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Abstract

This thesis focuses on alignment and tracking studies with heavy, low-momentum parti-

cles, strongly affected by multiple scattering. To this end, data from a testbeam conducted

using protons of 80− 120MeV kinetic energy traversing a telescope comprised of ALICE

Pixel Detector (ALPIDE) sensors is studied.

Track models ranging from the simple straight line fits to General Broken Lines trajec-

tories, which accommodate directional changes caused by scattering, are implemented,

contributing to a better understanding of the different parameters. Using these tracking

models, sensor alignment is performed. The best fit parameters are determined and the

track quality is assessed by means of the χ2 formalism.

Insights into the spatial resolution of the ALPIDE sensors is provided at these energies,

evaluating resolution changes under different experimental conditions. Notably, an in-

creased inclination of the sensor planes, corresponding to increased energy loss, leads to

a deterioration of the intrinsic resolution.

Zusammenfassung

Diese Arbeit konzentriert sich auf Ausrichtungs- und Spurrekonstruktionsstudien mit

schweren, niedrig-energetischen Teilchen, die stark von mehrfacher Streuung beeinflusst

werden. Zu diesem Zweck werden Daten aus einem Teststrahl untersucht, der mit Pro-

tonen von 80 − 120MeV kinetischer Energie durchgeführt wurde, die ein Teleskop aus

ALICE Pixel Detector (ALPIDE) Sensoren durchqueren.

Spurrekonstruktionsmodelle, die von einfachen Geradenanpassungen bis zu General Bro-

ken Lines Trajektorien reichen, die Richtungsänderungen aufgrund von Streuung berück-

sichtigen, werden implementiert und tragen zu einem besseren Verständnis der verschiede-

nen Parameter bei. Unter Verwendung dieser Spurrekonstruktionsmodelle wird die Aus-

richtung der Sensoren durchgeführt. Die Parameter der besten Anpassung werden bes-

timmt und die Qualität der Spur wird mithilfe des χ2-Formalismus bewertet.

Einblicke in die räumliche Auflösung der ALPIDE-Sensoren werden bei diesen Energien

gegeben, wobei Auflösungsänderungen unter verschiedenen experimentellen Bedingungen

bewertet werden. Insbesondere führt eine erhöhte Neigung der Sensorebenen, die einem

erhöhten Energieverlust entspricht, zu einer Verschlechterung der intrinsischen Auflösung.
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Chapter 1

A LARGE ION COLLIDER

EXPERIMENT (ALICE)

ALICE is a multipurpose detector located at the Large Hadron Collider (LHC), optimised

for ultra relativistic heavy-ion collisions. It is designed to study the physics of strongly

interacting matter at extreme energy densities, where a phase of matter called quark-

gluon plasma (QGP) forms [6].

Figure 1.1: The sketch shows the composition of the ALICE detector [38].

To retrace all physical processes that happen after a high energy particle collision, several

detectors are necessary. The ensemble of detectors, surrounding the interaction point,

aims to study the properties of the particles that fly out. The innermost two are the

Inner Tracking System (ITS) and the Time Projection Chamber (TPC). They were built
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CHAPTER 1. A LARGE ION COLLIDER EXPERIMENT (ALICE)

to precisely determine the vertex and then track the charged particles in the magnetic

field of 0.5T, which forces them onto a curved trajectory thus enabling momentum and

charge sign measurements.

There are many other important detectors, which altogether are crucial for the successful

and reliable identification and reconstruction of produced particles. The composition of

the whole ALICE detector is shown in figure 1.1 and a short summary of each detector

can be found in [6]. The current study focuses on tracking of low momentum particles

and therefore only the main tracking devices, the ITS and the TPC, shall be discussed.

1.1 Inner Tracking System (ITS)

The main focus of the ITS is to reconstruct the primary and secondary vertices, track

charged particles with a low transverse momentum (pT) and improve the momentum res-

olution at high pT. To guarantee the best possible tracking resolution for the primary

vertex, the detector is placed as close as possible to the interaction point.

One of the major interests for the ALICE collaboration during the second long shutdown

(LS2, 2019-2021) at the LHC was the upgrade of the ITS. The new ITS, also called ITS2,

now consists of seven concentric ALPIDE1 layers with a total active surface of about

10m2.

Three design goals, instrumental for the physics programme, were considered for this up-

grade. On the one hand, the readout rate was significantly increased. This was especially

driven by the fact that during LS2 the LHC was enhanced to deliver Pb-Pb collisions at

higher luminosity. On the other hand, the tracking resolution was improved. This was

possible because the pixel detectors themselves have a better resolution compared to the

previous setup, the radius of the beam pipe has been reduced, so the detectors are closer

to the interaction point and the material budget has been substantially reduced, resulting

in less multiple scattering and energy loss. Lastly, the tracking efficiency as well as the

momentum resolution at low pT was improved [37].

1.2 Time Projection Chamber (TPC)

The TPC is the main device to track charged particles and do particle identification. It

is encasing the ITS. When a charged particle passes the gas filled cylinder, it produces

electron-ion pairs. The charges drift to the endplates due to an electrical field and are

multiplied by Gas Electron Multiplier (GEM) foils. This amplification system, coupled

with new readout electronics for online data processing allows ALICE in Run 3 to record

1More about the ALPIDE, a CMOS pixel sensor, can be found in section 2.2.
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1.3. TRACKING PARTICLES WITH LOW TRANSVERSE MOMENTUM

Pb-Pb collisions at rates up to 50 kHz [6].

Additionally, the TPC is excellent at particle identification (PID). By measuring the

specific energy loss dE/dx, of the crossing charged particle, its identity can be matched

[44].

1.3 Tracking particles with low transverse

momentum

The goal of ALICE is to study the quark-gluon plasma that forms at extremely high tem-

peratures and densities. To access properties of the QGP a large number of measurements

is required to investigate rare physics decay channels. The objective is to reconstruct these

channels across a wide range of transverse momentum. However, accomplishing this task

by measuring the transverse momentum with the help of a magnetic field, particularly at

the extremes of the momentum range, poses significant challenges.

The latest studies especially address the requirements for enhanced and extended mea-

surements of heavy-flavour hadrons, quarkonia, and low-mass dileptons at low transverse

momenta [4, 5]. In these cases, the signal-over-background ratio is very small, which

calls for an increase in statistics. This is enabled by the luminosity upgrade of the LHC

combined with the online data processing of ALICE in Run 3. On the other hand, an

improvement of these measurements requires an improvement in vertexing and tracking

efficiency at low transverse momentum to reduce the large combinatorial background.

To address this requirement, the tracking precision was increased with the upgrade of the

ITS that involved reducing the material budget and enhancing the detector resolution.

These enhancements lay the foundation for improved particle reconstruction, resulting in

higher efficiency for accurately reconstructing particle trajectories with precise position

resolution. However, this is only half of the battle.

In order to achieve successful reconstruction, a tracking model suitable for low momen-

tum particles is necessary. It is essential to have a model that accurately represents the

path of a charged particle, closely approximating its true trajectory. Only with such a

model improvements in the measurements obtained from the reconstruction process can

be expected.

In this thesis, the first step is to understand the differences in trajectories between low

momentum and high momentum, heavy, charged particles. Starting from the fundamen-

tal principles of charged particle detection, the process of particle track reconstruction

is discussed. This forms the basis for understanding the reconstruction technique in the

ALICE detector. Afterwards, other tracking models, that can be employed in experiments

3



CHAPTER 1. A LARGE ION COLLIDER EXPERIMENT (ALICE)

with a lower particle density in the detector, are introduced. There, special emphasis is

placed on the accurate representation of low momentum particles.

Using exemplary data, the performance of different tracking models in terms of their

ability to handle low momentum particles is evaluated. This leads to a comprehensive

discussion on the achieved tracking quality with the presented models.
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Chapter 2

PARTICLE DETECTION

2.1 Passage of charged particles through matter

Measuring properties of a particle in a detector requires it to interact with the detector

material. This poses a conflict between the desire to detect the particle and the desire to

minimise its interaction with the sensor material. While this issue may be less problematic

for particles with high momentum, it remains challenging to completely resolve for low

momentum particles.

Typically, charged particles undergo various interactions, resulting in energy loss, when

they pass through matter. These interactions include ionisation, excitation, transition

radiation, Bremsstrahlung and Cherenkov radiation. Additionally important, especially

for tracking, is the impact of multiple scattering. This leads to a significant alteration of

the particle trajectory, despite the low energy transfer involved [33].

2.1.1 Energy loss by ionisation and excitation

The dominant processes for energy loss of heavy, charged particles are the ionisation and

atomic excitation in the matter. In this case, ”heavy” specifically refers to particles with

a mass M substantially higher than the electron mass. As the projectile traverses the

material, many single electromagnetic interactions occur mainly with the shell electrons

of the atoms, causing the ionisation or excitation. The energy transfer involved in these

interactions is a statistical process. Nevertheless, when looking at the losses for thick

materials it is substantial to do the calculations with the mean energy loss.

The Bethe-Bloch formula depicts this mean energy loss dE per unit length dx

−
〈
dE

dx

〉
= Kz2

Z

A

1

β2

[
1

2
ln
2mec

2β2γ2Tmax

I2
− β2 − δ(βγ)

2
− C

Z

]
, (2.1)

with the following variables.
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CHAPTER 2. PARTICLE DETECTION

K 4πNAr
2
emec

2/A z Charge of projectile
NA Avogadro constant δ(βγ) Density effect correction
re Electron radius Z Atomic number of the absorber
me Electron mass I Mean excitation energy
A Atomic mass of absorber C

Z
Shell correction

Table 2.1: Variables to calculate the mean energy loss with the Bethe-Bloch formula.

Tmax is the maximum kinetic energy to be transferred from the projectile particle to a

free electron in a single collision and is given by

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
. (2.2)

The energy loss for high, medium or low βγ of the incident particle are characterised by

different effects and result in the characteristic form of the Bethe-Bloch formula, which is

shown in figure 2.1.
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Figure 2.1: The graph shows the material density independent mean energy loss for
different materials and particles [43].
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2.1. PASSAGE OF CHARGED PARTICLES THROUGH MATTER

The particle is minimum ionising (MIP) at βγ ≈ 3 − 4. For small βγ the losses quickly

increase due to the increased time in the electric field of the atom. The shell correction

has to be applied, since in electronic shells capture processes become possible as well

as the assumption of atomic electrons to be at rest is no longer valid. For high values

of βγ the transverse electric field increases and therefore also the energy loss increases.

However, the field extension is limited because the medium becomes polarised. This effect

is included with the density correction [43].

One common variation of the Bethe-Bloch formula involves dividing it by the density

of the material through which the particle is passing, resulting in a quantity known as

the mass stopping power [26]. This is because the energy loss of a charged particle is

proportional to the number of atoms or electrons in the material that it interacts with,

and the density of the material is a measure of the number of these interaction sites per

unit volume. This normalised form of the formula allows to compare the stopping power

of different materials and particles, regardless of their density or thickness.

2.1.2 Multiple Coulomb scattering

A charged particle heavier than an electron elastically scatters in material. The deflection

predominately occurs in the Coulomb field of the atomic nucleus. The probability density

function for the scattering angle θ of a single interaction is derived from the Rutherford

scattering formula. In a prolonged material many small scatterers result in a net angle

distribution that approximates a Gaussian shape. This is due to the central limit theorem.

However, in thin scatterers, less frequent ”hard” scattering events contribute to non-

Gaussian tails.

The angle distribution can be approximated by a normal mixture with two components (a

double Gaussian) [19]. One component models the core and the other models the tails of

the distribution. Following the Molière theory, the associated core Gaussian distribution

has a mean µ = 0 and standard deviation

θ0 =
13.6MeV

βcp
z

√
x

X0

[
1 + 0.038 ln

(
xz2

X0β2

)]
. (2.3)

Here, p, βc, and z represent the momentum, velocity, and charge number of the projectile

particle, respectively, while x/X0 denotes the material thickness in units of radiation

lengths. In practical terms, the angle distribution is typically approximated as following

a single Gaussian distribution with the aforementioned parameters.

The scattering angle is commonly analysed separately in two dimensions. For example,

when a particle propagates parallel to the z axis, the scattering angles are denoted as θx

and θy. These projected angles are uncorrelated.
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CHAPTER 2. PARTICLE DETECTION

Another essential quantity for describing the impact of multiple scattering is the offset

y, which indicates the positional change of the passing particle. Figure 2.2 displays the

offset along with other associated quantities [43]. In scenarios involving thin scatterers,

the offset is typically negligible in comparison to the spatial resolution of the surrounding

detectors.

Figure 2.2: The sketch shows the quantities needed to describe multiple scattering in
matter. The projectile enters the matter coming from the left, undergoes multiple inter-
actions with the nuclei and exits the material with an offset and an angle with respect to
its initial trajectory [43].

2.2 ALICE Pixel Detector (ALPIDE)

Modern particle detectors typically consist of multiple layers of sub-detectors, each de-

signed to observe specific properties of particles. These detectors can be categorised into

tracking detectors, calorimeters, and triggers. In this discussion, the main focus is on

tracking devices, which reveal the paths of charged particles. Tracking detectors rely on

the ionising property of charged particles and play a crucial role for the quality of the

physics results of experiments.

In collider experiments, the first tracking layer is typically positioned as close as possible

to the primary collision point. This strategic placement for enhancing the vertex resolu-

tion imposes specific requirements on the detector. Firstly, it must withstand extremely

high particles fluxes and hence must be resistant against radiation damage. Secondly, the

readout system must be exceptionally fast. Additionally, the first detector layer should

possess excellent spatial resolution to enhance the vertex resolution.

These demands have motivated the utilisation of high-granularity solid-state detectors.

The progress in silicon detector technologies has been remarkable over the past four

decades, largely due to the rapid advancements in semiconductor technologies. The in-

8



2.2. ALICE PIXEL DETECTOR (ALPIDE)

creased demand for silicon devices, driven by a growing market, has made them more

affordable for particle physics research.

The ALICE Pixel Detector is a CMOS silicon pixel detector based on Monolithic Active

Pixel Sensor (MAPS) technology [37]. It was developed for the recently installed upgrade

of the Inner Tracking System of the ALICE experiment. The chip measures 15mm×30mm

and is segmented into 512× 1024 digital pixels each measuring 26.88 µm× 29.24 µm.

Figure 2.3: A schematic cross-section of an ALPIDE sensor. When a charged particle
passes through a pixel, it liberates charge carriers through ionisation. Free electrons
have the ability to diffuse within the epitaxial layer. These electrons will diffuse and
subsequently drift in the vicinity of the collection diode. Eventually, they will generate a
signal at the input of the pixel front-end [2].

The schematic cross-section of an ALPIDE is depicted in figure 2.3. The ALPIDE chip

is implemented in a 180 nm CMOS Imaging Process provided by Tower Semiconductor

Ltd. [41]. The circuits are built on a high resistivity epitaxial layer which is fabricated

on a p-type substrate. A charged particle produces electron-hole pairs by ionisation. The

electrons diffuse in the epitaxial layer while being confined by the potential barriers of

the p-wells and the p-type substrate. Small n-well diodes in the middle of the pixel sense

currents induced by electrons in the depletion volume.

A reverse bias voltage can be applied to the substrate. This bias increases the depletion

volume, which leads to smaller capacitance and faster, more local charge collection, which

increases the signal to noise ratio. The chip achieves a detection efficiency for MIPs better

than 99% while the fake hit rate is kept less than 10−6/ pixel/ event [30]. In summary,

the ALPIDE successfully meets the project requirements set by the ALICE collaboration

for the upgrade of the ITS. It possesses high radiation tolerance, enables fast readout,

and delivers exceptional spatial resolution.

9



CHAPTER 2. PARTICLE DETECTION

2.2.1 Clustering

A hit on an ALPIDE pixel generates a binary yes/no information. When the amount of

charge that is collected in a pixel reaches a threshold the analogue signal is converted to

a digital one. Therewith, all information about the initial energy loss of the particle in

the pixel is lost. Typically, a particle that traverses the detector produces more than one

pixel hit on the plane. This is caused by charge sharing. Charge carriers that are freed

diffuse randomly within the epitaxial layer. This makes it possible to reach several read

out diodes, since the pixels are not isolated at their borders. The cluster size is dependent

on the energy loss of the particle as well as the threshold settings.

Figure 2.4: The plot depicts the average cluster size that was produces by 6GeV/c pions
in the ALPIDE chip. It shows that the cluster size increases with a higher incident angle
of the particles as well as with a lower threshold value. Taken from [29].

A rotation in the detector planes results in an increase in cluster size. On the one hand

this can be explained because the particle geometrically can pass several pixels at once

and on the other hand the material on its way is increased resulting in more charge carriers

that are freed. Figure 2.4 depicts the change in cluster size for different incident angles

and different thresholds.

2.2.2 Spatial resolution

The ALPIDE chip reaches a sub-pixel pitch spatial resolution (i.e. better than pitch/
√
12)

because of its nature concerning charge sharing. If a cluster is formed the hit position

is calculated as the centre of gravity of the individual pixels that have fired. Depending

on where the particle has passed, different cluster sizes are more or less probable. When

particles hit the sensor at the centre, the average cluster size is below two. On the other

hand, if they hit closer to the corner of a pixel the probability for higher cluster size

increases.

10



2.2. ALICE PIXEL DETECTOR (ALPIDE)

(a) (b)

Figure 2.5: (a) shows the in-pixel average cluster size dependency of an ALPIDE for
minimum ionising particles that hit the detector perpendicular [27]. (b) shows the de-
pendency of the spatial resolution on the cluster size and the threshold current [30]. The
best resolution is achieved with a mean cluster size of 2.5− 3.

Figure 2.5a shows a pixel and highlights the region where a particular cluster size is most

likely to have been generated. The ALPIDE exhibits a spatial resolution of 5 µm in both x

and y dimensions, as demonstrated through studies involving minimum ionising particles

that traverse the detector perpendicular to its surface. Achieving this resolution, or even

better, can be accomplished by adjusting the threshold such that the average cluster size

is 2.5−3. The relation between spatial resolution and threshold is depicted in figure 2.5b.

When particles interact with the sensor at an inclined angle, the resolution is affected due

to changes in the cluster size. Smaller clusters become less frequent and the mean cluster

size rises resulting in a worse spatial resolution.
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Chapter 3

PARTICLE TRACK

RECONSTRUCTION

This chapter will cover the scope of particle track reconstruction. First, The basic concept

of hits on the detector planes will be discussed. Variables will be developed by assigning

a trajectory to groups of hit points in order to trace the initial particle. Then, the in-

troduction of the χ2-distribution will provide the necessary mathematical background for

examining the variables during the fitting process.

Additionally, specific methods will be presented for particle reconstruction, ranging from

large-scale to small-scale experiments. The track model utilised in ALICE, where a high

multiplicity of particle hits is encountered, will be introduced and managed using a lo-

cal fit model. Furthermore, global track models will be discussed, which are specifically

applicable to the analysis conducted in this study and are commonly employed for low

multiplicity particle tracking.

In the scope of this thesis vectors are written as v, matrices as M and scalars as v.

A tracking detector i at position zi records the location of ionising particles passing through

it and reports the hit or cluster position mi with the corresponding detector resolution σi.

The z-coordinate indicates the approximate direction of flight of the incoming particles.

Accordingly, a collection of hits in multiple tracking layers positioned on the z-axis, as

shown in figure 3.1, can be linked to a single particle. This is a crucial stage in the track

reconstruction process, as it is not always evident which hit corresponds to which particle.

At the next step, a fit model is chosen and applied based on the physical processes the

particle is affected by while passing the detectors. In high hit density regions, the hit

assignment and track building process are applied simultaneously by iterating through

the layers. This is called a local approach, whereas the hits are already assigned before

the fitting procedure for a global method.

12



3.1. CHI-SQUARE DISTRIBUTION

z1 z2 z3 zN

●
●

…

●

●

} residual r3 

measurement points mi
●

track points xi

straight line fit

z

x

y

Figure 3.1: A schematic of a particle traversing N tracking detector layers, where a
straight line fit is employed based on the measurement points. The fitting process gener-
ates residuals ri that can provide valuable insights into the quality of the fit.

The distance between the measurement point mi and the crossing location of a track

xi at a given layer i is called the residual

ri = mi − xi. (3.1)

The residuals are the basis for the popular reduced chi-squared statistic. This method is

used to do parameter estimation for track models and to evaluate the fit quality.

3.1 Chi-square distribution

To determine the goodness of a fit the χ2 is calculated as the squared residual ri
2 in

each dimension from equation 3.1 normalised to the squared uncertainties σi
2 of the

measurement and summed over all N measurement points

χ2 =
N∑
i=1

(mi − xi)
2

σi
2

. (3.2)
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CHAPTER 3. PARTICLE TRACK RECONSTRUCTION

If the measurements are uncorrelated and normal distributed variables, the χ2 follows the

subsequent probability density function (pdf). A derivation can be found in [11].

f(ν, x) =
1

2ν/2Γ(ν/2, x)
xν/2−1e−x/2, (3.3)

where ν is the number of degrees of freedom of the imposed fit and Γ(ν, x) =
∫∞
0

xν−1e−xdx

is the Gamma function. The number of degrees of freedom, often abbreviated as ndof, is

determined by the number of measurement points N minus the number of parameters M

needed to describe the fit model.

Having correlated measurements on different planes i and j requires a little more consid-

eration. The χ2 is calculated as follows:

χ2
W =

N∑
i=1

N∑
j=1

[mi − xi]C
−1
ij [mj − xj] . (3.4)

C represents the covariance matrix, which provides information about the uncertainties

and correlations of the terms [mi − xi] and [mj − xj] .

Tracking detectors often produce correlated measurements due to various factors. For

instance, in the case of strongly scattered particles, the scatterers in each detector can

influence the position measurements of the particles further downstream, leading to cor-

relation between the measurements. As a result, the sum includes mixed residual terms

from different planes, with their appropriate contribution given by the inverse of the co-

variance matrix.

Deriving the probability density function of χ2
W requires a mathematical approach. The

covariance matrix needs to be diagonalised so the sum can be written with uncorrelated

terms. The new random variables are formed by linear combinations of the original vari-

ables. By scaling the variables so they absorb the eigenvalues of the diagonal covariance

matrix, the matrix is left with N − M 1’s on the diagonal and M 0’s. In practice, the

resulting equation has a pdf that is distributed as f(ν, x) again [7].

The pdf of a chi-square sum has a mean that is equal to the number of degrees of freedom

ν and a mode (peak) that is given by max(ν − 2, 0). The probability density functions

for different ndof‘s are shown in figure 3.2.

For high numbers of degrees of freedom the mode divided by the mean converges to one,

which explains the commonly know quality check, where the reduced chi-square1 peak is

expected to be one. An alternative way to confirm the fit quality is to check if the mean

of the reduced χ2 is one or respectively the mean of the χ2 itself is equal to the degree of

freedom.

1To calculate the reduced chi-squared χ2
red, the χ2-value is divided by ν.
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Figure 3.2: This plot shows the probability density function of a χ2-sum for different
numbers of degrees of freedom ν following equation 3.3.

Although this quality check is consistently applicable, it is not easily detectable by the

naked eye.

The fit quality is good when the calculated χ2-distribution follows the associated proba-

bility density function. If this is not the case, it is important to know how to interpret

these ambiguities. In general, a chi-square distribution, that peaks at lower values than

it is supposed to, indicates that the uncertainties of the measurements are overestimated.

On the other hand, a distribution peaking at higher values can indicate an underestima-

tion of the uncertainties.

In the context of tracking, this is not the only possible explanation. A difference to the

theoretical expectation can also be caused by a wrong fit model or a misalignment in the

setup. These negative effects on the χ2-distribution will be illustrated in section 4.1.3

using an example.

3.1.1 Minimisation of chi-square for parameter estimation

The chi-square is not only used to determine the fit quality, but also to calculate the best

fit variables. By varying the parameters and minimising the chi-square value, the best fit

can be obtained. Mathematically, it can be expressed as follows:

The track point xi is calculated using a polynomial of degree L. This polynomial is a

linear function of the parameter array a = (a1, a2, ..., aL+1)
T evaluated at the position of

the measurement zi

xi = g(zi; a) = a1 · zi0 + a2 · zi1 + a3 · zi2 + ...+ aL+1 · ziL. (3.5)
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χ2 therefore is

χ2 =
N∑
i=1

(mi − g(zi; a))
2

σi
2

(3.6)

and can be derived with respect to each parameter al in a:

∂χ2

∂al
= 0. (3.7)

To find the minimum, the derivative is set to zero. The resulting equation can then be

solved to obtain the best fit parameters.

3.2 Tracking in ALICE: a local track model

Different tracking detector setups, characterised by varying conditions such as particle

density, material budget, or magnetic fields, necessitate the availability of a diverse range

of track models that are tailored to meet specific requirements. In the subsequent sections,

various track models will be introduces. By examining the advantages and disadvantages

associated with each approach, the situations in which they can effectively reconstruct

particle trajectories can be determined.

The first example for a track model can be given by the local method employed in ALICE.

Finding the accurate pattern of each individual particle through global fits among all

recorded hit combinations based on the smallest χ2-value given by the fit is not a feasible

approach. This is primarily because of the enormous number of possible hit combinations

assigned to one particle given the high luminosities provided by the LHC.

Therefore, tracking in ALICE is done by an algorithm based on a local track model:

Kalman filtering. It provides a simultaneous recognition and reconstruction of particle

tracks in the TPC and the ITS with a relatively low computing time (increasing linearly

with the number of planes involved). In simple terms, this is achieved by reconstructing

a track step by step, or rather layer by layer. At each plane, a predicted region of interest

is determined based on the physics processes that can occur (e.g. multiple scattering)

and indicates where the next tracking point is most likely to be found. This means that

not every combination of the measured points needs to be determined [42]. A simplified

example is depicted in figure 3.3.

The algorithm has to be seeded a-prior with an initial guess for the trajectory. This is

usually done in regions of lower occupancy. There, spatially adjacent measurement points

are combined to build small track seeds. The lower the multiplicity in this region is, the

more successful it is to correctly match the hit points created by the particle being tracked.

Seeding is essential for a good reconstruction since the initial trajectory is followed to find

further belonging hits in denser regions closer to the collision point.
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Figure 3.3: Schematic representation of the Kalman filter based pattern recognition. The
red and black points represent hits that were detected on four layers of a detector during
a specific time frame. The black arrow depicts the seed for the algorithm. The rectangles
indicate the areas (search windows) where a hit is expected based on extrapolation from
the Kalman filter. Only the red points fall within these windows, resulting in three
possible particle trajectories. Two of them are rejected, one due to the lack of compatible
measurements in the outer layers and the other due to a high χ2-value. The remaining
trajectory most likely represents a true particle [1].

3.2.1 Kalman filter

The Kalman filtering technique originates from the requirement to estimate the trajectory

of a dynamical system in real time. Hence, at the time a prediction shall be made, only

information about the past intersection points of a particle with the detectors are available.

With this knowledge a prediction for the whole trajectory can be made. This prediction

gets updated as new measurements are included and subsequently gets better and better.

The algorithm has numerous technological applications like the guidance, navigation, and

control of vehicles, robotic motion planning and of course trajectory optimisation, to name

just a few [3].

The process is split into three main operations: prediction, update and smoothing.

To mathematically go through these steps a few basic quantities and equations are needed

that closely follow the discussion in [16, 32, 9].

The fundamental component is a state vector si, which describes the track properties at

a plane i, and its covariance matrix Ci. The assumption of a discrete linear Kalman filter

is, that the evolution of the state vector to the vector describing the track at the next

plane, is a linear transformation Ti plus a random normal disturbance wi with ⟨wi⟩ = 0

17



CHAPTER 3. PARTICLE TRACK RECONSTRUCTION

and its covariance matrix Wi:

si = Ti−1si−1 +wi−1. (3.8)

The transformation underlies the physical processes and forces that the particle is affected

by while traversing the detector planes. In this context of ALICE (a charged particle in

a homogeneous magnetic field), a helix is the model to choose, while the disturbance

represents the effect of multiple scattering. Although a helix is a non-linear equation it

can be locally approximated by a linear function by taking the first two terms of its Taylor

series expansion.

The measurement on the current plane is described by the vector mi and its covariance

matrix Vi. A coordinate system fitting the measurement space is chosen. Therefore, the

covariance matrix is diagonal. To compare the track position xi on the plane with the

measurement a matrix Hi is needed to describe the transformation from the state vector

into the measurement space:

xi = Hisi. (3.9)

Finally, the processes of the Kalman filter can be described. Starting with a prior knowl-

edge of the state or a former state vector respectively, the first step is the prediction

of the state vector for the current plane. A transformation matrix multiplied with the

former states vector states the most probable current state vector. The true particle tra-

jectory also has a disturbance from multiple scattering. However, this is not included in

the prediction for the state vector since the most probable value for the disturbance is

zero.

si−1
i = Ti−1si−1 Ci−1

i = Ti−1Ci−1T
T
i−1 +Wi−1. (3.10)

Hereby, the superscript digit denotes the impact of the state vector i−1. If the superscript

is smaller than the current number as in equation 3.10, the variable is a prediction and

not yet a fitted track point itself. The estimated residual ri and its covariance Ri become

ri−1
i = mi −His

i−1
i Ri−1

i = Vi +HiC
i−1
i HT

i . (3.11)

The prediction is the main feature of a Kalman filter for ALICE, because it offers the

step wise build-up of the trajectory. The estimated state vector is calculated and states

where the next measurement point can be found. By allowing only a certain deviation of

the estimated track point and the measurement, a filter for all existing hits on the plane

is achieved.

The next step, update, is done after every prediction. The state vector will be updated

based upon the current and all past measurements. Hence, the fit parameters for the helix

18



3.2. TRACKING IN ALICE: A LOCAL TRACK MODEL

are updated to achieve the minimal χ2, resulting in a new estimate of the state vector

si = si−1
i +Ki(mi −His

i−1
i ) Ci = (1 −KiHi)C

i−1
i (3.12)

Ki = Ci−1
i HT

i (Vi +HiC
i−1
i HT

i )
−1. (3.13)

with the Kalman gain matrix Ki. The gain matrix incorporates the corrections derived

from minimising the χ2. The minimisation process requires matrix inversions. The local

model offers the advantage of inverting only small matrices, which leads to a faster com-

putation.

The state vector at the last filtered point n contains the full information to calculate the

state vector of any point i already tracked. Hence, the full trajectory can be determined.

It is a recursive operation in the direction opposite to the filter process and described by

the smoothing equations:

sni = si +Ai(s
n
i+1 − sii+1) Cn

i = Ci +Ai(C
n
i+1 −Ci

i+1)A
T
i . (3.14)

Ai = CiT
T
i+1(C

i
i+1)

−1. (3.15)

with Ai the smoother gain matrix. The matrix holds the information on how to move

upstream with the correct fit parameter for the model as well as the process noise from

multiple scattering associated with the current plane. The smoothed trajectory therefore

contains kinks. Here, the superscript digit is bigger than the plane under observation. This

indicates that the state vector already incorporates the updates from the measurements

up to the plane indicated by the superscript.

Figure 3.4: The diagram, adapted from [3], shows the basic process loop of a Kalman
filter. The process begins with a prior knowledge state vector serving as the initial pre-
diction for the current plane. Then, the current state vector is updated with measurement
information and a new prediction is made by incrementing through the planes.
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In summary, the three steps prediction, update and smoothing, that build a cycle,

are depicted in figure 3.4. A prior knowledge of the first state vector is very beneficial to

be able to make the first prediction as truthful as possible. The prediction is based on

the underlying physical process and after every filter step the updated state vector of any

tracked plane can be computed. The loop increments by moving one plane further. The

Kalman method has many advantages. Nevertheless, there are also a few shortcomings.

The most crucial one is, that a realistic initial approximation for the state vector is needed

to enable a stable and successful filtering procedure [9].

3.2.2 Seeding

There are different option to do seeding depending on the circumstances. In general,

a distinction is made between internal and external seeds. If the particle trajectory is

coarsely known before starting the reconstruction procedure the seed is external. This

is applicable, for instance, when another detector within the experiment provides infor-

mation about the track, or when the particle is deliberately directed into the tracking

detector. An internal seed is required when there is a lack of external information avail-

able regarding the particle to be tracked and has the form of a track itself but with fewer

measurement points, hence it is called tracklet.

Even though other detectors in ALICE provide some information about the particle tracks,

this external seed is too vague combined with the high multiplicities, to successfully start

a reconstruction on its own.

The tracking algorithm in ALICE relies on an internal seed that is constructed at the

outer most hit point in the TPC, since the hit density is significantly lower there, hence,

it is easier to find the correct seed for the true trajectory of a charged particle. Is not

trivial to have a successful yet fast procedure to find a good internal seed, representing

the initial state vector.

The developed seeding algorithm for Run 3 is based on the cellular automaton principle

[36] and is a two-stage combinatorial process depicted in figure 3.5.

First, spatially adjacent clusters are connected, building tracklets. This eliminates non-

physical combinations, as physics only allows charged particles to deviate by a certain

degree from their initial path. Therefore, clusters that are not found within a certain

spatial proximity cannot be produced by the same particle.

Secondly, for each cluster, the best pair of neighbouring clusters on the previous and

following row is determined on the basis of the best straight line that these three cluster

form and on loose vertex constraints. The criteria of the straight line is sensible, because

at correspondingly small scales the helix path of the particle is almost straight. Further-

more, including the vertex constrain assures that the particles actually originate from the
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collision, but since they possibly do not come from the primary vertex, these cuts must

not be very strict.

Figure 3.5: This figure show the basic principal of the two step cellular automaton seeding
algorithm [36]. a) Finding the best pairs of neighbours and connecting them to tracklets.
b) Non-reciprocal links are removed, following certain criteria.

3.3 Global track models

When small scale experiments are conducted, the problem of track finding and track mul-

tiplicity can typically be avoided. This is achieved by operating with low particle rates,

which allows the measurement points of different particles to be separated in time. Using

a trigger, only one particle track is recorded at a time, allowing for efficient analysis using

global fits. As a result, global fits are often the preferred and quickest solution in such

cases.

Particles, heavier then electrons and above certain momenta will follow an almost straight

line, as long as they are not affected by outer forces like a magnetic or electric field. If de-

tectors were able to track the particles without them having to interact, the particle path

would remain unchanged. To reconstruct the trajectory, the least square method is often

used to fit a straight line and obtain high-quality tracks. This assumption of particles

following a straight line unaffected by the detector can be applied when studying rela-

tivistic particles, as their energy loss in matter is negligible compared to their momentum,

and the impact of multiple scattering is small. However, when examining low-momentum

particles, the trajectory changes at every detector plane and in the air between the planes

because of multiple scattering. Therefore, ignoring these effects can lead to a poor fit

quality. It is essential to account for these factors by employing appropriate fit models to

achieve accurate results.

In the following discussion, three global track models are introduced. For relativistic

particles or those minimally affected by multiple scattering, an unweighted straight line
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model is primarily utilised. This model incorporates each measurement with its respec-

tive measurement resolution without applying additional weights. On the other hand, for

low-momentum particles that experience strong scattering in traversed matter, a weighted

straight line fit is more suitable. This model assigns different weights to individual mea-

surements during the fitting process, considering the varying degrees of scattering effects

encountered by the particles. Lastly, the concept of a broken line trajectory method is

introduced, which aims to replicate the behaviour of particles that undergo substantial

direction changes as they traverse the detector material. The broken line approach in-

volves fitting the particle’s trajectory using multiple straight line segments, allowing for

abrupt changes in direction.

3.3.1 Unweighted straight line

For massive relativistic particles passing through a tracking system without a magnetic

field, an unweighted straight line fit is generally a suitable description. The fit function,

which represents a point x on a straight line, can be defined using the classical equation

of a line in three-dimensional space:

x = a1 + t · a2, (3.16)

where a1 is the state vector and a2 the direction vector.

When operating in Cartesian coordinates with the x, y and z-axes, defining the fit function

in terms of the z coordinate can be advantageous in practice. To facilitate this, the state

and direction vectors are modified accordingly. The state vector is constructed within

the (x, y)-plane, ensuring that its z component is set to zero. On the other hand, the

direction vector is normalised to adjust proportionally with the z position, resulting in a

z component value of one. Consequently, equation 3.17 reads as follows:x

y

z

 =

a1,x

a1,y

0

+ z ·

a2,x

a2,y

1

 . (3.17)

Fitting the trajectory through the measured points consists in determining the parameters

of the chosen functional (e.g. equation 3.17) via minimisation of the χ2. Since the χ2

is additive, it is more convenient to decompose the three-dimensional problem into two

two-dimensional ones. This approach simplifies the calculation and allows for a more

22



3.3. GLOBAL TRACK MODELS

straightforward analysis. Therewith, χ2 for N measurements formulates as follows:

χ2 =
N∑
i=1

(
(mi,x − (a1,x + zi · a2,x))2

σi,x
2

+
(mi,y − (a1,y + zi · a2,y))2

σi,y
2

)
. (3.18)

Hereby, mi = (mi,x,mi,y, zi)
T contains the measurement with its uncertainties σi,x and σi,y.

Calculating the derivatives of equation 3.18 with respect to the fit parameters a1 and a2

and setting them to zero provides the best estimate for the fit trajectory.

This model guarantees an analytical outcome, a fast implementation and robustness

against falsely included measurement points. On the contrary, it is not suitable for rep-

resenting low-momentum particles since their trajectories are characterised by multiple

changes in direction rather than a straight line [23].

3.3.2 Weighted straight line

Massive low momentum particles in a tracking setup do not follow a straight line trajec-

tory. The electromagnetic interactions in the matter, namely multiple scattering which is

inverse proportional to the momentum, leads to deflections of the charged particle from

its initial path. There are different approaches to account for this in a track model.

One way to include multiple scattering is demonstrated by the fit model of a weighted

straight line. In this approach the fitted trajectory remains a straight line, as it represents

the most likely path for the particle, considering that the average value of the multiple

scattering angle is zero. However, the covariance matrices of the measurements are ad-

justed. The measurements, with respect to the initial straight trajectory of the particle,

can be described with an offset arising from the detector and the scattering angle. Both

offsets have a mean value of zero. While the measurement uncertainty is independent,

the deviation caused by multiple scattering accumulates across the detector planes.

A simplified example can illustrate this concept: Suppose there is a particle that under-

goes deflection due to multiple scattering on the first detector plane, causing it to deviate

from its initial path. If there is no additional deviation on the second plane, the scattering

angle at this point is zero. Nevertheless, the measurement obtained from the third plane

deviates from the particle’s initial trajectory due to the change in direction that occurred

on the first plane. This indicates that the measurement on the third plane was influenced

by the scattering that occurred on the first plane.

Using a weighted straight line fit implies that the measurement points are correlated across

the telescope. The distribution of the individual scattering angles stays independent, but

the deviation to the initial path can increase as more scatterers are encountered along the

particle’s trajectory. Figure 3.6 demonstrates the effect of this trajectory change.

The following formulas are used to describe two-dimensional measurements, as the three-
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Figure 3.6: The figure, adapted from [14], shows the change of a particle trajectory
throughout a tracking telescope due to multiple scattering. m represent the measurement
points, α the scattering angles and z the positions of the planes on the z-axis.

dimensional measurement (x, y, z) can be projected independently into two two-dimensio-

nal ones (x, z) and (y, z). When mi is the x or y component of a two-dimensional mea-

surement point on the i-th plane of the telescope, the associated covariance for the mea-

surement on any other plane j is

Vij = σi
2δij +

Min[i,j]∑
k=1

θ20,k(zi − zk)(zj − zk). (3.19)

σi is the detector resolution of plane i, θ0,k is the standard deviation of the multiple

scattering angle that can be calculated with equation 2.3 for the k-th scatterer and z is

the distance to the respective plane. A short derivation for this non diagonal covariance

matrix can be found in [14]. The first term represents the standard uncertainty that

arises from the detector resolution, while the second term represents the uncertainty and

correlation resulting from multiple scattering. Due to the lever arm, the uncertainties

coming from multiple scattering increase as the distance between the planes becomes

greater.

Several simplifications can typically be made. Firstly, the detector planes usually have

an identical material budget, resulting in their contribution to multiple scattering being

uniform. Secondly, the planes can be approximated as equidistant from each other.

The best fit parameters are obtained by minimising the χ2-value. Since the uncertainties

are correlated, the sum contains not only residual components from each individual plane

but also mixed components:

χ2 =
N∑
i=1

N∑
j=1

[mi − (a1 + a2zi)]V
−1
ij [mj − (a1 + a2zj)] . (3.20)
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This formula follows equation 3.4 with xm being given by the straight line fit function

defined in equation 3.17. In matrix form, the chi-squared can be expressed as follows:

χ2 = (m−Ga)TV−1(m−Ga) (3.21)

with Ga defining the fit function evaluated at the z coordinate of the measurement point

Ga =



1 z1

1 z2

1 z3
...

...

1 zN


(
a1

a2

)
. (3.22)

Now, χ2 can be minimised by solving the following equations

∂χ2/∂a1 = 0, ∂χ2/∂a2 = 0. (3.23)

The outcome for the fit parameters is

a = (GTV−1G)−1GTV−1m. (3.24)

3.3.3 General Broken Lines (GBL)

As demonstrated in the previous section 3.3.2, global methods can take multiple scattering

into account by incorporating additional uncertainties and correlations to the measure-

ment. Moreover, an unweighted fit with scattering angles as additional fit parameters can

be done. Both methods require computing time in the order of O(N3) with N being the

number of measurements or scatterers [25]. They are easily outperformed by the fast local

Kalman method, which has a linear computing time O(N). In the following, a global fit

model is presented, that considers multiple scattering and has a similar time complexity

to the local Kalman filter, exploiting the sparsity of the matrix that represents the system

of linear equations.

The General Broken Lines (GBL) formalism, developed at DESY Deutsches Elektronen

Synchrotron, is a global and fast fit model for tracking particles affected by multiple

scattering [25]. It achieves a computing time in the same order as the Kalman filter by

incorporating the description of multiple scattering into an initial trajectory. The track-

ing method is not only able to account for the direction changes of a charged particle in

matter, but also considers the energy loss in the material and, if present, any existing

homogeneous magnetic field, all while determining the covariance matrix of all track pa-
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rameters.

As the name implies, the fit model of the GBL formalism represents a broken line trajec-

tory. The changes in direction along the trajectory are coming from multiple scattering

within the materials. The angle between an initial track and the following scattered track

is called kink. At first, it is tempting to imagine that with a broken line the track points

can be perfectly matched to the measurement points. The magnitude of the kinks, how-

ever, is not arbitrary. They impose additional constraints on the track fit, similar to the

measurements. In particular, the kinks are modelled to align with the multiple scatter-

ing expectation. This implies following a Gaussian distribution centred around zero with

a standard deviation θ0 calculated using equation 2.3. Consequently, the kinks are not

treated as fit parameters but rather as process noise in the trajectory, which is compared

to the expected value of zero.

The scatterings happen in matter like the detector material, but also in air which is

present throughout the tracking telescope. To simplify the calculation while still keeping

the model as truthful as possible, the extended material is approximated by several thin

scatterers with an adapted radiation length. Herewith the number of fit parameters is

kept small and an integration over the thickness of the air is avoided. This remodelling

is portrayed in figure 3.7.
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Figure 3.7: The upper part of the sketch depicts the true setup of a tracking detector with
the detector planes, air in between the planes and the measurement points. The initial
trajectory originates from an external or internal seed and is later broken apart to include
multiple scattering. The lower sketch shows the actual implementation of the setup for
the tracking algorithm. So called thick scatterers like the air are split into several thin
scatterers. After all, the green line shows the final fit. To fully describe the new path
without a magnetic field, only the intersection points with the scatterers are necessary.
With a magnetic field the momentum is additionally needed to specify the curvature of
the trajectories.
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The broken lines algorithm is built up on an initial trajectory, that can come from a

simplified fit of the measurements (an internal seed). If available, it can also be externally

seeded using information from another detector.

GBL uses the minimisation of the chi-square to obtain the best fit parameters. However,

prior to constructing the chi-square, it is necessary to define the residuals, their covariance,

and the fit parameters. These definitions are performed in various coordinate systems to

align with their respective properties. In most scenarios, a coordinate system is selected

where the covariance matrix is diagonal, allowing for easier handling and interpretation

of the data.

In the subsequent section, the particular coordinates are introduced. Afterwards, the

parameters and residuals are discussed, leading to the final assembly of the chi-square.

Local coordinate systems

Apart from the global Cartesian frame (x, y, z), GBL uses local coordinate systems that

match the studied quantities. At each scatterer a coordinate system (u, v, w) is defined.

The base vectors eu and ev lie within the plane of the scatterer. ew is chosen to be

perpendicular to the plane when describing a measurement and parallel to the track

direction when describing a kink. Additionally, there is the curvilinear system (x⊥, y⊥, z⊥)

which is locally following the track with ex⊥ or ey⊥ in the global (x, y)-plane and ez⊥
in the track direction. If no magnetic field is present the curvilinear system is simply

the orthonormal system to the track with ez⊥ pointing into the global track direction.

The scatterer system and the curvilinear system changes track by track and scatterer by

scatterer. All coordinate systems are depicted in figure 3.8.
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Figure 3.8: The sketch shows two rotated
tracking planes z1 and z2. The trajectory
is depicted as a dotted arrow pointing
from one plane to another. It is a straight
line if there is no magnetic field present.
The green coordinate system represents
the curvilinear frame. ey⊥ shall be per-
pendicular to ez⊥ and ez. Therefore it is
pointing outside of the plane. ex⊥ must
be perpendicular to ey⊥ and ez⊥ . The red
coordinates represent the detector system
and the blue coordinates represent the
scatterer system. The origin of the lo-
cal coordinate systems can be arbitrarily
chosen on the plane and does not need to
coincide with this representation.
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Fit parameters

In the standard Cartesian coordinate system (x, y, z) the trajectory of a charged particle

(with a homogeneous magnetic field in the y direction) is a helix. It can globally be

described with a five dimensional vector. This is the most general case and it simplifies

if there is no magnetic field like in this thesis. Nevertheless, in GBL, the parameters of a

helix are always in effect since it includes all cases. The global parameters are

(q/p,Φ, d, λ, y). (3.25)

Hereby, the q/p term includes the effects of charge and momentum of the particle and

describes the curvature of the helix. It describes the curvature of the helix. Φ is the angle

at the distance d to the point of closest approach (PCA) in the (x, z)-plane. At this point

d is minimal. Finally, λ is the dip angle to that plane and y is the offset at the point of

closest approach. A visualisation of the global parameters in Cartesian coordinates can

be found in figure 3.9.

Figure 3.9: The figure shows the
global track parametrisation of a
helix according to equation 3.25.
A helix trajectory is projected in
the (x, z)-plane. The Point of clos-
est approach (PCA) in this plane is
given by the angle Φ and the dis-
tance d. The tangent at the refer-
ence point is provided by the angles
ϕ and λ, where ϕ is the angle of
the projected tangent to the x-axis
and λ states the angle of the tan-
gent at the reference point to the
(x, z)-plane.
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The fit parameters can also be described in the local system, namely the local detector

system and the curvilinear system [19]. This consideration becomes important in the

implementation of the General Broken Lines formalism for a specific tracking setup, as

well as for non-iterative alignment methods like Millepede [12]. In the local detector

system of a scatterer i, a track segment slocDec,i can be characterised by

slocDec,i = (q/pi, u
′
i, v

′
i, ui, vi). (3.26)
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(ui, vi) is an offset that states the track intersection point on the detector plane and

(u′
i, v

′
i) = ∂(ui,vi)

∂w⊥,i
is a slope describing the local track direction (tangent). A sketch is

depicted in figure 3.10a.

In the curvilinear system a track is locally described by

slocCurv,i = (q/pi, λi, ϕi, x⊥,i, y⊥,i). (3.27)

The curvilinear parameters are build in a hybrid local/global reference frame. The vari-

ables λ and ϕ are defined at the reference point and are able to describe the tangent at

this point on the trajectory. However, the values of these variables are measured in the

global Cartesian coordinate system. This is because they are mandatory to describe the

curvilinear system since z⊥ is in the direction of the tangent. Where λ is already defined

by the global parameters, ϕ is defined as the azimuth angle of the projected tangent in

the (x, z)-plane. Both parameters are depicted in figure 3.9.

x⊥ and y⊥ are the offsets similar to u and v but in the direction of the curvilinear base

vectors. They are sketched in figure 3.10b. The Jacobians to transform the parameters

from one system into a different local system are discussed in [39].

(a) (b)

Figure 3.10: (a) depicts the track parametrisation as per equation 3.26 [19]. The tangent
of the track is described by the derivatives of u and v with respect to w⊥. The reference
point in the detector system corresponds to the intersection point of the trajectory with
the plane. On the other hand, (b) displays the track parametrisation following equation
3.27. At the reference point, the tangent aligns with the z⊥ direction.

From a global perspective only the offsets and the momentum of the local frames are

necessary to fully describe all the trajectories in between the scatterers. The slopes or

tangents can be calculated with the adjacent track points. Therefore, the fit parameter
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array s for a tracking telescope with nscat scatterers is formed as follows:

s = (q/p,u1,u2, ...,unscat). (3.28)

The local offset parameters can either be built in the detector system ui = (ui, vi) or the

curvilinear system ui = (x⊥,i, y⊥,i) at the scatterer. The vector s includes all fit parameters

that are later varied for the chi-square minimisation.

Residuals

In the GBL method the measurement point mi of a detector plane i is stated as a residual

rm,i to the initial trajectory. The residuals are build in the local detector system (u, v).

In these coordinates, the corresponding covariance matrix Vm,i is diagonal. It contains

the squared detector resolution in two directions u and v on the diagonal. The residual,

representing the distance between the intersection point xi of a track and the measurement

on a detector plane mi = (mu,i,mv,i)
T , is

rm,i = Hm,is−mi (3.29)

The matrix Hm,i multiplied with the fit parameter vector calculates the track intersection

point with the detector plane in local coordinates.

In order to express detector related parameters (e.g. the residuals) in the curvilinear

coordinate systems the projection matrix P = (x⊥,y⊥)
(u,v)

is used. It transforms between the

local detector coordinates and curvilinear system.

Since the kinks k are also variables in the fit parameter estimation, one additional residual

needs to be formed. In GBL the kink angles are calculated in the local system of the

scatterer. These coordinates are not optimal, as the covariance matrix of the kinks is

diagonal in the curvilinear system, aligning with the principles of multiple scattering

theory. In this system, the angle deflection in the two perpendicular directions to the

track direction is uncorrelated. Thus, the covariance matrix can be represented as Vk,⊥ =(
θ20 0

0 θ20

)
, where each diagonal entry corresponds to the squared multiple scattering angle

obtained from equation 2.3. Nevertheless, the covariance matrix can be easily transformed

to the local system. With c1 = ez⊥eu and c2 = ez⊥ev being the projections of the offset

directions onto the track direction, the covariance matrix in the local system can be

calculated like:

Vk =
∂(u′, v′)

∂(x′
⊥, y

′
⊥)

(
θ20 0

0 θ20

)[
∂(u′, v′)

∂(x′
⊥, y

′
⊥)

]T
=

θ20
(1− c21 − c22)

2

(
1− c22 c1c2

c1c2 1− c21

)
. (3.30)
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3.3. GLOBAL TRACK MODELS

To calculate the scattering residual, the kink angle in the local plane is calculated by

multiplying the matrix Hk with the parameter vector s. The kink residual rk,i for the

respective plane i then is formed as follows

rk,i = Hk,is− 0 = Hk,is. (3.31)

Whereas the expected value for the track point is the measurement point (⟨Hms⟩ = m),

the expected value for the kink is zero (⟨Hks⟩ = 0). Therefore the scattering residual is

the kink angle itself.

Chi-square

The General Broken Lines formalism is a global minimum chi-square method, thus the fit

parameters are determined by minimising:

χ2 =
nmeas∑
i=1

rTm,iV
−1
m,irm,i +

nscat−1∑
i=2

rTk,iV
−1
k,i rk,i (3.32)

where the first sum arises from the measurements and the second from the kinks. The

degree of freedom is

ν = 2((nmeas + (nscat − 2))− nscat)

= 2(nmeas − 2).
(3.33)

This can be associated with the normal calculation for the degree of freedom (number of

measurements - number of fit parameters). The total number of measurements includes

both the measurements from the detectors nmeas and the kinks nscat − 2. There are two

fewer kinks than scattering planes, as the first and last planes are not constrained on both

sides. The number of required fit parameters is determined by the number of scattering

planes nscat. For three-dimensional measurements, this count is multiplied by two, as each

measurement or scattering plane has two residuals, one in each dimension (u and v).

The minimisation of the chi-square leads to a linear equation system As = b:

A =
nmeas∑
i=1

HT
m,iV

−1
m,iHm,i +

nscat−1∑
i=2

HT
k,iV

−1
k,iHk,i (3.34)

b =
nmeas∑
i=1

HT
m,iV

−1
m,imi −

nscat−1∑
i=2

HT
k,iV

−1
k,i ki. (3.35)

To solve the equation system for s, A has to be inverted. The matrix has a special form

which allows the usage of the root-free Cholesky decomposition [20]. As a result, the

inversion of A and thus the calculation of s are possible with a computing time in the
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order O(nscat). This makes the GBL formalism perform faster than other global methods.

Procedure

The implementation of a given tracking setup with measurements starts with the definition

of the seed trajectory. It is defined in the local system and gives information about the

whole tracking telescope and its measurements.

First, each track point of the initial trajectory is constructed with the Jacobian

Ti = ∂slocCurv,i+1/∂slocCurv,i (3.36)

which states the transformation of the local track parameters from plane to plane. As the

curvilinear system is a track following frame, the Jacobian is simply a transport within the

curvilinear frame to the destination plane. At each plane, the measurements and kinks

have to be defined. Usually the kinks of the initial trajectory are zero. The measurements

are incorporated as residuals to the initial trajectory in the local detector system.

Now, the chi-square can be constructed and derived. This brings up a linear equation

system. By decomposing the matrices, a fast inversion is possible and results in the solu-

tion with the best fit parameters.

The goal of this chapter was to present different methods for global and local track fitting.

In the beginning the tools for a successful parameter estimation were given. The consid-

erations have show that the minimisation of the chi-square is a fundamental concept for

the particle track reconstruction.

The chapter introduced various models and provided explanations of their underlying

concepts. These discussions establish a foundation for future investigations into spe-

cific tracking setups and their practical implementations. It should be noted that the

global methods differ in terms of their complexity, accuracy, and computational require-

ments. This differentiation highlights the importance of carefully selecting the appropriate

method based on the specific tracking scenario and available computational resources.
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Chapter 4

TRACKING WITH AN ALPIDE

TELESCOPE

This chapter will cover an experimental application, where global track models were used

to reconstruct particles that passed a tracking setup.

Following the recent upgrade of the ITS in ALICE, the tracking detector is now fully dig-

ital, leading to the loss of previously available analogue information about the energy loss

of traversing particles. Currently, investigations are performed to study the possibility of

regaining this information through the analysis of the cluster size of incoming particles

on the ALPIDE chip.

In order to study the cluster size dependencies, several testbeams were conducted using

various particle species. Testbeams serve as complementary measurements to laboratory

characterisations of sensors and are commonly used to investigate parameters of interest

such as efficiency, spatial and timing resolution, and the influence of radiation damage,

among others. The properties of the particle beam are well-known and can be adjusted

and optimised for specific research purposes.

This study focuses on particles with momentum below 1GeV/c. At these momenta par-

ticles are strongly affected by multiple scattering. Nonetheless, it is crucial to accurately

track them to enable subsequent analysis. In such scenarios, global track models that

incorporate the specific considerations for multiple scattering prove to be mandatory.

The data discussed in this study were obtained from a testbeam conducted in November

2022, with a low kinetic energy proton beam in the range of 80−200MeV. The setup and

characteristics of the testbeam will be detailed in this chapter, followed by the application

and performance evaluation of the introduced global tracking algorithms.

There is an established method for the analysis of sensors that involves high momentum,

resulting in straight trajectories with little beam divergence. In this method, projectiles

hit the surface of the sensors perpendicularly. This approach is necessary to characterise
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new sensors and eliminate any unknowns. However, when attempting to apply this estab-

lished method, unsatisfactory results were observed. As a result, this thesis investigates

the alignment and track reconstruction of data from low momentum protons to address

this issue.

4.1 Telescope characterisation

4.1.1 Testbeam facility

The data discussed in this study were collected during a testbeam conducted at the

Centrum Cyklotronowe Bronowice, which serves as a proton therapy treatment centre

in Krakow, Poland. Over the last decades irradiation with protons, or ions in general,

became more and more relevant for cancer treatment.

The typical kinetic energy range for protons used in therapy is between 70MeV and

250MeV. This corresponds to a momentum range of 370MeV/c to 730MeV/c. To ensure

precise irradiation of the cancerous tissue, a well collimated beam (∼ mm) is essential.

Furthermore, high particle rates (in the order of 1010 protons/s) are common [34].

Outside of normal working hours, most medical accelerator facilities offer the opportunity

to access the particle beam for scientific purposes.

4.1.2 Setup

Due to the high rates, the telescope was positioned at an angle relative to the primary

beam. In this context, a telescope refers to a group of individual sensors placed consec-

utively along the beam axis. A secondary beam was generated by directing the primary

protons onto a 500 µm thick aluminium target, positioned 2m behind the beam exit. The

scattered protons within the acceptance of the setup (triggered by the coincidence of two

scintillators) were further considered. Rates ranging from a few kHz to several tens of

kHz were achieved. To adjust the rate and increase statistics per operating point, the

setup was rotated at angles between α = 10 − 15 ◦ with respect to point A, relative to

the primary beam, until satisfactory particle rates were obtained. A sketch of the whole

setup is presented in figure 4.1.

Each telescope plane consists out of an ALPIDE chip, that can be rotated around the y

axis, offering the possibility to study tracks that impinge at angles between 0 (perpen-

dicular to the sensor) and up to 70 ◦. From now on, the planes will be counted starting

from zero. From the testbeam data, a representative subset was chosen, with all ALPIDE

sensors rotated by 30 ◦ and evenly spaced at distances of 10.0 cm, which serves as case

study for the tracking algorithms.
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Figure 4.1: The sketch depicts the tracking setup in the x-z-plane (not to scale).

At the position of the target, the beam widens due to scattering with air molecules, re-

sulting in an approximate diameter of 1 cm. With additional scattering in the target and

the first scintillator, the particles disperse even further, spreading out with a wide range

of inclination angles once they traverse the telescope.

For this data sample the kinetic energy of the beam was E ′
kin = (120.0± 0.8)MeV at the

beam exit. The energy spread is consider to be 0.7% of the beam energy [31]. As the

protons traverse material until they reach the first ALPIDE, their energy reduces. Table

4.1 shows the mean energy loss per path length −dE/dx, the density ρ, the thickness l

of the traversed material and the total energy loss

∆E = −dE/dx · ρ · l. (4.1)

material −dE/dx [MeVcm2g−1] ρ [g cm−3] l [cm] ∆E [MeV]
air until the target 5.615 0.001205 200 1.359

aluminium 4.996 2.699 0.05 0.676
air after the target 5.684 0.001205 30 0.002

EJ-200 plastic scintillator 6.376 1.032 1 6.719

Table 4.1: The table illustrates the parameters required for calculating the energy loss
of the projectile protons from the beam exit to the tracking telescope. The values come
from a calculation with the Catima library [35].

Eventually, the actual kinetic energy of the incoming particles is estimated to be Ekin =

(111.3± 0.9)MeV at the first detector plane.
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4.1.3 Alignment

The precision of the mechanical assembly of the detectors in any experiment is limited

and therefore a software alignment is crucial. The testbeam setup mainly deviates from a

perfect alignment due to translational and rotational degrees of freedom of the individual

planes present due to the mechanics or due to the positioning of the sensors on the carrier

cards, among others. Moreover, even through using for example precise laser alignment

systems, the precision achieved is in the order of few hundred µm. In order to benefit

from the intrinsic spatial resolution that the ALPIDE sensors have, an offline software

alignment is mandatory, where their positions and orientations are determined with similar

precision.

For systems like the ITS in ALICE, there are even more effects like torsion or surface

deformation, which can occur over time, for example caused by gravitational effects or

thermal expansion [21].

In the alignment process, the provisional geometric arrangement is updated with the true

positions and rotations of the planes. Only the z coordinate of the detector position stays

unchanged. After all, a small misalignment in the z position has no noteworthy impact

on the tracking quality compared to a misalignment in x and y, as the following example

demonstrates.

Imagining two detector planes with a distance of 2 cm to each other are traversed by

a particle with a straight track, inclined 5 ◦ to the z-axis. If the second plane has a

misalignment of 1mm in x or y directions, the residual (the distance between hit position

and track intercept on the plane) projected onto the plane will deviate by 1mm. So, a

small deviation in the x and y directions results in a shift of tens of pixels. However, if

the misalignment is 1mm in z direction the projected residual r will only be

r = tan 5 ◦ · 1mm ≈ 0.09mm,

which is only a few pixels. Similar arguments demonstrate that rotations around the x

and y axes also have minimal impact.

The alignment is considered sufficient when a level of precision is achieved, such that the

resolution of the reconstructed track is not significantly degraded by residual misalign-

ments compared to the resolution expected in an ideal case [13]. In other words, the

shifted mean of the residual distributions should be significantly smaller than the spatial

track resolution of the telescope.

To fix coarse shift of the telescope planes, usually a so called prealignment is performed

first. It does not require any tracking but instead utilises only the positions of the hits

(or more precisely the centre of gravity of hits forming a cluster). By fixing one plane as

a reference plane, the correlation between each hit position and the hit position on the
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reference plane in the same event can be plotted. For straight, relativistic particles, a

narrow peak at the position of the true plane shift is expected, as shown in figure 4.2.

Hence, a coarse correction for the true displacement can be done in the software to shift

the mean of the peak in the correlation to zero.

Figure 4.2: On the right, a schematic of a detector telescope with a slight misalignment
of plane 1 is shown. A relativistic particle has passed the layers, perpendicular to their
surface, and its hit positions are marked with red crosses. On the left, the correlation
between the hit positions on plane 0, the reference plane, and plane 1 are drawn in local
coordinates (u, v, w)[28]. A systematic shift is observed for the hits in plane 1, with respect
to the reference plane, indicating the translational misalignment in the x direction.
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Figure 4.3: On the bottom right, a schematic of
a detector telescope with a slight misalignment is
shown. A low momentum particle has passed the
planes and its hit positions are marked with red
crosses. On the top, the correlations between the
hit positions on plane 0 (the reference plane) and
plane 1 (left plot), or respectively, plane 5 (right
plot) are illustrated.

However, performing a prealignment is challenging under our conditions, dealing with low

momentum particles and a divergent beam. As shown in figure 4.3, the previous assum-

tions are no longer valid because the initial trajectory may be inclined (because of the
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beam divergence) and it may no longer be straight in case of the probable multiple scat-

tering in the detector planes. As a consequence, the distribution in the correlation plot is

very broad and worsens with increasing distance from the reference plane as demonstrated

in the right side of figure 4.3.

Apart from the broad correlation plots, there is another reason against the correlation-

based prealignment method. The prealignment assumes that the particle beam has passed

through the tracking telescope parallel to the z-axis. Only under this condition, a measure

of the translational displacement in the respective axis is valid. If this assumption is not

met, the prealignment will still shift the planes as if the beam was parallel to the z-axis.

This behaviour is illustrated in figure 4.5. As a result, it will introduce a systematic

shift of the planes in the direction opposite to the beam inclination. Ultimately, this new

arrangement will not accurately represent the true positions of the detectors.

Figure 4.5: The sketch illustrates three detector planes. The red arrow represents the main
beam direction. In a), a particle coming from the beam is depicted. In b), the correlation-
based prealignment method was applied. Due to the inclination of the beam with respect
to the z axis, the planes were systematically shifted to the right. As a consequence, the
reconstructed particles primarily appear parallel to the z-axis. However, the positions of
the planes do not correspond to the actual detector placements.

Instead of performing the prealignment, the alignment can directly be realised through

a precise, iterative process that utilises histograms of the spatial residuals distribution

from tracking to extract corrections for the plane positions. As such, at each iteration the

mean value of the residual distribution is taken as the correction for the plane position

and afterwards a new fit is performed.

In general, two degrees of freedom remain undefined in this procedure, namely a simul-

taneous shift and rotation of all planes. This means that the alignment can find two

arrangements where the residuals are shifted to zero but only one of them agrees with

the true detector positions. To restrict this shearing, one additional plane apart from the

reference plane is fixed to keep the global x and y position of the detector at zero during

the alignment procedure [12]. These two planes are expected to be carefully aligned ex-

ternally. For the discussed tracking setup planes 0 and 2 were fixed.

Usually, the best fitting model is chosen for the track-based alignment. Under these cir-
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cumstances however, a straight line was preferred instead of the better-fitting broken line

algorithm. Only after the first alignment using a straight line fit is performed, the broken

line fit is used for a second alignment. The reasoning behind this is that without the

prealignment, the residual based alignment has to absorb the coarse shifts directly. If the

mechanical alignment is not perfect, the broken line algorithm can fail to find the global

minimum of the χ2-equation.

In particular, the GBL fit falls into a local minimum. This means that a small variation

of the plane position does not result in a possible improvement of the fits. Instead, the

trajectories stay the same and, in this case, exhibit a residual distribution that is shifted

closer towards zero but at the cost of the kink angles being strongly shifted from the phys-

ical expectation, i.e., the multiple scattering distribution. The distributions are shown

in figure 4.6. The residual distributions give the impression of a successful alignment.

However, the fits do not withstand the minimal possible χ2-values, indicating that the

true plane positions were not achieved.

residual U plane 1

U

kink U plane 1

U

Figure 4.6: Output after the alignment was directly performed with a GBL fit. On the
left, the residual distribution is depicted, centred around zero, indicative of an alignment
that converged. On the right, the respective kink distribution is shown, exhibiting a mean
significantly different from zero which was introduced by the alignment algorithm in order
to minimise the width of the spatial residuals and to correct any shifts of its mean. The
mean and standard deviation (Std Dev) are derived from a Gaussian fit illustrated in blue
(inner 98% core). The values were calculated in the local detector system, which has the
coordinates (u, v, w).

A straight line fit does not have the freedom to shift the residuals to zero without ac-

knowledging the true detector positions in the alignment procedure and therefore is more

suitable to handle the coarse shifts. Figure 4.7 shows the residual distribution before and

after the alignment with a straight line. As can be seen, the true displacement of the

planes are identified by the shift of the mean of the residual distributions and corrected

for.
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Figure 4.7: Distribution of residuals before and after the first alignment with a straight
line fitted with a Gaussian. The final precision is not achieved yet. The width of the
residuals increases with the plane number because a weighted straight line fit was used.
This implies that the track intercept towards the end of the telescope, where the particle
trajectory has been influenced by multiple scatterers, has a broader distribution.

By having a closer look at the means of the Gaussian fits applied on the residuals dis-

tributions, it is clear that the coarse shifts are now corrected. If the goal is to track the

particles with a tracking precision of a weighted straight line, this alignment is sufficient.

However, if a higher precision is desired, using General Broken Lines, a second alignment

becomes necessary. This is because the residuals of the GBL fit with this alignment show

significant deviations of the means from zero compared to the associated tracking resolu-

tion. Therefore, a second iteration is performed, this time using the broken line model to

achieve a more precise alignment.

residual U plane 1

U

kink U plane 1

U

Figure 4.8: The residual and kink distribution from a General Broken Lines fit after the
final alignment are depicted. The mean of the residual is two orders of magnitudes better
than the tracking resolution (the tracking resolution is in the order of the spatial detector
resolution), which means that the alignment was successful and satisfactory. The kink
angle distribution is also centred around zero as expected from the multiple scattering
theory.
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Finally, a good alignment is achieved, resulting in very narrow distributions of residuals

with means magnitudes below the tracking resolution and sensible kink angle distributions

centred around zero as illustrated in figure 4.8.

Quality assurance using the Chi-square distribution

It is not always obvious to the naked eye whether the residuals are correctly distributed.

Furthermore, checking every plane for the residuals and potential anomalies is not a con-

venient task. A straightforward and fast way to probe the alignment and the tracking

quality is to compare the χ2-distribution to its theoretical distribution. This can pro-

vide quick feedback on the tracking quality and reveal possible implementation mistakes.

However, the cause of a potential deviation is not always clear.

In the following, different χ2-distributions will be examined to provide an understanding

of their characteristics when model parameters are incorrectly estimated. This includes

a misalignment in the setup and a wrong uncertainty estimation. A discussion for the

appearance of the chi-square distribution for different track models will be provided later

in section 4.2.

The subsequent examples were obtained from a weighted straight line fit to the data of low

momentum protons. The chi-square distributions are depicted in figure 4.9. First, only

translational degrees of freedom were allowed in the alignment, but no rotational ones.

The distribution of individual track χ2s is shown in panel (a) and is compared to the

expected χ2-curve for ndof = 8 drawn in red. The distribution shows that a large amount

of tracks have a good chi-square value. However, the entire distribution has a small shift

to higher chi-square values compared to the expected probability density function1.

There are also common fitting issues, such as the overestimation or underestimation of

the uncertainties like the position resolution of a detector or the multiple scattering angle.

This can be demonstrated by modifying fit example shown above. Rather than accurately

accounting for the multiple scattering, the uncertainty for the scattering angle was arti-

ficially increased or decreased as an example. Consequently, the χ2 changes its shape as

shown in panels (b) and (c) of figure 4.9.

Usually, it is unlikely to incorrectly estimate well known uncertainties such as the one

coming from multiple scattering or the spatial detector resolution. However, calculating

the correct covariance matrix presents a challenge. Depending on the coordinate system

in which the residual is constructed, the covariance matrix undergoes a change in form and

may require a projection or transformation into the appropriate system. Consequently,

1Even with a perfect alignment the distribution disperses asymmetric around the pdf. There are too
many track entries at high chi-square values. This is not a problem of the alignment but of the tracking
model itself and will be discussed later in section 4.2.1 of this thesis.
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the matrix is no longer diagonal. Failure to perform this transformation correctly results

in either overestimation or underestimation of the uncertainties.
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(a) Alignment without rotations
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(b) Overestimation of the uncertainties
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(c) Underestimation of the uncertainties

Figure 4.9: The figures illustrate different chi-square distributions for common fitting
issues. Graph (a) shows the χ2 if no rotations are considered in the alignment. (b) and
(c) depict the χ2-values if the uncertainties were over or under estimated, respectively.
The red line indicates the expected distribution from the chi-square statistics stated in
equation 3.3.

Overall, the examples demonstrate that it is not possible to unambiguously detect a

problem in the tracking process simply from the distribution of the chi-square alone.

Nonetheless, it is possible to interpret the χ2 to gain a basic understanding of the fit and

the alignment quality.

4.1.4 Filtering of events

Tracks reconstructed in a tracking telescope undergo several quality criteria before they

are used for the final analysis. Typically, a selection on the chi-square values is employed.

This is done to identify track patterns that may not have been generated by protons from

the particle beam of the facility.

A second criterion that can be applied is to impose a restriction on the number of planes

that must register a hit. Generally, fitting a trajectory requires more than two planes to

be hit. Otherwise, the degree of freedom of the fit is zero which means that the parameter
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of the trajectory are not free to vary, resulting in a meaningless fit. On the other hand,

the greater the number of required planes, the higher the probability that the hits were

genuinely produced by a projectile particle from the beam.

Subsequently, various characteristics of the telescope are discussed, along with the impact

of quality restrictions such as the requirement on the number of planes registering a hit

and the application of a chi-square selection.

2D correlation plots

The 2D correlation plot depicts the cluster position in the local coordinates u and v on the

plane under consideration and the reference one. If the hits on each plane were produced

by the same particle the graph should show a correlation. In the ideal case, all beam

particles pass through the telescope perpendicular to the surface of the sensors and only

in a small, targeted area. In that case the correlation plot would show narrow points

along the diagonal line of the two axes. This line fades out below and above certain pixel

values because the beam intersects the detector only in a small area.

In the studied data, the low momentum of the particles combined with the encountered

material along the way, results in a wide particle beam with many different inclination

angles around the direction perpendicular to the sensors. With these circumstances, the

correlation plots exhibit an unusual and distinctive shape that will be explained in this

section. However, the visualisation of the correlation can still, to some extent, indicate

whether two hits in the telescope originate from the same source or were produced inde-

pendently, as activity from the beam is expected to be systematic in all sensor planes.

The 2D correlation plot without any selection on the data is shown in figure 4.10a. Several

selection criteria were imposed successively. The first step involved reducing the data to

include solely events where less than two cluster were registered on each detector plane.

A second cluster on the plane is primarily produced by delta electrons [22].

It is very profound to discard every event where there was at least one plane with two

clusters. Especially if the number of available events is small, it can become important

to avoid this strong selection. An alternative is to utilising the χ2-value of a fit. This

approach prevents discarding every event with two clusters on a plane and enables a dis-

tinction between the cluster produced by a projectile proton and other clusters. Hereby,

every combination of clusters on different planes is tracked and the trajectory with the

smallest chi-square value is considered to be the true path of the projectile particle. How-

ever, since there was sufficient statistical data available in this study, it was not mandatory

to perform a fit and hence use the χ2-value at this point of the selection.

The second restriction was to filter the data for events that have at least one cluster
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Figure 4.10: The figures show the V-correlations of plane 0 and plane 1. In (a) the
correlation with no filter is depicted. (b) shows the correlation for events filtered for
maximum one cluster on each detector. In (c) events were selected, where each detector
plane has exactly one cluster. (d) depicts the correlation plot with the previous selection
criteria and an additional χ2 selection that was performed after tracking.

on every plane (6-plane events). Together with the earlier selection the remaining data

solely includes events that have exactly one cluster on every plane.

After applying these filters that are independent of a track fit, the correlation plot al-

ready demonstrates an improvement in the removal of uncorrelated hit points. However,

there are still events with clusters that were very unlikely to be produced by a traversing

projectile particle. Therefore, the events are also filtered based on a chi-square selection.

This finally rejects the remaining uncorrelated hits. The final correlation plot is shown in

figure 4.10d.

The dispersion shows the same diagonal line as expected in the ideal case but stretched

evenly over the whole sensor area. This behaviour is caused by particles penetrating the

detector all over the plane and not just in a small region. Moreover, the diagonal line is

broadened. This results from the different inclination angles of the protons.
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The inclinations of the projectile particles give the dispersion a distinct appearance, as

illustrated in figure 4.11a. The dotted red lines represent symmetric boundaries around

the diagonal line, originating from inclined tracks. In fact, the distribution is not totally

symmetric. For a low pixel number on the reference plane there are no hits found above

the diagonal. For high pixel numbers, the exact opposite is the case.
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Figure 4.11: (a) depicts the correlation plot of plane 0 and 1, considering all selection
criteria. Additionally, a sketch is drawn to illustrate different areas of the correlation plot.
The dotted line indicates the area where correlation points are expected at first glance.
Below the diagonal, the correlation points originate from particles whose pixel numbers of
the clusters increase throughout the telescope. Hence, the hit pixel number of the plane
under consideration is larger than on the reference plane. Above the diagonal, the hit
pixel numbers of the particles decrease throughout the telescope.
(b) shows a sketch of particle tracks passing through three telescope planes. The first
plane represents the reference plane. In case A, all correlation points with the associated
track inclination are visible in (a). The colours link the inclination of the particles to
their location in the 2D correlation plot. For case B, particles with a stronger inclination
(red) are not present in the correlation plot because they fall outside the acceptance of
the telescope.

The expected symmetric distribution of the correlations around the central diagonal line

misses hits in these regions due to the finite acceptance of the telescope. An exemplary

look at tracks with an increasing hit pixel number throughout the telescope, can provide

an insight. They are located below the diagonal in the correlation plot and are visualised

in figure 4.11b.

Case A and B show the same inclined particles but with a different intersection point on

the reference plane. Tracks that have a small pixel number on the reference plane (Case

A) hit every plane in the exemplary telescope, even with strong inclinations. Tracks with

the same strong inclination but a higher pixel number on the first plane (reference plane)

are not covered by all telescope planes anymore. Consequently these track do not fulfil
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the requirement to hit all detector planes. Therefore, the entries below the diagonal are

missing at high pixel numbers of the reference plane. Mirroring the example for tracks

with the opposite inclination equivalently explains why entries above the intersecting line

are missing at low pixel numbers.

Angular distribution of the particles

The primary beam initially contains protons with almost parallel trajectories to each

other, narrowly confined in space. After the particles penetrate the material, especially

the scintillator, their spatial distribution widens. Additionally, they are not parallel any-

more but exhibit different inclination angles.

With a straight line fit, the inclination angle can be extracted after tracking. If the events

were filtered for 6-plane events, the maximum possible inclination angle of a track is given

by the acceptance of the telescope. The accepted angles in x and y are calculated as fol-

lows, where the active area of the ALPIDE measures 3× 1.38 cm2 and the distance from

the first to the last plane is 50 cm:

αX = ±tan−1

(
3 cm

50 cm

)
= ±3.4 ◦ =̂± 0.059 rad

αY = ±tan−1

(
1.38 cm

50 cm

)
= ±1.58 ◦ =̂± 0.028 rad.

Figure 4.12 shows the track angle distribution. The angles are given with respect to the

z-axis.
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Figure 4.12: The fig-
ure depicts the track
angle in x and y with
respect to the z-
axis. The angle dis-
tribution is narrower
in y compared to
x because the tele-
scope acceptance is
smaller there. This
can be explained by
the asymmetry of
the ALPIDE sensor.

The maximum inclination angles detected in the y direction approximately match the
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expected boundaries. However, the distribution of the x angle is narrower and does not

reach the boundaries obtained by the telescope acceptance. This can be caused by the

misalignment of the detectors, which was especially prevalent in the x direction. Software

corrections up to 3.5mm had to be made. This misalignment reduces the effective accep-

tance of the telescope.

However, when recalculating the acceptance, the new parameters are still not the restrict-

ing factors. This indicates that what is displayed is close to the true angle distribution in

x of the incoming particles.

It can be seen that the angles are not symmetric around zero. This fact can have different

reasons. On one hand, in the alignment the assumption was made that the reference

planes 0 and 2 are truly positioned at the intended place. If this was not the case, the

tracks can show a small systematic deviation regarding quantities such as the track angle.

On the other hand, the projectile particles can be systematically inclined with respect to

the z-axis of the telescope.

Chi-square distribution for different degrees of freedom

The form of the χ2-distribution depends solely on the number of degrees of freedom

(ndof or ν) in a fit. To compare the resulting chi-square distribution of the data to the

theoretical expectation, it is essential to know the ndof for the fit. For the presented fit

models (a straight line and a General Broken Lines trajectory), the number of degrees

of freedom is determined solely by the number of measurement points if there are no

additional constrains. The number of fit parameters is fixed for a given model or only

dependent on the number of scattering planes, as in the GBL model. By varying the

number of included planes and, consequently, the number of measurement points, the

dependency of the distribution can be demonstrated.

The ndof for a straight line is calculated as follows: First the number of fit parameters

has to be discussed. Generally, to describe a line in three-dimensional space following

equation 3.17, two slopes and two offsets for the x and y dimensions are needed. As a

result, the number of needed fit parameters to describe a straight line is four.

Next, the number of measurements is considered. On each detector a cluster is defined

by a local u and v value pair or respectively a global x and y value pair. The z position is

not a free parameter, because its value is determined by the plane geometry and position

in space. Consequently, the sample size is two times the number of planes included in

tracking.

The degrees of freedom for a straight line depending on the number of planes nplanes

included is then given by

νstraightline = 2 · nplanes − 4. (4.2)
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A General Broken Lines fit needs more parameters to define the trajectory than a simple

straight line. On the other hand, it has more measurements available since the kinks

constrain the fit as well. The explanation for the equation of the ndof is discussed in

section 3.3.3. The dependency on the plane numbers turns out similar to the straight line

case although the individual number of measurements and fit parameters are different:

νGBL = 2 · nplanes − 4. (4.3)

By gradually decreasing the number of planes used for tracking, a range of different χ2-

distributions can be produced. They are shown in figure 4.13.
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(a) ν = 8, nplanes = 6
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(b) ν = 6, nplanes = 5
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(c) ν = 4, nplanes = 4
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Figure 4.13: The figure depicts χ2-distributions for a GBL fit with different degrees of
freedom ν and different number of planes nplanes required for a track.

The distributions validate the calculation of the degrees of freedom of the fitted tra-

jectories, because they match the theoretical distribution under variation of the degrees

of freedom. It is also visible again why it was chosen to evaluate the distribution of the

χ2 and not the χ2
red, which is often used when evaluating the fit quality. Due to the small
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number of degrees of freedom, the reduced chi-square peaks at values smaller than one.

To avoid confusion with this common testing criterion (where χ2
red should ideally peak

at one), here it is looked for whether the normal chi-square distribution is peaking at

max(ν − 2, 0).

4.2 Comparison of different track models

Two main goals are aimed for when it comes to tracking. First, the hypothesis is to

confirm that all associated measured hits belonging to a reconstructed track are generated

by the same charged particle. Secondly, achieving a good tracking resolution is crucial.

This is especially important for experiments where the physics analysis relies on precise

trajectories for vertexing, momentum determination, and particle identification.

The main objective of the cluster size study for the ALPIDE chip is to ensure the accurate

assignment of clusters to a particle. The tracking resolution will be discussed later in this

chapter. Initially, the emphasis is on the implementation details of the individual track

models and their ability to accurately depict the trajectory of the tracked particle. This

allows for the evaluation of the tracking quality, providing information about the likelihood

of correctly matching measurements to a particle.

4.2.1 Unweighted and weighted straight line fit

The appeal of an unweighted straight line fit lies in its simplicity. This fit method expects

charged particles to be unaffected by external forces and thus travel through the telescope

in a straight path. To construct the χ2-sum in this case, only the measurements and their

covariance matrices need to be provided.

In the introductory section 3.3.1, a simplified setup was depicted where the global z di-

rection is always perpendicular to the detector planes. However, in the studied data, the

detector planes were rotated. This introduces a non-linear dependence of the fit param-

eters in the chi-square function when the residuals are constructed in the local detector

system (u, v, w) [24]. With iterative methods, such a non-linear chi-square can be min-

imised. It is, nevertheless, very computationally expensive.

The iterative calculation can be avoided by constructing the residual to the fitted tra-

jectory in the global system (x, y, z)2. The linear function describing the straight line is

therefore evaluated at the z coordinate of the measurement point on each plane. Conse-

quently, the local covariance matrices on the detector planes need to be transformed into

the global system.

The ALPIDE chip is locally assigned with an intrinsic resolution in u and v. An uncer-

2The local residuals can then be approximated with their projections on the respective axis.
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tainty in w is not defined. This originates from the fact that the detector is primarily

used perpendicular to the projectile particle. Here, the z position is of lesser importance

for the tracking resolution, and thus no uncertainty needs to be taken into account.

A fallacy occurs when the detector is rotated around x or y and the resolution is not

reconsidered. For instance, if the plane is rotated by 90 ◦ around the y axis the spatial

resolution in x should be zero, because the projection of the local uncertainty in the global

x space vanishes. However, this can not be true. In fact, the spatial resolution in x and

y worsens with a rotation of the detector plane [15]. Apart from simple geometry reasons

(such as the actual uncertainty of the ALPIDE in the w direction), this dependence is

also influenced by internal charge collection processes and the cluster size, which increases

with a stronger inclination.

For simplicity in this study, it is assumed that the global spatial resolution is 5 µm, which

is the intrinsic resolution associated with an ALPIDE. The assumption hereby is that the

intrinsic resolution does not increase, and the inclination of the detector planes are small

enough to be neglected. This was found to be a good approximation for rotations less

then about 30 ◦. The fitted data produce a χ2-distribution, as shown in figure 4.14.
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Figure 4.14: The figure depicts the χ2-distribution for unweighted straight line fits of
particles strongly affected by multiple scattering. The distribution shows that the model
does not represent the actual behaviour of the particles. The mean is expected to be the
number of degrees of freedom, which is eight. However, the distribution exhibits a mean
with a value substantially higher.

The measurement uncertainties are determined only by the detector resolution and do

not account for uncertainties arising from multiple scattering. Consequently, for low mo-

mentum particles, the uncertainties are significantly underestimated, leading to very high

χ2-values.
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To account for the uncertainties introduced by multiple scattering more accurately, a

weighted straight line fit can be employed. The covariance matrix incorporates both the

detector resolution and the uncertainties arising from multiple scattering. Again, the

residuals and the covariance matrices are constructed in the global system. It is approxi-

mated that all particles propagate almost parallel to the z axis.

By employing this fitting method, a more reliable estimation of the uncertainties is

achieved. Consequently, smaller uncertainties are assigned to measurements closer to

the beginning of the telescope (starting from the detector resolution on the first plane),

while larger uncertainties are assigned to measurements at planes further back in the tele-

scope. The chi-square distribution resulting from this weighted straight line fit is depicted

in figure 4.15.
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Figure 4.15: χ2-distribution for weighted straight line fits of particles affected by multiple
scattering. The peak is at the correct position but the distribution shows a systematic
asymmetry.

The χ2-values are small and show a sensible peak. A prominent asymmetry, however,

raises questions. Apparently, there are to many entries at high chi-square values. To

resolve the cause, a look at the residual distribution is helpful. An exemplary residual

distribution of plane 2 is portrayed in figure 4.16a. It shows the Gaussian fit of the inner

part of the distribution. The data reveal that the residuals do not follow a simple Gaus-

sian distribution. The inner part is described well by a single Gaussian, but the whole

distribution exhibits tails towards both lower and higher values.

A single Gaussian distribution is primarily expected due to the detector resolution and

the position displacement from multiple scattering, both of which are expected to follow

a Gaussian distribution. Their combination into one uncertainty corresponds to a multi-
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plication of two Gaussian probability density functions which in turn is a Gaussian.

In fact, the angle or displacement from multiple scattering is not entirely Gaussian. Only

the inner part (98%) can be described as a Gaussian distribution. On the other hand,

the model expects Gaussian distributed variables. This serves the simplicity of the model

and enables the usage of the chi-square formalism. Therefore, the tails of the residuals

are not treated correctly, generating in turn to many high χ2-values.

A better description for the distribution of the residuals is a double Gaussian probability

density function [18]. It is presented in figure 4.16b. The core and tails are modelled by

two Gaussian functions, where the the standard deviation of the core is smaller than the

standard deviation of the Gaussian function which models the tails.
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Figure 4.16: The figure shows the residual of plane 2 resulting from a weighted straight
line fit. (a) depicts a fit with a single Gaussian function. In (b) a double Gaussian was
fitted that originates from the convolution of two single Gaussian functions depicted in
blue and green.

Nonetheless, for the purpose of this thesis the model of a weighted straight line is adaptable

to describe particles affected by multiple scattering. It enables a mostly clear reconstruc-

tion of true particle trajectories and allows a detection of uncorrelated hit points. With

a cut on the residuals distribution or respectively the χ2-value, events that have a high

probability to be solely produces by a projectile particle from the beam can be filter.

However, the increasing measurement uncertainty towards the last planes of the telescope

is introducing more room for falsely including uncorrelated hit points. Additionally, the

full performance concerning the spatial resolution of the detector can not be used. This

motivates the use of a fit model that does not correlate the scatterers within the telescope

and thus achieves a better spatial resolution overall.
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4.2.2 General Broken Lines fit

The broken lines method is based on refitting an initial trajectory while including the de-

scription of multiple scattering. The initial trajectory was selected as a weighted straight

line. This choice is feasible due to the fact that, in test beam conditions, the speed of the

fit generally has only a small significance. In cases where speed becomes crucial and the

number of scattering points is substantial, it is advisable to explore an internal seeding

procedure tailored to meet the requirements. One of such a method was presented in

chapter 3.2.2.

In situations where some quantities of the initial projectile particle are partially known,

these can serve as an external seed. If, for example, it is known that the initial particle

must have propagated parallel to the z-axis, as is often the case with high-quality or high

momentum particle beams, this information can be employed in conjunction with the first

hit position to construct an initial trajectory.

As the protons in this study traversed a significant amount of material before being de-

tected in the telescope, their propagation does not align parallel to the z-axis as it can

be seen in figure 4.12. Consequently, no external information could be utilised in this case.

The implementation of the GBL software begins by constructing the Jacobian Ti from

equation 3.36. It characterises the transition under variation of the curvilinear track pa-

rameters of the weighted straight line from one track point i to the next i + 1. For a

track point at the path length si, the transformation of the parameters to the same set of

parameters at the track point at arc-length si+1 is precisely described in [39]. The crucial

entries in the Jacobian matrix are as follows, while the remaining entries are either zero

or become zero when there is no magnetic field present.

∂(q/pi+1)

∂(q/pi)
=

∂λi+1

∂λi

=
∂ϕi+1

∂ϕi

=
∂x⊥,i+1

∂x⊥,i

=
∂y⊥,i+1

∂y⊥,i

= 1 (4.4)

∂x⊥,i+1

∂ϕi

= cosλi · (si+1 − si) (4.5)

∂y⊥,i+1

∂λi

= si+1 − si (4.6)

In words, for a straight line, the variation of a track parameter directly translates to the

same track parameter at the next point. This is indicated by equation 4.4. Hereby, the

momentum is expected to remain constant throughout the entire telescope. Additionally,

a variation of the momentum direction, which is a modification of λ or ϕ (the angles

describing the tangent of the track at the intersection point on the plane), induces a

change of the offset parameters at the next track point indicated with equations 4.5 and
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4.6. The whole matrix reads as follows:

Ti =
∂(q/p, λ, ϕ, x⊥, y⊥)i+1

∂(q/p, λ, ϕ, x⊥, y⊥)i
=


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 cosλi · (si+1 − si) 1 0

0 (si+1 − si) 0 0 1

 . (4.7)

The residual to the initial trajectory is constructed in the curvilinear system since the

track points are also defined in the curvilinear system. To derive the quantity coming

from the local residuals in the detector plane, the projection P = ∂(x⊥,y⊥)
∂(u,v)

is used. It

projects the detector residuals into the curvilinear frame. The components are

P =

(
ex⊥eu ex⊥ev

ey⊥eu ey⊥ev

)
, (4.8)

where e is the base vector of the respective system. The covariance matrix stating the

local detector resolution has to be projected into the curvilinear system as well in order

to align with the residuals. The covariance of the kink residuals has to be declared in the

detector system according to equation 3.30. This concludes the details on the implemen-

tation and paves the way to delve into the results of this model.
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Figure 4.17: The figure shows a χ2-distribution where a General Broken Lines fit was
employed. The distribution shows that the GBL model satisfies the need for a method
that reconstructs particles affected by multiple scattering. For low chi-square values the
the outcome exactly matches the expectation. For higher values a small asymmetry is
visible, explainable by the tails in the multiple scattering distribution.
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The resulting χ2-distribution is depicted in figure 4.17. The agreement with the expected

distribution is good, taking into account the previous explanation of the double Gaus-

sian probability density function of the multiple scattering angle. In the broken lines

model, the assumption regarding the scattering angle distribution is identical to that of

the weighted straight line. The uncertainty for the kink residuals is assumed to follow a

Gaussian distribution. This does not precisely align with the reality but is a good ap-

proximation.

What distinguishes the GBL method from the weighted straight line method is the as-

sociated measurement resolution. For the GBL approach this measurement resolution is

solely dependent on the spatial detector resolution. Conversely, for a weighted straight

line fit the measurement uncertainty is dependent on the scattering angles of all scatterers

in front of the examined detector. Consequently, the uncertainty increases plane by plane

and only the first detector keeps its initial spatial resolution.

A smaller measurement resolution, and consequently a smaller tracking resolution, allows

for better differentiation of closely located uncorrelated hit points from the trajectory. In

other words, even if a hit point is closer to the examined trajectory but not caused by the

projectile proton, it can still be accurately identified as uncorrelated. As a result, the bro-

ken lines approach enhances the ability to identify outliers, which refer to measurements

that are either not correlated or only indirectly correlated with the projectile particle.

Overall, a broken line closely approximates the true trajectory followed by a low-momentum

particle. The fact that the measurement uncertainties are uncorrelated and equal to the

true detector resolution while the method models the charged particle realistically results

in a good tracking resolution. The details regarding the tracking resolution will be covered

in the subsequent section.

There are also track models that implement non-Gaussian uncertainties for instance the

Gaussian-Sum Filter [17]. The Gaussian-Sum Filter allows the probability density func-

tions to be mixtures of normal pdfs or Gaussian sums. It is equivalent to parallel Kalman

filters, where the total chi-square is calculated with a weighted sum of the single (parallel)

χ2-sums.

However, this flexibility comes at the cost of losing the ability to calculate the chi-square

probability density function analytically. Furthermore, the computational time required

for the Gaussian-Sum Filter is significantly higher compared to models like the Kalman

filter or GBL. As a result, it is primarily employed for particles that exhibit pronounced

changes in direction within their trajectories, thus the single Gaussian approximation of

uncertainties is not representative. Electrons are a prime example of such particles.
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4.3 Tracking Resolution

An accurate tracking resolution is essential for particle physics experiments, particularly

for tasks such as vertexing and momentum determination. The tracking resolution refers

to the precision with which the reconstructed trajectory can be determined at any given

position z. This resolution is calculated by propagating the uncertainties associated with

the fit parameters.

The covariance matrix of the fit parameters is dependent on the multiple scattering angles,

the intrinsic detector resolutions and the plane positions. In general, a larger distance

between planes leads to an improvement in resolution. Conversely, a larger lever arm,

which refers to the distance travelled by the particle in between two detectors increases

the multiple scattering in the air and additionally worsens the ability to reject outliers.

As multiple scattering effects become more significant, the overall tracking resolution at

the detection planes approaches the intrinsic resolution of the detector.

The track points and their resolution at the detector planes are particularly intriguing.

When the initial trajectories of the particles are assumed to be approximately parallel

to the z-axis of the telescope, a uniform detector resolution can be assigned to the ex-

perimental setup. This resolution is evident in the residual distribution observed at the

detector plane.

The residuals, which represent the difference between the measured values and the ex-

pected values based on the fitted trajectory, exhibit distinct probability density functions

depending on whether the measurement on the plane was used for tracking or not. Biased

and unbiased residuals are commonly distinguished in this context.

4.3.1 Biased and unbiased residuals

To summarise once again, the residuals ri on a plane i represent the distance between the

track point xi and the corresponding measurement point mi and are given by

ri = xi −mi.

When the measurement on plane i is not included in the track fit, the uncertainties of xi

and mi are independent. In this case, the residual is called unbiased. Consequently, the

squared standard deviation of the unbiased residual, incorporating error propagation, is

σ2
unbiased residual,i =

(
σx,i ·

∂ri
∂xi

)2

+

(
σm,i ·

∂ri
∂mi

)2

= σ2
x,i + σ2

m,i, (4.9)

where σx,i represents the tracking resolution at plane i, and σm,i denotes the resolution of

the measurement.
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However, if the measurement on plane i is included in the track fit, the track position

becomes dependent on it. Therefore, the derivative ∂ri
∂mi

also includes a component of ∂xi

∂mi
.

As a result, the standard deviation of a biased residual calculates as:

σ2
biased residual,i = σ2

m,i − σ2
x,i. (4.10)

A more detailed calculation can be found in [45]. The same principle accounts for the

residuals of the kink angles, where the track point is the kink angle and the measurement

is the expected value of the kink, hence zero. The uncertainty of the kink angles arises

from the propagation of the fit parameters and the uncertainty for the expected value of

the kink angles is the standard deviation following the Highland formula given in equation

2.3.

4.3.2 Pulls

Pulls are calculated by normalising the residuals with the standard deviation of the ex-

pected distribution. Ideally, the resulting distribution should follow a standard normal

distribution, characterised by a mean of zero and a standard deviation of one. For bi-

ased residuals, the biased pull is obtained by dividing the biased residual by the expected

standard deviation derived from equation 4.9. Mathematically, it can be expressed as

follows

pbiased,i =
rbiased,i√
σ2
m,i − σ2

x,i

. (4.11)

Pulls provide a valuable tool for verifying the accuracy of the fits. In essence, checking the

pulls of the measurement residuals and the residuals of the kink angle is akin to examining

the chi-square distribution. It is particularly useful when investigating specific issues that

may arise during the fitting procedure.

On the contrary, the pulls or residuals themselves serve as the focal point for sensor

characterisation. When evaluating an unfamiliar sensor, the inherent resolution can be

determined by analysing these pull distributions. Ideally, a configuration should be es-

tablished wherein a collection of well-known detectors is arranged for tracking purposes,

with the device under test (DUT) positioned in the centre of the sensor array. The middle

location is chosen as it typically offers the highest tracking resolution, having detection

planes on both sides. By excluding the DUT from the tracking process, unbiased residuals

can be observed, providing valuable insights into the intrinsic detector resolution.

Alternatively, it is also possible to examine the detector resolution using biased residuals,

but this approach involves an iterative process and is not the preferred method. The

procedure involves testing multiple intrinsic resolutions, performing fits, and constructing
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biased pulls for each resolution. By analysing the resulting pull distributions, the correct

spatial detector resolution can be identified when it exhibits the desired characteristics of

a standard normal distribution. However, due to the iterative nature of this approach, it

is generally less favoured compared to the other method.

Returning to the data currently under investigation, the aforementioned method provides

an opportunity to validate the assumption made in section 4.2.1. In that section, it was

assumed that at a rotation angle of 30 ◦ and for protons with a momentum of 470MeV/c,

the detector resolution projected into the global space is approximately 5 µm. This cor-

responds to a local resolution of around σm ≈ 6 µm.

figure 4.18 presents the pull distribution of the GBL fit for plane 1 as an example. Vari-

ous spatial resolutions were tested to observe their impact on the pull distribution. The

analysis confirmed that a local spatial resolution of approximately 6 µm in both u and v

dimensions yields the best agreement with the data, i.e., a pull distribution whose stan-

dard deviation is closest to one.
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Figure 4.18: The figure illustrates the pull distribution in u (local detector system) on
plane 1 for a GBL fit. Three different initial detector resolutions were considered: (a)
σm = 5 µm, (b) σm = 6 µm, and (c) σm = 7 µm. Among these options, the best result,
which closely resembles a standard normal distribution, was achieved with an intrinsic
resolution of σm = 6 µm.
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The typical spatial resolution associated with an ALPIDE chip is 5 µm in the local detec-

tor system. This value is derived from testbeam measurements with no rotation of the

planes and minimum ionising projectile particles. An average cluster size of 2.5− 3 gives

the best resolution, which is around 5 µm [30]. In the current study, the average cluster

size is significantly larger, around 5.1, due to the rotation of the planes and the presence

of low-momentum protons, which experience a greater energy loss in the rising part of the

Bethe-Bloch formula. Consequently, a larger intrinsic resolution is expected. The small

increase in the resolution in this case is not significant for the overall reconstruction of

the particle. Nevertheless it should not be neglected and especially for planes rotated at

larger angles it might have a greater importance.

Simultaneously, particles that experience greater energy loss tend to generate larger clus-

ters, thereby degrading the spatial resolution. This phenomenon remains consistent when

the threshold is maintained at the same settings as for minimum ionising particles. Con-

sequently, a question arises: Can the resolution for low momentum particles be enhanced

by increasing the threshold value, thus reducing the average cluster size? This approach

could be especially beneficial for setups focused on measuring particles with high energy

loss exclusively.

With this, the reconstruction of particles is complete. The whole scope from raw hit

clusters to precisely reconstructed particles was discussed. In the beginning an accurate

energy loss calculation of the projectile particles was performed to understand the extent

of scattering experienced by the protons in the telescope. Then, the alignment was pre-

sented, which is a crucial step in the analysis. It had to be guaranteed that even under

difficult conditions, namely strong scattering in the telescope as well as inclined tracks,

the software alignment yields precise and predictable results.

The next step was to introduce the filters that were used to select specific events. Here

the goal was to only keep the data that were produced by beam protons and reject un-

correlated clusters. In addition to applying coarser cuts, a more refined selection can be

achieved by tracking the particles and evaluating the χ2-value of their fits. Three differ-

ent tracking models were discussed of which, the weighted straight line and the General

Broken Lines method were able to accurately represent the passage of low momentum

protons. Especially the broken line fit has revealed that, with its good tracking resolution

and the independent consideration of the multiple scattering contribution, it is able to

reject outliers to a high degree of efficiency.

Lastly, the tracking resolution, the pulls and the difference between biased and unbiased

residuals were discussed. This has shown that the interpretation of the residual and pull

distributions is an important step for the validation of the reconstruction procedure.
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Summary

In an effort to enhance the impact parameter resolution and tracking efficiency, especially

for particles with low transverse momenta, the ALICE detector underwent an upgrade

that included the transition to a purely digital tracking system featuring ALPIDE sensors.

Nevertheless, this update resulted in the loss of the ability to determine the specific energy

loss of particles. To address this limitation and explore potential particle identification

improvements, a study was conducted to investigate a possible link between the energy

loss and the cluster size in the ALPIDE chips. One step towards this goal consisted in

recording data with low energy protons during a dedicated testbeam campaign.

Low-energy protons experience significant multiple scattering as they traverse a testbeam

telescope setup. Consequently, reconstructing their trajectory becomes a challenging task.

A simple straight line trajectory is inadequate to represent their path, necessitating the

use of specific tracking models capable of accommodating directional changes within the

trajectory. To address this issue, the General Broken Lines track model was introduced.

This model is designed to account for changes in the trajectory with the use of kink angles,

providing a more accurate representation of the path of a proton as it encounters matter.

The specific implementation details of this model were thoroughly explained, contributing

to a better understanding of the variables utilised by the model.

To perform the software alignment of the telescope, a two-step process was employed.

Initially, a simplified straight-line fit was used for the track-based alignment. In the sec-

ond step, full precision was achieved by employing the General Broken Lines fit. The

chi-square formalism played a crucial role in determining the best fit parameters and as-

sessing the track quality. During this process, it was essential to filter out uncorrelated

clusters that were not produced by the initial projectile particles. This filtering step was

necessary to avoid possible bias in the cluster size analysis. As the fit model more ac-

curately approximates the true path of the particle being tracked, its ability to reject
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outliers improves.

The General Broken Lines formalism demonstrated its capability to accurately capture

the characteristics of beam protons affected by multiple scattering in the telescope. A

Gaussian approximation of the scattering angle proved to be sufficiently good, facilitating

a successful and unambiguous trajectory reconstruction. Consequently, clusters on the

ALPIDE could be confidently attributed to the intended projectile particles with a high

probability.

Furthermore, this study provided valuable insights into the spatial resolution of an ALPIDE.

Biased and unbiased residuals from tracking were thoroughly discussed, allowing for the

evaluation of resolution changes under different experimental conditions. Specifically, the

combination of an inclination of the sensor plane and an increased energy deposit of the

incident particle led to an increase in the intrinsic resolution.

Conclusion

This study introduced a diverse range of track models, including both established ones,

widely used in various experiments, and newer variations aimed at enhancing the track

reconstruction of low momentum particles, particularly those that are affected by mul-

tiple scattering. The significance of tracking low momentum particles has been demon-

strated to be crucial not only for large-scale experiments, but also for small-scale ones.

Consequently, the development of reliable methods for tracking such particles becomes

increasingly important.

In ALICE, extending the lower momenta range is driven by the rich physics that can be

explored, significantly impacting the overall modelling of the quark-gluon plasma. How-

ever, the importance of this extension goes beyond high-energy physics. In the field of

medical physics, as the utilisation of low momentum ions in cancer treatment continues

to expand, there is a growing need for applications that involve tracking heavy, low mo-

mentum particles.

Ensuring a proper understanding of every variable and facilitating accurate analysis be-

comes paramount when applying a tracking model. Due to the utilisation of numerous

coordinate systems and the potential bias in examined variables, it becomes crucial to

be aware of these aspects and interpret them correctly. This is particularly critical in

testbeam experiments involving low momentum particles, as the procedure from raw hit

clusters to reconstructed tracks can be highly sensitive. The alignment procedure, in par-

ticular, is profoundly influenced by divergent beams and scattered particles, necessitating

the exploration of novel approaches to achieve a successful alignment. Addressing these

challenges is essential to obtain reliable and meaningful results from the experimental

data.
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By employing a tracking model that aligns with the underlying physics governing the

projectile particle, it becomes feasible to achieve a reconstruction with high tracking res-

olution. The ability to reject outliers, up to a certain extent determined by the multiple

scattering angle, further enhances the accuracy of the reconstruction. However, this pro-

cess heavily relies on the accurate estimation of all variables within the experimental

setup. Hence, to ensure precise results, extensive knowledge about the tracking detector

becomes indispensable, particularly in untested or challenging conditions. This includes

a thorough understanding of the characteristics, response, and limitations of a detector.

By leveraging this wide-ranging knowledge of the tracking detector, researchers can con-

fidently optimise the tracking model and make informed decisions in handling potential

outliers and uncertainties. Moreover, it enables them to adapt the model to varying

experimental conditions, facilitating reliable and robust tracking performance.

Outlook

Multiple scattering poses a significant challenge for physicists aiming to accurately track

particles. While tracking models such as the Kalman filter and General Broken Lines

can reconstruct scattered particles with reasonable precision, they rely on the assump-

tion of Gaussian uncertainties. However, especially the study of electrons that undergo

Bremsstrahlung has highlighted the need for track models that can handle non-Gaussian

uncertainties [8]. Unfortunately, these models often prove unsuitable for high-rate exper-

iments or analyses with limited computational resources due to their substantial compu-

tation time. Hence, the discussion of track fitting quality extends beyond mere accuracy;

it also involves evaluating the speed of the algorithm.

With the traditional approaches to boosting CPU performance reaching a plateau, the

focus shifts to algorithms that can be parallelised for improved efficiency [40]. Here, a new

three-dimensional track fit with multiple scattering can be mentioned that works with a

sum of independent fits of hit triplets [10]. This enables an easy parallelisation in addition

to its inherent fast processing capabilities.

Returning to the setup of the current study, a successful method has been demonstrated

for aligning and tracking low momentum protons at the testbeam. The next challenge is

to apply this procedure to data from the same study, where the conditions are even more

demanding – involving stronger inclinations of the detectors and lower proton energies.

In such cases, the total number of events is reduced, making it more important to recon-

struct every particle that was recorded.

The data taken with 120MeV protons and a 30 ◦ plane rotation were sorted to include

only events where there is only one cluster found on each plane. This reduces the available

tracks significantly. It is more sensible to also include events with multiple clusters on a
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detector and use the chi-square value of the fits to find the correct trajectory.

When the setup is still unaligned, it is not possible to distinguish correlated and uncor-

related hits. However, with iterative alignments, the outliers are revealed step by step.

This is because the alignment enhances the quality of a true track. In other words this

means that the chi-square value gets smaller as the position of the detectors gets closer to

the true detector position. A track including an uncorrelated hit on the other hand does

not improve in the aligning procedure and therefore can be identified. As the active area

of the detector reduces in size due to rotation, there is an increased likelihood of events

where particles do not hit every plane of the detector. Rather than rejecting these events,

considering them could present another valuable opportunity to expand the statistics.

Another challenge arises under these conditions: Sensors are typically characterised under

”normal conditions” with perpendicular incidence of relativistic particles on the detectors.

However, it is important to recognise that sensor parameters can vary under different con-

ditions. Notably, studies have demonstrated that the tracking resolution is influenced by

the rotation of the sensor [15] and may also differ for different types and energies of parti-

cles. Therefore, for precise reconstruction, an individual characterisation of sensors under

specific conditions would be highly advantageous. In this context, simulation studies play

a crucial role. When the charge collection process is accurately simulated, it allows for

estimating the spatial resolution in advance.

Finally, it offers the possibility to identifying regions where sensors perform optimally.

This knowledge can inform decisions such as sensor rotation or adjusting threshold set-

tings to enhance the spatial resolution when planing specific experimental setups.
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[20] Norbert Köckler Hans Rudolf Schwarz. Numerische Mathematik. 7th ed.

Vieweg+Teubner Verlag Wiesbaden, 2009.

[21] U. Hartenstein. “Dissertation ”Track based alignment for the MU3E pixel detec-

tor””. In: (2019).

[22] Johannes Hensler. “Bachelor thesis ”Simulation of reaction cross-section measure-

ment for protons in aluminium in the energy range of 48-232 MeV using Geant4””.

In: (2023).

[23] Lennart Huth. A high rate testbeam data acquisition system and characterization

of high voltage monolithic active pixel sensors. eng. Heidelberg, 2019, 1 Online–

Ressource (xvi, 201 Seiten). doi: 10.11588/heidok.00025785. url: http://nbn-

resolving.de/urn:nbn:de:bsz:16-heidok-257853.
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