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Abstract

The Compressed Baryonic Matter (CBM) experiment at FAIR will investigate the QCD phase
diagram in the region of high net-baryon densities (`𝐵 > 500 MeV) and low temperatures
(𝑇 < 120 MeV). The SIS100 accelerator will provide the ion beams for the fixed target heavy-
ion collisions in an energy range of√𝑠𝑁𝑁 = 2.86−4.93 GeV. With an unprecedented interaction
rate of up to 10 MHz, the CBM detector will be built to operate in the low energy regime, enabling
feasible studies of the state of matter. The (multi-)strange baryons are crucial in determining the
equation of state at high baryon density and the hadronization process from deconfined QCD
matter.

In this thesis, the performance for the Ξ− selection in minimum bias Au+Au collisions at
√
𝑠𝑁𝑁 = 4.93 GeV will be presented. Based on a Monte Carlo sample simulating the CBM

detector response, the Ξ− hyperon is reconstructed via the weak decay channel
Ξ− → 𝜋−(Λ0 → 𝜋−𝑝).

For the reduction of the data size, which is driven by the large combinatorial background,
specific data skimming criteria are optimized in this work. In the future, this filtering procedure
might be applied previous to data storage itself, working as a first kind of trigger. To then obtain an
optimal and stable separation between signal and background candidates, the machine learning
tool XGBoost is used. Machine learning allows for efficient, non-linear and multidimensional
selection criteria to be implemented in an heavy-ion collision environment.

An iterative approach on machine learning selection is introduced, involving two consecutive
models. This procedure allows to improve the selection accuracy by removing background in
each step (data skimming and ML selection) before zooming deeper in data characteristics to
include finer differences in feature correlations in the next step. The strategy proves to be more
efficient than a single model selection for the signal separation and enables to extract the Ξ− raw
yield.





Zusammenfassung

Das Compressed Baryonic Matter (CBM) Experiment wird als Teil von FAIR das QCD Phasen-
diagramm im Bereich hoher Netto-Baryondichten (`𝐵 > 500 MeV) und tiefer Temperaturen (𝑇 <

120 MeV) untersuchen. Der SIS100 Ringbeschleuniger wird Ionenstrahlen für die Schwerionen-
kollisionen mit festem Target (engl. für Ziel) im Energiebereich von √

𝑠𝑁𝑁 = 2.86 − 4.93 GeV
liefern. Mit einer beispiellosen Interaktionsrate von 10 MHz wird der CBM Detektor entwickelt,
um im Tiefenergieregime geeignete Studien des Aggregatzustandes zu ermöglichen. Dabei sind
(multi-)strange Baryonen ausschlaggebend, um die Zustandsgleichung bei hoher baryonischer
Dichte und den Hadronisierungsprozess von unbeschränkter (engl. deconfined) QCD Materie
zu ermitteln.

In dieser Arbeit wird die Performance einer Ξ− Selektion in minimum bias (minimale Trig-
gerbedingung) Au+Au Kollisionen bei √𝑠𝑁𝑁 = 4.93 GeV präsentiert. Aus einem Monte Carlo
Sample, welches die CBM Detektorreaktion simuliert, wird dasΞ− Hyperon über den schwachen
Zerfallskanal Ξ− → 𝜋−(Λ0 → 𝜋−𝑝) rekonstruiert.

Aufgrund der großen Menge an kombinatorischem Hintergrund werden in dieser Arbeit
spezifische Filterkriterien optimisiert, um die Größe des Datensets zu reduzieren. In Zukunft
kann dieser Filterprozess schon vor der Datenspeicherung als erste Art von Trigger angewandt
werden. Um danach eine optimale und stabile Trennung von Signal und Hintergrund zu erlangen,
wird das Machine Learning Werkzeug XGBoost verwendet. Machine Learning erlaubt eine
Implementierung von effizienten, nicht-linearen und multidimensionalen Selektionskriterien in
der Umgebung von Schwerionenkollisionen.

Es wird ein iterativer Ansatz zur Machine Learning Selektion vorgestellt, welcher zwei aufein-
anderfolgende Modelle enthält. Diese Prozedur erlaubt eine verbesserte Selektionsgenauigkeit,
indem in jedem Schritt (Filter, sowie zwei Machine Learning Modelle) Hintergrundkandida-
ten verworfen werden, bevor die Eigenschaften im nächsten Schritt genauer betrachtet werden,
wobei feinere Korrelationen in den Variablen miteinbezogen werden. Die Strategie zeigt sich
effizienter als eine Selektion mit nur einem Modell zur Trennung von Signalkandidaten und
ermöglicht die Extraktion des reinen Ξ− Ertrags.
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1. Introduction

In the physics of fundamental interactions and elementary particles, the search for the basic
constituents of matter seems to have come to a stop. While the previously assumed indivisibility
of components proved to be wrong for both atoms and protons successively, the description of
elementary particles in the Standard Model does not allow a further partition. Even though the
theory lacks in terms of completeness, predictions are found to be sufficiently accurate in exper-
iments to allow the model to be widely accepted as factual. The following short introduction to
the Standard Model is based on information given in [1].

The elementary particles include fermions, spin 1/2 particles that make up the actual matter,
as well as gauge bosons, spin 1 particles that are carriers of one of the fundamental forces each.
Quantum field theories are used to describe these forces and interactions based on the underlying
symmetries.

Quantum Chromodynamics (QCD), which strictly follows a SU(3) symmetry, describes the
strong interaction coupling to color charge. The carriers of the color charges (red, green or
blue) are fermions called quarks (and antiquarks with anticolors respectively). The messenger
bosons (or gauge bosons) of the strong interaction, the gluons, are colored themselves as well.
Each holds both color and anticolor, resulting in an octet of truly colored states. Coupling
to color while carrying the same charge, gluons exhibit self-interaction. Together with a very
large strong coupling constant 𝛼𝑠, this causes the so called color-confinement. The constantly
self-interacting gluons are pulled into a tube like connection between color charged particles.
The force connecting them is constant, which cause the energy to rise linearly with the distance.
A separation would therefore require infinite energy and is not practicable.

𝑉 (r) = −3
4
𝛼𝑠

𝑟
+ ^r (1.1)

The QCD potential between a quark and antiquark pair of the same color given in Eq. (1.1)
demonstrates the effect of confinement. While the first term induces a Coulomb-like interaction
on short distances r, the linear term with ^ ∼ 1 GeV causes a divergence for high distances,
which makes a separation impossible. Carriers of color charge do therefore not appear isolated,
but form color neutral states by hadronization, including baryons and mesons. Baryons are
effectively colorless due to their composition of three (valence) quarks with a different color
each. Mesons on the other hand consist of two (valence) quarks (or rather quark and antiquark)
carrying color and according anticolor, which cancel each other, resulting in a non-colored state.
Regular baryonic matter (as for example atomic nuclei) is formed by only a residual effect of the
strong force acting between the colorless states.
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CHAPTER 1. INTRODUCTION

One of the unique properties of QCD is the strong dependence of the interaction strength on the
energy scale of the underlying process. The running of the coupling 𝛼𝑠, which strongly depends
on the squared 4-momentum transfer 𝑄2, is depicted in Fig. 1.1. In the low energy regime,
the coupling is very large (of order O(1)), resulting in the previously described confinement
of color charged particles. This prohibits any perturbative calculation like used in Quantum
Electrodynamics (QED), which is based on the assumption of a small coupling. Another
approach, lattice QCD, allows for a precise description for certain properties of QCD, but
is limited due to its computational expensive calculations. It can therefore not completely
compensate the lack of predictive power in a non-perturbative theory.

Figure 1.1.: Running of the strong coupling 𝛼𝑠 (𝑄2), taken from [2]

On small distances (or for interactions with a high momentum transfer 𝑄2), the coupling
decreases, which leads to an effect known as asymptotic freedom. At energies above 100 GeV,
the coupling has dropped to O(0.1) already. For processes with momentum transfer much
greater than the QCD scale Λ𝑄𝐶𝐷 ∼ 200 MeV, the coupling is sufficiently small to allow for an
application of perturbative calculation. With radii of the order of 1 fm, this also applies for the
interactions inside of hadrons.

Due to the reduced interaction strength based on the decreased coupling, the color anti-
screening effects causing confinement can be neglected. Quarks and gluons are deconfined and
can be treated as free in this regime.
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1.1. THE QCD PHASE DIAGRAM

1.1. The QCD phase diagram

Figure 1.2.: QCD phase diagram, taken from [3]

Hadronic matter only dominates the small part at low temperatures and densities of the QCD
phase diagram shown in Figure 1.2. At high temperature or density, another state of matter,
the quark-gluon plasma (QGP) is formed, where the quarks and gluons are deconfined. For
negligible baryo-chemical potential `𝐵 ∼ 0, a smooth transition without encountering an actual
phase transition is expected. Lattice QCD calculations predict this cross over at the critical tem-
perature 𝑇𝐶 = 156 ± 1.5 MeV [4]. For higher baryo-chemical potential, a first order transition is
expected between hadronic matter and QGP. Beyond that, for even lower temperature and higher
density, completely new phases might exist.

The equation of state (EoS) relates the pressure 𝑝, the volume𝑉 , and the absolute temperature
𝑇 of a system. High-energy heavy-ion collisions offer the unique possibility to study the funda-
mental properties of nuclear matter in the laboratory. While the EoS for vanishing net-baryon
density (LHC energies) is now well constrained by lattice QCD calculations, the high density
and intermediate- to low-temperature EoS is still not well known.

The Compressed Baryonic Matter experiment (CBM), with a collision center of mass energy
range of √𝑠𝑁𝑁 = 2.86−4.93 GeV, will explore the phase diagram for temperature 𝑇 < 120 MeV
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CHAPTER 1. INTRODUCTION

and `𝐵 > 500 MeV. In this region, the first order transition is expected to be found. According
to recent calculations, the critical endpoint, where the first order transition changes to the cross
over, might be located in the CBM range as well. Contrary to the outdated depiction in Figure
1.2, the critical endpoint is expected at (𝑇𝐶𝐸𝑃, `𝐵 𝐶𝐸𝑃) = (107, 635) MeV [5].

With high center-of-mass energies, heavy-ion collider experiments at RHIC or LHC explore
the high temperature region. This allows to conclude on the state of matter that existed in
the early universe, microseconds after the Big-Bang, and the following freeze-out. Up to now,
the low temperature, high baryo-chemical potential regime is poorly understood on the other
hand. With three times nuclear density 𝜌0 and a temperature of only a few keV, the state of the
inner core of compact stars is placed in this region of the QCD phase diagram. Observables
like mass, radius and electromagnetic radiation can deliver restrictions, but the actual EoS at
high densities can not be derived without a direct investigation of the phase diagram at high
baryo-chemical potential. Particularly, more knowledge is needed to describe states with high
density, but non-negligible temperature like existent in supernovae and neutron star mergers.
With densities of up to 8𝜌0, comparable conditions can be expected in CBM collisions, allowing
to characterize QCD phases at high densities. More information about the QCD phase diagram
and the physics goals of CBM can be found in [6] and [7], which the short introduction in this
thesis is based on.

1.2. Motivation for multistrange hyperon studies

Due to their light masses, the three lightest quark flavours up, down, and strange can be assumed
to be produced near chemical equilibrium at high energies. Contrary to the low energy regime,
where the heavier strange quark production is suppressed towards the up/down quark production,
this enhanced strangeness gives information on the modified degrees of freedom (DOF). This
allows to directly conclude on the characteristics of the state existing in the fireball emerging
in a heavy-ion collision. Apart from this, the formation of multistrange baryons is favoured
due to subsequential multi-collisions of the fragments while the fireball cools down. This
process directly depends on the density and dynamics of the medium. Measuring strangeness,
and particularly multistrange baryons therefore allows to conclude directly on the emerging
state. Being the lightest charged multistrange hyperon, a full analysis of the Ξ− yield in the
experimental data and the study of the physics performance that can be obtained with the
CBM detector are essential. To facilitate this, an optimized process for the selection of signal
candidates in unbiased Monte Carlo data samples will be presented in this thesis.
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2. The CBM experiment at FAIR

The Facility for Antiproton and Ion Research (FAIR) is a ion accelerator complex planned to
research on hadron, nuclear, atomic and plasma physics. Located at the GSI Helmholtzzen-
trum für Schwerionenforschung in Darmstadt, Germany, it will expand the existing accelerator
SIS18. This will act as injector to the planned Schwerionensynchrotron SIS100, which will
then provide the high intensity ion beams for the CBM experiment. With a rigidity of 100 Tm,
the superconducting ring accelerator will provide gold ion beams with a kinetic energy be-
tween 2 and 11 AGeV. In the fixed target Au+Au collisions this equals an energy range of
√
𝑠𝑁𝑁 = 2.86 − 4.93 GeV. The extracted beams supplied for the CBM experiment will reach

up to 109 gold ions per second, resulting in collision rates of up to 10 MHz. To resolve the
collisions with such a high rate, an elaborated detector system is necessary (Fig. 2.1).

Figure 2.1.: The CBM detector system (internal material from the CBM collaboration)
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CHAPTER 2. THE CBM EXPERIMENT AT FAIR

The detectors include

• MVD & STS the Micro Vertex Detector and the Silicon Tracking System will be installed
inside a superconducting magnet right behind the target position to track charged particles

• RICH & TRD / MuCH a Ring Imaging CHerenkov detector and a Transition Radiation
Detector will be used for electron identification and pion surpression. In a muon setup,
the RICH detector can be replaced by a Muon CHamber

• TOF a Time of Flight detector will measure the velocity of charged particles

• PSD the Projectile Spectator Detector will give information on the centrality and reaction
plane of events by measuring the non-interacting nucleons (spectators)

For the reconstruction of short lived hyperons, no direct measurements are practicable. With a
decay length of 𝑐𝜏 = 4.9 cm, theΞ− does not reach the detector system itself, but is reconstructed
via its decay products. To measure those daughters, the tracking of charged particles and particle
identification (PID) are necessary. The function of the respective detectors is briefly explained
in the following. While the measurements of other detectors can be used to improve the results,
they are not used directly for this analysis and are therefore not elaborated further.

2.1. Tracking system

Together with the MVD, the STS will track charged particles emerging from the target position.
Being placed inside a magnet, the bending of a charged particle track in the magnetic field then
allows to measure its momentum. The the STS will act as the main tracking detector in the CBM
apparatus, while the MVD will allow to improve the resolution for tracking and (particularly)
the reconstruction of vertices.

2.1.1. Magnet

The superconducting dipole magnet will be placed around the target position and will cover both
MVD and STS. In the gap of 140 × 300 cm it will generate a magnetic field throughout both
detectors with 1 Tm over a 1 m length, resulting in a maximal field strength of 1 T [8].

2.1.2. Micro Vertex Detector

Located right behind the target position (relative to the incoming beam), the MVD will allow
to improve the tracking resolution drastically. It will consist of four stations with Monolithic
Active Pixel Sensors (MAPS) chips sitting 5 − 20 cm downstream of the collision point. With a

6



2.2. PARTICLE IDENTIFICATION

thickness of 50 `m for each of the Complementary Metal-Oxide-Semiconductor (CMOS) pixel
sensors, it will measure charged particles with a spatial precision of 5 `m.

2.1.3. Silicon Tracking System

The STS will act as the main detector of the CBM experiment. Composed by 8 tracking stations,
located between 30 and 100 cm downstream of the target position, the STS will cover an opening
angle of 2.5◦ < Θ < 25◦ and a total area of 4 m2. The layers of silicon detectors will consist
of altogether 896 double-sided microstrip sensors (each with a thickness of 300 `m, a length
between 20 and 60 mm, placed with a strip pitch of 58 `m and stereo angle of 7.5 `m). They
enable a spatial resolution of 25 `m and a time stamp resolution of 5 ns, resulting in a momentum
resolution of Δ𝑝/𝑝 = 1.8 % for up to 700 charged particles per event, 107 events per second [9].

2.2. Particle identification

To be able to assign a particle identity in form of a mass measurement, a TOF detector will
be installed. Measuring the time 𝑡 that a charged particle needs to pass through the distance 𝑙,
the velocity 𝛽 = 𝑙

𝑡
is calculated. With the STS information on the particles momentum 𝑝 this

enables to conclude on the mass via

𝑚2 = 𝑝2
(

1
𝛽2 − 1

)
. (2.1)

The TOF-wall of 120 m2 will be placed 6−10 m downstream of the target, which again results
in an opening angle of 2.5◦ < Θ < 25◦. It will consist of Multigap Resistive Plate Chambers
(MRPCs), which measure the ionization caused by the charged particle while passing through
gaps filled with gas in between resistive plates. To be able to distinguish high energy particles a
time resolution of < 80 ps will be necessary [10].
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3. Data sample and reconstruction

3.1. Data sample

The data sample utilized in this analysis consists of a Monte Carlo (MC) simulation of minimum
bias Au+Au collisions with a beam momentum of 12 AGeV. It is obtained with the Dubna
Cascade Model and the Quark Gluon String Model (DCM-QGSM); the Statistical Multifrag-
mentation Model (SMM) is used to reproduce the subsequent fragments formation [11]. The
particles weak decay, propagation through the CBM detector material and the related response
is modeled with the GEANT4 [12] toolkit and reconstructed with algorithms implemented in
the CBMRoot framework [13].

3.2. Reconstruction of short-lived particles

Particle tracks throughout the detector system are formed by combining hits in STS and MVD
detectors according to the Cellular Automaton (CA) algorithm. Combining reconstructed tracks
by assigning them to events (collisions) [14] gives information on the collision point, as well as
event related information like particle multiplicity.

Decay candidates are reconstructed using the PFSimple Package [15], which - being a simpli-
fied version of the Kalman Filter Particle (KFParticle) Package - implements the Kalman Filter
mathematics [16]. All particle tracks, both primary (produced in the collision) and secondary
(produced in subsequent decay or interaction with detector material) are described equivalently
by a state vector

𝑟 = (𝑥, 𝑦, 𝑧, 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧, 𝐸, 𝑠) (3.1)

with the particles coordinates (𝑥, 𝑦, 𝑧), momentum (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧), energy E and (if production and
decay vertex are known) 𝑠 = 𝑙

𝑝
, the decay length 𝑙 normalized to the momentum 𝑝 [17]. The

algorithm then optimizes the state vector to describe a trajectory by iteratively adding measure-
ments, each updating the state vector according to the residual of prediction and measurement.
Here, ’measurements’ implies hits on STS and MVD detectors for directly measured particles,
but also the state vectors of daughter particles for reconstructed mothers. The uncertainties of
measurements are included as weight for the computation of the state vector, resulting in an
optimal description of each particle track by the state vector and its covariance matrix 𝐶.

This equivalent description allows to add or subtract tracks together in order to form short
lived, decayed particles. In contrast to other approaches (i.e. simply adding daughter particle
tracks at their point of closest approach), the complete tracks of all particles including their

8



3.2. RECONSTRUCTION OF SHORT-LIVED PARTICLES

covariance are reconstructed. This allows to extrapolate particles trajectories to any chosen
point in the system and to reconstruct primary (collision point, PV) as well as secondary (decay
points, SV) vertices [18, 19]. Knowing both tracks and vertices, topological features can be
used to identify a potential decay. With the covariance matrix 𝐶 of each track, distances Δ®𝑟 can
be given in relation to their uncertainties in the form of 𝜒2 values:

𝜒2 = Δ®𝑟𝑇𝐶−1Δ®𝑟 =
∑︁
𝑖, 𝑗

𝐶−1
𝑖 𝑗 Δ𝑟𝑖Δ𝑟 𝑗 (3.2)

The main features used in this analysis are listed below. For a simple two-body decay 𝑎 → 𝑏𝑐,
the same features are visualized in Figure 3.1.

• 𝐷𝐶𝐴: distance of closest approach between the daughter particles

• 𝐿: decay length of the mother particle

• 𝐿/Δ𝐿: decay length 𝐿 normalized to its uncertainty Δ𝐿

• 𝜒2
𝑝𝑟𝑖𝑚

: 𝜒2 between daughter particle track and PV

• 𝜒2
𝑔𝑒𝑜: 𝜒2 between daughter particle tracks

• 𝜒2
𝑡𝑜𝑝𝑜: 𝜒2 between mother particle track and PV + 𝜒2 between daughter particle tracks

• 𝑐𝑜𝑠(𝛼): cosine of angle between mother and daughter particle tracks

• 𝑐𝑜𝑠(𝛼𝑡𝑜𝑝𝑜): cosine of angle between mother momentum and connection PV-SV

PV

SV

a

b

c

Figure 3.1.: Topological features of a two-body decay 𝑎 → 𝑏𝑐

as reconstructed with KFParticle Package
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CHAPTER 3. DATA SAMPLE AND RECONSTRUCTION

3.3. Reconstruction of Ξ− candidates

TheΞ−, being a short lived particle, is reconstructed via its weak decay toΛ0𝜋− with a branching
ratio of 99.887 ± 0.035 %. The Λ0 itself is reconstructed from its decay products 𝜋− and proton
(branching ratio of 64.1 ± 0.5 %) [20]. The decay chain and some of the most important
topological variables are shown in Fig. 3.2.

PV

Ξ⁻  Λ⁰

π⁻1

π⁻2

p

PV-SV

Figure 3.2.: Ξ− decay chain with some of the most important reconstructable variables

Only the charged daughter particle tracks, (proton and pions) can be reconstructed directly
from MVD and STS measurements. A Λ0 candidate is reconstructed by combining a negative
track with a positive track. Adding another negatively charged track, a Ξ− candidate is formed
[21].

Aside from the charge, no constraints are imposed on the measured daughters at the time of
the reconstruction. Particularly, no PID selection is applied. To reduce the data size nonetheless,
combinatorial background is rejected by constraining the reconstructedΛ0 mass to the 5𝜎 region
of the expected mass 𝑚Λ0 = 1.1157±0.0015 GeV/c2. Additionally, a non-linear mass constraint
is applied on the reconstructed energy and momentum to match the real Λ0 mass 𝑚2

Λ0 = 𝐸2− 𝑝2.
This recalculation does not act as selection, but updates the Λ0 state vector. Constraining the
invariant mass of the (reconstructed) daughter previous to the reconstruction of mother particles
improves the mass resolution, providing a better separation of signal and background.
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4. Analysis strategy

The invariant mass distribution of Λ0𝜋− pairs does not show a visible Ξ− signal peak in data
samples without any selection due to the dominant combinatorial background (compare Figures
A.1, A.2 in the Appendix). In order to reduce the background and extract signal candidates,
a selection process including manual data skimming as well as machine learning techniques is
developed and presented.

Reconstructing short lived particles by combining tracks based on their charge allows the
reconstruction without the need of PID for the daughters, but constructs a lot of combinatorics at
the same time. Aside from misidentified particles, this includes particles (proton, pions, as well
as Λ0) that do not come from a Ξ− decay chain, as well as actual Ξ− daughters that are wrongly
combined with other particles. Based on the different origin, the properties of background and
signal candidates vary in both, the one-dimensional distribution of some features, as well as
multidimensional correlation of features. While the first can be suppressed by data skimming,
machine learning (ML) allows to extract signal in a non-linear way.

Using a Monte Carlo sample allows to optimize the selection process by separating signal
(MC-true) and background (MC-false) candidates based on their label. In this way, the differing
properties can be made visible and used in the filtering procedure. Additionally, supervised
ML is practicable, which implies availability and usage of the real label for each candidate.
Finally, the selection quality can be verified using the MC labels of the remaining candidates
after selection.

4.1. Data skimming

A set of constraints on the reconstructed decay variables is chosen to exploit differences in the
one-dimensional signal and background distributions. With a signal to background ratio of
about 3.5 × 10−7 in samples without selection, the preselection is necessary. In order to save
time and computational resources during the model building, this needs to be done previous to
further selection with ML techniques.

Even data storage itself is challenging due to the size of the samples. With the high CBM
interaction rate, background combinatorics results in about 5×1011 reconstructed Ξ− candidates
per second. Because of this, the filtering procedure might even be applied ahead of data storage,
working as a first kind of trigger. Saving only candidates in the chosen limits for further Ξ−

analysis reduces the needed storage drastically.
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4.2. Multidimensional selection with machine learning

After having skimmed the data, ML is exploited in order to apply non-linear selection. To do
so, a model is optimized and trained on the MC sample before applying a selection based on
its prediction score. In this analysis, the Heavy Ion Physics Environment for Machine Learning
(hipe4ml) package [22] is used to train the model on learning the differences in the signal
and background sample (distinguishable by their MC label). To mimic the approach on real
data, where no MC label is available, the sets are additionally separated in the invariant Ξ−

mass distribution. For the training, signal is only included in the Ξ− mass peak region, while
background candidates in the same region are excluded.

4.2.1. Classification

The model output consists of an assigned Boosted Decision Tree (BDT) score between 0 and
1 for each candidate. This can be understood as signal probability, where a score close to 1
indicates a signal candidate, opposed to a background candidate which should achieve a BDT
score close to 0.

The used Extreme Gradient Boost (XGBoost) algorithm [23] combines weak learners to a
boosted decision tree. Weak learners are in this case binary decision trees, that - taken on their
own - manage to classify data just marginally better than random classification. The combination
is done in an order such that a second order Taylor expansion of a Loss Function is minimized
for each step. The approximation includes both gradient and hessian of the loss function, hence
the name gradient boosting. In the following analysis, this loss function is calculated as the
mean squared error (MSE) between prediction and true label, the second order Taylor expansion
therefore gives the exact solution. By adding a regularization term, the complexity of each
weak learner is minimized as well, which is meant to compensate for missing statistics due to a
non-infinitely large data sample.

The XGBoost algorithm depends on hyperparameters that directly modify the learning pro-
cess. A tuning is necessary to adapt to the properties of the data sample under analysis. While
a small sample with easily distinguishable characteristics might be accurately classifiable by
a conservative, simple model, higher statistics with evenly distributed points require a deeper,
more complex description. One of the challenges in adjusting the hyperparameters is to avoid
overtraining. This happens if the ML model is allowed to learn local fluctuations of data features
and results in a classification based on random, non generalizable characteristics. Since these
are peculiar to the sample used for training, the model will perform worse on unknown data. To
ensure the model recognizes only statistical, general differences, the performance needs to be
tested on unknown data.

12
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For the optimization, the bayesian based Optuna framework [24] is used in this analysis,
which implements the 𝑘-fold cross validation method [25]. In this approach, the sample is split
in 𝑘 parts, with each being a validation set for a model trained on the remaining 𝑘 − 1 parts.
Minimizing the mean error between model output and true label on the 𝑘-folds, this gives the
optimal performance on an unknown data sample.

Permittable ranges for the hyperperameters need to be adjusted manually before optimization.
For practical reasons, no infinite volumes of hyperparameters can be scanned. Additionally, the
k-fold algorithm tends to deliver a slightly too complex ML model. While its aim is to optimize
the prediction a model achieves on unknown data, it does not consider potential differences to
the model performance on the known training set. However, overtraining does not necessarily
cause a bad prediction score itself. The problem can only be certainly eliminated by comparing
the performance on train and test sets, making sure they do not differ much.

The following hyperparameters are being optimized for this analysis:

• number of estimators: the number of combined weak learners

• maximum tree depth: the allowed depth of a weak learner (number of decisions it is
allowed to make). This directly specifies the variable correlation the model will know -
allowing only 2 decisions only includes 2D correlations

• learning rate: the weight on each weak learner before it is added to the BDT

• gamma: minimum loss reduction required to allow further splitting in a weak learner

• alpha: weight on regularization term

• scaling positive weight: control the weighting of positive/negative entries to compensate
for non balanced signal/background set size

4.2.2. Selection

After having optimized the training for the present data sample, the model is applied on a
new sample (constructed in the same way, but not used for training). A selection is applied
by accepting only candidates above a certain BDT probability. This method allows to separate
signal and background based on the ML classification, which considers multidimensional feature
correlation. An optimal BDT threshold is chosen by maximizing the significance

𝑠𝑖𝑔𝑛 =
𝑆

√
𝑆 + 𝐵

(4.1)

with the MC-true signal count 𝑆 and the MC-false background count 𝐵 after selection. With
an approximation of a negligible deviation on the background count, this achieves a minimal
relative deviance on the signal count (for the signal deviance 𝜎(𝑆)).
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1
𝑠𝑖𝑔𝑛

∼ 𝜎(𝑆)
𝑆

(4.2)

To verify the selection quality for a chosen BDT threshold, the remaining signal to background
ratio is computed in a 5𝜎 range of the peak in the reconstructed Ξ− invariant mass. With
𝜎 = 0.002 GeV, this region contains 95% of the signal distribution as explained in more detail
in Chapter 5.3.4. Additionally, a high signal efficiency (i.e. the percentage of remaining signal
after selection) is an indicator for an accurate and beneficial selection.

4.3. Iterative selection approach

In this analysis, an iterative ML approach is used. Two models are trained and applied in
sequence in order to improve the selection applied by a single algorithm. A moderate BDT
threshold is chosen on the first model score in order to reduce background without a high signal
loss, similarly to the previous data skimming procedure. Then, a second ML model is trained
on the remaining data sample according to the strategy described in 4.2. Using a ML based
preselection a more precise classification is achieved by allowing to zoom into multidimensional
correlation of features. While only differences in the one-dimensional distribution of signal and
background were used in the data skimming, correlations between features are considered here in
the ML selection. Allowing a too complex learning process results in overtraining very quickly
though. Using a first model to remove the differences in low dimensional correlations, before
training a second model on deeper correlations will allow to exploit these data characteristics
without including random connections.

4.4. Extraction of signal

After having optimized the selection strategy, the shape of the signal and background candidates
needs to be modelled by a fitting function. This will allow to extract the Ξ− yield as it would be
done in real data, where a MC label will not be present.
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5. Results

5.1. Data skimming

The data samples contain candidates that evidently do not origin from Ξ− decay, differing very
much from the signal shape in various features as shown in Figure 5.1. This allows to manually
optimize a set of one-dimensional constraints on those features to reject background candidates.
The chosen selection criteria are listed in Table 5.1.

With all criteria applied, the background is reduced by 85% of the original size, at the same
time only 4% of the signal is rejected. In spite of the unavoidable signal loss, this selection is
necessary to reduce the background. With about 50 × 103 candidates per event, the background
dominates the sample previous to the selection, while a true Ξ− only comes to pass every sixtieth
event on average. Due to this proportion, each reduction (even with small percentages) removes
a large amount of background candidates, while only a few signal candidates are affected.

invariant mass range 𝑚Λ0𝜋−1
𝜖 (1.28, 1.37) [GeV/c2]

𝜒2
𝑡𝑜𝑝𝑜 Ξ− < 3000

on Ξ− decay 𝜒2
𝑔𝑒𝑜 Λ0𝜋−1

< 5000

𝐷𝐶𝐴Λ0𝜋−1
< 10 cm

𝐿Ξ− > −10 cm

𝜒2
𝑔𝑒𝑜 𝑝𝜋−2

< 1000
on Λ0 decay 𝐷𝐶𝐴𝑝𝜋−2

< 5 cm
𝐿Λ0 > −10 cm

positively defined values all 𝜒2 > 0

Table 5.1.: Selection criteria applied for data skimming

To choose the appropriate selection criteria, signal and background shapes are compared
for variables where differences are expected. The most striking difference is visible in the
reconstructed invariant Ξ− mass (Figure 5.1, top left panel), which shows a clear signal peak
at the expected Ξ− mass value of 1.32 GeV, but a near flat background level. In terms of
background reduction, constraining the allowed mass range is the most effective. By rejecting
all candidates outside the accepted area (non-dashed area, equals more than 20𝜎), 81 % of the
background are removed with a 2 % signal loss.
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Figure 5.1.: Signal and background distribution in the features used for data skimming.
The dashed area is rejected
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5.1. DATA SKIMMING

To further select the reconstructed primary particle, the Ξ− track is forced to originate close
to the primary vertex (target position) by putting an upper limit on the 𝜒2

𝑡𝑜𝑝𝑜 Ξ− variable. This
selects only candidates consistent with particles produced in the collision vertex, possibly
removing secondary Ξ− particles, but mostly combinatorial background. The reconstructed Λ0

is a secondary particle in the Ξ− decay and is therefore not necessarily expected to point back
to the primary vertex. On the other hand, no proximity can be excluded due to the short Ξ−

lifetime, which is why 𝜒2
𝑡𝑜𝑝𝑜 Λ0 remains unrestricted. Excluding candidates with large distances

between the Ξ− track to the primary vertex, 5 % of the background are rejected while 98 % of
the signal are preserved.

Investigating variables that describe the decay geometry for both Ξ− and Λ0 decay, constraints
can be applied in order to remove candidates with wrongly assigned daughter particles that do
not originate in the same decay vertex. Quite intuitively, this includes candidates where the
daughter tracks simply do not come close to each other. By restricting the 𝐷𝐶𝐴 variables, those
candidates are removed. An upper limit on the 𝜒2

𝑔𝑒𝑜 variables removes candidates where the
distance is too big in consideration of the uncertainties of the tracks. Rejecting the dashed area
for higher values in all four variables plotted in Figure 5.1, combined ’daughter’ particles that
actually do not originate from the same decay vertex are removed. These geometrical constraints
on the Ξ− decay and on the Λ0 decay remove 12 % and 3 % of the background respectively,
while preserving 99 % of the signal candidates.

An additional constraint is applied on the decay length 𝐿 of both Ξ− and Λ0. Being a scalar
length, 𝐿 is positively defined. In numerical calculations however, negative values can appear
due to the finite precision in the reconstruction process. For actual signal candidates, this is
highly unlikely, resulting in a strongly asymmetrical distribution (see Figure 5.1, 𝐿 variables).
For randomly combined pairs on the other hand, the effect takes place regularly, resulting in an
enhanced distribution of background candidates with values below zero. To avoid a high signal
loss, a selection rejecting only large negative values is chosen. The constraint on the Ξ− decay
length removes 2 %, the constraint on the Λ0 decay length 3 % of the background with a 1 %
signal loss.

Finally, candidates with values that cannot be mathematically justified are removed. Being a
product of a squared value and an uncertainty, 𝜒2 variables cannot be negative by construction
as in Eq. (3.2). In the reconstruction process, negative entries can appear due to numerical
effects. For instance, the numerical calculation of the inverted covariance matrix can lead to
negative entries. When rejecting all values below 0 for all 𝜒2 variables, about 1 % of all (signal
and background) candidates are removed.
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Figure 5.2.: Remaining data fraction after each selection criteria listed in Table 5.1
individually. The first bin shows the impact of all combined constraints

For each single constraint, the impact on both signal and background rejection is quantified
in Figure 5.2. The remaining fractions may show small variations depending on the number of
candidates in the used sample, however no significant deviations are expected. Seeing that only
a small total count of signal is rejected overall, systematic effects are prevented. The remaining
variations can be assigned to statistical fluctuations when the data sample was randomly sampled.

To verify that the signal loss does not preferentially happens on a specific region in phase
space, the loss in rapidity 𝑦𝐿𝑎𝑏 and transverse momentum 𝑝𝑇 correlation is quantified in Figure
5.3(a). The loss is calculated as

𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑜𝑠𝑠 =
#signal before selection − #signal after selection

#signal before selection
(5.1)

Ξ− with low rapidity, as well as high 𝑝𝑇 seem to be particularly affected by the preselec-
tion, this originates in the reconstruction process however. Reconstructable signal candidates
(simulated candidates with charged daughters that are reconstructed with the tracking system)
do not necessarily coincide with the reconstructed candidate. Looking at the distribution for
reconstructable Ξ− in Figure 5.3(b), the loss is indeed uniform. Furthermore, the high 𝑝𝑇 and
low 𝑦𝐿𝑎𝑏 points do not even exist for simulated data, but originate due to the finite detector and
track resolution. The reinforced loss in this region is not caused by an imbalance in the phase
space, but by the problems in reconstruction of the affected candidates.
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5.2. SELECTION WITH MACHINE LEARNING

(a) reconstructed Ξ− (b) simulated and reconstructable Ξ−

Figure 5.3.: Signal loss in transverse momentum, rapidity phase space with selection
listed in Table 5.1. The yellow points in (a) indicate a high loss of signal for marginal

candidates, which do not exist in the simulated candidates (b)

5.2. Selection with machine learning

Having reached a 2 × 10−6 signal to background ratio after data skimming, machine learning is
used for a further optimization of the background and signal separation. To do so, a ML model
is trained as described in section 4.2. The signal of five million events is used for the training,
which equals about 85 × 103 MC-true candidates. Three times as many background candidates
(∼ 255 × 103 candidates) are added in order to reflect the overrepresentation of background in
real data. To verify the necessity of this, the same training is done on a 1 : 1 set. The resulting
model shows a less precise classification, lacking knowledge on the data characteristics due to
missing statistics of the widely distributed background.

For the training, signal and background samples are additionally separated in the reconstructed
invariant Ξ− mass (see Figure 5.4) in order imitate the approach used on real data without avail-
able MC labels.

The samples are then split into two parts: 60 % are taken to train the model, while the other
40% are used to test the model performance. In this way, any signs of overtraining can be
identified by comparing the performance in train and test samples directly. In order to test the
stability of the model, the sample sizes are varied, see section 5.2.2.
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Figure 5.4.: Invariant mass distribution of the MC samples used for training and testing
of the model (signal to background 1 : 3)

The training variables are chosen to include all topological features of both Ξ− and Λ0

decays (see section 3.2). Only the decay length 𝐿 is removed to exclude double information
also contained in the 𝐿/Δ𝐿 variable. Additionally, PID of the daughters in form of the TOF
measurement 𝑚2 is included for all three charged daughters if available, but not required
(daughters that have not reached the TOF detector are not rejected). For the reconstructed Λ0,
a particle identification is added in form of the reconstructed invariant Λ0 mass previous to the
state vectors recalculation to match the real Λ0 mass (see section 3.3). The shape of signal, as
well as background distributions in the training features is visualized in Figure 5.5. It is verified
that none of the chosen features show direct correlation to the Ξ− mass in order to ensure an
unbiased selection. The covariance matrices for signal and background distributions in the
training features and Ξ− mass can be found in the Appendix, Figures A.3, A.4.
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Figure 5.5.: Signal and background distributions for features used for model training

5.2.1. Hyperparameter optimization

In a first attempt, the hyperparameter ranges are chosen based on previously optimized selec-
tion strategies for short lived-particles without further grounds in order to identify the needed
adjustments for the present sample in general. The resulting model shows proper classification,
but the performance differs on test and train sample. Trying to prevent this overfitting without
loosing efficiency, different restrictions on the hyperparameters are considered and tested.
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• The maximum depth is reduced. Allowing only 3 decisions for each of the combined
binary trees instead of 4 conceals deeper variable correlation. This forces the model
decision to act on more general characteristics. Indeed, the output on train and test sets are
more similar, even if not satisfyingly alike. Restricting the depth to 2 decisions eliminates
the overfitting problem, but shows a lack of performance due to the shallowness.

• The allowed number of estimators is restricted. With fewer combined weak learners, the
boosted decision tree is hoped to become more general by removing some of the less
important, too specific, binary trees. Again, the output shows less, but not little enough
signs of overfitting.

• The learning rate is halved. Making the influence of each single decision less important,
the general features should outweigh the few random coincidences that are included in
the classification. This can prevent overfitting without actually removing the wrongly
included decisions, but only by weakening their effect on the output. In the present case,
the reduction does not show the desired effect of preventing overfitting.

• Trying to reduce the model complexity without having to restrict hyperparameters, the
allowed ranges of gamma, alpha and the positive weight scaling are increased. Contrary
to the learning rate weighting each decision, alpha acts as weight on the regularization
term, which (if increased) impedes a too complex model. Strengthening the requirements
before allowing a new decision in each weak learners (increase in gamma) replaces a
general limit on the maximum depth. An increased scaling reinforces the identification of
signal over background, which should remove decisions based on statistical fluctuations
in the background set.
A more conservative model impedes the study of data characteristics with low impact
on the general output. With the lacking statistical relevance of random properties, this
can exclude the decisions that cause overfitting. However, the changes do not show any
effect in reality. In the optimization with Optuna, the expanded ranges are not exploited.
Forcing an increase of the three hyperparameters anyway does not keep the model from
overfitting.

Since a more conservative model cannot compensate for the complexity sufficiently, limits
are chosen for the number of estimators, maximum depth and learning rate. In this way, each
restriction can be placed less tight individually, but prevent overfitting jointly. Both optimal
hyperparameters and allowed ranges are given in Table 5.2.
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hyperparameter allowed range optimized value

number of estimators (100, 300) 206
maximum depth (2, 3) 3

learning rate (0.01, 0.05) 0.044
gamma (0, 1) 1
alpha (2, 20) 12

scaling positive weight (1, 10) 3

Table 5.2.: Chosen ranges and optimized hyperparameters for the first XGBoost model

5.2.2. Stability

The learning curve describes the dependency of the model performance to the available data
statistics. With increasing training set size, the model gains experience of the data characteristics,
resulting in a more realistic classification. The root mean square error (RMSE) between model
prediction and true label (0 for background, 1 for signal) decreases and converges to a minimum
value as shown in Figure 5.6. The curves of train and test set do not differ much, indicating little
to no overtraining. Containing a total count of ∼ 2× 105 candidates, the used training sample is
located in the stable region with a minimal error. The model training is expected to not depend
on statistics and to show no deviation for a slightly modified training sample size.

Figure 5.6.: Learning curve of the first XGBoost model.
The RMSE is calculated in dependency to the total count of candidates

(signal + background) contained in the sample used for training

Making sure this is not a ’lucky size’, resulting in a maximal performance due to an exceptional
data set, the training sample size is varied from 40 % to 80 % of the total set (before, 60 % were
used for the training, with the remainder available as independent test sample). The variation
equals about 1.4 to 2.6× 105 total candidates (signal+background) respectively. To compare the
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training process, the resulting optimized hyperparameters for the different samples are listed in
Table 5.3. Seeing no difference in the training as well as the in model output, the model is taken
as stable and not dependent on the train and test sample.

hyperparameter small set default set large set
(40 %) (60 %) (80 %)

number of estimators 219 206 208
maximum depth 3 3 3

learning rate 0.042 0.044 0.039
gamma 1 1 1
alpha 11 12 8

scaling positive weight 4 3 2

Table 5.3.: Optimal hyperparameters for different training set sizes when allowing the
same ranges as given in Table 5.2. The similarity is an indicator for the stability of the

model

5.2.3. Feature importance

Investigating the importance of each feature for the model training, the shapley additive expla-
nation (shap) values are calculated (Figure 5.7). Shap values quantify the importance of each
feature in the classification output. To understand the process, the influence is also visualized
depending on the feature value (Figure 5.7, right part). The first entry for example shows that a
low distance of the proton track to the primary vertex might strongly decrease the output value
(indicating a background candidate), while a higher signal probability is only achieved for a
large distances. This is in accordance with the assumption that the daughter particle track does
not point back to the collision point.

Overall, it only a few features have a significant impact on the model decision, while showing
interesting correlations. The three most important features can be used to remove wrongly
combined daughter that are actually produced in the collision directly (see section 5.3.2). The
models objective does not seem to remove random combinations as expected, but to separate
those primary (non-)daughters. Particularly, primary protons seem to be singled out. Only
some of the less important features distinguish false combinations rather than primary particles.
Contrary to the three most important features that are used to reject secondary particles, 𝜒2

𝑡𝑜𝑝𝑜 Ξ−

qualifies the Ξ− as primary particle. High values indicate a high distance between Ξ− track and
primary vertex, which allows to reject the candidate as background. A preferably forward
motion of both Ξ− and Λ0 causes larger values for both 𝑐𝑜𝑠(𝛼𝑡𝑜𝑝𝑜) variables as favored for a
signal classification, again identifying tracks that cannot be associated to particles produced in
the collision. This can be understood as a rejection of false combinations which do not point
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back to the collision rather than a separation of secondary Ξ−, which are not included in the
data sample used for training. Only the Λ0 decay length 𝐿/Δ𝐿Λ0 indicates an importance of the
daughters common origin. The favoured high value for a signal classification happens for a high
resolution of the decay vertex, which in turn is achieved for matching daughter tracks. Features
concerning the decay structure itself, verifying the common origin of daughters like 𝐷𝐶𝐴, 𝜒2

𝑔𝑒𝑜

or connecting daughters with mother tracks like 𝑐𝑜𝑠(𝛼) as well as the PID of daughters (mass
information 𝑚2) seem to be insignificant in the models decision making.

Figure 5.7.: Shap values for features used in training

To test the stability of the model with respect to the excessive number of not important
variables, the eight least important variables are excluded from the training as a test. The
resulting model does not show any less signs of overfitting, however the proven stability (see
section 5.2.2) is lost. Increasing the sample size used for training changes the optimal training
process. Limited to the same ranges, the optimal hyperparameters vary strongly for different
sample sizes, indicating an unintended dependency on statistics. Even though the features seem
to be unimportant for the classification itself, their availability is significant for the models
stability. The features therefore remain included in the training.
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5.2.4. Model performance

In order to visualize the model output, the boosted decision tree (BDT) score is plotted separately
for signal and background in both test and training sample in Figure 5.8(a). The shape of MC-
true signal differs much from the background candidates, which makes a selection possible.
Understanding the BDT score as the probability of a candidate being signal, the accumulation
of signal candidates at high scores (and background at low scores respectively) proves the
successful classification. A machine leaning based selection by accepting only candidates above
a certain BDT score will allow to separate signal candidates.

Looking at the receiver operating characteristic (ROC) curve in Figure 5.8(b) confirms the
prediction accuracy. Depending on the applied BDT threshold, this compares true positive (MC-
true signal and selected) with false positive counts (selected data that is actually background).
For a complete random classification this would result in a identity curve with an integral of 0.5;
a perfect classification would provide a Heaviside step function with an area under the curve
(ROC-AUC) of 1. The achieved score of both train and test set of above 0.999 again shows the
efficient model performance.

Both plots verify that in the optimization process there is no overtraining. A differing
performance in train and test samples would result in a different shape in both BDT output as
well as ROC curve. Seeing that both train and test shapes are nearly indistinguishable proves
the independency of the output to the used sample.

(a) Model output (b) ROC curve

Figure 5.8.: Output and ROC curve quantify the model performance with optimized set
and hyperparameters
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5.2.5. Selection optimization

The optimal selection (maximizing the significance as explained in section 4.2) is achieved for a
selection at BDT > 0.9994. While this gives a high signal to background ratio of 24.9 in the 5𝜎
mass range, with only 49% the signal efficiency is not quite satisfactory. A selection at a lower
BDT threshold would improve the efficiency, but lack in background rejection. The course of
all, significance, efficiency and signal to background ratio for different thresholds is shown in
Figure 5.9.

Figure 5.9.: Significance, efficiency and signal to background ratio in dependence to
the applied BDT threshold

Trying to understand the selection process, the five most important features in training (com-
pare Figure 5.7(a)) are visualized. To get an idea of the models classification process, the
distribution of both signal and background candidates is compared before and after a moderate
selection in Figure 5.10. A selection at BDT > 0.6 achieves both an efficiency and a background
rejection of more than 99%, allowing to demonstrate the differences without a substantial loss
of signal.

While looking at the single variable distribution (diagonal), only small differences strike
in signal and background distributions. However, in the two dimensional correlation of fea-
tures (below-diagonal), the background and the signal distributions show significant differences,
underlining the importance of the multidimensional selection for a signal/background separa-
tion. After applying a BDT selection, those differences are reduced drastically (above-diagonal).

As expected, background candidates that differ visibly from the signal distribution are removed
in the selection. This happens similarly to the data skimming done before (see section 5.1).
While this was done in one dimension only, machine learning considers more dimensional
correlations for the classification. Trying to improve the selection, the resemblance of the
models classification process to the preselection brings up the idea to use it as such, and to train
(yet another) BDT model on the (now twice) preselected sample.
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5.2.6. Iterative selection

A moderate threshold on the first BDT (> 0.6) is applied in order to reduce background without
actually rejecting signal. A second model is trained on this selected sample. To be able to
compare the two strategies, the training is carried out identical for both models. Parallel to the
training of the first model, a 60 : 40 train-test set is formed from signal of five million events
(without the candidates rejected in the first model selection) and a 3 : 1 background proportion,
which enables a more efficient classification than same sized sets. The same features are made
available in the training, containing topological features of each decay (section 3.2) and mass
information of all daughters. With this equality in the training process, any differences can only
origin due to the prior selection of the samples, indicating if a further background rejection
previous to ML selection improves the output as assumed.

In the optimization of the hyperparameters with the Optuna framework, estimators and learn-
ing rate need to be limited in order to avoid overtraining (again, increasing ranges for gamma,
alpha and positive weighting does not improve this). Still, in contrast to the first model the limits
can be chosen more relaxed without causing an overfit, particularly a maximum tree depth of 4
can be allowed, indicating a change in the training already. The optimized hyperparameters as
well as the allowed ranges are given in Table 5.4.

hyperparameter allowed range optimized value

number of estimators (100, 450) 327
maximum depth (2, 4) 4

learning rate (0.01, 0.085) 0.066
gamma (0, 1) 1
alpha (2, 20) 17

scaling positive weight (1, 10) 2

Table 5.4.: Optimal hyperparameters for second XGBoost model

Again, BDT output and ROC curve (Figure 5.11(a), (b)) show that the performance of the
second model does not differ in test and train set, verifying a non-overtrained model. While the
overall ROC-AUC is slightly worse than in the first model, with over 0.99 it is still satisfying. This
proves that even though the data sample has been skimmed twice, manually and with machine
learning, a second model is able to discover enough new properties for a further classification.
A second selection based on the second BDT score is therefore expected to provide an improved
signal/background separation.

Looking at the learning curve in Figure 5.11(c), the statistics again prove to be sufficient.
With a training set size of ∼ 2 × 105 candidates in total, the sample lies in the stable minimal
error range. The curves for train and test set do not differ here, indicating no overfitting.
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(a) Model output (b) ROC curve

(c) Learning curve

Figure 5.11.: Model output, ROC curve and learning curve quantify the performance
for the second model

As expected, comparing the shap-values proves that more of the features are of importance
in the second model training (compare Figure 5.7, 5.12). Even though there are still features
available that do not seem to be used at all, the classification does not rely on one single feature
mostly. The prominent features of the first model appear as important again (compare section
5.2.3), indicating that these properties have not been exploited yet. Still, previously unused
features are now included in the training as well, proving that the second model follows a
different process. With cos(𝛼𝑡𝑜𝑝𝑜 Ξ− ) and 𝜒2

𝑡𝑜𝑝𝑜 Ξ− , the classification of Ξ− as primary particle
seems to be prioritized. In contrast to the first model, 𝐷𝐶𝐴 and 𝜒2

𝑔𝑒𝑜 variables are significant,
meaning that the model rejects candidates with wrongly combined daughter particles that actually
do not originate at a common vertex. This separation happens based on the new important decay
features mostly, but since correlations are included on a deeper level, the old, already used
features reappear in the importance and can be exploited further.
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Figure 5.12.: Shap values for features used in second model training

The increased depth of the second model allows to find these correlations and use them
for classification. This validates the motivation for an iterative model selection. A possible
explanation for the improvement lies in the features used in the first model training. As described
in section 5.2.3, the three main features can be used to reject the three measured daughter particles
as primary particles produced in the collision itself. Allowing a single model to zoom deeper
into correlations, their special and similar characteristics are mixed with random appearances,
leading to an overfitting model. Rejecting the candidates before training a second model on
the other hand, those properties are removed already, allowing to exploit finer differences in the
feature correlation of general background candidates that do not show similarities due to their
common origin. These newly used traits now allow to improve the classification.
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5.3. Selection output

An optimal selection based on the models classification is now found again by maximizing the
significance (Eq. (4.1)). This is done in dependence to the BDT score of the second model, with
a fixed threshold of 0.6 on the first models score. The maximum is found for a threshold at BDT
> 0.997, leading to a selection with 68% signal efficiency. The mass shape of the remaining data
sample after selection in Figure 5.13 shows a significant peak at the expected position. A signal
to background ratio of 39.0 is achieved in the 5𝜎 range around the peak (1.312 − 1.332 GeV).

Figure 5.13.: Invariant mass distribution after iterative selection compared to single
model selection at BDT > 0.6

5.3.1. Performance comparison between single model vs. iterative selection

To compare the single model selection (section 5.2.5) to the iterative approach, they are applied
on the same sample. The performance of both is visualized in Figure 5.14 as a function of the
applied BDT constraint. While the overall efficiency of a dual model selection is reduced, the
significance follows a constant, higher level. Looking at the ratio of signal to background in the
selected data samples, the iterative selection improves the output drastically for a higher BDT
threshold.
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Figure 5.14.: Efficiency, Significance and signal to background ratio in dependence to
applied BDT threshold for both single model and iterative selection
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Considering that a maximized significance is desired, the optimal selection is achieved at a
lower BDT constraint in the iterative approach. This reduced threshold allows for an equally
strong background rejection with a smaller loss of signal candidates at the same time. At the
optimal selection threshold, the two-model selection achieves both a higher signal efficiency and
a higher signal to background ratio as given in Table 5.5.

single model iterative selection

optimal BDT 0.9994 0.997
(on second BDT model)

significance 44 ± 1 52 ± 1
signal efficiency (%) 49 ± 1 68 ± 2

S/B (in 5𝜎 range) 24.9 ± 2.7 39.0 ± 4.5

Table 5.5.: Performance at optimal BDT threshold

Visualizing the different selection performances, the invariant mass distribution of the se-
lected candidates is compared in Figure 5.15. While the distributions do not differ much for
small masses, less candidates remain after a single model selection for higher masses, resulting
in an asymmetric level at the edges. The iterative selection on the other hand allows for a
symmetric selection with a higher mass peak, resulting in a increase when comparing the pro-
portion of both selections. This asymmetry emerging in a single model selection indicates that
an iterative selection is not only more precise, but also less dependent on the reconstructed mass.

Overall, the iterative selection approach allows for a more precise, more efficient and less
biased selection. Allowing to exploit different features after having removed a large part of
similar background candidates based on (mostly) only one feature improves the classification
and enables a better signal extraction.
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Figure 5.15.: Invariant mass distribution after selection, comparing single model vs.
iterative selection

5.3.2. Performance comparison between iterative vs. box selection

While a selection with machine learning techniques is expected to achieve precise results, a
lot of time and computational resources are needed for the training and selection optimization,
particularly to process large amounts of statistics. As a faster and resource-saving way of signal
extraction without the need of ML, a standard selection is implemented in the Kalman Filter
Particle Finder for particles in over fifty decay channels [26]. Based on the respective decay
geometry, it contains rectangular selection criteria to remove background candidates. More
details to this selection strategy can be found in [21].

The default criteria for theΞ− selection include lower limits for the 𝜒2
𝑝𝑟𝑖𝑚

variables of the three
measured secondary tracks (both pions and proton) as well as on 𝜒2

𝑡𝑜𝑝𝑜 Λ0 . This verifies that
the tracks of all secondary particles do not lead back to the primary vertex, rejecting assigned
daughter particles that actually origin in the collision directly. The Ξ− on the other hand, being
a primary particle, is required to track back to the PV by putting an upper limit on the 𝜒2

𝑡𝑜𝑝𝑜 Ξ−

variable. To ensure the daughters share a common origin, both 𝐷𝐶𝐴 and 𝜒2
𝑔𝑒𝑜 variables for

both decays are constrained. In addition, the decay length relative to its error 𝐿/Δ𝐿 is restricted
for both Ξ− and Λ0, verifying a high resolution of both decay vertices. By restricting the Λ0

invariant mass to a 3𝜎 range of the expected mass peak, the particles identity is verified, resulting
in a better resolution of the reconstructed Ξ− decay.
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selection on Ξ− decay selection on Λ0 decay

𝜒2
𝑡𝑜𝑝𝑜 Ξ− < 5 𝜒2

𝑡𝑜𝑝𝑜 Λ0 > 5

𝜒2
𝑔𝑒𝑜 Λ0𝜋−1

< 6 𝜒2
𝑔𝑒𝑜 𝑝𝜋−2

< 3

𝜒2
𝑝𝑟𝑖𝑚 𝜋−1

> 18.42 𝜒2
𝑝𝑟𝑖𝑚 𝜋−2

> 18.42

𝜒2
𝑝𝑟𝑖𝑚 𝑝

> 18.42
𝐷𝐶𝐴Λ0𝜋−1

< 1 𝐷𝐶𝐴𝑝𝜋−2
< 1

𝐿/Δ𝐿Ξ− > 5 𝐿/Δ𝐿Λ0 > 10
𝑚Λ0 in 3𝜎 range

Table 5.6.: Default box selection criteria for the Ξ− particle

The box selection criteria for the Ξ− particle are given given in Table 5.6. In contrast to
the machine learning selection, no PID information is used for the three measured daughter
particles. Including the TOF-mass information for both pions and the proton in the ML training
improves the classification, but makes the two selection strategies nonequivalent. In order to
enable an appropriate comparison, a PID restriction is added to the box selection. To do so, a
fourth order polynomial is used to constrain the relation of squared mass and momentum of the
three measured particles as shown in Figure 5.16.

Figure 5.16.: Squared mass - momentum relation of the charged daughter particles
(pions, proton) for a signal only sample with the selection criteria described in section
5.1 applied. The additional PID constraint added to box selection excludes protons are

excluded outside the red band and pions outside the black bands respectively

36



5.3. SELECTION OUTPUT

Applied on the data sample used in this analysis, the box selection succeeds in selecting a
significant signal peak. Consisting almost only of linear constraints, this proves the precision of
the rectangular selection strategy. Still, comparing to the previously optimized machine learning
selection, it does show a deficit concerning efficiency. While a signal loss is inevitable in order to
reject enough background with linear constraints, machine learning allows to select candidates
in a multi dimensional parameter space. This leads to a more efficient and precise selection as
displayed in Table 5.7.

box selection iterative selection

significance 36 ± 1 52 ± 1
signal efficiency (%) 44 ± 1 68 ± 2

S/B (in 5𝜎 range) 9.6 ± 0.7 39.0 ± 4.5

Table 5.7.: Performance of box selection vs. iterative selection

Comparing the selection strategies in the mass shape of the remaining data sample in Figure
5.17, the iterative approach shows a higher signal peak as well as a lower, flat background level
outside of the Ξ− invariant mass peak region. This results in a clear peak when considering the
proportion of the remainder, again proving the precision of a selection with machine learning
techniques.

Figure 5.17.: Invariant mass distribution after selection, comparing box and iterative
selection

37



CHAPTER 5. RESULTS

5.3.3. Efficiency study in (𝑝𝑇 , 𝑦𝐿𝑎𝑏) phase space

Applying the complete presented selection strategy including data skimming and iterative ML
selection on a pure sample achieves a signal efficiency of 67 ± 2 %. While this is sufficient
overall, the efficiency can vary severely in different phase space intervals, i.e. in the transverse
momentum 𝑝𝑇 , rapidity 𝑦𝐿𝑎𝑏 correlation. To make sure the selection does not have a ’blind
spot’ with lacking accuracy, the proportion of remaining signal after the selection process is
displayed in (𝑝𝑇 , 𝑦𝐿𝑎𝑏) dependency in Figure 5.18.

Figure 5.18.: Efficiency of the presented selection strategy (data skimming and iterative
ML selection) in rapidity, transverse momentum space

Indeed, the efficiency shows a trend indicating a poor selection for low 𝑝𝑇 and low 𝑦𝐿𝑎𝑏

especially. In this region, the characteristics seem to differ too much from the common trend
to enable a precise general description. This does not origin in the selection, but is explained
by the experimental setup however. Candidates with extreme momentum values (very high, as
well as very low) are placed on the corners of the CBM acceptance. Not all daughter particles
might hit all detectors and might therefore not be reliably reconstructable, which falsifies the
description of the reconstructed Ξ− candidate. Those differences might then be targeted in the
selection, which in turn shows a strong impact in the corner region.
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The imbalance of the signal efficiency is therefore not taken as flaw in the selection itself, but as
experimental disadvantage. Still, a multi-differential selection optimization might compensate
for this. For this, independent ML models are trained for different (𝑝𝑇 , 𝑦𝐿𝑎𝑏) bins, allowing each
to concentrate on the most prominent features in the respective sector, which in turn is expected
to improve the efficiency in the separate regions.

5.3.4. Raw signal yield extraction

After optimizing the selection strategy, the remaining data sample will need to be characterized
by a fitting function. This will allow to extract reconstructed signal yield without the the need
of MC labels. While the presented selection strategy in this thesis is not fully optimized, the
general output should already resemble the overall expectation. To enable a suitable description,
the expected shape of the invariant Ξ− mass distribution is modelled. For this, four different
fit functions are tested on a MC-true data sample containing only signal candidates with no
selection applied. In Figure 5.19, the resulting best fits are visualized.

Figure 5.19.: different fit function approaches for invariant mass distribution of a signal-
only sample with no selection
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While a pure Gaussian distribution shows to be too broad, a Breit-Wigner distribution turns
out too narrow. The shape shows good accordance with the Voigt-Profile, being the Convolution
of a Breit-Wigner and a Gaussian. Theoretically, the resonance curve per se is expected to follow
a Breit-Wigner distribution, the detector resolution causes an widening in Gaussian form. The
Convolution of both should therefore be a fitting description.

Actually, the Double-sided Crystal Ball (DSCB) function shows the best description of the
shape, achieving the lowest 𝜒2

𝑟𝑒𝑑
score of 1.3. The DSCB function describes a continuous

distribution following a Gaussian for the peak region, while the tails on both sides follow
asymmetric power laws.

𝑓 (𝑥) = 𝑁
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(5.2)

In Eq. (5.2), the DSCB is gives with the Gaussian parameters mean ` and standard deviation
𝜎, asymmetric tail parameters cross over 𝛼 and power law 𝑛 for both low-end and high-end
tail (indices 𝑙 (low) and ℎ (high) respectively). As extra parameter, 𝑁 allows for a non-unity
normalization. Additionally, an offset parameter is allowed in the fit.

The optimized DSCB Function locates the mass peak at 𝑚Λ0𝜋−1
= 1.322±0.002 GeV/c2. This

is in accordance with the input PDG value [20] used in GEANT transport. For the Ξ− resonance,
a Breit-Wigner distribution with a Full-Maximum-Half-Width of only 4 `eV would be expected,
corresponding to the decay width Γ = ℏ

𝜏
for the mean Ξ− lifetime of 𝜏 = 1.639 × 10−10s

[20]. The deviance in the fit is of course not understood as decay width. The shape of
the distribution purely originates from the experimental setup and the reconstruction process.
A finite detector resolution causes Gaussian distributed measurements. With a non-uniform
resolution throughout the system, the distribution is no longer random according to the central
theorem, but a convolution of various functions describing these resolution alterations. While
the effect does not matter much for the core, the tails are enhanced on both sides, resulting in a
shape best described by a DSCB.

Being wider than a standard distribution, the chosen mass integration corresponds to 1.312 <

𝑚Λ0𝜋−1
< 1.332 GeV, which is equal to the 5𝜎 range of the peak.

Using this description of the mass shape, a multi-step fit routine is used for the remaining
data fraction after the optimized iterative selection process. First, the 5𝜎 mass peak region is
excluded to allow an unbiased background characterization. Seeing that any curvature would
overestimate the complexity of the distribution, a zeroth-order polynomial is chosen to model
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the background. This constant level is then added to a DSCB function before optimizing it to
describe the whole mass shape. The resulting shape and optimized fit functions are visualized
in Figure 5.20.

Figure 5.20.: Invariant mass shape after selection described by the optimized DSCB
function and flat background level. The sample contains candidates in 𝑝𝑇 ∈ (0, 3) GeV/c

and
𝑦𝐿𝑎𝑏 ∈ (0.5, 3)

The exact fit parameters and the respective fit uncertainties are given in Table 5.8.

Gaussian parameters mean ` 1.32175 ± 0.000 05 GeV/c2

standard deviation 𝜎 0.00157 ± 0.000 08 GeV/c2

normalization 𝑁 599 ± 18

low-end tail parameters power law 𝑛𝑙 48 ± 112
cutoff 𝛼𝑙 1.1 ± 0.1

high-end tail parameters power law 𝑛ℎ 44 ± 161
cutoff 𝛼ℎ 1.0 ± 0.2

Background (pol0 parameter) 3.3 ± 0.4

Table 5.8.: optimal fitparameters for the DSCB function and flat offset on the selected
mass shape

41



CHAPTER 5. RESULTS

The good fit of the DSCB for both, before and after selection, proves that the general invariant
mass shape does not change and is not distorted. With a 𝜒2

𝑟𝑒𝑑
of 0.70, the good description of

the data is confirmed. The total count of candidates in each class is be approximated as integral
over the functions. Integrating over the 5𝜎 range of the mass peak gives a signal to background
ratio of 40.5 ± 5.1, which is in accordance with the previously counted (Monte Carlo assigned)
ratio of 39.0 ± 4.5. This agreement verifies that no fake peak is selected in the process. A total
count of 3004 ± 169 selected candidates are assigned as signal in the peak fit.
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6. Conclusion and outlook

In this thesis, a selection strategy for the Ξ− baryon in Au+Au collisions at a center of mass
energy of √

𝑠𝑁𝑁 = 4.93 GeV has been presented. A MC sample produced to simulate the
conditions of the future CBM detector was used, where the Ξ− candidates were reconstructed
via the decay channel Ξ− → 𝜋−(Λ0 → 𝑝𝜋−) in the same way as it will be done for real data. To
extract signal in the background dominated sample, a selection strategy including manual data
skimming and machine learning techniques was optimized.

A set of selection criteria was chosen to separate signal and background candidates in visibly
differing one-dimensional feature distributions. Subsequently, ML was exploited to single out
signal candidates in a multidimensional way. An iterative approach was implemented, consisting
in the optimization and training of two consecutive BDT models. Overall, the presented selection
strategy achieves a signal efficiency with 67±2 %, allowing to extract 3004±169 signal candidates
from 250 × 103 collision events with a signal to background ratio of 40.5 ± 5.1 in the 5𝜎 range
of the mass peak. This strongly indicates that Ξ− yield measurements will prove feasible with
the CBM apparatus.

Furthermore, the quality of an iterative selection strategy has been shown. Using an ML
based preselection (similarly to the one-dimensional data skimming before) allows to remove
background candidates based on low-level feature correlations, before using a second ML model
to find only finer differences hidden deeper in the data characteristics. Compared to a single
ML model selection, this allows to decrease the signal loss while simultaneously increasing the
background reduction.

In the future, further optimization of the selection strategy can be expected to improve
the Ξ− yield. This includes multi-differential selection in different (𝑝𝑇 , 𝑦𝐿𝑎𝑏) bins, but also
another approach of dual ML selection. Having discovered in this analysis that the background
candidates show strong similarities depending on their origin, this can be exploited further.
A selection of secondary Λ0 candidates preceding the Ξ− selection can replace the presented
iterative approach. In this analysis, the first model mainly ensures the rejection of primary
particles, however requiring secondary Λ0s for the Ξ− reconstruction itself would render this
process redundant. A Ξ− selection based on a previous non-prompt Λ0 selection might therefore
be an equivalent - if not more effective - strategy.
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List of Acronyms

BDT Boosted Decision Tree (or its output score respectively)

CBM Compressed Baryonic Matter

DSCB Double-Sided Crystal Ball Function

EoS Equation of State

FAIR Facility for Antiproton and Ion Research

GSI Gesellschaft für Schwerionenforschung

MC Monte Carlo

ML Machine Learning

MVD Micro Vertex Detector

PID Particle Identification

PV Primary Vertex, collision point

QCD Quantum Chomodynamics

QED Quantum Electrodynamics

QGP Quark-Gluon Plasma

ROC Reciever Operating Characteristic

ROC-AUC ROC - area under the curve

SIS Schwerionensynchrotron

STS Silicon Tracking System

SV Secondary Vertex, decay point

TOF Time of Flight detector

x



List of Features

𝜒2 distance Δ®𝑟 normalized to Covariance matrix 𝐶, see equation 3.2

𝜒2
𝑡𝑜𝑝𝑜 𝜒2 between mother track and PV + 𝜒2 between daughter tracks

𝜒2
𝑝𝑟𝑖𝑚

𝜒2 between daughter track and PV

𝜒2
𝑔𝑒𝑜 𝜒2 between daughter tracks

𝐷𝐶𝐴 distance of closest approach between daughter tracks

𝐿 decay length of mother particle

𝐿/Δ𝐿 decay length normalized to its uncertainty

𝑐𝑜𝑠(𝛼) cosine of angle between mother and daughter tack

𝑐𝑜𝑠(𝛼𝑡𝑜𝑝𝑜) cosine of angle between mother track and connection PV-SV

𝑚2 squared mass of measured particles, used as PID, TOF information

xi
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A. Appendix

Figure A.1.: Invariant mass distribution after single model selection with
BDT > 0.6. Even with applied data-skimming and machine learning selection, the signal

peak is not visible in the distribution (black pointers)

Figure A.2.: Invariant mass distribution after iterative model selection
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Figure A.3.: Covariance matrix of invariant Ξ− mass and features used for training
(signal candidates)

Figure A.4.: Covariance matrix of invariant Ξ− mass and features used for training
(background candidates)
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List of exact variables used in selection

𝜒2
𝑔𝑒𝑜 Λ0𝜋−1

𝜒2 between Λ0 and 𝜋−1 (Ξ− daughter particles) tracks

𝜒2
𝑝𝑟𝑖𝑚 𝜋−1

𝜒2 between 𝜋−1 (Ξ− daughter) track and PV

𝜒2
𝑝𝑟𝑖𝑚 Λ0

𝜒2 between Λ0 (Ξ− daughter) track and PV

𝜒2
𝑡𝑜𝑝𝑜 Ξ−

𝜒2 between Ξ− track and PV + 𝜒2 between Ξ− daughter particle tracks

𝜒2
𝑔𝑒𝑜 𝑝𝜋−2

𝜒2 between 𝑝 and 𝜋−2 (Λ0 daughter particles) tracks

𝜒2
𝑝𝑟𝑖𝑚 𝜋−2

𝜒2 between 𝜋−2 (Λ0 daughter) track and PV

𝜒2
𝑝𝑟𝑖𝑚 𝑝

𝜒2 between 𝑝 (Λ0 daughter) track and PV

𝜒2
𝑡𝑜𝑝𝑜 Λ0

𝜒2 between Λ0 track and PV + 𝜒2 between Λ0 daughter particle tracks

cos(𝛼(Ξ−𝜋−1 ))

cosine of angle between Ξ− and 𝜋−1 (Ξ− daughter) tracks

cos(𝛼(Ξ−Λ0))

cosine of angle between Ξ− and Λ0 (Ξ− daughter) tracks

cos(𝛼𝑡𝑜𝑝𝑜 Ξ− )

cosine of angle between Ξ− track and connection PV-SV

cos(𝛼(Λ0𝜋−2 ))

cosine of angle between Λ0 and 𝜋−2 (Λ0 daughter) tracks
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List of exact variables used in selection

cos(𝛼(Λ0𝑝))

cosine of angle between Λ0 and 𝑝 (Λ0 daughter) tracks

cos(𝛼𝑡𝑜𝑝𝑜 Λ0)

cosine of angle between Λ0 track and connection PV-SV

𝐷𝐶𝐴Λ0𝜋−1

distance of closest approach between Ξ− daughters

𝐷𝐶𝐴𝑝𝜋−2

distance of closest approach between Λ0 daughters

𝐿Ξ−

decay length of Ξ− (distance between PV and Ξ− decay vertex)

𝐿Λ0

decay length of Λ0 (distance between PV and Λ0 decay vertex)

𝐿/Δ𝐿Ξ−

decay length of Ξ− normalized to uncertainty

𝐿/Δ𝐿Λ0

decay length of Λ0 normalized to uncertainty

𝑚Λ0𝜋−1

invariant Ξ− mass reconstructed from Λ0 and 𝜋−1

𝑚Λ0

reconstructed invariant Λ0 mass previous to non-linear mass constraint (see Chapter 3.3)

𝑚2
𝜋−1

squared mass of 𝜋−1 (Ξ− daughter), TOF information

𝑚2
𝜋−2

squared mass of 𝜋−2 (Λ0 daughter), TOF information

𝑚2
𝑝

squared mass of 𝑝 (Λ0 daughter), TOF information
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List of exact variables used in selection

𝑝𝑇

transverse Ξ− momentum

𝑦𝐿𝑎𝑏

Ξ− rapidity
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