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Abstract

The very rare decay B0 → µ+µ− is one of the channels studied for potential signs of new

physics at the LHCb experiment at CERN. So far the decay has not been observed and

due to the rarity of the decay it is necessary to understand the background contributions

and be able to separate those events from the signal events. One dominant source of

background consists of hadronic decays of the for B0
(s) → hh′ where the hadrons in the

final state are misidentified as muons. To achieve a better separation between signal

and the hadronic background a machine learning based analysis is performed. This

classifier is trained on a combination of topological decay variables and particle identi-

fication variables. This classifier is able to reduce the amount of expected background

significantly, compared to previous versions of the B0 → µ+µ− analysis.

Zusammenfassung

Der seltene Zerfall B0 → µ+µ− ist einer der Zerfälle, die am LHCb Experiments

des CERN untersucht werden um nach Anzeichen für neue Physik zu suchen. Die

Seltenheit des Zerfalls macht es nötig den Untergrund gut zu verstehen und zu iden-

tifizieren. Eine der dominanten Quellen von Untergrund sind hadronische Zerfälle der

Form B0
(s) → hh′, in denen die Hadronen als Myonen falsch identifiziert werden. Eine

von maschinenellem Lernen gestützte multivariate Analyse wird verwendet um die Sep-

aration von Signal und hadronischem Untergrund zu verbessern. Als Lernmaterial für

die Kategorisierung dienen eine Kombination aus topologischen Zerfallsvariablen sowie

Variablen der Teilchenidentifikation. Die Menge an erwarteten Untergrund Ereignis-

sen lässt sich so stark verringern, im Vergleich zum vorherigen Stand der B0 → µ+µ−

Analyse.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is one of the most thoroughly tested

theories. Yet it is known that the SM does not completely describe the universe. There

are several phenomena that can so far not be explain with the Standard Model like dark

matter. Other phenomena such as the discovery of non-zero neutrino masses straight

up contradict the current SM. Not even to mention the incompatibility with general

relativity.

Therefore it has long been known that the SM is incomplete and many theories of

physics beyond the Standard Model have been put forward. Yet so far most predictions

made by these theories have either been ruled out by experiments or occur on energy

scales which cannot be reached with current technology.

However it is possible to probe these potential New Physics phenomena at lower,

currently accesible energies in precision measurement. The analysis that is of interest

in this thesis concerns the very rare decay of the neutral B meson into two muons. The

main challenge - besides producing a sufficient number of collisions - in measuring this

decay is the reduction of background. This thesis focuses on the hadronic background

of the form B0
(s) → hh′ where the hadrons are misidentified as muons. It aims to use

machine learning methods to improve the rejection of background events by using a

combination of topological and particle identification information.

The decay in question is quite similar to the decay of the strange neutral B meson

into two muons which while also being very rare occurs far more often than for the reg-

ular B meson and has therefore already been observed. The observation was originally

confirmed in 2013 by LHCb and CMS.
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Chapter 2

Theoretical Background

2.1 The Standard Model

The Standard Model (SM) of particle physics is so far the best working theory to de-

scribe all known elementary particles and their interactions. The quantum field theory

describes three of the four fundamental forces known to date: the electromagnetic,

strong, and weak force - notably excluding gravity.

The Standard Model consists of 24 particles, which are divided into 12 fermions,

that have a half integer spin and 12 bosons, that have an integer spin. The bosons are

responsible for mediating the fundamental interactions, except for the Higgs bosons,

which is responsible for giving mass to elementary particles.

2.1.1 Quarks

There are two categories of fermions, one being quarks and the other being leptons. The

quarks exist in three generations of which each consist of an up-type and a down-type

quark. As shown in Table 2.1 quarks hold an electric charge of either +2
3

e or −1
3

e.

1. Generation 2. Generation 3. Generation

Up-type

Particle up quark u charm quark c top quark t

Charge +2
3

e

Mass 0.0022 GeV 1.28 GeV 173.1 GeV

Down-type

Particle down quark d strange quark s bottom quark b

Charge −1
3

e

Mass 0.0047 GeV .096 GeV 4.18 GeV

Table 2.1: Quarks
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Besides an electric charge quarks also carry a colour charge, allowing them to interact

via the strong force. As a consequence quarks only appear in bound states that are

in total colour neutral, i.e. as baryons consisting of three quarks (like neutrons and

protons) or as mesons consisting of a quark anti quark pair (like pions or B mesons).

2.1.2 Leptons

1. Generation 2. Generation 3. Generation

Neutrinos

Particle e neutrino νe µ neutrino νµ τ neutrino ντ

Charge 0

Mass < 2.2 · 10−9 GeV < .00017 GeV < .018 GeV

Charged

Leptons

Particle electron e muon µ tau τ

Charge −1 e

Mass 0.000511 GeV 0.105 GeV 1.7768 GeV

Table 2.2: Leptons

Similarly to the quarks, the leptons are also categorized in three generations, each

consisting of a charged lepton and a corresponding neutrino. In contrast to the quarks

they can only interact via the weak and electromagnetic force.

2.1.3 Exchange Bosons

Electromagnetic Strong Force Weak Force

Particle photon γ gluons g W bosons W± Z bosons Z

Mass 0 0 80.39 GeV 91.19 GeV

Charge 0 0 ± 1 e 0

Table 2.3: Exchange bosons

Electromagnetic Force

Electromagnetism is described by the theory of Quantum Electrodynamics. All particles

with an electric charge take part in electromagnetic interactions, which are mediated

by the photon. This kind of interaction is the basis for the formation of atoms and

molecules.
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Strong Force

The strong force is mediated by 8 gluons and couples only to particles having a color

charge, those being quarks and gluons. Therefore the strong force is responsible for

holding together all hadrons, notably including nucleons and B mesons.

Weak Force

The weak force is exchanged by charged W± bosons and neutral Z bosons and couples

to both quarks and leptons - especially also to neutrinos which thereby is the only force

that interacts with them.

Also weak interactions are the only way for quarks to change flavour as in the

nuclear β decay, where a d quark is turned into a u quark (therefore a neutron turns

into a proton). The mechanism of quark flavour change is described by the Cabibbo-

Kobayashi-Maskawa Matrix (CKM matrix for short) VCKM . Notably those flavour

changing transitions are only possible if also an electric charge is being transmitted.

The CKM matrix is unitary and the transition probabilities are proportional to the

absolute square of its entries |Vqq′|2.|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0.974901± 0.00011 0.22650± 0.00048 0.00361+0.00011
−0.00009

0.22636± 0.00048 0.97320± 0.00011 0.04053+0.00083
−0.000035

0.00854+0.00023
−0.00016 0.03978+0.00082

−0.00060 0.999172+0.000024
−0.000035


As can be seen above transitions within the same generation are strongly preferred.

[13]

2.2 Rare Decays

Rare decays are - as the name suggests - particle decays that only occur at a small rate,

that are prohibited in the SM on tree level, but are possible through loop processes and

therefore significantly suppressed.

2.2.1 Purely Leptonic Decays

One kind of rare decays are the decays of B mesons into a purely leptonic state, i.e.

charged leptons. While the decay into neutrinos would theoretically also be possible,

they would be virtually undetectable and even rarer.

In the Standard Model the branching ratio is given by
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B(Bs → `+`−) B(Bd → `+`−)

`± = e± (8.24± 0.36)× 10−14 (2.63± 0.32)× 10−15

`± = µ± (3.52± 0.15)× 10−9 (1.12± 0.12)× 10−10

`± = τ± (7.46± 0.30)× 10−7 (2.35± 0.24)× 10−8

Table 2.4: Branching ratios predicted by the Standard Model

B(B0
q → `+`−)SM = τBq

G2
Fm

4
W sin4 θW
16π2

f 2
Bqm

2
`mBq

√
1− 4m2

`

m2
Bq

|VtbV ∗tq|2|CSM
10 |2 (2.1)

Here V means the CKM matrix element, which describes the amplitudes for flavour

changing quark interactions

The decay is strongly helicity suppressed as the decay goes from the pseudoscalar

B(s) to two spin 1
2

leptons resulting in a ∝ m3
` proportionality leading to a smaller

branching ratio for lighter leptons, thereby giving branching ratios for the decay into

electrons that are currently not detectable. On the other hand the decay into τs is

challenging to detect as well, due to the short lifetime of the τ and the subsequent

decay containing at least one neutrino.

�tWt
tt

Z

d

b

µ−

µ+

�t

W−

W+

νµ

d

b

µ+

µ−

Figure 2.1: Main SM contributions to B0 → µ+µ−
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2.2.2 Sensitivity for New Physics

A deviation in the branching ratio, or to be more precise in the fraction B(B0→µ+µ−)
B(B0

s→µ+µ−)

would be a hint for so far unobserved physics. One example would be models with

an extended Higgs sector, like the minimal supersymmetric standard model (MSSM),

which hypothesizes two more heavier neutral Higgs bosons (H0, A0, the SM Higgs boson

being denoted as h0) along with two charged Higgs bosons (H±). This leads to new

contributions shown in Fig. 2.2

�tH+

t

tt

h0/A0/H0

d

b

µ−

µ+

Figure 2.2: MSSM contributions to B0 → µ+µ−
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Chapter 3

The LHCb Detector

3.1 The LHC

LHC [1] stands for Large Hadron Collider, which is currently the largest particle ac-

celerator and collider. It is located at the European Organisation for Nuclear Research

in Geneva, Switzerland, though due to its size it reaches into France.

The LHC is a circular accelerator with a circumference of 26.7 km that initially

allowed a centre-of-mass energy of 7 TeV and was by 2016 upgraded to 13 TeV.

There are four points along the ring at which the particles beams can be set to

collide. Currently 7(-9) different experiments are operating at the LHC, of which the

largest ones are ALICE, ATLAS, CMS and LHCb.

3.2 The LHCb Experiment

LHCb stands for Large Hadron Collider beauty which is a reference to the b-quark that

is one the main research focus of the LHCb experiment. Among its goals is the test of

CP violation and the examination of rare decays to possibly detect discrepencies with

the Standard Model, which would potentially hint at new physics. So far data has been

taken in two runs, run 1 from 2011 to 2012 and run 2 from 2015 to 2018. As of now

the detector is in the process of being upgraded for a third Run, that is scheduled to

start in spring 2022.

3.2.1 Tracking System

In contrast to the other big detectors at the LHC, the LHCb detector is not a 4π-

detector, but instead it is built in forward direction over a length of ∼ 21 m.
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Figure 3.1: The LHCb detector [10]

Vertex Locator (VELO)

As the name suggests the VErtex LOcator is used to reconstruct the primary vertex of

the collisions, by tracking the produced particles in close vicinity to the collision point.

It consists of 42 silicon detector modules which are placed along the z axis (defined as

in Figure 3.1).

To reduce radiation damage the distance between the modules and the beam pipe

can be varied, from 3.5 cm during injection of the beam, when it is more defocused, up

to 5 mm with a focused beam.

Tracking Stations

The main tracking system is made up of four tracking stations, first the Trigger Tracker

(TT), which is located in between the magnet and RICH1, and secondly the other three

stations numbered T1-T3, which can be found behind the magnet before the RICH2.

The three latter stations can further be subdivided into an Inner Tracker and an Outer

Tracker each. Two technologies are employed for the detectors:

1. The silicon trackers, which consist of silicon microstrip detectors, which allow for

a very good spatial resolution. Silicon detectors are rather expensive and therefore

only used for smaller areas. The entire TT and the Inner Tracker of T1-T3 are

made out of these.
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2. The Outer Tracker of T1-T3 instead uses straw-tube drift chambers.

The Magnet

As already alluded to above inside the detector a magnetic field is present. This is

needed in order to measure the momentum of charged particles, as well as to determine

the sign of the charge.

The magnet consists of two coils, with a mass of 27 tons each and each consisting

of ∼ 3000 m aluminium cable.

3.2.2 Particle Identifcation

Ring Imaging Cherenkov detectors (RICH)

As can be seen in Figure 3.1 LHCb has two RICH detectors. They are used for particle

identification and work on the basis of Cherenkov radiation, emitted by the traversing

particles. Cherenkov radiation occurs when a particle travels through a medium with a

velocity higher than the speed of light in that medium. RICH1 is situated right behind

the VELO in order to catch lower energy particles (with a momentum of 1− 60 GeV)

which would otherwise be deflected out of the detector by the magnetic field.

Calorimeters

To measure the energy of the produced particles two calorimeter systems are used. One

electromagnetic calorimeter (ECAL) which is sensitive to light particles like electrons

and photons and one hadronic calorimeter (HCAL) in which hadrons mostly deposit

their energy.

Muon System

As muons are traversing the calorimeters without significant energy loss, an additional

detector system is employed to allow for a better detection and measurement of muons.

This system consists out five stations (M1-M5), of which the first is placed behind

RICH2 and before the calorimeters, while the rest (M2-M5) are placed behind the

calorimeters. Each of these stations then consists out of four regions. Their granularity

is shaped according to the particle density.

3.2.3 Combined Particle Identification

Particle identification already happens at the individual subdetectors (i.e. the RICH,

the calorimeters and the muon systems), as each of those determines a likelihood for
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each particle hypothesis. These subdetector likelihoods are then further combined as

the sum of the individual logarithms relative to the pion hypothesis, into the Delta Log

Likelihood (DLL).

Another type of combined PID variable is called ProbNN, which is a pseudo-

probability determined by a Neural Network by taking into account the correlations

between the subdetector likelihoods and additional information from the tracking sys-

tem.

Furthermore for muon identification an algorithm called isMuon is employed, that

analyses how many consecutive hits in the different muon stations can be detected,

while also accounting for the momentum of the muon candidate. The requierements to

pass isMuon are shown in Table 3.1.

momentum associated hits in

3 < p < 6 GeV M2+M3

6 < p < 10 GeV M2+M3 + (M4 or M5)

p > 10 GeV M2+M3+M4+M5

Table 3.1: Required associated hits in the different stations for different momenta

needed to pass isMuon

The isMuon efficiency for identifying muons is around 97% while the probability of

a pion being missidentified as a muon is about 1 - 3 %

3.2.4 Trigger System

When in operation, there are around 40 million collisions happening every second at the

interaction point, of which about 10 million are within the acceptance of the detector.

To save all this data would be technically challenging and requiring a large amount of

storage. Thus in order to make the data collection more feasible a multitude of triggers

are used to preemptively decide which events are worth saving for later analysis.

On the upside the rate of events containing a B decay is only ∼ 15 kHz of the

previous 10 MHz. Yet the rate at which the events can be written to storage is limited

to 2 kHz therefore the triggers are designed to filter out particularly interesting decays

out of the 15 kHz of B decays.

Level Zero (L0)

The L0 trigger’s purpose is to reduce the data flow from 10 MHz to 1 MHz. This is done

by using the momentum information provided by the calorimeters and the muon system.
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A B decay has a larger momentum perpendicular to the beam axis (i.e. the transversal

momentum pT ) compared to those stemming directly from the primary intersection.

Furthermore the VELO it is able to conduct a simplified vertex reconstruction, allowing

the rejection of events with several proton-proton interactions, as it is far more difficult

to reconstruct B decays in these events.

High Level Trigger (HLT)

The HLT actually consists of two trigger levels named HLT1, which reduces the data

rate to order of 10 kHz, and HLT2, which delivers the above mentioned 2 kHz of data

that are ultimately recorded. HLT1 works mostly in the region of candidate direction

to confirm high pT candidate particles in the software reconstruction. Another measure

used to identify B decays is the high impact parameter to the primary collision vertex,

due to the relatively long lifetime of B mesons, allowing them to travel ∼ 1 cm from

the primary vertex before they decay.

HLT2 can now perform a complete reconstruction of the remaining events, allowing

to search for reconstructed decay vertices that are displaced from the collision point

thereby hinting at a B meson.
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Chapter 4

Analysis and Tools

4.1 Background Contributions

The decay of interest in this analysis, B0 → µ+µ− is very rare. Thus the number of

non-signal dimuon candidates in the B0 mass window vastly outnumbers the number

of signal candidates. Therfore it is of outermost importance to understand all sources

of backgrounds.

Firstly, there is the so-called combinatorial B background, from bb → µ+µ−X

events. As the bb̄ cross-section in pp collision as well as the branching ratio of semi-

muonic B decays is large, there is a sizeable possibility for two muons from two different

B hadrons be to reconstructed as belonging to the same decay. The main way this

background is dealt with is by analysing the vertex quality, displacement of the muons

and their isolation.

The next largest source of background is the hadronic B background. This

refers to decays of the form B(s) → h+h′− where h± = π±, K±. This background is less

abundant due to the need for both hadrons to be misidentified as muon, yet given rarity

of the signal those still matter. The way to deal with this background is by applying

stronger PID requirements on both hadrons.

background contributions prevalence relative to (expected) B0 → µ+µ−

bb→ µ+µ−X ∼ 108

B0
(s) → h+h′− 104 ∼ 105

H0
b → h±µ∓νµ ∼ 105

B+
c → J/Ψ(→ µ+µ−)µ+νµ ∼ 105

B(0/+) → π(0/+)µ+µ− ∼ 102

Table 4.1: Processes contributing to background for B0 → µ+µ−
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Further sources for background are semileptonic B hadron decays of the form

H0
b → h±µ∓νµ with (H0

b , h) = (B0, π−), (B0
s , K

−), (Λ0
b , p) in which the hadron is once

again misidentified as a muon and the neutrino is not detected. These decays are

about five times more common than the hadronic background and also require only one

hadron to be misidentified. However, given that these decays involve three particles the

reconstructed mass will often fall outside the mass window of the signal, which helps

rejecting those. Further PID requirements and the requirement that the reconstructed

momenta of the B candidates point back to the primary vertex are efficient for rejecting

this class of backgrounds.

Lastly, the decays B+
c → J/Ψ(→ µ+µ−)µ+νµ and B(0/+) → π(0/+)µ+µ− contribute

to possible background when either one muon and the neutrino are not reconstructed

or the pion is missed, respectively. The invariant mass of these background candidates

also falls more rarely in the probed mass window. It can further be sorted out through

requirements on muon isolation and in case of the Bc decay with a J/Ψ veto.

In this thesis the focus is on the hadronic B background, i.e. the decay channels

B0 → π+π−, B0 → K+π−, B0
s → π+K− and B0

s → K+K− and the use of PID to reject

more of these events.

4.2 Used Monte Carlo Samples

To train a multivariate classifier Monte Carlo (MC) simulations are used, to have clearly

tagged signal and background candidates. A larger number of events is needed in order

to provide sufficient training data. Therefore Monte Carlo files of the background

channels mentioned in Section 4.1 are used, along with a Monte Carlo sample of the

signal decay B → µ+µ−. The samples are generated for each data-taking periode

seperately, namely for the years 2011, 2012, 2016, 2017 and 2018. They are configured

such that they reflect the conditions of the detector in the given year. It has to be

2011 2012 2016 2017 2018

B0 → π+π− 388813 2399734 1019672 1022588 1021286

B0 → π+K− 193559 1989498 987079 988435 1011752

B0
s → K+π− 2404390 2404390 1016587 1015762 1013321

B0
s → K+K− 373574 2299449 957775 959374 968044

B0 → µ+µ− 170813 153711 658342 679188 351922

Table 4.2: Number of Events in each MC

noted that the number of events for the B0
s → K+π− sample is the same for the years
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2011 and 2012. The reason for this is that no Monte Carlo data set for this channel for

2011 is available, therefore the same as for 2012 is used.

4.3 Punzi Figure of Merit

The selection of the signal candidates has to be optimized to keep an as high as possible

efficiency and to reject at the same time as much as possible background. The goal is

to tune the cuts on the selection variable such that the significance of the measurement

is maximal. To evaluate the significance of a cut the so-called Punzi Figure of Merit,

or Punzi FoM, is used. It is defined as:

punzi FoM =
εS

3
2

+
√
B

(4.1)

Here εS refers to the signal efficiency which is defined as the ratio between the total

number of signal candidates in the sample without any cut and the number of signal

candidates surviving the selection cuts. Similarly B refers to the total number of

background events surviving the selection cuts.

Normalisation to B+ → J/Ψ(→ µ+µ−)K+

So far only the number of events in the simulations are known, which do not correspond

to the actual number of events. The expected number of events can be determined

by using the number of B mesons that are produced and the branching ratios of the

background channels. Yet to calculate the number of produced B mesons the luminosity

would be needed, which is not precisely known and error prone. Instead the amount of

detected events in a normalisation Channel, in this case B+ → J/Ψ(→ µ+µ−)K+, is

used by computing the ratio of events in the given decay channel and the normalisation

channel

NB0
(s)
→X

NB+→J/Ψ(→µ+µ−)K+

=
εB0

(s)
→X × B(B0

(s) → X)× fd/s
εB+→J/ΨK+ × B(B+ → J/Ψ(→ µ+µ−)K+)× fu

(4.2)

Here B is the branching fraction of the given decay, εx is the total detection efficiency

which has been determined in previous analyses.
fd/s
fu

is the ratio of the hadronization

fractions for the given quark and it describes the amount of B0
(d) or B0

s mesons relative

to B+
(u) mesons produced. As u and d quarks are produced at very similar rates fd

fu
' 1,

while fs
fu
' fs

fd
= 0.244± 0.012

Multiplying by NB+→J/Ψ(→µ+µ−)K+ and writing β =
NB+→J/Ψ(→µ+µ−)K+

εB+→J/ΨK+×B(B+→J/Ψ(→µ+µ−)K+)

the number of events in a given Background Channel is given by
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NB0
(s)
→X = β × εB × B(B(s) → hh′)× (

fd
fs

) (4.3)

4.4 Multivariate Classifier via Machine Learning

Machine learning is a practice that employs algorithms that are capable of improving

themselves through the input of data. The process of improving is called learning.

The main approaches to machine learning are called supervised and unsupervised

learning. The main difference between these approaches is that in the case of supervised

learning the algorithm is provided a set of training data along with the desired output

for this training data, while for unsupervised learning it is left to the algorithm to find

own structures in the given training data.

What is used here is supervised learning, i.e. the training data is given in the form

of the Monte Carlo simulation for which it is known which event is a signal event and

which belongs to the background. The way machine learning is used in this thesis is the

classification of events into signal events and background events by analysing multiple

decay parameters as an input.

4.4.1 Boosted Decision Trees

There are many machine learning techniques to categorize data like here into Back-

ground and Signal.

One rather simple method to categorize data is decision tree learning. Given a set of

training data consisting of tuples (x,Y) where x=(x1, . . . , xn) is the vector that contains

the input variables and Y is the category of the event, here whether the event belongs

to the background or signal. A set of consecutive selection cuts on the input variables

is employed to best differentiate between the categories. These selection cuts can be

represented as nodes in a tree where the final nodes, or leafs, are the categories into

which the data is sorted.

The selection cuts are chosen to achieve the best distinction between background

and signal. A common metric to quantify the gain in separation is called Gini impurity,

which is then recursively maximised in the training process to optimize the selection

cuts.

Instead of using a single decision tree the process can be expanded to include a large

number of separate decision trees, which is called decision tree boosting. The outputs

from the individual trees are taken and combined into a final classification.

18



4.4.2 XGBoost

One specific implementation of decision tree boosting is called XGBoost [8]. As a

measure how well the model fits the training data an objective function

obj(~θ) = L(~θ) + Ω(~θ) (4.4)

consisting of a training loss function L and a regularization term Ω, is used. The

parameter θ here refers to the coefficient assigned to an input variable xi from which a

prediction ŷ =
∑

i θixi is determined. For a single tree it looks like

L(θ) =
∑
i

(yi − ŷi)2 (4.5)

where yi refers to the target value.

The regularization term describes the complexity of a tree. For this the tree can be

expressed as ft(x) = wq(x) , where q is a function assigning a leaf to a data point x and

w is the score on each leaf.

With the number of leaves being T the complexity of a tree is then defined as

Ω(f) = γT +
1

2
λ

T∑
j=1

ω2
j (4.6)

γ and λ here refer to free regularization parameters.

The output is a value ranging from 0 (Background) and 1 (Signal).

4.4.3 Training a Multivariate Classifier

For training the classifier takes two inputs. First an array of decay variables that are

supposed to differentiate background and signal, and secondly the target, meaning if

the respective event is supposed to be part of signal or part of the background. There

are a number of parameters to tweak how the learning algorithm behaves. These are

shown in Table 4.3
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Model Parameter Explanation

iterations Number of individual trees

depth Maximum number of nodes on each tree

eta Learning rate

colsample_bytree Fraction of how many of the variables are used for each tree

subsample Fraction of events used in each tree

gamma Minimum loss reduction required to make a further partition on

a leaf node. A larger value corresponds to a more conservative

algorithm

reg_alpha
Regularization parameters that penalize overcomplexity

reg_lambda

Table 4.3: Model Parameters

4.4.4 Evaluating the Classifier

To test how a classifier performs one can take a look at the Receiver Operating

Characteristic curve (ROC curve). It shows the portion of background events that

are falsely classified as signal (false negative) against the portion of signal events events

being classified correctly. As the classifier does not produce a binary output, but a score

X between 0 and 1 one can now vary the threshold T for which X > T to be classified

as a signal event and plot the points on a curve. In case for a random classification one

would now expect all events to lie on the identity line. A classifier working better than

random classification would therefore produce a ROC curve where the points lie above

this line. To quantify the performance one can now use the Area Under the Curve

(auc), for which a larger value corresponds to a better performing classifier.
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Chapter 5

Preselection

At first a preselection, found in Table 5.1, is applied that sorts out events with very

poor reconstruction.

The reconstructed mass is restricted to a window from 4.9 GeV to 6 GeV. To further

ensure a reasonable vertex quality a maximum value for the vertex χ2 and the impact

parameter χ2 is required along with a minimal flight distance χ2.

For the muons a maximum momentum and transverse momentum in a certain range

is required. Also a minimal impact parameter χ2 and a not too large track χ2/ndof

is required. Also a J/Ψ Veto, sorting out events in which one of the muons can be

reconstructed to a dimuon mass close to the J/Ψ mass. Furthermore the probability of

the track being a ghost should not be too large. The exect cuts are shown in Table 5.1

Further a cut is placed on a BDT variable (in the following simply referred to

as BDT), that was trained on kinematic topological and isolation information and is

scaled to give a roughly uniform distribution for signal events and to peak at zero

for background. By demanding BDT > 0.5 events with low signal quality should

be excluded. This BDT is not to be confused with the BDT based classifier that is

developed in the core of this thesis.
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On Selection

B

Reconstructed Mass is between 4.9 and 6.0 GeV

Reconstructed lifetime is smaller than 1.3248× 10−11 s (∼ 9× life-

time of the B meson)

BDTS_DOCA < 0.3

Endvertex χ2 < 9

Impact Parameter χ2 < 25

Flight distance χ2 > 225

BDTS> 0.05

µ+/µ−

Momentum is smaller than 500 GeV

Transversal momentum is between 0.25 and 40 GeV

Impact parameter χ2 > 25

Track χ2 < 4

Probability of the track being a ghost track< 0.4

InMuonAcc == 1

J/Ψ veto: Reconstructed B mass for one particle differs more than

30MeV from the J/Ψ mass (mJ/Ψ = 3096.9 GeV)

Table 5.1: Preselection Cuts
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Chapter 6

Reducing Background via a MVA

The goal here is to train a BDT to improve the rejection of hadronic B0
(s) → hh′

background.

6.1 Performance of ProbNN PID

In previous analyses the ProbNNx PID variables were used for background rejection,

and a combination of three of those ProbNNx variables - simply called ProbNN - proved

to perform best.

ProbNN = ProbNNµ × (1− ProbNNK)× (1− ProbNNp) (6.1)

Figure 6.1 shows the Punzi FoM calulated after several cuts on ProbNN in a range

from 0 to 1, each year is treated separately. For the background the B0
(s) → hh′ MCs

and for the signal the B0 → µ+µ− MCs as introduced in Section 4.2. Beyond slight

differences between the years in each run one mainly notices the difference between the

years in run 1 and run 2, as for run 2 the optimal cut off value is at around 0.8 while

for run 1 it is around 0.4, which is in good accordance with previous findings.
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(a) run 1 (b) run 2

Figure 6.1: Punzi FoM for different cut values of ProbNN

Applying the ProbNN> 0.8 cut on the run 2 MCs and ProbNN> 0.4 on run 1 to

determine the number of expected detected events in each given year leads to Table

6.1. For signal events the fraction of events that survive the cut are given. The reason

these percentages are below 50% is that due to requiring BDT> 0.5 roughly half of the

events are already filtered out. It can be seen that the largest amount of Background

comes from misidentified pions, while the rejection of kaons already works quite well.

run 1 run 2

2011 2012 2016 2017 2018

B0 → π+π−
1.9 ± 1.01

(1e-05 ± 5.1e-06)

3.7 ± 0.92

(8e-06 ± 1.9e-06)

5.0 ± 1.73

(9e-06 ± 2.9e-06)

4.5 ± 1.67

(8e-06 ± 2.8e-06)

7.0 ± 2.28

(1e-05 ± 3.1e-06)

B0 → K+π−
0.9 ± 0.9

(5e-06 ± 5.2e-06)

0.6 ± 0.4

(1.5e-06 ± 8.7e-07)

4.5 ± 1.65

(8e-06 ± 2.9e-06)

1.7 ± 1.05

(3e-06 ± 1.8e-06)

1.4 ± 1.02

(2e-06 ± 1.4e-06)

B0
s → π+K−

0.12 ± 0.13

(2.5e-06 ± 1e-06)

0.3 ± 0.23

(2.5e-06 ± 1e-06)

0.9 ± 0.49

(6e-06 ± 2.4e-06)

0.31 ± 0.29

(2e-06 ± 1.4e-06)

0.9 ± 0.54

(5e-06 ± 2.2e-06)

B0
s → K+K−

0.0 ± 0.31

(0.0 ± 1.3e-06)

0.24 ± 0.28

(4.3e-07 ± 4.3e-07)

1.5 ± 1.09

(2e-06 ± 1.5e-06)

0.7 ± 0.79

(1e-06 ± 1e-06)

2.7 ± 1.64

(3e-06 ± 1.8e-06)

B0 → µ+µ− 0.4568 ± 0.002 0.4503 ± 0.0021 0.46 ± 0.001 0.4617 ± 0.001 0.46 ± 0.0014

Table 6.1: Expected number of events in each channel for ProbNN> 0.4 (run 1) or

ProbNN> 0.8 (run 2). Shown in parentheses below the number of events is the fraction

of events that survive the cut. For the signal channel only the fraction of surviving

events is given
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6.2 Training the MVA

6.2.1 Input Variables for the MVA

First we need to have a look at which input variables the BDT should use. The distribu-

tion of these input variables should differ between signal events and background events

and therefore allow a differentiation between the two. Also the events are restricted to

only those for which at least one of the as muons detected particles passes isMuon.

Figures 6.2-6.7 show the distributions of the stated variable for background and

signal events. The events are weighted according to the B+ → J/ΨK+ decay as

discussed in Section 4.3. Finally the distributions are rescaled to be normalized.

ProbNN and ProbNNπ

As ProbNN already provides a very good particle identification it is also included for

the new classifier. In order to reduce overtraining not the raw ProbNN value is used, as

those can often contain large negative values, which is a consequence of only demanding

isMuonfor one of the tracks, as a track that does not satisfy isMuonreturns a ProbNNµ

value of −1000. Therefore instead the maximum value of ProbNN for the two tracks is

used instead.

Further as ProbNN so far does not consider pion misidentification ProbNNπ is also

included to achieve better pion rejection.
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(a) ProbNN probability distribution

(b) ProbNNπ probability distribution

Figure 6.2
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Opening Angle

The angle between the both muon tracks can also be used to gain information on particle

identification. As the angle is not directly recorded it has to be calculated by using the

angular information of the muon tracks, i.e. the pseudorapidities ηµ± and polar angles

ϕµ± :

]µ = arccos

(
cosϕµ+ · cosϕµ− + sinϕµ+ · sinϕµ+

cosh ηµ+ · cosh ηµ−
+ tanh ηµ+ · tanh ηµ−

)
(6.2)

Figure 6.3: Probability distribution of the opening angles

Track χ2

In case a pion or kaon might decay in flight into a muon the differentiation power of

the ProbNN variable suffers. Yet through the decay the flight path is slightly altered

which can then negatively impact the reconstruction quality of the track i.e. a larger

χ2 in the fit. Therefore using the track χ2 information is included as an input variable

for the classifier.
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Figure 6.4: Track χ2 probability distribution

Figure 6.4 shows the distribtution of the track χ2 for both muon candidates.

Flight Distance χ2

The next parameter to consider is the flight distance χ2, meaning the quality of the

reconstructed flight distance of the B meson. As can be seen in Figure 6.5 this variable

is not suitable to differentiate between signal and background. It is included as the

reconstruction quality of an event should be taken into account for the certainty of a

classification.
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Figure 6.5: Flight distance χ2 probability distribution
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Mass Error

Figure 6.6: Mass Error probability distribution

As can be seen in Figure 6.6 the difference between signal and background is not great,

but it is still included for training. Yet information about the quality of the B candidate

can be extracted.

BDT

Lastly the BDT information as introduced in the preselection is also used as an input

as it gives further information on signal quality, while also adding distinguishing power.
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Figure 6.7: BDT probability distribution

6.2.2 Setup of the Training

The Monte Carlo data is split into two sets, each containing half of all signal and half of

all background events. One set of event is used for training the classifier while the other

set is used to test how the classifier performs. The events are randomly distributed into

both sets. Due to having more signal events than background events a weight wj is

assigned to each event, so that
∑

Background Eventswj =
∑

Signal Events wi.

The events in the training set are then used to train a XGBoost classifier with the

training parameters given in Table 6.2, as prior introduced in Table 4.3. Subsequently

this classifier is then evaluated by applying it on the events from the second set. From

this a ROC curve is produced, which is shown in Figure 6.8. As can be seen it performs

quite well, though given that ProbNN itself already sorts out a lot of background it is

not that surprising. Yet the difference between the classifier performance on training

set in contrast to the evaluation set is significant. For one it can be expected that the

classifier works better on the same events is trained on, but too large a difference is

also a sign of overtraining.
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Parameter value

iterations 300

depth 15

eta 1

colsample_bytree 1

subsample 1

reg_alpha 0

gamma 0

reg_lambda 1

Table 6.2: Parameters used in the training

Figure 6.8: ROC Curve for the hadronic BDT classifier

6.2.3 Performance

Now that it is clear that the classifier works it is applied to the entirety of the MCs.

Then a series of cuts is applied on the new classifier variable and again the Punzi FoM

is calculated each time, the results are shown in Figure 6.9. One can once again see

striking differences between run 1 and run 2, especially as the performance is closer to

that of the ProbNN cut, though these cuts do not outperform the prior cut.
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Figure 6.9: Punzi FoM for cuts on the new classifier, for comparison the highest value

that can be achieved by cutting on ProbNN is also shown
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To see if an improvement can be achieved by combining a cut on the new classifier

with a cut ProbNN, the previous procedure to determine the performance of a cut is

repeated while varying the cut values for both variables. The results are shown in

Fig. 6.10, where in order to see how well the cut does in comparison to to a simple

cut on ProbNN the highest Punzi FoM value for a ProbNN cut is subtracted from the

newly determined figure. Therefore only cuts which outperform a simple ProbNN cut

are visible.

It can be seen that improvements can be reached for all years, but especially for

those in run 2.

As before the number of expected events in each channel can be calculated, shown

in Table 6.3 for a ProbNN> 0.6 and XGBoost> 0.6 cut. It can be clearly seen that

background rejection is improved while Signal retention stays high, except for the run 1

sets for which the signal retention is actually reduced. That this cut performs worse on

run 1 is already visible in Figure 6.10.

run 1 run 2

2011 2012 2016 2017 2018

B0 → π+π−
ProbNN + BDT

0.5 ± 0.5

(3e-06 ± 2.6e-06)

0.7 ± 0.41

(1.7e-06 ± 8.3e-07)

2.2 ± 1.15

(4e-06 ± 2e-06)

2.8 ± 1.32

(5e-06 ± 2.2e-06)

3.5 ± 1.61

(5e-06 ± 2.2e-06)

ProbNN
1.9 ± 1.01

(1e-05 ± 5.1e-06)

3.7 ± 0.92

(8e-06 ± 1.9e-06)

5.0 ± 1.73

(9e-06 ± 2.9e-06)

4.5 ± 1.67

(8e-06 ± 2.8e-06)

7.0 ± 2.28

(1e-05 ± 3.1e-06)

B0 → K+π−
ProbNN + BDT

0.0 ± 0.44

(0.0 ± 2.6e-06)

0.21 ± 0.23

(5e-07 ± 5e-07)

1.1 ± 0.83

(2e-06 ± 1.4e-06)

2.3 ± 1.21

(4e-06 ± 2e-06)

0.0 ± 0.35

(0.0 ± 4.9e-07)

ProbNN
0.9 ± 0.9

(5e-06 ± 5.2e-06)

0.6 ± 0.4

(1.5e-06 ± 8.7e-07)

4.5 ± 1.65

(8e-06 ± 2.9e-06)

1.7 ± 1.05

(3e-06 ± 1.8e-06)

1.4 ± 1.02

(2e-06 ± 1.4e-06)

B0
s → π+K−

ProbNN + BDT
0.02 ± 0.054

(4e-07 ± 4.2e-07)

0.05 ± 0.092

(4e-07 ± 4.2e-07)

0.15 ± 0.2

(9.8e-07 ± 9.8e-07)

0.15 ± 0.21

(9.8e-07 ± 9.8e-07)

0.8 ± 0.49

(4e-06 ± 2e-06)

ProbNN
0.12 ± 0.13

(2.5e-06 ± 1e-06)

0.3 ± 0.23

(2.5e-06 ± 1e-06)

0.9 ± 0.49

(6e-06 ± 2.4e-06)

0.31 ± 0.29

(2e-06 ± 1.4e-06)

0.9 ± 0.54

(5e-06 ± 2.2e-06)

B0
s → K+K−

ProbNN + BDT
0.0 ± 0.31

(0.0 ± 1.3e-06)

0.0 ± 0.12

(0.0 ± 2.2e-07)

0.7 ± 0.77

(1e-06 ± 1e-06)

0.0 ± 0.37

(0.0 ± 5.2e-07)

0.9 ± 0.95

(1e-06 ± 1e-06)

ProbNN
0.0 ± 0.31

(0.0 ± 1.3e-06)

0.24 ± 0.28

(4.3e-07 ± 4.3e-07)

1.5 ± 1.09

(2e-06 ± 1.5e-06)

0.7 ± 0.79

(1e-06 ± 1e-06)

2.7 ± 1.64

(3e-06 ± 1.8e-06)

B0 → µ+µ−
ProbNN + BDT 0.3616 ± 0.0017 0.3364 ± 0.0017 0.463 ± 0.001 0.466 ± 0.001 0.464 ± 0.0014

ProbNN 0.4568 ± 0.002 0.4503 ± 0.0021 0.46 ± 0.001 0.4617 ± 0.001 0.46 ± 0.0014

Table 6.3: Expected number of events in each channel after a cut on the new classifier.

Values for previous ProbNN cut are also shown for comparison as the lower number.

In parantheses shown is the fraction of surviving events in the background channels
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Figure 6.10: Combination of a cut on the new classifier and a cut on ProbNN. To

compare to the previous best performing cut the difference in the Punzi FoM is shown

as the third dimension
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Chapter 7

Conclusion & Outlook

One of the most important background sources of the rare B0
(s) → µ+µ− decay are

the hadronic B0
(s) → hh′ decays. In this thesis I first evaluate the efficiency in terms of

background rejection through the use of standard LHCb particle identification variables

(ProbNN). The resulting optimal cut values are in good accordance to previous results.

Then I trained a BDT classifier that combines the PID information with further

topological information. By combining this new classifier with the ProbNN information

I achieve a better rejection efficiency for the hadronic background, while retaining most

signal events.

There are undoubtedly many ways the training of the BDT can be improved. For

one the selection for events that are used for training should be more elaborate. So

far the events have been randomly partitioned with no regard to the prevalence of the

decay channel or the year which the MC has been produced for.

Additionally the branching ratios of the different background decays could be in-

cluded in the weighting of the events. Moreover a larger amount of events could be

produced to have a larger set of training data, as imposing the isMuon requirement

already eliminates a large portion of events (∼ 98%).
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