaussian function, Breit-Wigner distribution and Voigt profile to the mass
distribution of Ξ+

c candidates (corresponding to case 5 in table 3) with reconstructed transverse
momentum of 5 ≤ pT < 6GeV/c (left). The ratio of the histogram with respect to the values of
the corresponding fit function are plotted on the right.

24



5 Minimum-bias Monte Carlo data

5.1 Minimum-bias triggered Monte Carlo data

In order to test the reconstruction of the AOD PV by comparing the reconstructed vertex coor-
dinates with their corresponding true values, data generated in Monte Carlo (MC) simulations is
used. MC simulations are used in particle physics to simulate particle collisions and are based on
a great number of random experiments. Using the event generator PYTHIA8 with the input of
branching ratios of particle decays amongst others, primary collisions are simulated including the
information of all emerging particles. The interaction with the detector material and the corre-
sponding detector responses of the final state particles were simulated with the detector response
simulation code GEANT3. Afterwards the simulated clusters created by the simulated particles in
the detector are digitised such that the final data sample closely resembles the real recorded data
and that it can be reconstructed and analysed in the exact same way [8, 7].

For the first part of the analysis, MC data for minimum-bias triggered pp-collisions at a centre-
of-mass energy of

√
s = 13TeV is used. The simulated data with approximately 54.6 million

candidates was modelled using the Run 2 ALICE setup. Since the abundance of heavy-flavour
quarks in minimum-bias data is low, it can be used to investigate whether certain systematic
effects of the AOD PV resolution in charm-enriched MC data are caused by the presence of the
heavy-flavour hadron or whether it is rather an artefact of the vertex reconstruction in general.

5.2 AOD primary vertex resolution

The resolution of the AOD PV is studied in intervals of the number of contributors NCont given
by the variable PV NContributors (see fig. 6). The mean value of the number of contributors
for minimum-bias triggered MC data is 14.2, whereas the median, defined as the point x̄ where
P (x < x̄) = P (x > x̄) for a given probability distribution [4], is 10.0.

In order to estimate the parameters of the PV residual distribution along the x- and y-axis,
a double-Gaussian fit function is used for the six lowest and three highest NCont-intervals as the
contribution of the tails is sufficiently described by one additional Gaussian distribution for small
NCont or the statistics are limited for high NCont-intervals. For the remaining intervals, a triple-
Gaussian fit function is used. For the PV residual distribution along the z-axis, a triple-Gaussian
fit function is used for the lower half, whereas a double-Gaussian fit function suffices for the upper
half of the NCont-intervals.

The mean value of the AOD PV residual distribution is depicted in fig. 7: After an increase
of the mean residuals along the x- and y-axis, the mean residuals reach their approximately con-
stant value of 3.0µm for the x-axis, 0.8µm for the y-axis and −4.4µm for the z-axis. Thus, the
reconstructed AOD PV coordinates are, on average, slightly overestimated for the x- and y- axis
and underestimated for the z-axis. fig. 8 shows that the resolution of the PV along the z-axis is
significantly worse than for the x- and y-axis, especially for low number of contributors. In addition
to that, the resolution in the transversal plane is asymmetric since the standard deviation for the
x-axis is significantly larger than for the y-axis for all NCont intervals.

The pull distribution does not exactly correspond to a standard normal distribution: The abso-
lute values of the mean pulls increase systematically with increasing NCont (see fig. 16). Moreover,
the weighted standard deviation of the pull distributions along the different coordinate axes in
fig. 17 are significantly smaller than 1 and slightly decrease with increasing number of contributors.
They range approximately from 0.9 to 0.86 for the x- and y-axis and from 0.96 to 0.92 for the
z-axis. Thus, the uncertainties of the AOD PV variables are on average slightly overestimated.
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Figure 6: Number of contributors in minimum-bias triggered MC data.
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Figure 7: Weighted mean of the PV residual distribution as a function of the number of contributors.

Figure 8: Weighted standard deviation of the PV residual distribution as a function of the number
of contributors.
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Figure 9: Weighted mean of the PV pull distribution obtained from double-Gaussian fits as a
function of the number of contributors.

Figure 10: Weighted standard deviation of the PV pull distribution in minimum-bias MC data
obtained from double-Gaussian fits as a function of the number of contributors.
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6 Charm-enriched Monte Carlo data

6.1 Monte Carlo data for the analysis of Ξ+
c → Ξ−π+π+

In order to test the mass and topological constraints implemented in the KF Particle package, MC
data for the decay Ξ+

c → Ξ−π+π+ is used. The analysis is restricted to the case where the Ξ−

decays into a π− and a Λ0 baryon, which in turn decays into a proton and a π− (see fig. 11).

Figure 11: Non-resonant decay chain of a prompt Ξ+
c baryon [7].

Due to its very short decay length of 136µm [11], the Ξ+
c baryon will practically never be directly

detected by the ITS. In contrast, a significant fraction of the Ξ− baryon will decay within the ITS
and therefore produce hits in (multiple) ITS layers. As the Λ0 is neutral, it will not generate any
signals in the ITS itself, but its charged decay daughters might produce hits in the outer layers of
the ITS (compare table 1 with table 2).

The MC data was again generated with the event generator PYTHIA8 and detector response
simulator GEANT3. The data was modelled for pp-collisions at

√
s = 13TeV using the ALICE

setup specifically for every year of Run 2. Thus, effects from the accumulated radiation damage for
instance are taken into account in order to resemble the real data taken in that period as closely as
possible. A cc̄-pair was injected in two thirds of the events and a bb̄-pair in the remaining events.
However, only simulated events containing the decay channel Ξ+

c → Ξ−π+π+ were selected. The Ξ+
c

baryons originating from the decay of a beauty hadron are called feed-down Ξ+
c , whereas the ones

produced directly in the primary collision and therefore originating from the primary vertex are
called prompt particles. In addition to that, a small fraction of prompt and feed-down candidates
were simulated to decay via the resonance Ξ+

c → Ξ(1530)0π+ → Ξ−π+π+. Nevertheless, only
prompt non-resonant Ξ+

c baryons are taken into account in the following analysis.
An overview of the mass and topological constraints is given in table 3. Since the goal of the

analysis is to reconstruct the Ξ+
c baryon, the mass constraints are only applied on the daughter

particles Ξ− and Λ0 using the corresponding masses from the Particle Data Group (PDG) listed
in table 2. The Λ0 is constrained to its parent vertex, the decay vertex (DV) of the Ξ−, whereas
the Ξ− is constrained to the PV. This is justified by the fact that the Ξ+

c has a very short decay
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particle (quark content) mass
[
GeV/c2

]
lifetime [s] decay length cτ [cm]

Ξ+
c (usc) 2.46771± 0.00023 (453± 5) · 10−15 0.0136

Ξ− (dss) 1.32171± 0.00007 (1.639± 0.015) · 10−10 4.9136

Λ0 (uds) 1.115683± 0.000006 (2.632± 0.020) · 10−10 7.8905

Table 2: Properties of the short-lived baryons in the non-resonant Ξ+
c decay chain [11].

length of cτ = 136µm which is comparable to the spatial resolution of ALICE in Run 2 (compare
with the PV resolution in fig. 15 for instance) and much smaller than the decay length of the Ξ−

baryon of cτ ≈ 4.9 cm. In addition to that, the PV is known very precisely compared to the SV
(see fig. 22), i.e. the DV of the Ξ+

c , and it is preferable to use the best possible vertex for the
topological constraint. Starting from the instance of the Ξ+

c reconstructed without any additional
physical constraints, the application of the individual constraints follows a bottom-up scheme in
order to obtain different instances of the reconstructed Ξ+

c : The mass constraints are applied first
and only then the topological constraints are added. This sequence of constraints in table 3 is
natural since the optimal daughter candidate should be used to reconstruct the associated mother
particle. The different instances of the reconstructed Ξ+

c are then stored in separate data sets such
that the resolution of the vertices and physical parameters can be compared afterwards. Overall
approximately 170.000 prompt non-resonant Ξ+

c candidates are analysed for every data set.

# mass
constraint
on Λ0

mass
constraint
on Ξ−

topological
constraint of
Λ0 to Ξ− DV

topological
constraint
of Ξ− to PV

topological
constraint
of Ξ+

c to PV

0 - - - - -

1 x - - - -

2 x x - - -

3 x x - - x

4 x x x - -

5 x x x x -

6 x x x x x

Table 3: Applied constraints in each data set used for the analysis.

The analysis is always performed in intervals of the reconstructed transverse momentum of the
Ξ+
c with the exception of the analysis of the pT-residuals since the true MC value of the transverse

momentum of the Ξ+
c baryon is not stored for case 3 in table 3. In addition to that, the pT

distribution does not change significantly for the different instances of the reconstructed Ξ+
c from

table 3 (see fig. 12) and the resolution of the reconstructed transverse momentum of the order of
10MeV/c is sufficient (see section 6.6). Therefore, pT,rec is denoted as pT in the following. The
number of candidates associated to each pT interval are given in table 4: The number of candidates
is maximal for medium transverse momenta and decreases for low and high transverse momenta
respectively.
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Figure 12: Distribution of the reconstructed transverse momentum of the different instances of the
prompt non-resonant Ξ+

c baryons. The black, dotted lines indicate the pT intervals used in the
analysis.

pT,rec [GeV/c] 0-2 2-3 3-4 4-5 5-6 6-7 7-8 8-10 10-15

⟨NCand⟩ 9712 20357 29529 30177 24456 18251 12380 13504 9011

Table 4: Average number of candidates ⟨NCand⟩ for every pT-bin for the different analysis cases
given in table 3.
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6.2 AOD primary vertex resolution

The following analysis of the AOD PV resolution has been performed for Ξ+
c candidates recon-

structed with both mass constraints on Λ0 and Ξ− and the topological constraint on the Ξ+
c to the

PV (case 3 in table 3).

Figure 13: Distribution of the number of contributors as a function of the variables
PV NContributors and PV CountRealContributors.

The distribution of the number of contributors is shown in fig. 13 as a function of two different
variables: In contrast to PV CountRealContributors, PV NContributors includes some tracks which
are not added as direct daughters in the vertex fit, but belong in fact to daughter particles origi-
nating from a secondary vertex. Thus, the minimum value of PV NContributors is 2 as two tracks
are needed to fit a vertex. On the contrary, the minimum value of PV CountRealContributors
can be 0 when a mother particle originating from the PV has a very short decay length (as it
is the case for the Ξ+

c ) and the PV has therefore been in fact reconstructed using only daughter
particles of short-lived particles. Since every candidate in the charm-enriched MC sample con-
tains the decay of Ξ+

c → Ξ−π+π+ and the charged pions for instance might be used for fitting
the PV even though they do not increment the counter of PV CountRealContributors, the value
of PV CountRealContributors is always smaller than or equal to the value of PV NContributors.
All in all, the number of contributors is increased in comparison to the minimum-bias MC data
(compare with fig. 6): The values for mean and median of PV NContributors increase from 14.2
and 10.0 to 22.1 and 20.0 respectively, but also the values of the mean value of 17.5 and median
of 17.0 of PV CountRealContributors are larger. Since PV CountRealContributors does not take
daughter particles into account, it provides a more robust estimate of the number of contributors
and is therefore used for the analysis of the PV resolution.

The mean values of the AOD PV residual distribution are constant over the entire range of the
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number of contributors and for all three coordinate axes. The mean values of the PV residuals
averaged over all Ncont intervals are approximately +2.2µm along the x-axis, +0.8µm along the
y-axis and −4.1µm in z-direction (see fig. 14). Thus, the mean values of the AOD PV residuals are
almost identical for minimum-bias and charm-enriched MC data. However, an increase of the mean
PV residuals is not detectable for the x- and y- axis as in the minimum-bias MC data. This is due
to the fact that the statistics for the charm-enriched MC data are significantly lower, especially
in the first Ncont, and the PV CountRealContributors intervals, including also candidates which
would be assigned to higher PV NContributors intervals, are therefore chosen much larger. The
low NCont increase is therefore mitigated or statistically insignificant.

Figure 14: Weighted mean of the PV residual distribution obtained from double-Gaussian fits as a
function of the real number of contributors.

For all three coordinate axes, the standard deviation of the PV residuals decreases with increas-
ing number of contributors (see fig. 15) as expected. The AOD PV resolution along the x- and
y-axis ranging from approximately 50µm or 40µm respectively to 20µm is almost identical to the
obtained AOD PV resolution in minimum-bias MC data. The AOD PV resolution along the beam-
line (z-axis) ranging from 120µm to approximately 30µm is again worse than in the transversal
xy-plane. In contrast to the first NCont intervals in minimum-bias MC data, the width of the PV
residuals along the z-axis does not increase above 120µm since the number of candidates containing
only very few primary tracks (PV CountRealContributors≤ 2) in the first NCont interval for charm-
enriched MC data is small compared to the candidates with 3 ≤ PVCountRealContributors ≤ 5
and a much better vertex resolution. As a result, their impact on the weighted parameters obtained
from the double-Gaussian fit is rather small if they are not omitted as statistical outliers from the
fit in the first place. Moreover, the xy-asymmetry of the AOD PV resolution is confirmed also for
the charm-enriched MC data.
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Figure 15: Weighted standard deviation of the PV residual distribution obtained from double-
Gaussian fits as a function of the real number of contributors.

Figure 16 shows the mean value of the AOD PV pull distribution. As for minimum-bias MC
data, the mean values are close to zero for small NCont and deviate with the same magnitude (max-
imum ±0.1) from zero for large number of contributors. Although the deviations are significant
especially for large NCont, they are comparably small with respect to the width of the pull distri-
bution and can therefore be roughly approximated with zero. The weighted standard deviations of
the pull distribution along all three coordinate axes depicted in fig. 17 are consistent with 1 within
their uncertainties for small numbers of contributors and decrease significantly up to approximately
0.9 for large number of contributors. Thus, for increasing number of contributors the uncertainties
of the reconstructed AOD PV are again slightly overestimated.

To sum up, the resolution of the AOD primary vertex is mainly unaffected by the presence of
charmed baryons. The small biases of the respective vertex coordinates are probably rather an
intrinsic bias of the reconstruction algorithm than an effect of the Ξ+

c decay. The uncertainties of
each vertex coordinate appears to be slightly overestimated.
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Figure 16: Weighted mean of the PV pull distribution obtained from single-Gaussian fits as a
function of the real number of contributors.

Figure 17: Weighted standard deviation of the PV pull distribution obtained from single-Gaussian
fits as a function of the real number of contributors.
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6.3 Primary vertex shifts

In order to test whether the primary vertex is systematically biased in the direction of the decay
vertex of the Ξ+

c baryon due to including its daughter tracks in the PV fit, the PV shift s is
calculated: The vector connecting the reconstructed PV with the true MC PV, t⃗− r⃗, is projected
on the vector connecting the true MC SV with the true MC PV, t⃗ (see fig. 18):

s =
(⃗t− r⃗) · t⃗
|⃗t|

= (⃗t− r⃗) · e⃗t (58)

Here, e⃗t denotes the normalised vector in direction of t⃗. Thus, the value of the PV shift is negative
when the PV has been reconstructed behind the MC PV looking from the MC SV, and positive
when the reconstructed PV is in front of the MC PV. The width of the PV shift distribution can be
interpreted as a measure of how far the reconstructed PV spreads around the MC PV and therefore
as a measure of the PV resolution.

Figure 18: Sketch of the calculation of the primary vertex shifts s. Looking from the MC SV
position, the PV has been reconstructed in front of the MC PV in case 1), whereas the PV has
been reconstructed behind the MC PV in case 2).

The parameters of the shift distribution have been analysed for different intervals of the trans-
verse momentum of the Ξ+

c for two different instances of the reconstructed primary event vertex:
The default and a recalculated version of the AOD PV, where the Ξ+

c is added and the measure-
ments of its daughter particles are removed from the PV fit. For this, the instance of the Ξ+

c

reconstructed with mass constraints on both daughter particles, Λ0 and Ξ−, and topological con-
straint of the Ξ+

c to the AOD PV (case 3 in table 3) is used. A double-Gaussian distribution has
been fitted to the PV shift distributions for both instances of the reconstructed PV and every single
pT interval.

The mean values of the PV shift distributions deviate significantly from zero for every pT
interval. By adding the reconstructed Ξ+

c baryon and removing its daughter particles, the mean
shifts change from approximately +4µm to approximately −2.7µm (see fig. 19). This might suggest
that the PV is on average slightly shifted to the SV before recalculating the AOD PV and a little
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bit less shifted away from the SV afterwards. However, since the mean value of the AOD PV shift
with respect to the SV has the same magnitude as the intrinsic AOD PV shift, i.e. the mean values
of the AOD PV residual distribution, it can not be unequivocally attributed to the decay of the
Ξ+
c . The inversion of the mean shifts after recalculating the AOD PV could be caused by daughter

particles from the decay of the other heavy-flavour hadron which contains the c̄ anti-quark and
has not been taken into account in the recalculation of the PV. For the majority of the simulated
collisions, it is emitted back-to-back in the centre-of-mass frame and therefore the other charmed
hadron and its daughters tend to be on the opposite side of the Ξ+

c in the laboratory frame.

Figure 19: Mean values of the PV shifts obtained from double-Gaussian fits as a function of the
transverse momentum of the Ξ+

c baryon. The mean distance between the default AOD PV and
MC PV, which is calculated by adding the mean AOD PV residual for each coordinate from fig. 14
averaged over all pT intervals in quadrature, is shown as reference.

The weighted standard deviation σw of the PV shift distribution is shown in fig. 20 and is on
average 40µm, which is comparable to the AOD PV resolution. Since σw is minimal for the default
AOD PV for every pT interval, the PV resolution appears to be better for the default AOD PV.
This could be the case as probably precise measurements of both π+ originating from the decay of
the Ξ+

c and possibly a measured Ξ− are replaced by a poorly reconstructed Ξ+
c (see fig. 22 below),

therefore increasing the uncertainty of the recalculated PV. However, other versions of the AOD
PV recalculated with better reconstructed instances of the Ξ+

c were not available in the course of
this thesis.

To conclude, it is clear from fig. 19 and fig. 20 that there is no PV shift in direction of the SV in
the order of O(10µm) which is comparable or larger than the PV (shift) resolution. Further tests,
e.g. the number of removed daughter particles, are needed in order to characterise the observed
mean shifts as a result of the Ξ+

c baryon or intrinsic biases.
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Figure 20: Standard deviation of the PV shifts obtained from double-Gaussian fits as a function of
the transverse momentum of the Ξ+

c baryon.

6.4 Secondary vertex resolution

The secondary vertex resolution is analysed for all three coordinate axes. The discussion in this
section is mainly restricted to the residual and pull distributions along the x-axis, i.e. transverse
to the beamline. The corresponding analysis for the y- and z- axis can be found in the appendix.

In fig. 21 one can see that the mean value of the SV residuals is consistent with 0 within the
uncertainties. For the cases 5 and 6 with the topological constraint on the Ξ− to the PV, the
mean values of the SV residual distribution are shifted systematically to larger negative values
with increasing transverse momentum.. However, this trend is not observed for the SV residuals
along the y- and z-axis (see fig. 34 and 34 in the appendix)

The width of the SV residual distribution for all different instances of the reconstructed Ξ+
c

baryon is depicted in fig. 22. There is no significant difference in the SV resolution for the cases
0-3 in table 3. Therefore, applying successively the mass constraints on the Λ0 and Ξ− baryons
and the topological constraint on the Ξ+

c to the PV does not change the width of the SV residual
distribution compared to the case when no physical constraints are applied. However, applying the
topological constraint on the Λ0 baryon to the Ξ− decay vertex yields a worse SV resolution for
every pT interval. This effect is compensated and the SV resolution is improved significantly with
regards to all previous instances of the Ξ+

c baryon (cases 0-4) by adding the topological constraint of
the Ξ− baryon to the PV (cases 5-6). The width of the SV residuals decreases from approximately
250µm averaged over all pT intervals to approximately 200µm for high transverse momentum and
up to 100µm for the low pT intervals. Adding the topological constraint on the Ξ+

c to the PV (case
6 in table 3) leads to a slightly narrower SV residual distribution for every pT interval compared
to the case where only the topological constraint on the Ξ− baryon is added (case 5 in table 3).
Although the improvement is significant only for the low pT intervals, the Ξ+

c reconstructed with
all possible constraints applied seems to provide overall the best resolution of the SV.
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Figure 21: Weighted mean of the SV residual distribution along the x-axis obtained from triple-
Gaussian fits as a function of the transverse momentum of the Ξ+

c baryon.

Figure 22: Weighted standard deviation of the SV residual distribution along the x-axis obtained
from triple-Gaussian fits as a function of the transverse momentum of the Ξ+

c baryon.

The resolution of the SV decreases for low and high transverse momenta of the Ξ+
c baryon. On

the one hand, the increase of the weighted standard deviation for high pT is due to the fact that for
higher momentum of the mother particle, the daughter particles themselves possess higher momenta
and are therefore more boosted. As a result, the tracks of the daughter particles lie closer together
in the laboratory frame and the region where their trajectories intersect within their uncertainties
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becomes larger leading to a poorer vertex resolution. For low transverse momenta of the mother
particle on the other hand, the daughter particles themselves have lower momenta and are therefore
more affected by multiple scattering. Thus, the uncertainties of the reconstructed decay vertex and
track parameters of the mother particle increase due to the larger errors of the daughter tracks.
This can be the case for the two pions originating directly from the decay of the Ξ+

c , but is more
likely for the other two pions and the proton further down the decay chain since they carry in
total only the momentum of the Ξ− baryon. By constraining the Ξ− to the PV, its parameters are
improved significantly and the decrease of the SV resolution is (almost) completely mitigated: For
both instances of the Ξ+

c reconstructed with the topological constraint on the Ξ− (case 5-6), the
weighted standard deviation of the first pT intervals increases slightly or remains approximately
constant with regards to the medium pT range (compare with fig. 35, 39).

Figure 23: Weighted mean of the SV pull distribution along the x-axis as a function of the transverse
momentum of the Ξ+

c baryon. A double-Gaussian fit function was used for the cases 0-5 and a triple-
Gaussian fit function for case 6 in table 3.

The pull distributions of the cases 0-4 in table 3 follow a standard normal distribution, as their
mean values are consistent with 0 (see fig. 23) and their standard deviation is consistent with 1 (see
fig. 24). However, it can be concluded that for both cases with the topological constraint on the Ξ−

baryon (cases 5-6) the pull distributions do not follow a standard normal distribution: The mean
values in fig. 23 are systematically shifted to negative values and deviate significantly from 0 for
increasing transverse momentum. In addition to that, the weighted standard deviation increases in
both cases for higher pT. Thus, the uncertainty of the reconstructed SV position is underestimated.
This is acceptable for case 5 as the width of the pull distribution increases only up to 1.4, but the
deviation is not negligible for case 6 where the standard deviation of the pull distribution ranges
from 3 up to 8 in fig. 24. The dramatic increase of the width of the pull distribution when adding
the topological constraint on the Ξ+

c is probably caused by constraining both the Ξ− and the Ξ+
c

baryon to the PV, which is mathematically strictly speaking wrong. As a result, in order to improve
the SV resolution significantly and estimate the errors as good as possible at the same time, case
5 in table 3 should be used for the reconstruction of the Ξ+

c .
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Figure 24: Weighted standard deviation of the SV pull distribution along the x-axis as a function
of the transverse momentum of the Ξ+

c baryon. A double-Gaussian fit function was used for the
cases 0-5 and a triple-Gaussian fit function for case 6 in table 3.

In figure 25 the SV resolution along the different coordinate axes is shown. As for the PV, the
SV resolution is slightly better for the y-axis than for the x-axis. In contrast to the resolution of
the AOD PV in minimum-bias and charm-enriched MC data, the SV resolution along the z-axis is
better than for the x- and y-axis respectively.

Figure 25: Comparison of the SV resolution for the different coordinate axes for the reconstructed
Ξ+
c baryons corresponding to case 4 in table 3.
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6.5 Mass resolution

When mass constraints on the Λ0 and Ξ− are applied, the FWHM of the mass distribution depicted
in fig. 26 decreases and therefore the mass resolution of the Ξ+

c baryon improves. When the
topological constraint on the Λ0 to the decay vertex of the Ξ− is added (case 4), the mass resolution
decreases again compared to the case when only the mass constraints on both daughter particles
are applied. On the contrary, additionally constraining the Ξ+

c baryon to the PV (case 3) results
in further improvement of the mass resolution compared to all the cases where none or only mass
constraints are applied (cases 0-2). The optimal mass resolution however is obtained when the
Ξ− is constrained to the PV. Since there is no difference between the cases 5 and 6 in fig. 26
apart from minor statistical fluctuations for two pT intervals, the topological constraint on the
Ξ− appears to be the decisive contribution for the improvement of the mass resolution and the
additional topological constraint on the Ξ+

c does not further impact its mass distribution. The
uncertainties of the FWHM are basically constant over the entire pT range as they are dominated
by the (maximum) uncertainty of the Kielkopf approximation in eq. (57).

Figure 26: FWHM of the Voigt profile fitted to the mass distribution of the Ξ+
c baryon as a function

of its transverse momentum.

The centre of the fitted Voigt profile µV shown in fig. 27 shifts systematically to lower mass
values for the cases 1-4 compared to case 0. The centre of the Voigt profiles for the cases 5 and 6
are shifted significantly to lower mass values with respect to all other instances of the reconstructed
Ξ+
c over the entire pT range. The deviations of the centre of the Voigt profile for the cases 0-4

from the PDG measurement of the Ξ+
c mass are not significant since they lie within or overlap its

the 3σ error band. However, the deviation is significant for the Ξ+
c baryons reconstructed with the

topological constraint on the Ξ−, cases 5 and 6, for the 2 ≤ pT < 3GeV/c and 3 ≤ pT < 4GeV/c
intervals. All in all, µV has a similar pT dependence for all cases of the reconstructed Ξ+

c , but
adding mass and topological constraints shifts the centre of the Voigt profile µV to lower mass
values, especially when the Ξ− baryon is constrained to the PV.

To sum up, the instance of the Ξ+
c corresponding to case 5 in table 3 provides the optimal mass

resolution. In order to avoid introducing a significant shift with respect to the PDG mass, it might
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be preferable to use case 3 with the topological constraint on the Ξ+
c to the PV, for which the

FWHM is only slightly larger.

Figure 27: Centre of the Voigt profile µV fitted to the mass distribution of the Ξ+
c baryon as

a function of its transverse momentum. The PDG value of the mass of the Ξ+
c baryon and the

corresponding 1σ- and 3σ-error bands are indicated.

6.6 pT-resolution

Since the uncertainty of the reconstructed transverse momentum of the Ξ+
c is not stored in the

data sets, only the pT-residual distribution is analysed in the following.
The mean values of the pT residual distribution increase for higher transverse momentum for

all different instances of the reconstructed Ξ+
c (see fig. 28) as expected according to eq. (6). As

the mean values ranging from +2MeV/c to approximately +10MeV/c are always positive, the
transverse momentum is on average slightly overestimated. The mean pT residuals for the Ξ+

c

baryons reconstructed with the topological constraint on the Ξ−, cases 5 and 6, seem to be slightly
increased for low pT intervals. Looking at the ratio of the mean pT residual with respect to the
average for all different cases in each transverse momentum interval in fig. 29, this increase is
however not statistically significant.

As for the mean values, the weighted standard deviation of the pT-residual distribution in fig. 30
increases with increasing pT,MC as expected. Apart from statistical fluctuations for the first pT,MC

interval with a small number of candidates, the pT resolution is best for the Ξ+
c baryon reconstructed

without any constraints over the entire pT range. However, the transverse momentum resolution
does not significantly differ for the other cases of the reconstructed Ξ+

c except for case 4, for which
the width of the pT residual distribution deviates significantly for large pT,MC. Since case 4 with
the topological constraint only applied on the Λ0 has been identified as problematic before and will
therefore not be recommended for the analysis, this is not concerning.

All in all, the transverse momentum distribution is not significantly affected by the application
of mass an topological constraints. This can be motivated by the fact that the event kinematics
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do not change dramatically and the (transverse) momentum is mainly determined by the measured
momentum of the long-lived daughter particles.

Figure 28: Weighted mean of the pT-residual distribution obtained from a double-Gaussian fit as
a function of the MC transverse momentum of the Ξ+

c baryon.

Figure 29: Weighted mean of the pT-residual distribution normalised to the average of the weighted
means of all different instances of the Ξ+

c for every bin.
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Figure 30: Weighted standard deviation of the pT-residual distribution obtained from a double-
Gaussian fit as a function of the MC transverse momentum of the Ξ+

c baryon.

Figure 31: Weighted standard deviation of the pT-residual distribution normalized to the average
of the weighted standard deviations of all different instances of the Ξ+

c for every bin.
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7 Conclusion and Outlook

In this thesis, the effects of applying mass and topological constraints in the reconstruction of a
heavy-flavour hadron with the KF Particle package were investigated. Using Monte Carlo data
for the decay of Ξ+

c → Ξ−π+π+ in pp-collisions at
√
s = 13TeV in ALICE, the secondary vertex,

mass and pT resolution for different instances of the reconstructed Ξ+
c baryon were determined by

comparing the reconstructed parameters to their corresponding Monte Carlo generated values. It
was found that the reconstruction of the Ξ+

c baryon can be improved significantly with the KF
Particle package by applying mass constraints on both short-lived daughter particles, the Λ0 and
Ξ−, and by constraining the Ξ− to the primary vertex.

In general, the transverse momentum resolution is not affected by applying mass and topological
constraints since the event kinematics do not change overall. The mass constraints on the daughter
particles Λ0 and Ξ− improve the mass resolution, but do not significantly change the secondary
vertex resolution. The topological constraint applied on the Λ0 to the decay vertex of the Ξ− should
not be applied at all since it always deteriorates the secondary vertex and mass resolution, even
partly mitigating the improvement of previously applied mass constraints. This can be motivated
by the fact that the decay vertex of the Ξ− is fitted only from one directly measured particle, the
π−, and one reconstructed short-lived particle, the Λ0. As the pion and the daughters of the Λ0

are typically only measured up until the outer layers of the ITS, the track parameters especially
of the Λ0 are not as precise compared to primary tracks. Thus, the resolution of the decay vertex
of the Ξ− baryon is rather poor and a topological constraint to this vertex introduces an error in
the reconstruction of the decay chain. This is also supported by the fact that only the application
of the topological constraint on the Λ0 significantly decreases the pT resolution for high transverse
momenta. On the contrary, the addition of the topological constraint on the Ξ− to the primary
vertex improves the secondary vertex resolution by a factor of up to 2.7 and results in an even better
mass resolution. However, the Ξ− and Ξ+

c baryons should not be constrained to the primary vertex
simultaneously as the uncertainty of the secondary vertex is then dramatically underestimated
while there is, apart from the secondary vertex resolution at low pT, no significant improvement
of the reconstructed parameters. Only adding the topological constraint on the Ξ+

c in addition to
the mass constraints on both daughter particles does not improve the resolution of the secondary
vertex as the lever arm, i.e. distance travelled in the laboratory frame, is too short. However, one
obtains a mass resolution similar to the cases including the topological constraint on the Ξ−, but
without the significant shift to lower mass values. As a result, it might be preferable to use the
instance of the Ξ+

c reconstructed with mass constraint on Λ0 and Ξ− and topological constraint on
the Ξ+

c for precise mass measurements.
To sum up, topological constraints aligning a decayed mother particle to its production vertex

should only be applied when the production vertex is known to a good precision and the lever arm
is sufficiently long. If the distance travelled by the primary mother particle can not be resolved
by the detector, its daughter particles should be constrained to the primary vertex instead. On
the contrary, a mass constraint should generally be applied on all decayed daughter particles. This
combination of constraints might then provide the desired increase of the signal-to-background
ratio for low transverse momentum regions, very high track densities in heavy-ion collisions and
extremely rare signals like multi-charm baryons with long decay chains (e.g. Ξ++

cc → Ξ+
c π

+).
Using simulated minimum-bias triggered pp-collisions at

√
s = 13TeV as reference, the resolu-

tion of the primary vertex obtained from the standard reconstruction employed in ALICE is found
to be unaffected by the presence of the charmed hadron. The uncertainties of all primary vertex
coordinates are slightly overestimated. In contrast to the expectation of cylindrical symmetry,
the resolution of the primary vertex is systematically different for the x- and y-axis. However, this
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might be a specific feature of the Monte Carlo samples used in this analysis and is subject to further
verification with other simulations. Furthermore, the reconstructed primary vertex coordinates are
intrinsically biased in the order of a few microns, which is negligible with regards to the detector
resolution. The KF Particle package was used to recalculate the primary vertex obtained from
the standard reconstruction in ALICE by adding the Ξ+

c baryon as a measurement and removing
its daughter particles from the vertex fit. Thus, it could be tested whether the primary vertex
is systematically biased in the direction of the charmed hadron, as its daughter particles might
contribute to the primary vertex fit. However, no clear evidence of a primary vertex shift caused
by the daughter particles of the Ξ+

c baryon is found. Nevertheless, this analysis can be improved
by taking the number of removed daughter particles and different instances of the reconstructed
Ξ+
c into account.
Instead of using the primary vertex from the standard ALICE reconstruction, it could also be

refitted with the KF Particle package using directly the track estimates and the beam position
as an additional constraint. Although the primary vertex resolution is not expected to improve
drastically, the refitted primary vertex might provide an unbiased vertex position with properly
estimated uncertainties.
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Appendix

A.1 Uncertainty of the weighted parameters of a triple-Gaussian distribution

The uncertainty for the weighted standard deviation of a triple-Gaussian is calculated in the fol-
lowing way:

s3 = A1 +A2 +A3

w3 = A1σ1 +A2σ2 +A3σ3

s43 ·
(
∆σTG

w

)2
= (∆A1)

2 · [A2 · (σ1 − σ2) +A3 · (σ1 − σ3)]
2

+ (∆A2)
2 · [A1 · (σ1 − σ2) +A3 · (σ3 − σ2)]

2

+ (∆A3)
2 · [A1 · (σ1 − σ3) +A2 · (σ2 − σ3)]

2

+ 2 cov(A1, A2) · [w3 − s3 · σ1] · [w3 − s3 · σ2]
+ 2 cov(A1, A3) · [w3 − s3 · σ1] · [w3 − s3 · σ3]
+ 2 cov(A2, A3) · [w3 − s3 · σ2] · [w3 − s3 · σ3]
+ s23 ·

[
(A1 ·∆σ1)

2 + (A2 ·∆σ2)
2 + (A3 ·∆σ3)

2

+ 2A1A2 · cov(σ1, σ2) + 2A1A3 · cov(σ1, σ3) + 2A2A3 · cov(σ2, σ3)
]

− 2s3 ·
{

A1 ·
[
cov(A1, σ1) · (w3 − s3 · σ1) + cov(A2, σ1) · (w3 − s3 · σ2)
+ cov(A3, σ1) · (w3 − s3 · σ3)

]
+A2 ·

[
cov(A1, σ2) · (w3 − s3 · σ1) + cov(A2, σ2) · (w3 − s3 · σ2)
+ cov(A3, σ2) · (w3 − s3 · σ3)

]
+A3 ·

[
cov(A1, σ3) · (w3 − s3 · σ1) + cov(A2, σ3) · (w3 − s3 · σ2)
+ cov(A3, σ3) · (w3 − s3 · σ3)

]}

(59)

The error for the weighted mean is calculated by replacing σi ↔ µi.

A.2 Fits vs. numerical estimators

Instead of using multi-Gaussian fits, the mean µ and standard deviation σ of the residual and
pull distributions under consideration could also be determined with their corresponding maximum
likelihood estimators. For n measurements of a variable x distributed according to a Gaussian
with average µ and standard deviation σ, the maximum likelihood estimate for the mean µ̂ and its
uncertainty σµ̂ are given by:

µ̂ =
1

n

n∑
i=1

xi

σµ̂ =
σ√
n

(60)

The maximum likelihood estimator for the Gaussian variance

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 (61)

tends to underestimate the variance and therefore the unbiased estimate is obtained by applying
the following correction:

σ̂2
unbiased =

n

n− 1
· σ̂2 =

1

n− 1
·

n∑
i=1

(xi − µ̂)2 (62)
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An estimator for the standard deviation is obtained by taking the square root of eq. (62) [4].
However, the estimator of the standard deviation of the SV residuals in fig. 33 provides up

to 20% larger values than the weighted standard deviation calculated from a triple-Gaussian fit.
This is due to the fact that the underlying distribution is rather a superposition of three individual
Gaussian distributions centred around zero and the single-Gaussian assumption does not hold:
Approximately a quarter of candidates is associated to a Gaussian distribution with a standard
deviation of σ = 50µm and half of the candidates to one with σ = 124µm. Only another quarter
of the candidates is associated to a Gaussian distribution with a standard deviation of σ = 246µm
which is larger than the weighted standard deviation (see fig. 32). Therefore, the candidates
associated to this Gaussian contribution distort the estimator.

Figure 32: SV residual distribution of reconstructed Ξ+
c baryons corresponding to case 5 in table 3

with transverse momentum 5 ≤ pT < 6GeV/c. There are in total Ntot = 24.727 candidates
stored for this particular case and pT-bin with SV residuals of up to |rmax| ≈ 9.5mm, from which
Nframe = 24.727 candidates are visible in the plotted range of the residuals. A triple-Gaussian
function was fitted to the histogram for residuals up to |rfit,max| = 625µm. The value of the
numerical estimator of the standard deviation σnum = 149.4µm is approximately 10% larger than
the weighted standard deviation σw = 133.0µm obtained from the triple-Gaussian fit. The number
of events N and standard deviation σ associated to each single Gaussian from the triple-Gaussian
fit function is given in the legend.
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Figure 33: Comparison of the values for the standard deviation of the SV residuals along the x-axis
obtained from a triple-Gaussian fit and from the numerical estimator for the instance of the Ξ+

c

baryon corresponding to case 5 in table 3.
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A.3 Parameters of the SV residual and pull distribution in y- and z-direction

Figure 34: Weighted mean of the SV residual distribution along the y-axis obtained from triple-
Gaussian fits as a function of the transverse momentum of the Ξ+

c baryon.

Figure 35: Weighted standard deviation of the SV residual distribution along the y-axis obtained
from triple-Gaussian fits as a function of the transverse momentum of the Ξ+

c baryon.
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Figure 36: Weighted mean of the SV pull distribution along the y-axis as a function of the transverse
momentum of the Ξ+

c baryon. A double-Gaussian fit function was used for the cases 0-5 and a triple-
Gaussian fit function for case 6 in table 3.

Figure 37: Weighted standard deviation of the SV pull distribution along the y-axis as a function
of the transverse momentum of the Ξ+

c baryon. A double-Gaussian fit function was used for the
cases 0-5 and a triple-Gaussian fit function for case 6 in table 3.

52



Figure 38: Weighted mean of the SV residual distribution along the z-axis obtained from double-
Gaussian fits as a function of the transverse momentum of the Ξ+

c baryon.

Figure 39: Weighted standard deviation of the SV residual distribution along the z-axis obtained
from double-Gaussian fits as a function of the transverse momentum of the Ξ+

c baryon.
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Figure 40: Weighted mean of the SV pull distribution along the z-axis obtained from double-
Gaussian fits as a function of the transverse momentum of the Ξ+

c baryon.

Figure 41: Weighted standard deviation of the SV pull distribution along the z-axis obtained from
double-Gaussian fits as a function of the transverse momentum of the Ξ+

c baryon.
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