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Abstract

In this thesis, the feasibility of an analysis of the non-prompt Λ+
c baryon in the proton-

lead collision system at√sNN = 5.02 TeV at midrapidity is studied for the decay channel
Λ+

c −→ pK−π+. This is done by measuring the yield of the non-prompt Λ+
c in data

collected during Run 2 in 2016 and determining the significance of the signal peaks. The
reconstructed candidates have a transverse momentum in the range of 2 < pT < 12

GeV/c. The signal extraction is optimised with Boosted Decision Trees, implemented
with the XGBoost algorithm, where the selections on the candidates are structurally
determined.

Conducting a full non-prompt analysis allows an indirect investigation of beauty
hadrons and the beauty hadronisation. Furthermore, Cold Nuclear Matter (CNM) ef-
fects can be investigated, helping with the disentanglement of CNM effects and the final
state effects in the Quark–Gluon Plasma (QGP) in more complex collision systems like
Pb–Pb.

The investigation found significances ranging from 4.1 to 6.8 for the non-prompt sig-
nal peaks at non-prompt fractions between 73� and 80�. This indicates that a full anal-
ysis of the non-prompt Λ+

c −→ pK−π+ channel is feasible.





Zusammenfassung

In dieser Arbeit wird die Machbarkeit einer Analyse des non-prompt Λ+
c Baryons im

Proton-Blei Kollisionssystem bei √sNN = 5.02 TeV und Midrapidität für den Zerfalls-
kanal Λ+

c −→ pK−π+ untersucht. Hierfür wird der non-prompt Λ+
c Ertrag in Daten aus

Run 2 aus 2016 gemessen und die Signifikanzen der Signalpeaks bestimmt. Die rekon-
struierten Kandidaten besitzen einen transversalen Impuls im Bereich 2 < pT < 12

GeV/c. Das Extrahieren des Signals wird mit Hilfe von Boosted Decision Trees durchge-
führt, welche durch den XGBoost Algorithmus implementiert werden. Die Auswahl der
Signalkandidaten wird anschließend strukturiert ermittelt.

Das Durchführen einer erweiterten non-prompt Analyse erlaubt die indirekte Un-
tersuchung der Beauty-Hadronen und der Beauty-Hadronisierung. Weiterhin können
sogenannte Cold Nuclear Matter (CNM) Effekte untersucht werden, was schließlich zu
einer Entwirrung von CNM Effekten und der finalen Effekte im Quark-Gluon-Plasma
(QGP) in komplexeren Kollisionssystemen wie Pb–Pb beitragen wird.

Diese Arbeit fand die ermittelten Signifikanzen im Bereich zwischen 4.1 und 6.8, wo-
bei die non-prompt Anteile zwischen 73� und 80� liegen. Dies weist darauf hin, dass
eine erweiterte non-prompt Analyse für den ZerfallskanalΛ+

c −→ pK−π+ realisierbar ist.
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1 Introduction

“The first principles of the universe are atoms and empty space; everything
else is merely thought to exist.”

- Democritus (c. 460 BC - c. 370 BC),
trans. by Robert Drew Hicks 1925 [1]

We have come a long way since the first attempts of Greek Atomism, where the atom
derived its name from the Greek words atomos/atomon, ‘indivisible’ [2]. Now, over two
millennia later, we know that the atom could not stay true to this origin. The atom is not
indivisible, but rather a composite of objects with constituents that in turn have their
own substructure. With particle physics as an established field of physics in general, we
know about protons, electrons, quarks, neutrinos, and so on. A lot of today’s knowledge
comes from collider experiments, where particles can be exposed to very high energy
densities and temperatures, in some specific cases even simulating the conditions right
after the Big Bang.

The collider used to perform the measurements in this thesis is the Large Hadron
Collider (LHC), located at CERN in Geneva, Switzerland. At the LHC, heavy-ion col-
lisions can generate conditions of extreme temperatures, where the field theory of the
strong interaction, Quantum Chromodynamics (QCD), predicts the creation of a colour-
deconfined state, the Quark–Gluon Plasma (QGP). In this state, quarks can be consid-
ered as free objects, while in ordinary matter they are only able to exist in colour-neutral
confined states. After a short time of the order of ∼10−23 seconds, the QGP cools down
and hadrons start to form [3]. The produced hadrons (or their decay products) are then
observed with the ALICE detector.

1.1 The Goal of this Thesis

The hadronisation mechanisms of heavy quarks are still open questions, especially for
the beauty quark. Having comparably large masses (mc ≈ 1.27 GeV/c2 [4] and mb ≈
4.18 GeV/c2 [4]), heavy quarks are predominantly produced in hard scattering processes,
e.g. the initial collision, where the momentum transferQ2 exceeds the 4m2

c/b production
threshold [5, 6]. They then undergo the complete evolution of the collision, until they
hadronise into the particles, whose decay products will then pass through the detector.
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CHAPTER 1. INTRODUCTION

According to the QCD factorisation approach, the heavy-flavour hadron production
cross sections can be calculated as convolutions of the parton distribution functions, the
parton hard-scattering cross sections and the fragmentation functions [5]. This can be
written compactly as [7]

dσ
dpT

pPb−→Hq

= fi(x1, Q
2)fj(x2, Q

2) · dσ
q

dpT
·Dq−→Hq . (1.1)

Here, the parton distribution functions fi and fj show the probability of finding a parton
of a certain type in a hadron H to carry a momentum fraction x. They cannot be calcu-
lated theoretically and need to bemeasured, usually in deep inelastic scattering processes
(e−p −→ e−X) [8]. Here, x is the fraction of hadron momentum carried by the parton.
This entity is also called Bjorken-x and is for deep inelastic scattering (e−p −→ e−X)
defined as x = Q2/2Mν, where Q2 is the squared 4-momentum transferred in the scat-
tering process, M is the mass of the nucleon and ν is the energy loss of the scattering
electrons [8]. The parton hard-scattering cross sections dσq

dpT
describe the probability of

the creation of the parton q and are calculable with the methods of perturbative Quan-
tum Chromodynamics (pQCD) [6, 7]. Here, they are the production cross sections of cc
(or bb) pairs. Lastly, the fragmentation functions Dq−→Hq , tuned on electron-positron
and electron-proton collisions, express the probability of a quark q to hadronise into
a specific hadron Hq [5, 9]. They were assumed to be universal for different collision
system [10].

An observable for the hadronisation is the baryon-to-meson yield ratio, like theΛ+
c /D0

yield ratio [10]. According to the aforementioned QCD factorisation approach, the par-
ton distribution functions and the parton hard-scattering cross sections in Eq. 1.1 are the
same for all charm (and respectively beauty) hadrons, thus cancelling entirely in ratios,
leaving only the fragmentation functions to govern the production [10]. In previous pp
collision measurements, it was found that other meson-to-meson yield ratios (D+ and
D+

s to D0) are within their uncertainties independent of their transverse momentum and
consistent with the model predictions using the fragmentation functions from e+e− and
e−p collisions [10]. However, the charmed baryon-to-meson ratios for Λ+

c , Ξ0,+
c , Ω0

c and
Σ0,++

c deviate significantly from their respective e+e− and e−p collision measurements
[10]. Therefore, the assumption that the hadronisation processes do not depend on the
collision system (i.e. are universal) is challenged.

While looking at charm hadrons is possible in Run 2 data, directly doing the same for
beauty is not practicable, due to a lack of statistical precision. However, looking into

2



1.1. THE GOAL OF THIS THESIS

the beauty sector indirectly via the decay of a beauty hadron into a charm hadron was
realised. Previously, this was done on the decay channel of Λ+

c −→ pK0
s with the subse-

quent decay of K0
s −→ π+π−. Fig. 1.1 shows the measurements of the cross section via

this decay channel for different pT. Considering the scaling of the y-axis, the statistical
uncertainties were found to be improvable. This is where the scope of this thesis starts.
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Figure 1.1: Measurements and predictions of the NP Λ+
c cross section in p–Pb

collisions at √sNN = 5.02 TeV measured via the Λ+
c −→ pK0

s decay channel. The
different colours show the origin of the NP particles in the predictions. Image

source: [11].

This thesis focuses on the Λ+
c baryon in the decay channel Λ+

c −→ pK−π+. A Feynman
diagram of this channel is shown in Fig. 1.2. The baryon consists of three valence quarks
with the flavours up, down and charm and has a mass of mΛ+

c
= (2286.46 ± 0.14)
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CHAPTER 1. INTRODUCTION

MeV/c2 [4]. With a lifetime of τΛ+
c
≈ 2.015 × 10−13 s, the mean proper decay length is

cτΛ+
c
≈ 60.0 µm [4]. Although this thesis also covers the anti-particleΛ−

c , for readability,
only the Λ+

c is highlighted.

Figure 1.2: Feynman diagram of the Λ+
c −→ pK−π+ decay channel.

Generally, there are two classes of Λ+
c : prompt and Non-Prompt (NP, also called Feed-

Down, FD). Prompt means that the particle has been created at the Primary Vertex (PV),
while the NP particles are decay products of other particles and are therefore not orig-
inating from the PV, but rather a Secondary Vertex (SV). Therefore, the NP charm par-
ticles allow the indirect access to the prompt beauty hadrons, as mentioned earlier. A
visualisation is shown in Fig. 1.3. There are several possible particles which can decay
into a NP Λ+

c , as Fig. 1.1 shows. In the figure, the predictions of the cross sections of
the NP Λ+

c are shown for the Λ0
b baryon and three B mesons as origin particles. It shows

that the majority of NP Λ+
c originate from a Λ0

b decay. The mean proper decay length
of the Λ0

b can be calculated to be cτΛ0
b
= 441.0 µm [4]. Considering the decay lengths

of these two particles, it can be assumed that all of them will decay while still being
in the vacuum tube, before even entering any kind of detector [12]. Looking further at
the decay products of the Λ+

c , the proton is stable, while the kaon and pion have mean
proper decay lengths of∼3.7m and∼7.8m [4]. This means, that these are the particles
which will likely be passing through most of the relevant detectors for this analysis.

The advantage of the Λ+
c −→ pK−π+ channel over the Λ+

c −→ pK0
s channel lies in their

branching ratios. While the branching ratio for the Λ+
c −→ pK0

s channel is (1.59±0.08)�
[4], it has to be multiplied by the subsequent K0

s −→ π+π− branching ratio, which is
(69.20 ± 0.05)�, resulting in a total ratio of about 1.1�. The branching ratio for the
Λ+

c −→ pK−π+ channel is found to be (6.28 ± 0.32)� [4]. This means, that there is an

4



1.2. THE PROTON-LEAD COLLISION SYSTEM

Figure 1.3:Visualisation of an example for a NP)Λ+
c particle track from aΛ0

b (top)
and a promptΛ+

c particle track (bottom). PV and SV are abbreviations for Primary
Vertex and Secondary Vertex, respectively. The PV is the point of initial collision
where the proton and lead beams collide, while there are several SVs. These are the
vertices where other particles which originate from decays are created. Naturally,
the top and bottom part do not originate from the same PV, but rather serve only

illustrative purposes.

expected factor of at least 5 between the expected yields for these two channels. Looking
at the Λ+

c −→ pK−π+ channel may therefore reduce the statistical uncertainties in the
cross sections. However, the challenge here lies at the large combinatorial background of
this channel, due to the decay into three decay products. Therefore, it is unclear whether
the combination of a larger branching ratio and also a larger background component
make this analysis feasible.

This thesis has the goal of measuring the yield of the non-prompt Λ+
c −→ pK−π+ and

assess the feasibility of a full analysis by determining the significances of the yields. If
the analysis proves to be feasible, then it can be continued and used to add statistics
to the analysis of the Λ+

c −→ pK0
s channel. The prompt Λ+

c −→ pK−π+ yield will also
be analysed, since this can eventually be used as a validation when comparing it to the
published values [13].

1.2 The Proton-Lead Collision System

Generally, the main goal of the heavy-ion collisions at ALICE is the examination of the
QGP. However, besides the QGP, there are other initial state effects which are entan-
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CHAPTER 1. INTRODUCTION

gled with the final state effects. This creates the need to differentiate between effects
coming from the actual QGP colour-deconfinement and others, such as the shadowing
and Cronin effects, labelled as Cold Nuclear Matter (CNM) effects, originating from the
presence of a nucleus in the collision [14]. While heavy-flavour production in pp colli-
sions provide a general reference for studies of heavy-ion collisions and a powerful test
of pQCD, p–Pb collisions are intermediate states where traditionally no QGP is expected
(although some theoretical models also predict the formation of a mini-QGP for smaller
collision systems [15, 16]), but CNM effects have to be accounted for [5]. Therefore, the
investigation of the intermediate p–Pb collision systemmay help to disentangle the QGP
and CNM effects in more complex collision systems, permitting a deeper understanding
of the QGP. Hence, this work has been realised with measurements of p–Pb collisions.

For deviations between the pp collision baseline and larger collision systems, e.g. p–
Pb, the ratios of observables are typically considered, such as the nuclear modification
factor

RpPb(y, pT) =
d�σpPb/dydpT

A · d�σpp/dydpT
, (1.2)

where besides the mass numberA (here for leadA = 208), the differential cross sections
for the two collision systems are needed [6]. If there were no modifications in p–Pb with
respect to a simple superposition of pp collisions, this ratio would be unity [6].

The aforementioned CNM effects consist mainly of two parts, namely the shadowing
effect and the Cronin effect [6]. Starting with the shadowing effect, the ratio RA

i is
defined as [17]

RA
i =

fi/A(x,Q
2)

fi(x,Q2)
. (1.3)

This ratio compares the parton distribution functions fi for a nucleon bound in a nu-
cleus (numerator) to the distribution of a free nucleon (denominator), where index i

represents the parton species, i.e. valence quark, sea quark or gluon [17]. At LHC en-
ergies, i.e. the low x region, the shadowing effect occurs, where the parton densities in
the bound nucleons decrease in comparison with the free nucleons, therefore leading to
a nuclear modification factor smaller than unity [5]. From this effect alone, it would be
expected that the charm production for p–Pb collisions is suppressed in comparison to
pp collisions [6].

The Cronin effect, also Cronin enhancement, describes the modified production of
heavy-flavour particles [18]. Through multiple elastic collisions of partons within their
initial target particle before the actual hard scattering process, the initial transverse mo-
mentum of the partons is increased [18]. This results in a shift of the transverse mo-
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1.2. THE PROTON-LEAD COLLISION SYSTEM

mentum spectrum towards higher pT values and therefore leads to an increased nuclear
modification factor in Eq. 1.2 [6].
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2 The ALICE Detector

ALICE (A Large Ion Collider Experiment) is one of the four main experiments located
along the 26.7 km tunnel of the Large Hadron Collider (LHC) at CERN in Geneva,
Switzerland [19]. With the goal of investigating the QGP, the ALICE detector was op-
timised for high-energy heavy-ion collisions [20]. Bunches of particles like protons and
lead nuclei are accelerated to energies up to several TeV and brought to collisions at
the interaction point in the center of the ALICE detector. After the collision, particles,
produced in very high multiplicities, will travel through the detector and deposit en-
ergy. This energy is then measured and processed by the different detector components,
which allows further analysis.

Figure 2.1: Run 2 configuration of the ALICE Detector. Image source: [21].

Fig. 2.1 shows a schematic setup of the 16 × 16 × 26 m3 detector setup during Run
2 from 2015 to 2018 [20, 22]. The detector consists of several sub-detectors, some of
which are located within the L3 magnet, inherited from the L3 experiment at the pre-
vious LEP (Large Electron-Positron Collider) at CERN.Themagnet is coloured red in Fig.
2.1 and provides a magnetic field with a strength ofB = 0.5 T in the direction parallel to
the beam line [20]. The sub-detectors located within the magnet operate at midrapidity
(|η| < 0.9) are called central-barrel detectors [20]. They contain most notably the ITS,
TPC and TOF detector. The ITS and TPC are the detector’s main systems for the tracking
of charged particles, while the TOF detector provides PID information for charged par-

8



2.1. INNER TRACKING SYSTEM

ticles at intermediate momenta [20]. Further information on these systems is provided
in the next sections of this chapter.

ALICE uses a right-handed coordinate system, which has its origin at the LHC Inter-
action Point 2 (IP2) (centre of the central barrel detectors) [20]. The x-axis is defined as
the horizontal pointing towards the center of the LHC ring, the y-axis points vertically
upwards and the z-axis is parallel to the beam line [20]. In addition to this Cartesian
system, spherical coordinates are also used. Generally, the x-y-plane is used to define
the transverse direction, e.g. for transverse momentum of the particles and the Lorentz-
invariant pseudorapidity η is used instead of the spherical polar angle θ [22], where η is
defined as [23]

η = − ln tan
θ

2
. (2.1)

2.1 Inner Tracking System

The Inner Tracking System (ITS) is a cylindrical detector in the central barrel of the
ALICE detector, oriented along the z-axis. It is the detector closest to the beam line
and faces track densities of up to 50 tracks/cm2 in heavy-ion collisions [24]. The ITS is
one of the main tracking detectors of ALICE and provides crucial information for the
preliminary determination of the Primary Vertex [20]. It is also able to provide PID
information through measurements of the specific energy loss dE/dx of especially low
momenta (< 100 MeV/c) particles [24]. Since this thesis only analyses particles with
momenta of at least 300 MeV/c, a range where the PID capabilities of the TPC and TOF
detectors are sufficient, no ITS PID information is used. Thus, the description of PID in
the ITS is omitted here.

In total, the detector consists of six layers, with the two innermost (starting at the
smallest possible radius r = 4 cm, closest to the beam line) consisting of Silicon Pixel
Detectors (SPD), the two middle layers of Silicon Drift Detectors (SDD) and the two
outermost of Silicon Strip Detectors (SSD) [12]. This layout is visualised in Fig. 2.2, also
showing the total diameter of 87.2 cm of the outermost layer.

To determine a preliminary PV, only the two innermost layers (SPD) are used [20].
The SPD provide a high spacial resolution of 12 µm in transverse direction and 100 µm
in z-direction [25]. The signals in the two layers can be combined to pairs of clusters,
so-called tracklets, which can be prolonged into the vacuum tube [20]. Looking at all the
possible prolonged tracklets, the point in space where a maximum number of themmeet

9



CHAPTER 2. THE ALICE DETECTOR

Figure 2.2: Layout of the Run 2 ITS. Image source: [12].

is identified as a preliminary PV [20]. For further track reconstruction the signals in the
ITS are combined with the TPC measurements in an inward-outward-inward scheme,
starting at the outer TPC [20]. With this reconstruction, the primary vertex can be
determined with a resolution of 60−75 µm for a 1GeV/c charged particle in a collision of
protons and/or lead nuclei [20]. Also, due to the high resolutions, secondary vertices can
be identified by looking for tracks, whose distance of closest approach to the PV is above
a certain threshold [20]. This is important for the investigation of short-lived heavy-
flavour hadrons, which decay before even entering any detector, like already mentioned
in Chapter 1 for the Λ+

c and Λ0
b .

2.2 Time Projection Chamber

TheTime Projection Chamber (TPC) surrounds the ITS and is build to cope with the high
multiplicity environment of ALICE, providing information for PID, track reconstruction
and final vertex determination [20]. With the given magnetic field of the L3 magnet, it
covers a wide range of transverse momentum from 100 MeV/c up to 100 GeV/c with a
good momentum resolution [25].

Like visualised in a 3D sketch in Fig. 2.3, the TPC is a hollow cylinder with a length
of 500 cm and an inner and outer radius of 85 cm and 250 cm, respectively [23]. The
inside is divided into two parts by a central high-voltage electrode and contains a total

10



2.2. TIME PROJECTION CHAMBER

Figure 2.3: 3D sketch of the TPC. Image source: [23].

volume of about 90 m3 [23]. The volume contains a gas mixture of Ne/CO2/N2 (briefly
during Run 2: Ar/CO2/N2 [22]) at atmospheric pressure, serving with a large radiation
length compared to the dimensions of the TPC [23]. The readout electronics are located
at the two endplates and can be radially separated into two readout chambers at a ra-
dius of about 133 cm [25]. The reason for this is the change in track density along the
radius, which allows optimisation of the geometry of the readout pads in the chambers
[25]. Furthermore, both parts are then further divided into 18 trapezoidal sections in
azimuthal direction, covering 20p each [23].

Generally, the functionality of the TPC is based upon the fact that charged particles
traversing through the chamber ionise the gas mixture, creating free electrons. These
electrons then drift, due to the electric field, towards the endplates, where they induce an
avalanche in the Multi-Wire Proportional Chamber (MWPC) and thus creating a signal
in the readout pads [23].

As already mentioned in the previous section, the track reconstruction starts at the
outer TPC. To reconstruct the 3D trajectory, the location of pads which received a signal
are used to identify the track position in rφ direction, while the z-positions are calcu-
lated with the drift velocity and drift time of the electrons in the gas measured against a
temporal reference, e.g. time of collision [25]. Assigning position and errors to signals
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CHAPTER 2. THE ALICE DETECTOR

in the detectors makes them so-called clusters [22].
To start the track reconstruction with the aforementioned inward-outward-inward

scheme, two induced clusters at the outer TPC are combined with the preliminary PV
to build so-called seeds, i.e. first possible track candidates [20]. These seeds allow the
identification of further clusters lying in the TPC which may also belong to the same
particle. Adding more and more clusters and recalculating the seeds after each added
cluster leads eventually to the ITS. After all possible clusters for this stage were identi-
fied, the outward stage begins. Here, the track gets refitted to the clusters from the inside
out and the track is prolonged into the detectors beyond the TPC [20]. Clusters found
in these detectors will not modify the kinematics of the trajectory, but rather allow PID
through identification of clusters in e.g. the TOF detector [20]. Lastly, the second inward
phase starts again by fitting the clusters from the outer TPC to the clusters in the ITS
[20]. This time, the kinematic parameters of the track are determined and the final PV
can be estimated similarly to the preliminary PV, but with the extended trajectories [20].

Figure 2.4: Example of specific energy loss over momentum in the TPC for p-p
collisions at

√
s = 13 TeV in Run 2. Warmer colours represent higher track counts

and the lines indicate the fit solutions for different particles. Image source: [26].

With measurements of charge, momentum and specific energy loss of the particle
trajectories, PID can be carried out by using the parameterised Bethe-Bloch formula,

f(βγ) =
P1

βP4

(
P2 − βP4 − ln

(
P3 +

1

(βγ)P5

))
, (2.2)

with β as the particle velocity, γ as the Lorentz factor and the fit parameters P1 − P5

12



2.3. TIME OF FLIGHT DETECTOR

[20]. Drawing the dE/dx measurements as a function of momentum as shown in Fig.
2.4 (for a different collision system) shows distinct curves originating from different
particle species. Overlaid in the plot is the parameterisation from Eq. 2.2. For low
momenta (. 1 GeV/c), particles can be separated precisely (see in Fig. 2.4 clearly sepa-
rated curves), while particles with higher momenta need to be separated using statistical
methods (overlapping curves in the figure) and eventually additional information given
by other detectors [20].

For this analysis, in order to separate particle species, the variable nσi
TPC

is used. It
represents the deviation of the measured signal STPC (in case of the TPC, this signal is
the specific energy loss) from the expected signal 〈Si

TPC〉 calculated with Eq. 2.2 for a
particle type i in units of the resolution σi

TPC [7]. Therefore, it can be calculated as [7]

nσi
TPC

=
STPC − 〈Si

TPC〉
σi
TPC

. (2.3)

2.3 Time Of Flight Detector

The Time Of Flight (TOF) detector is used to provide additional PID information for
charged particles. It focuses on the intermediate momentum range, also because par-
ticles need at least 0.3 GeV/c to even reach the detector in the given magnetic field [20,
27].

Figure 2.5: Layout of the TOF detector. Image source: [27].

The detector is located at a radial distance of 370 cm to 399 cm to the beam axis and
consists of 18 segments attached to a frame like shown in Fig. 2.5 [25]. Each segment,
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CHAPTER 2. THE ALICE DETECTOR

also called supermodule, consists of 5 smaller modules, which all use Multigap Resistive
Plate Chambers (MRPC) technology [27]. The double-stacked MRPCs used in the TOF
design are composed of two stacks (therefore double-stacked) of resistive plates, which
are fixed at equal distances between them [28]. This allows gas to be filled in between
the resistive plates [28].

Particles passing through the system ionise the gas, and because of the high and uni-
form electric field applied, the induced electrons start avalanching instantly [27]. This
process will happen in each of the gas filled gaps between the plates [27]. After the
avalanches have been registered at the pick-up electrodes, the total signal is constructed
by taking the sum of all avalanches [22].

Figure 2.6: Example of a diagram of the measured velocity β = v
c over the mo-

mentum of a particle for p–Pb collisions at √sNN = 5.02 TeV. Warmer colours
indicate higher track densities. Image source: [29].

The PID performed in the TOF detector uses the measured time of flight t over the
track length L to calculate the velocity v [27]. The track length is known through track
reconstruction explained in the previous section, while the time of flight is measured as
the time of arrival in the TOF detector in reference to the start time provided by the T0
Cherenkov detector (contained in number 2 in Fig. 2.1) [20]. Knowing the momentum
p, also through track reconstruction, as well as the track length and time of flight allows
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2.4. COMBINED PARTICLE IDENTIFICATION

the calculation of the mass m via

m2 =
p2

c2

(
c2t2

L2
− 1

)
, (2.4)

which provides the PID information [27]. Similar as for the TPC, a nσi
TOF

can be defined
by taking the difference of the measurement t and the expected time of flight tiexp for a
certain particle species i and divide it by the time resolution σTOF of the detector,

nσi
TOF

=
t− tiexp
σTOF

, (2.5)

to get the deviation analogous to Eq. 2.3 [27]. Plotting the dimensionless velocity β (i.e.
velocity v over speed of light in vacuum c) in a diagram over the particle momentum,
distinct bands for each particle species can again be seen. An example of this is shown
in Fig. 2.6 for p–Pb collisions at 5.02 TeV.

The capability of differentiating between two particles with different masses depends
on the time difference of the two particles and on the time resolution σTOF (For Run 2

∼56 ps [30]) of the detector. The time difference can be calculated with [27]

t1 − t2 =
L

2c

(
m2

1c
2 −m2

2c
2

p2

)
. (2.6)

Modifying Eq. 2.5 yields
nσ =

t1 − t2
σTOF

, (2.7)

for the difference in units of the detector resolution [27]. Therefore, the separation power
decreases with increasing momentum and between species with more similar masses.
This can also be observed in Fig. 2.6. For example, with a track length of 3.7 m ([27])
and the time resolution given above, the TOF detector provides a 3σ separation for pions
and kaons below ∼2.7 GeV/c and for protons and kaons below ∼4.8 GeV/s.

2.4 Combined Particle Identification

The PID information from the TPC and the TOF detectors can either be used separately,
or they can be combined into a single nσi

Comb
variable, which allows the consideration

of both detectors at the same time. It is defined as [7]

15



CHAPTER 2. THE ALICE DETECTOR

nσi
Comb

=


|nσi

TPC
|, if signal only in TPC

|nσi
TOF
|, if signal only in TOF

1√
2

√
(nσi

TPC
)2 + (nσi

TOF
)2, if signals in both TPC and TOF

. (2.8)

This has the advantage of combining two detectors with complementary detection
techniques. If one detector cannot provide good enough separation power in a specific
case on its own, the other detector might give enough additional information to have a
sufficient separation again.
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3 Analysis Methods

Many analyses in modern particle physics depend heavily on Machine Learning (ML)
as an analysis tool. It allows the convenient handling of billions of events and more
precise signal classification than manual selection optimisation. Machine Learning is an
umbrella term for several different algorithms, but for this thesis, only Boosted Decision
Trees (BDT) are relevant. This chapter focuses on the explanation of BDTs and the rele-
vant concepts around it. The practical implementation of the ML has been achieved via
the XGBoost algorithm [31] and the hipe4ml python package [32].

3.1 Boosted Decision Trees

3.1.1 Decision Trees

The basic unit of a BDT is a decision tree. A decision tree is an algorithm based on
supervised learning and can be used for classification and regression problems [33].

Figure 3.1: The basic structure of a decision tree. Image source: [33].

The basic structure of a simple decision tree can be seen in Fig. 3.1. It consists of a
hierarchical tree structure, starting with a root node at the top, followed by branches
into internal and eventually leaf nodes [33]. For the purposes of training the model,
there is a set of candidates, each with a set of parameters and one unambiguous class to
which it should be assigned. All of the candidates start at the root node, where the first
decision will be made, e.g. if a particle’s momentum is higher than a certain threshold,
the candidate will follow the first branch; if it is below, it will follow the second branch.
At the end of each branch is a new internal node, where this procedure will be repeated
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until it will eventually end at a leaf node. The goal is to achieve a purity as high as
possible for each leaf node, i.e. each leaf node collects mostly candidates of only one
class. The complexity and depth of a tree can be increased as much as desired, but at
a certain complexity it is increasingly difficult to maintain the purity of the leaf nodes,
since too little data falling in each sub-tree results in overfitting [33]. When a model is
overfitted, it may show perfect results for the data which the tree has been trained on,
but will score much worse on similar data that was not used for the training [33].

For the purpose of XGBoost, a slightly modified version of decision trees is used: Clas-
sification and Regression Tree (CART) [34]. The modification to the standard decision
tree lies in the leaf nodes, where one leaf node does not automatically represent a cer-
tain class, but it assigns a certain score to the candidates, which allows more room for
interpretation of the tree output [34].

If the result of a single tree is not satisfactory, but increasing complexity decreases
performance, an ensemble of trees might be helpful. Several smaller decision trees may
be combined in a single superior model, which then provides a better performance than
any given single tree. Here, the method used to create the ensemble is called boosting.

3.1.2 Boosting

In general, boosting is the process of combining several weak learners, i.e. decision
trees with low complexity, into one strong learner via sequential learning [35]. It is
an iterative process, where each tree is built with consideration of the previous weak
learners and most importantly their errors [35]. A visualisation of a boosted model is
shown in Fig. 3.2. The algorithm used as an implementation of Boosted Decision Trees
is called XGBoost (Extreme Gradient Boosting).

Figure 3.2: Visualization of decision tree boosting with each tree learning from
the errors of the previous weak learners. Image source: [36].
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3.1. BOOSTED DECISION TREES

3.1.2.1 Extreme Gradient Boosting

The algorithm is used for supervised learning tasks, which give a training data set with
multiple features xi, which will be used to make a prediction ŷi of the target value yi

[34]. The prediction value can have different interpretations, from representing a prob-
ability to ranking the outputs [34], but for heavy-flavour physics, the expected output
represents a probability for a reconstructed candidate to belong to certain class. A model
consists of several different parameters, like e.g. the depth of a tree or even the feature
on which a decision will be made, which will be summarised under the variable θ [34].

When a model is being trained, some parameters are the variable components that
will be adjusted to fit the training data [34]. Others, so-called hyperparameters, are not
adjusted during the training, but rather before. An objective function quantifies how
well the model fits the data [34],

obj(θ) = L(θ) + Ω(θ). (3.1)

This is a sum of the training loss function L, which measures the predictiveness of the
model and the regularization term Ω, which represents the complexity of the model
[34]. In general, when training a model, the goal is to minimise objective function.
Considering Eq. 3.1, a good model needs to compromise between effectively classifying
the data set, while remaining as simple as possible.

As already mentioned, the optimization is done iteratively, which is the general con-
cept of gradient boosting. The first basic weak learner is added and makes predictions
on the training data, by taking the average of the true target values of all candidates in a
single leaf node [37]. Since the true target values of the training set are known, the dif-
ference between prediction and target, the so-called residual, can be calculated [37]. The
next step of the optimization is to find the next weak learner predicting these residuals
[37]. By trying to predict the error of the previous tree, and continuing this process for
the entire model, the final output, the sum of all individual predictions (possibly scaled
with a learning rate, regulating the influence of individual learners) will converge to-
wards the target value.

XGBoost also optimises the way each weak learner is created. Each tree starts off with
only the start node. Each possible branching into two leaves with the available features
will then be tested for their overall information gain [34], i.e. does the added value of
this branch in the shape of function loss optimization outweigh the added complexity?
If this is the case for the most optimised splitting, the branch is created and the process
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repeated for each node, however if the answer is no and no split increases the gain, then
the branching will not be accepted and the process for this node is finished [34]. This
process is known as pruning.

3.1.2.2 Hyperparameter Optimisation and Multiclass Classification

The implementation of XGBoost for this thesis has been achieved via the Heavy-Ion
Physics Environment for Machine Learning (hipe4ml) Python package. The usage of
this package also offers the possibility of optimizing hyperparameters (through the Op-
tuna package [38]), such as number of estimators, maximum tree depth and learning
rate, which improves the overall performance of the training and predictions [32]. To
avoid overfitting during this process, the hyperparameters need to be tested on different
samples of the data, but since there is usually only a limited number of training data
available, the cross validation method is applied [32]. For this, the entire data set is di-
vided in n fractions (called folds), where one fold is used as a test set, while the model
is trained on the other n − 1 folds [32]. After permuting through all possibilities, the
average of the results is calculated as a final value for the hyperparameters used in this
version of the model [32].

The BDTs model explained above is only able to perform binary classification, e.g.
signal vs. background. However, for an analysis of non-prompt Λ+

c , another class needs
to be accounted for, resulting in a so-called multiclass classification of prompt, NP and
background. There are two possible methods for splitting this multiclass classification
problem into several binary classifications: these are known as One-vs-One (OvO) and
One-vs-Rest (OvR).

The OvO approach trains one BDT for each combination of classes [39]. So for the
three classes mentioned above, there are three possible combinations (prompt vs. NP,
prompt vs. background and NP vs. background) and therefore three separate models
trained. When applying, each model will make a prediction and a majority vote will de-
termine the final result. Therefore, the two models containing the comparison between
the true target class and another incorrect class needs to assign the candidate correctly
to make the third comparison between the two incorrect classes irrelevant due to the
majority vote. In case there is a three-way tie, i.e. all models assign the candidate to a
different class, the candidate cannot be assigned to only one class, and should therefore
not be used in further analysis (It is also possible to chose the vote with the highest
output scores, if all candidates should be used).

The OvR approach trains one model for each class, where it will compete against all
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other classes combined [39]. So again for the three classes, there are three possibilities:
prompt vs. rest (NP and background), NP vs. rest (prompt and background) and back-
ground vs. rest (prompt and NP). With this method, the end result will be a score for the
candidate for each class of zero to one, determining how likely it is that this candidate
belongs to the class. A selection must then be made on the output scores when classi-
fying the data. A successive analysis is performed to determine the selection thresholds
for each class, known as the working point determination (Section 4.3). In this analysis,
the OvR approach is chosen.
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4 Analysis

This analysis focuses on the Λ+
c particle via the decay channel Λ+

c −→ pK−π+. The
data was measured for p–Pb collisions with the ALICE detector during Run 2 in 2016

at midrapidity range (−0.96 < y < 0.04). The energy for the collisions was √sNN =

5.02 TeV. For this thesis, a data set with reconstructions and a Monte Carlo (MC) set
with simulations were provided. The candidates given in the data set can be assigned
one of three possible classes: either prompt candidate, NP candidate, or combinatorial
background. This creates the need for classification in the data set. Therefore, the first
step is the application of preselections, which are used to sort out easily classifiable
candidates, followed by a more complex classification via BDTs. The preselection is
applied to filter the candidates so that the ML training focuses on selections that could
not be easily done by hand. The preselectionswere already applied to the data set prior to
the work in this thesis, but are still briefly discussed here for completeness. Afterwards,
the ML model training is explained with a description of the final models used for the
classification. There are three transverse momentum intervals (2–4 GeV/c, 4–8 GeV/c
and 8–12GeV/c) used to train three models. After all of the available data has been given
classification scores by the models, the working points, i.e. selections in the machine
learning outputs which signify the difference between each of the three classes, need to
be determined structurally. Lastly, fits to the invariant mass distributions of the selected
candidates are used to conduct the signal extraction.

4.1 Preselections

As already mentioned, the preselections were already applied prior to this analysis, but
are still listed for completeness in Tab. 4.1. The features will be briefly explained here.

• dca:
The abbreviation stands for distance of closest approach. It is measured from the
Λ+

c track to the reconstructed PV.

• d_len:
This is the decay length of the reconstructed candidate, i.e. distance between the
PV and the SV of the Λ+

c decay. It is expected that the NP candidates have a larger
decay length on average, since their production origin deviates from the PV by
the decay length of a prompt beauty hadron. A visualisation is drawn in Fig. 4.3.
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Feature Selection

dca < 0.05 cm

d_len > 0.005 cm

cos_p > 0.8

sigma_vert < 0.04 cm

pt_prongX > 0.3 GeV/c

Table 4.1: Preselections applied to the reconstructed candidates.

• cos_p:
This is the cosine of the so-called pointing angle, i.e. the angle between the mo-
mentum of a particle and the sum of the momenta of its decay products. It is
expected to be close to unity.

• sigma_vert:
This feature describes the resolution of the reconstructed SV via the three decay
particles, also called prongs. It is the sum of the quadratic distances of closest
approaches of all three prongs.

• pt_prongX:
This variable describes the transversemomentumof the decay particle X, i.e. either
proton, pion or kaon. In this case, the transverse momentum for all prongs was
chosen to be above 0.3 GeV/c.

4.2 Machine Learning Training

For further separation between signal and background and also prompt and Non-Prompt
candidates, rectangular selections by hand are not viable, due to the complexity of the
data. Therefore, Boosted Decision Trees are used, which are able to use correlations
of multiple features for classification. The concept has been described in the previous
Chapter 3. For each of the aforementioned transverse momentum intervals a separate
model is trained. The training data consists of simulated Monte Carlo (MC) data for the
prompt and NP classes and a fraction of real data for the background. The background
data is selected to exclude the invariant mass range 2.24 < mcandidate < 2.33 GeV/c2

for the training, since this contains the vast majority of real signal candidates. These
selections are calculated via the MC data peak mean value and ±5σ ranges.
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pT [GeV/c] 2− 4 4− 8 8− 12

Prompt 107718 182350 43440

Non-Prompt 203164 339223 79670

Background 310882 421573 84817

Table 4.2: Number of candidates used in the training process for each class and each pT
interval.

In Tab. 4.2, the number of candidates used for the training is shown. For the training
of the first two intervals, the number of background candidates has been chosen to be
equal to the signal (combined prompt and NP) candidates. In the third interval, the ratio
of prompt to NP to background is roughly 1:2:2, making it approximately a 3:2 signal
to background ratio. This last ratio could have been adjusted to fit the 1:1 ratio and is
due to the original ML attempts and the way the training data was prepared. However,
the results of the models which are presented in the following sections were already
sufficient enough and no important improvement was to be expected from increasing
the training statistics. Therefore, the original ratio was kept. For each of these numbers
in Tab. 4.2, only 80� are used for the actual training, while 20� are used for testing and
validation. Overall, the fraction of background training candidates compared to the total
number of candidates in the respective momentum intervals remained below 1.25� for
all three models.

4.2.1 Training Variables

Using all available features for the training of the models is not optimal, since this adds
unnecessary complexity which may result in overfitting. Therefore, only the ten most
relevant features shall be used. Importantly, the invariant mass and transverse momenta
of candidates will be excluded from the training feature space, since the model may learn
to exploit the selections used to create the training data, resulting in biased classification.
To determine the best set of features, amodel for themomentum range 4 < pT < 8 GeV/c
is trained with all available features (except redundant PID variables). They are then
evaluated on their average influence on the final output. Additionally, the degree of cor-
relation between the features of the data has to be checked. Differences in correlations
between the three classes are particularly useful to perform classification. Importantly,
however, correlations between the training variables and the target observables, namely
invariant mass and transverse momentum, should be avoided as much as possible. A
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Figure 4.1:Quantification of the average impact of each of the ten most relevant
features on the model for each class. This is for the model for 4 < pT < 8 GeV/c.

selection of these kind of correlations risks the artificial enhancing or reducing of the
signal, and thus biasing the results.

After the feature importance and correlations have been accounted for, the impor-
tance of the ten most relevant features in a model trained with only these as inputs is
shown in Fig. 4.1 for the interval 4 < pT < 8 GeV/c. The figure shows on the y-axis
the training features sorted by relevance. The relevance is quantified by the mean SHAP
(Shapley Additive Explanations) values along the x-axis, which in essence show the av-
erage impact on the model output of the respective feature [40]. The different colours
show the relevance of the feature concerning the classification of a candidate to a cer-
tain class. The correlation matrices for each class for this model are shown in Fig. 4.2,
where it shows no significant correlation (i.e. no strong red or blue colour) between the
features and mass or momentum. However, other (strong) correlations do exist, which
enable the model to classify efficiently. These features have also been used for the other
two momentum intervals and the feature importance and correlations can be found in
the appendix (2 < pT < 4 GeV/c: feature importance in Fig. 7.1 and correlations in
Fig. 7.3; 8 < pT < 12 GeV/c: feature importance in Fig. 7.2 and correlations in Fig. 7.4).
Arguably, it is possible that these best features for one model are not necessarily the best
for the other models too. However, differences between the feature importance over the
models may also appear due to statistical fluctuations. Since a systematic study of the
feature influence on the different models is not feasible with only three models and the
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models show satisfying results with the same given features, no further investigations
have been carried out.
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Figure 4.2: Correlation matrices of the ten relevant features with the additional
parameters transverse momentum pT and invariant massm for 4 < pT < 8 GeV/c.

Before continuing, the features used in the models need to be explained:

• nsigComb_X_n:
All features with a name similar to this are PID variables. The X represents the
particle species, so for the decay channel inspected in this thesis either proton (Pr),
pion (Pi) or kaon (K).The n is representative for the number of the track which has
been used to reconstruct the candidate. It can either be 0, 1 or 2, where the even
numbers are tracks that show a curvature typical for a positively charged particle
and the odd number shows negatively charged particle behaviour (or oppositely, in
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case of the Λ−
c ). The feature contains the combined PID information as explained

in Section 2.4.

• d_len:
This is the decay length of the reconstructed candidate, it was already explained
in Section 4.1. A visualisation is shown in Fig. 4.3

Figure 4.3: Again, for clarification, the top and bottom part do not actually orig-
inate from the same PV, but this is for illustrative purposes. Left: The red lines
visualise examples of the impact parameter for non-prompt (above the PV) and
prompt (below the PV) Λ+

c decay protons. The tracks of the protons get extrap-
olated beyond their origin (blue lines) and the distances of closest approaches are
calculated. Right: The red lines visualise the reconstructed decay length for non-

prompt (above the PV) and prompt (below the PV) Λ+
c .

• norm_dl_xy:
This is the normalised decay length in the x-y plane. The reconstructed track gets
projected on the xy plane in the ALICE coordinate system and the decay length
obtained is divided by its error.

• max_norm_d�d�exp:
This feature describes the largest difference in measured and expected impact pa-
rameter of any of the three decay products of the Λ+

c . Here, the measured impact
parameter is the distance of closest approach between a continued trajectory of
a decay particle and the PV. An example sketch can be seen in Fig. 4.3. The ex-
pected impact parameter is the sine of the pointing angle and multiplying it with
the decay length of the initial particle.
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The distribution of the candidate features in the momentum range 4 < pT < 8 GeV/c
for each class can be seen in Fig. 4.4. The background is generated using real data and
cutting out the signal area (which can be seen in the first subplot), while the prompt and
NP candidates are simulated MC data. These plots show that differences in the distribu-
tions also help the discrimination between the three classes. While the distributions are
nicely visible for the three non-PID features, the PID distributions are distorted by a few
outliers. It is important to note, that the values located in the high negatives (around
−1000) are not real measurements, but actually candidates which actually have no PID
information at all. An example of a zoomed in version of a PID distribution is shown in
Fig. 4.5. The distributions for the other two momentum intervals can also be found in
the appendix (2 < pT < 4 GeV/c in Fig. 7.5 and 8 < pT < 12 GeV/c in Fig. 7.6).
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Figure 4.4: Distributions of the ten relevant features with additional parameters
transverse momentum pT and invariant mass m for 4 < pT < 8 GeV/c.

4.2.2 Hyperparameter Optimisation

After the set of features is chosen, the hyperparameter optimisation is performed with
a Bayesian optimisation approach via the Optuna package. In this approach, a given
range of parameters are scanned iteratively while considering previous evaluations for
choosing the next set of parameters [6]. To avoid statistical fluctuations while testing,
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4.2. MACHINE LEARNING TRAINING

Figure 4.5: Zoomed in distribution of the nsigComb_Pr_2 feature for 4 < pT < 8
GeV/c.

the cross validation method which was explained in Section 3.1.2.2 is used. Tab. 4.3
shows the optimal hyperparameters for each model.

pT [GeV/c] 2− 4 4− 8 8− 12

Max. Depth 3.9 4.0 3.8

Learning Rate 0.027 0.057 0.034

No. of Estimators 1927.4 1925.9 1924.4

Min. Child Weight 5.5 5.4 6.4

Subsample 0.98 0.91 0.84

Col. Sample by Tree 0.91 0.91 0.86

Table 4.3: Optimised hyperparameters for each model for the three pT intervals.

The first parameter in Tab. 4.3, Max. Depth, is the maximum depth of a single weak
learner in the BDT. For the optimisation, the range between 1 and 4 was tested. All
three parameters are close to the upper limit of the tested range, which in general is not
optimal, but it was found that a larger depth increases the overfitting of the ensemble,
so 4 was chosen as a maximum upper limit.

The learning rate was already briefly mentioned in Chapter 3. It can be described as
the rate at which the model adapts to the training data. A smaller learning rate results
in a more careful and slower approach, while a larger learning rate results in faster
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adaptation, but makes the model prone to overshooting the optimum. The tested range
was from 0.01 to 0.1.

The number of estimators is the amount of weak learners in an ensemble. Since each
weak learner only has a low tree depth, many of these low-complexity trees are com-
bined for the ensemble. A range between 800 and 2000 was tested. Arguably, the pa-
rameters are close to the upper limit here as well. However, no tests were done with a
higher upper limit, so if a better performance would be needed, these tests could yield
some further improvements.

The fourth parameter in the table, Min. Child Weight, is a hyperparameter associated
with the pruning process. It describes the minimum sum of weights in a child node for
it to survive the pruning, therefore a larger value indicates less tree partitions [34]. The
parameter range was set to be between 0.2 and 7.

The subsample parameter describes the percentage of available training data used in
a single boosting step. By avoiding the use of all data all the time and rather randomly
choosing subsamples of it, overfitting can be reduced [34]. The given range was from
0.8 to 1.

Lastly, Col. Sample by Tree is the fraction of available features used to generate a
weak learner, where the features are chosen randomly according to the set fraction [34].
The reason for this is the same as for the subsample parameter and the set range for
optimisation is also identical.

4.2.3 Trained Models

Eventually, three models with the optimised hyperparameters in Tab. 4.3 are trained
with the features evaluated in Fig. 4.1 on the amount of data stated in Tab. 4.2. To control
the model performance, the ROC curve is evaluated, where ROC stands for Receiver
Operating Characteristics. The curve shows the true positive rate as a function of the
false positive rate, e.g. looking at only the submodel which evaluates the prompt vs.
rest classification, the positive label is given to candidates in the test set of the training
data which are actually prompt. A candidate is a true positive, when the model classifies
a prompt candidate correctly as prompt. Analogously, if the model assigns the prompt
class to any other candidate that is either NP or background, it is called a false positive.
Since the model itself does not actually assign classes to the candidates, but rather scores
of how likely the candidates belong to the class, the true positive and false negative rates
depend on where the selection in these scores is set. If the selection is set as low as
possible, i.e. every candidate is classified as prompt, the true positive rate is 1, since
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4.2. MACHINE LEARNING TRAINING

all prompt candidates are classified correctly as prompt. However, the false positive
rate is 1 too, since actually every candidate is classified as prompt. On the other end
of the spectrum, setting the selection as high as possible results in a true positive rate
of 0, since all prompt candidates are incorrectly assigned. Yet, the false positive rate
is 0 as well, since none of the non-prompt and background candidates are classified as
prompt too. Changing the discrimination selection and drawing the respective true and
false positive rates in a diagram will reveal the ROC curve. The worst model possible is
random guessing, which will show a linear dependency in the diagram. In contrast, a
good model will increase its true positive rate rapidly for small steps in the false positive
rate in the beginning, indicating the capability to discriminate between prompt and the
other classes effectively with a high true positive and low false positive rate. A way to
quantify the quality of the model is the Area Under Curve (AUC) of the ROC curve. A
random model will have an AUC score of 0.5, while a perfect discriminator will score 1.
If a model scores lower than 0.5, it is objectively worse than random guessing, but it can
actually be used to be better that random guessing, by just inverting the outputs. This
will then yield an AUC score of better than 0.5.
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Figure 4.6: The ROC curves with the respective AUC values for the model for
4 < pT < 8 GeV/c.
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Furthermore, plotting the ROC curves and AUC scores for both training and test data
enables the observation of overfitting. In case of low or no overfitting, both curves should
be close together, while for a case of strong overfitting, the curves can deviate strongly,
usually showing a better score for the training data.

Fig. 4.6 shows the ROC curve and the AUC scores for the model for 4 < pT < 8 GeV/c.
The plots for the other two intervals can be found in the appendix in Fig. 7.7 and Fig. 7.8.
These show that the models are working efficiently and have very high scores, like seen
in the respective figures or the summary in Tab. 4.4. Furthermore, the models show no
serious signs of overfitting.

pT [GeV/c] 2− 4 4− 8 8− 12

Prompt Test 0.9247 0.9143 0.9037

Prompt Training 0.9297 0.9208 0.9199

NP Test 0.9541 0.9523 0.9440

NP Training 0.9571 0.9559 0.9524

Background Test 0.9927 0.9848 0.9840

Background Training 0.9937 0.9864 0.9876

Average Test 0.9572 0.9505 0.9439

Average Training 0.9602 0.9544 0.9533

Table 4.4: Summary of the AUC score of each model for each class with additional av-
erage score per model.

The results of the model can be seen in Fig. 4.7, where the test and training data
have been evaluated and visualised in the distributions. Another validation that can be
concluded here is that the distribution of the test and training data are not deviating
much from one another, also validating that the model is not overfitted. It shows, that
the model is able to determine background and NP very accurately, but cannot show
such certainty for the prompt classification, where almost no candidates are scored with
a probability above 0.8.

4.3 Working Point Determination

After confirming the quality of the BDTs, they can be applied on all available data to
assign an output score to every reconstructed candidate. Afterwards, working points,
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Figure 4.7: ML outputs for the training and test data for each class in 4 < pT <
8 GeV/c.

i.e. selections in the outputs, have to be chosen to classify the candidates. In general, the
background selections are set as upper bounds, i.e. only candidates below the chosen
selection are valid, while selections in the prompt and NP outputs are lower bounds,
therefore only candidates with an output above the selection are eligible. On one hand,
if the working points are set too strictly, then the resulting signal shows a high purity,
but the efficiency is very low. On the other hand, if the selections are set too loose, the
efficiency is high, but the purity is very low. Therefore, a compromise needs to be found.

The compromise is obtained via the working point determination, where the pseu-
dosignificance

S =
s√
s+ b

(4.1)

is calculated with the pseudosignal s and the real background b as functions of the BDT
outputs. A pseudosignal is used, because the real significance of the signal may be
subject to statistical fluctuations, which should be avoided when choosing the work-
ing point. Therefore, it is also recommended to not look at the real data for this process,
otherwise a human bias might be induced.
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Figure 4.8: A visual representation of the process of determining the background
for the pseudosignificance calculation. In the top left sketch, the invariant mass
distribution is shown for a certain working point. The top right sketch shows
the usage of the mean and standard deviation of the MC data to selection out
the signal area. In the bottom left picture, a fit to the background side bands is
performed, which is then in the bottom right picture used to estimate the amount

of background in the signal area.

To calculate the pseudosignificance in Eq. 4.1, two variables are needed: background
and pseudosignal. To determine the background component, the invariant mass his-
togram is generated for a fraction of the data with the desired BDT output selections.
Afterwards, MC data is used to determine the expected mean and standard deviation of
the signal peak, which is used to cut out the 3σ signal area in the invariant mass his-
togram. The resulting background side bands are used to fit a second-order polynomial.
With the resulting fit, the behaviour of the background distribution within the signal
peak area can be approximated and the number of background candidates within the 3σ
range can be estimated by scaling the number up to the full data set. A sketch of this
process can be seen in Fig. 4.8.

To calculate the pseudosignal, the formula for the cross section [6]

d2σ
dpTdy

=
1

2
·

fprompt(pT) ·NΛ+
c

raw(pT)

∆y ·∆pT · (Acc× ε)prompt(pT) · BR · Lint
(4.2)

can be rearranged for theNΛ+
c

raw(pT) variable, which stands for the raw yield, i.e. without
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any corrections:

NΛ+
c

raw(pT) = 2 · d2σ
dpTdy

·
∆y ·∆pT · (Acc× ε)prompt(pT) · BR · Lint

fprompt(pT)
. (4.3)

In these equations, there are many variables that need some explanation. First, ∆pT is
the transverse momentum range for each of the three intervals and ∆y is the observed
rapidity range, which is given through detector limitations as ∆y = 1.6. A factor of 2
appears in this formula, because both particles and antiparticles need to be considered.
BR is the branching ratio for the desired decay of Λ+

c −→ pK−π+. As mentioned in Chap-
ter 1, this is given as (6.28±0.32)�. The acceptance times efficiency term (Acc×ε)prompt

describes the total efficiency for promptΛ+
c , i.e. taking detector acceptance, preselection

efficiency and BDT efficiency into account. The acceptance and preselection efficiency
are calculated with the MC data, where the number of candidates that pass through the
acceptance range and preselections is divided by the total number of generated can-
didates. This is independent of the BDT and therefore constant for each respective pT

interval. The BDT efficiency is calculated in the same way, but is dependent on the selec-
tions in the BDT outputs and therefore needs to be calculated again for every selection.
The integrated luminosityLint can be calculated by dividing the total number of analysed
events Nevents (≈ 627 · 106) by the minimum bias cross section of p–Pb collisions σpPb,mb

(= 2.093 pb [41]). This yields Lint ≈ 0.3 nb−1. The differential cross section is obtained
via FONLL calculations in pp collisions at 5.02 TeV, scaled by the lead mass number.
FONLL (Fixed-Order plus Next-to-Leading-Log) is an implementation to improve cal-
culations concerning the transverse momentum spectrum for heavy flavour particles
systematically [42]. Lastly, the fraction of prompt candidates fprompt can be calculated
with the FONLL cross sections and acceptance times efficiencies calculated earlier.

With Eq. 4.3 and the method of background determination described earlier, the pseu-
dosignificance can be calculated for two selections in the three ML outputs for certain
ranges. The calculations for 4 < pT < 8 GeV/c are shown in Fig. 4.9 for prompt and Fig.
4.10 for NP candidates. Most relevant in these figures are the top left and the two bottom
plots. The top left shows the pseudosignificances calculated for the respective selections
in the ML outputs. The lower plots show the fraction of prompt (bottom left) and NP
(bottom right) candidates in the signal. The other plots show intermediate steps for the
calculation of the pseudosignificance, such as the expected signal and background num-
bers. Choosing the selection for the prompt signal, attention should be paid to a high
pseudosignificance at a high fraction of prompt, while the NP signal analogously should
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Figure 4.9: Working point calculations as functions of the ML output selections
for prompt candidates in 4 < pT < 8 GeV/c.

have a low prompt and therefore a high NP fraction. The selections chosen for the signal
extraction can be found in Tab. 4.5 and Tab. 4.6. The tables also feature the expected
significances, as well as the expected fractions of prompt or NP.

The calculations for the other intervals are included in the appendix in Fig. 7.11 and
Fig. 7.13 for prompt and Fig. 7.12 and Fig. 7.14 for NP.
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Figure 4.10:Working point calculations as functions of the ML output selections
for NP candidates in 4 < pT < 8 GeV/c.

pT [GeV/c] 2− 4 4− 8 8− 12

Bkg. Selection 0.08 0.12 0.20

Prompt Selection 0.00 0.00 0.00

Prompt Fraction 0.73 0.66 0.69

Exp. Significance 3.2 8.1 9.0

Table 4.5: Summary of the working points chosen for each pT for the prompt signal.
Additionally, the expected prompt fraction is listed, as well as the expected
significance from the calculations.

37



CHAPTER 4. ANALYSIS

pT [GeV/c] 2− 4 4− 8 8− 12

Bkg. Selection 0.11 0.10 0.20

NP Selection 0.74 0.75 0.70

NP Fraction 0.73 0.80 0.75

Exp. Significance 2.1 6.2 6.5

Table 4.6: Summary of the working points chosen for each pT for the NP signal. Addi-
tionally, the expected NP fraction is listed, as well as the expected significance
from the calculations.
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5 Results

After the working points have been selected, they can be applied and the resulting in-
variant mass spectra can be fit. The resulting fits can be seen in Fig. 5.1 for NP and in
Fig. 5.2 for prompt, as well as their respective background subtracted residuals.

In these fits, a Gaussian distribution was chosen for the signal peak, while a sec-
ond order polynomial was chosen as a background fit. In the fits, the red line shows
the background fit, while the blue line shows the total fit function. Since there is no
physical explanation and expectation for the background, a polynomial is satisfying as
a background fit function. For the NP fit, the width of the Gaussian was fixed by giving
the respective values of the prompt fits as inputs, to improve the stability of the fit due
to higher statistics in the prompt peak.

pT [GeV/c] 2− 4 4− 8 8− 12

NP Significance from WP 2.1 6.2 6.5

NP Significance form Fit 4.1 6.8 6.8

P Significance from WP 3.1 8.1 9.0

P Significance from Fit 6.1 13.8 12.0

Table 5.1: Comparison of the expected significances via the working point calculations
and the significances gained from the fits. For clarification, P is an abbreviation
of prompt, while NP is the usual non-prompt acronym andWP is the acronym
for working point.

In the figures, the significances of the respective signal peaks are also listed. In Tab.
5.1, they are compared with the expectations gained from the working point calcula-
tions. It shows good alignment for the NP significances. However, for the prompt, some
stronger deviations are found. These strong deviations in the prompt cases and the fact
that all working point calculations are below the fit values may be cause of statistical
fluctuation, but this is rather unlikely. This suggests that perhaps the MC simulations
used in the working point calculations are not accurate descriptions of the real data.

When applying the fit, a third order polynomial was also tested as a background func-
tion. This resulted in only minor, if any, improvements, namely only additional 0.1 in the
significances found in the lowest momentum interval for prompt and NP. Weighing up
the minor improvements and the additional complexity of the function, it was decided
that the simpler model (second order) is preferred and kept to produce the final results.
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pT [GeV/c] 2− 4 4− 8 8− 12

NP Signal S 5466± 1064 3345± 399 734± 100

NP Background B 1763327± 510 237962± 208 10746± 56

NP S/B 0.0031 0.0141 0.0683

NP Mean [GeV/c2] 2.289± 0.001 2.289± 0.001 2.289± 0.001

NP Width [GeV/c2] 0.005± 0.000 0.006± 0.000 0.009± 0.000

P Signal S 20052± 3334 17405± 1343 3227± 287

P Background B 10812985± 1263 1580442± 535 69230± 143

P S/B 0.0019 0.0110 0.0466

P Mean [GeV/c2] 2.289± 0.001 2.289± 0.001 2.290± 0.001

P Width [GeV/c2] 0.005± 0.001 0.006± 0.001 0.009± 0.001

Table 5.2: Summary of other attributes calculated by the fit. Note, the width for the NP
was fixed as the values gained by the prompt fit, therefore the uncertainties
are not actually 0.000.

Besides the significance, the panels in the figures also show other attributes, namely
signal and background counts (S and B), the signal-to-background ratio S/B (within
the 3σ range of the peak) and the mean and width of the peak. A summary of them can
be found in Tab. 5.2. Looking at these values, it can be seen that for prompt and NP
both signal and background counts are decreasing with increasing momenta. However,
the signal-to-background ratio is increasing with increasing momenta. The mean of
all peaks except one was found to be (2.289 ± 0.001) GeV/c2, with the only exception
being the 8-12 GeV/c prompt interval at (2.290±0.001) GeV/c2. Therefore, these values
include the reference (mΛ+

c
= (2286.46±0.14)MeV/c2 [4]) within their 3σ ranges, with

the mentioned exception including the reference at 4σ. However, the uncertainties in
the table are only statistical, therefore it is likely that by eventually including systematic
uncertainties, the values will coincide within the 3σ range in all cases. Lastly, the prompt
signal peak width was found to be increasing from 0.005 GeV/c2 to 0.009 GeV/c2 with
increasing momentum.

The actual fractions of (non-)prompt candidates in the (non-)prompt signals are not
measured in this thesis and are part of the extended analysis. However, they were esti-
mated via simulations in the working point calculations and were also listed in Tab. 4.6
and Tab. 4.5. For prompt, they range between 66� and 73� and for NP between 73� and
80�. With reference to the significances, it is shown that the majority of signal candi-
dates used to calculate these significances are actually (non-)prompt candidates, which
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is important for testing the feasibility. Considering the significances and fractions of NP
candidates found in this study, the feasibility of a full NP analysis in the Λ+

c −→ pK−π+

channel can be confirmed.

pT [GeV/c] 2− 4 4− 8 8− 12

NP Significance Λ+
c −→ pK−π+ 4.1 6.8 6.8

NP Significance Λ+
c −→ pK0

s 3.6 4.8 3.2

P Significance Λ+
c −→ pK−π+ 6.1 13.8 12.0

P Significance Λ+
c −→ pK0

s 8.9 10.3 6.2

NP Fraction Λ+
c −→ pK−π+ 0.73 0.80 0.75

NP Fraction Λ+
c −→ pK0

s 0.41 0.44 0.41

P Fraction Λ+
c −→ pK−π+ 0.73 0.66 0.69

P Fraction Λ+
c −→ pK0

s 0.91 0.91 0.83

Table 5.3: Comparison of the significances and fraction of (non-prompt) candidates of
the analyses of the Λ+

c −→ pK0
s and Λ+

c −→ pK−π+ channels. The values for the
fraction for this analysis are estimations from the working point determina-
tion, while for the Λ+

c −→ pK0
s channel, they are the measured fractions after

the application of the working points, without further corrections or optimi-
sations. The values for the Λ+

c −→ pK0
s were provided in personal communica-

tions.

Additionally, the results found in this analysis can be compared to the results of an
analysis of the Λ+

c −→ pK0
s channel introduced in Chapter 1. An overview of that can

be found in Tab. 5.3. Comparing the significances for the NP cases, it is found that
they are higher for the Λ+

c −→ pK−π+ channel, with increases between 0.5 and 3.6.
Also, the estimated fractions of non-prompt candidates in this analysis are found to
be higher than the measured values for the Λ+

c −→ pK0
s channel, at values of 73� to

80� compared with 41� to 45�. This means, that the significance was improved with
respect to the Λ+

c −→ pK0
s analysis, while also improving the fraction of the desired non-

prompt candidates. This shows, that although the Λ+
c −→ pK−π+ channel has a larger

combinatorial background than the Λ+
c −→ pK0

s channel, the classification and isolation
of the non-prompt candidates was still very successful, making the increase in statistics
(due to the branching ratios explained in Chapter 1) noticeable.

Comparing the values for the prompt cases of this thesis to the Λ+
c −→ pK0

s analysis
shows a significance decrease of 2.9 in the 2-4 GeV/c interval, while showing an in-
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crease of 3.5 and 5.8 in the 4-8 GeV/c and 8-12 GeV/c intervals, respectively. This thesis
found prompt fraction estimated between 66� and 73�, while the Λ+

c −→ pK0
s analysis

measured values between 83� and 91�. However, here it has to be considered that the
optimisation of the prompt identification was not the focus of this work. The selections
for the prompt classification in Tab. 4.5 actually show no selections in the prompt ML
output, making this rather a binary classification of background vs. signal. As the frac-
tions show, a majority of these signal candidates are then actually prompt, making this
classification sufficient for the purpose of this thesis.

For further context of the use of this work, Fig. 5.3 shows the nuclear modification
factor of Eq. 1.2 for prompt and NPΛ+

c −→ pK0
s over the transverse momentum. It clearly

shows deviations of the prompt class fromunity, while the NP values are compatible with
unity, within their large statistical uncertainties. Now, adding the statistical significance
of the decay channel analysed in this thesis could decrease the uncertainties in the NP
case, allowing a better interpretation of the behaviour of the NP Λ+

c . Understanding this
NP behaviour will then give indirect insight in the beauty hadron sector concerning the
initial state effects.
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Figure 5.1: Invariantmass fits and background subtracted residuals for NPΛ+
c −→

pK−π+ for all three pT ranges.
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Figure 5.2: Invariant mass fits and background subtracted residuals for prompt
Λ+

c −→ pK−π+ for all three pT ranges.
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Figure 5.3: Comparison of the nuclear modification factor RpPb of prompt and
NP Λ+

c at √sNN = 5.02 TeV in the transverse momentum interval 2 < pT < 12
GeV/c. These are the results of an analysis of theΛ+

c −→ pK0
s decay channel. Image

source: [43]
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6 Conclusion and Outlook

In this thesis, the feasibility of a Λ+
c analysis for NP cases in the decay channel Λ+

c −→
pK−π+ for Run 2 data at midrapidity and an energy of √sNN = 5.02 TeV was investi-
gated in p–Pb collisions. The data which was analysed consisted of reconstructed Λ+

c

candidates in the pT range from 2 GeV/c to 12 GeV/c, which was split in three intervals.
Since this decay channel has a large amount of combinatorial background candidates, a
BDT was trained with MC signal simulations and real background from a fraction of the
data to perform the classification into prompt, NP and background for each pT interval
separately. Optimal pairs of ML outputs were selected based on pseudosignificances, as
explained in Section 4.3. The final results of this thesis are the extracted signal peaks
and their significances in Fig. 5.2 for prompt and Fig. 5.1 for NP Λ+

c . The prompt signals
show significances between 6.1 and 13.8, while more importantly the NP signals show
significances between 4.1 and 6.8. For NP, the estimated fraction of NP candidates in
the signal is between 73� and 80�, so the majority of the signal actually consists of NP
candidates. Therefore, the feasibility of the NP Λ+

c −→ pK−π+ analysis can be confirmed.
Hence, further continuation of the cross section calculations are reasonable.

Comparisons with the analysis of the Λ+
c −→ pK0

s channel in Tab. 5.3 show for the
NP cases, that the NP signal fraction is increased in this thesis by a factor of around
1.8, while also increasing the significances by values between 0.5 and 3.6. This suggests
that the increased NP statistics in the Λ+

c −→ pK−π+ could improve the uncertainties of
previous Λ+

c −→ pK0
s results.

The continuation of the analysis contains most notably the efficiency corrections of
the extracted signals, as well as the subtraction of NP candidates from the prompt signal
(and vice versa) and the estimation of systematic uncertainties. The efficiency correc-
tions take the detector acceptance and the preselection and BDT efficiencies into account.
This needs to be done, since the extracted signals do not contain every real (non-)prompt
candidate. Some candidates have been filtered out in earlier processes, however to even-
tually calculate the final corrected cross section, these candidates have to be considered.
Afterwards, the signals also contain many candidates which are falsely classified, there-
fore the fraction of (non-)prompt candidates has to be subtracted from the signal. Lastly,
no systematic uncertainties were evaluated in this thesis. However, to portray the un-
certainties of the final results correctly, systematic uncertainties have to be considered.
In the scope of this thesis, systematic uncertainties for the BDT output selections and
yield extraction would need to be considered. The ML selections can be varied to gener-
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ate looser and tighter selections, whose results will then offer the possibility to estimate
uncertainties. For the yield extraction, variations in e.g. the background fit, bin width
and signal range can all result in slightly different yields.

Finally, the results of a continuation of this analysis may allow further investigation of
the hadronisationmechanisms in the p–Pb collision system, by providingmore statistical
significance to the NP Λ+

c values in Fig. 5.3. The indirect approach via the NP will
eventually contribute to the understanding of the beauty hadronisation. However, it is
likely that this analysis alone will not be sufficient to clarify the NP behaviour and the
investigation will rely on the statistics eventually provided by Run 3. All in all, this
thesis may not give a complete piece of the puzzle of the heavy quark hadronisation
mechanism, but it can at least give a hint as to where the next piece might be.
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7 Appendix

7.1 Feature Importance
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Figure 7.1:Quantification of the average impact of each of the ten most relevant
features on the model for each class. This is for the model for 2 < pT < 4 GeV/c.
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7.1. FEATURE IMPORTANCE
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Figure 7.2:Quantification of the average impact of each of the ten most relevant
features on the model for each class. This is for the model for 8 < pT < 12 GeV/c.
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7.2 Correlation Matrices
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Figure 7.3: Correlation matrices of the ten relevant features with the additional
parameters transverse momentum pT and invariant massm for 2 < pT < 4 GeV/c.
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Figure 7.4: Correlation matrices of the ten relevant features with the addi-
tional parameters transverse momentum pT and invariant mass m for 8 < pT <

12 GeV/c.
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7.3 Feature Distributions

2.15 2.20 2.25 2.30 2.35 2.40

10 1

101

Co
un

ts

inv_mass

2.0 2.5 3.0 3.5 4.0

100

2 × 10 1
3 × 10 1
4 × 10 1
6 × 10 1

Co
un

ts

pt_cand

1000 0 1000

10 7

10 4

10 1

Co
un

ts

nsigComb_K_1

1000 500 0 500 1000

10 7

10 4

10 1

Co
un

ts

nsigComb_Pr_0

1000 750 500 250 0 250

10 7

10 4

10 1

Co
un

ts

nsigComb_Pr_2

0 20 40 60 80

10 6

10 3

100

Co
un

ts

norm_dl_xy

1000 0 1000

10 7

10 4

10 1

Co
un

ts

nsigComb_Pi_1

1000 500 0 500 1000 1500

10 7

10 4

10 1

Co
un

ts

nsigComb_Pi_0

0.0 0.1 0.2 0.3 0.4 0.5

10 3

10 1

101

Co
un

ts

d_len

1000 0 1000

10 7

10 4

10 1

Co
un

ts

nsigComb_Pr_1

1000 500 0 500

10 7

10 4

10 1

Co
un

ts

nsigComb_Pi_2

40 20 0 20 40

10 6

10 3

100

Co
un

ts

max_norm_d0d0exp
Background
Prompt +

c

Feed-down +
c

Figure 7.5: Distributions of the ten relevant features with additional parameters
transverse momentum pT and invariant mass m for 2 < pT < 4 GeV/c.
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Figure 7.6: Distributions of the ten relevant features with additional parameters
transverse momentum pT and invariant mass m for 8 < pT < 12 GeV/c.
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7.4 ROC Curves
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Figure 7.7: The ROC curves with the respective AUC values for the model for
2 < pT < 4 GeV/c.
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7.4. ROC CURVES
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Figure 7.8: The ROC curves with the respective AUC values for the model for
8 < pT < 12 GeV/c.
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7.5 Machine Learning Outputs
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Figure 7.9: ML outputs for the training and test data for each class in 2 < pT <
4 GeV/c.

56



7.5. MACHINE LEARNING OUTPUTS

0.0 0.2 0.4 0.6 0.8 1.0
BDT output for Background

10 2

10 1

100

101

Co
un

ts
 (a

rb
. u

ni
ts

)

Background pdf Training Set
Prompt +

c  pdf Training Set
Feed-down +

c  pdf Training Set
Background pdf Test Set
Prompt +

c  pdf Test Set
Feed-down +

c  pdf Test Set

0.0 0.2 0.4 0.6 0.8 1.0
BDT output for Feed-down +

c

10 2

10 1

100

101

Co
un

ts
 (a

rb
. u

ni
ts

)

Background pdf Training Set
Prompt +

c  pdf Training Set
Feed-down +

c  pdf Training Set
Background pdf Test Set
Prompt +

c  pdf Test Set
Feed-down +

c  pdf Test Set

0.0 0.2 0.4 0.6 0.8 1.0
BDT output for Prompt +

c

10 3

10 2

10 1

100

101

102

Co
un

ts
 (a

rb
. u

ni
ts

)

Background pdf Training Set
Prompt +

c  pdf Training Set
Feed-down +

c  pdf Training Set
Background pdf Test Set
Prompt +

c  pdf Test Set
Feed-down +

c  pdf Test Set

Figure 7.10:ML outputs for the training and test data for each class in 8 < pT <
12 GeV/c.
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7.6 Working Point Calculations

Figure 7.11:Working point calculations as functions of the ML output selections
for prompt candidates in 2 < pT < 4 GeV/c.
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Figure 7.12:Working point calculations as functions of the ML output selections
for NP candidates in 2 < pT < 4 GeV/c.

59



CHAPTER 7. APPENDIX

Figure 7.13:Working point calculations as functions of the ML output selections
for prompt candidates in 8 < pT < 12 GeV/c.
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7.6. WORKING POINT CALCULATIONS

Figure 7.14:Working point calculations as functions of the ML output selections
for NP candidates in 8 < pT < 12 GeV/c.
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