
ar
X

iv
:n

uc
l-

ex
/0

31
10

07
 v

3 
  2

2 
D

ec
 2

00
3

Elliptic flow contribution to two-particle correlations at different orientations to the

reaction plane

J. Bielcikova1, S. Esumi2, K. Filimonov3, S. Voloshin4, and J. P. Wurm5

1 Physikalisches Institut, Heidelberg University, 69120 Heidelberg, Germany
2University of Tsukuba, Tsukuba, Ibaraki 305, Japan

3Lawrence Berkeley National Laboratory, Berkeley, California 94720
4Wayne State University, Detroit, Michigan 48201

5Max-Planck Institut für Kernphysik, 69229 Heidelberg, Germany

(Dated: December 22, 2003)

Collective anisotropic particle flow, a general phenomenon present in relativistic heavy-ion colli-
sions, can be separated from direct particle-particle correlations of different physics origin by virtue
of its specific azimuthal pattern. We provide expressions for flow-induced two-particle azimuthal cor-
relations, if one of the particles is detected under fixed directions with respect to the reaction plane.
We consider an ideal case when the reaction plane angle is exactly known, as well as present the
general expressions in case of finite event-plane resolution. We foresee applications for the study of
generic two-particle correlations at large transverse momentum originating from jet fragmentation.

PACS numbers: 25.75.Ld

I. INTRODUCTION

Collective particle flow is a general phenomenon of rel-
ativistic heavy-ion collisions that originates from pres-
sure gradients built up in the anisotropic overlap zone
of colliding nuclei [1]. Azimuthal anisotropies in in-
clusive single particle distributions relative to the reac-
tion plane (anisotropic flow) have been extensively stud-
ied [2, 3, 4, 5, 6, 7]. Recent investigations of direct two
(or more) particle correlations also indicate that the de-
pendence of these correlations on the orientation of the
reaction plane may contain important physics informa-
tion. A detailed analysis of such correlations requires
flow effects to be taken into account.

A recent example, which gave the motivation for this
paper, is provided by azimuthal two-particle correlations
at transverse momenta above 1 GeV/c. Such particles
presumably originate from fragmentation of dijets, but
are embedded in collective flow [4]. It is predicted that
nuclear effects may modify the jet fragmentation function
due to induced radiation of the leading parton [8]. This
could result in significant changes in the particle correla-
tions within the jet, as well as the correlation of particles
originating from back-to-back jets. The modifications of
the jet profile may depend on the nuclear geometry and
could be studied relative to the reaction plane angle [4].

In this paper, we present analytical formulae for the
flow contribution to two-particle azimuthal distributions
for different orientations of the trigger particle with re-
spect to the reaction plane, neglecting any non-flow ef-
fects. We will first discuss an ideal case with the reaction
plane angle exactly known and then incorporate the finite
resolution of the reconstructed event plane.

II. ANISOTROPIC TRANSVERSE FLOW

Anisotropic flow manifests itself by the presence of
higher (n ≥ 1) harmonics in the inclusive single parti-
cle distribution in the azimuthal angle φ with respect to
the reaction plane ΨR [2, 9]:

dN

d(φ − ΨR)
∝ (1 +

∞∑

n=1

2 vn cos(n(φ − ΨR))). (1)

The Fourier coefficients, vn = 〈cos(n(φ − ΨR))〉, given
by the average over detected particles in analyzed events
quantify the anisotropy of the n−th harmonic of the dis-
tribution. The anisotropies corresponding to the first and
the second Fourier coefficients, v1 and v2, are usually re-
ferred to as directed and elliptic flow, respectively.

Collective flow generates azimuthal anisotropies also
in the angle difference ∆φ = φi − φj (0 ≤ ∆φ ≤ π) of
particle pairs [10],

dNpairs

π d∆φ
= B (1+

∞∑

n=1

2 pn(pTi, yi; pTj , yj) cos(n∆φ)),

(2)
where B denotes the integrated inclusive pair yield. In
case of pure collective flow, the Fourier coefficients pn =
〈cos(n∆φ)〉 are given by [11]

pn(pTi, yi; pTj, yj) = vn(pTi, yi) vn(pTj , yj). (3)

III. PAIR DISTRIBUTIONS IN ∆φ WHEN THE

TRIGGER PARTICLE IS DETECTED AT FIXED

ANGLE RELATIVE TO THE EVENT PLANE

We introduce conditional two-particle correlations in
the transverse plane for which one of the particles, usu-
ally referred to as the trigger particle, is detected within
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FIG. 1: The region R is made up of a bi-sector of half-angle
c that intersects the reaction plane Ψ at angle φS, modulo π.

some bi-sector R at fixed orientation with respect to the
reaction plane, see Fig. 1.

The n-th harmonic of the pair distribution, before
given by Eq. (3), is expressed as

pRn = vn(pT , y) vRn (pT , y). (4)

To simplify the notations, we have assumed that both
particles are detected in the same pT and y interval,
but it is straightforward to generalize our results for the

case when the trigger particle and the associated particle
are chosen from different rapidity and transverse momen-
tum regions. Here, vRn = 〈cos(n(φ − Ψ))〉R is the n-th
harmonic coefficient of the single-particle distribution of
Eq. (1), although the average over the azimuthal angle
of the trigger particle is taken over the restricted region
R only.

We derive now explicit analytic expressions for vR2 and
the pair yield BR for elliptic flow when the trigger parti-
cle is confined to a bi-sector oriented with angle φS to the
reaction plane, and then specialize to in-plane and out-
of-plane conditions. We proceed in two steps, first for the
ideal case, then for finite resolution in the reconstructed
event plane.

A. Ideal case. Reaction plane is known.

Let the trigger particle be confined in the transverse
plane to the bi-sectors depicted in Fig. 1. The n-th
Fourier coefficient of the trigger particle distribution, as-
suming it is originally given by Eq. (1), is

vRn = 〈cos(n(φ − ΨR))〉R =

∫
R

(1 +
∞∑

k=1

2vk cos(k(φ − ΨR))) cos(n(φ − ΨR))d(φ − ΨR)

∫
R

(1 +
∞∑

k=1

2vk cos(k(φ − ΨR)))d(φ − ΨR)
, (5)

where the integration over the region R in more explicit notation is understood to read

∫

R

d(φ − ΨR) . . . ≡
φS+c∫

φS−c

d(φ − ΨR) . . . +

φS+π+c∫

φS+π−c

d(φ − ΨR) . . . . (6)

The integration results in

vRn =

vn + δn,even cos(nφS)
sin(nc)

nc +
∑

k=2,4,6,...

(vk+n + v|k−n|) cos(kφS)
sin(kc)

kc

1 +
∑

k=2,4,6,...

2 vk cos(kφS)
sin(kc)

kc

, (7)

where δn,even = 1 for n even and δn,even = 0 for n odd, respectively.

Spatial conditions on the trigger particle also modify
the integrated pair yield. We express the conditional
two-particle yield as

BR =
2c

π
B βR, (8)

which can be understood as the product of two single-
particle yields:

√
B for the associated particle and the

remainder
√

B 2c
π βR for the trigger particle. Here, 2c

π is
the fraction of the azimuth covered by the trigger particle

and the quantity βR accounts for the modification of the
yield due to collective flow and is given by

βR =

∫
R

(1 +
∑

k=2,4,6,...

2vk cos(k(φ − ΨR)))d(φ − ΨR)

∫
R

d(φ − ΨR)
.

(9)
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FIG. 2: In-plane and out-of-plane correlation functions for
ideal reaction plane (full lines), and for finite event plane reso-
lution (〈cos(2∆Ψ)〉 = 0.3) (dashed lines). The trigger particle
is confined to bi-sectors with axes φS pointing along the reac-
tion plane (φS = Ψ) and perpendicular to it (φS = Ψ + π/2),
respectively. The magnitude of elliptic flow is v2 = 10%.

Integrating we obtain

βR = 1 +
∑

k=2,4,6,...

2 vk cos(kφS)
sin(kc)

kc
. (10)

In the following we restrict ourselves to elliptic flow
(n = 2). Neglecting terms with n ≥ 4, we obtain

vR2 =
v2 + cos(2φS)

sin(2c)

2c
+ v2 cos(4φS)

sin(4c)

4c

1 + 2v2 cos(2φS)
sin(2c)

2c

, (11)

and

βR = 1 + 2v2 cos(2φS)
sin(2c)

2c
. (12)

If the trigger particle is confined to regions −π/4 <
φ−ΨR < π/4 (φS = 0, ’in-plane’ ), and π/4 < φ−ΨR <
3π/4 (φS = π/2, ’out-of-plane’ ), respectively, Eq. (11)
simplifies to

vin
2 =

πv2 + 2

π + 4v2

, vout
2 =

πv2 − 2

π − 4v2

. (13)

The pair yields under these conditions are

Bin =
B

2

(
1 +

4v2

π

)
, Bout =

B

2

(
1 − 4v2

π

)
(14)

which add up to B as both regions cover together the full
azimuth.

The azimuthal distributions for in and out-of-plane
conditions are obtained by inserting the corresponding

expressions for vR2 into Eq. (4) and then pR2 and BR

into Eq. (2). The normalized in-plane and out-of-plane
distributions for v2 = 0.1 are displayed in Fig. 2 (full
line). The out-of-plane distribution is shifted in phase
by π/2 compared to the in-plane distribution: instead of
peaks at ∆φ = 0 and π peaks show up at π/2 and 3π/2.
The sign of vout

2 is negative. Both curves touch at level
(B/2)(1 − 2v2

2).

B. Finite event plane resolution

The direction of the true reaction plane ΨR is not
available experimentally. An estimator for the reaction
plane, often called the event plane, ΨE , is determined
event-by-event using the anisotropic flow itself [11]. How
close on average the event plane is to the true reaction
plane is determined by the resolution, usually quantified
by 〈cos(n∆Ψ)〉, where ∆Ψ = ΨE − ΨR. Here, the an-
gular brackets 〈· · ·〉 indicate the event averaging over the
probability density distribution ρ(∆Ψ) that characterizes
the event plane resolution.

Let us now calculate how the finite event plane res-
olution modifies our results. For a given deviation ∆Ψ

the new range of integration R̃ in Eq. (5) and Eq. (9) is
defined in analogy to Eq. (6) by
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FIG. 3: In-plane (thick lines) and out-of-plane coefficients
(thin lines) p2 of Eq. (4), (top), and B of Eq. (8), (bottom), vs

elliptic flow anisotropy v2. Solid lines assume ideal reaction
plane, dashed lines are for reconstructed event planes with
finite resolution 〈cos(2∆Ψ)〉 = 0.3.
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∫

R̃

d(φ − ΨR) . . . ≡
φS+∆Ψ+c∫

φS+∆Ψ−c

d(φ − ΨR) . . . +

φS+∆Ψ+π+c∫

φS+∆Ψ+π−c

d(φ − ΨR) . . . . (15)

The n-th Fourier harmonic component is obtained after averaging over the probability density distribution ρ(∆Ψ),

ṽRn =

π∫
−π

ρ(∆Ψ)
∫

R̃

(1 +
∞∑

k=1

2vk cos(k(φ − ΨR))) cos(n(φ − ΨR))d(φ − ΨR) d(∆Ψ)

π∫
−π

ρ(∆Ψ)
∫

R̃

(1 +
∞∑

k=1

2vk cos(k(φ − ΨR)))d(φ − ΨR) d(∆Ψ)

. (16)

After integration we obtain

ṽRn =

vn + δn,even cos(nφS)
sin(nc)

nc 〈cos(n∆Ψ)〉 +
∑

k=2,4,6,...

(vk+n + v|k−n|) cos(kφS)
sin(kc)

kc
〈cos(k∆Ψ)〉

1 +
∑

k=2,4,6,...

2 vk cos(kφS)
sin(kc)

kc
〈cos(k∆Ψ)〉

. (17)

In analogy, we can write

β̃R =

π∫
−π

ρ(∆Ψ)
∫

R̃

(1 +
∑

k=2,4,6,...

2vk cos(k(φ − ΨR)))d(φ − ΨR)d(∆Ψ)

∫

R̃

d(φ − ΨR)
. (18)

After integration we obtain:

β̃R = 1 +
∑

k=2,4,6,...

2 vk cos(kφS)
sin(kc)

kc
〈cos(k∆Ψ)〉. (19)

In the following we restrict ourselves again to elliptic flow (n = 2) only, and neglecting terms with n ≥ 4, we obtain

ṽR2 =
v2 + cos(2φS)

sin(2c)

2c
〈cos(2∆Ψ)〉 + v2 cos(4φS)

sin(4c)

4c
〈cos(4∆Ψ)〉

1 + 2v2 cos(2φS)
sin(2c)

2c
〈cos(2∆Ψ)〉

, (20)

and

β̃R = 1 + 2v2 cos(2φS)
sin(2c)

2c
〈cos(2∆Ψ)〉. (21)

The in-plane and out-of-plane anisotropies of Eq. (13)
for elliptic flow are modified for finite event plane resolu-
tion to

ṽin
2 =

πv2 + 2〈cos(2∆Ψ)〉
π + 4v2〈cos(2∆Ψ)〉 ,

ṽout
2 =

πv2 − 2〈cos(2∆Ψ)〉
π − 4v2〈cos(2∆Ψ)〉 , (22)

and the average yields of Eq. (14) to

B̃in =
B

2

[
1 +

4v2

π
〈cos(2∆Ψ)〉

]
,

B̃out =
B

2

[
1 − 4v2

π
〈cos(2∆Ψ)〉

]
, (23)

respectively. These formulae have been used to calculate
the dashed lines in Fig. 2, and it is seen that the magni-
tude of the elliptic anisotropy is reduced for finite event
plane resolution. The normalized background parameters

B̃in/B and B̃out/B approach the value of 0.5. Both are
consequences of the finite event plane resolution which
causes the in-plane region to receive also negative contri-
butions from the out-of-plane region, and vice versa.

Fig. 3 presents a synopsis of the dependence of the flow
parameters under in-plane and out-of-plane conditions on
the magnitude v2 of elliptic flow, both for ideal as well as
for the reconstructed event plane. For the latter case, the
reaction plane resolution was chosen to be 〈cos(2∆Ψ)〉 =
0.3. Note that very large v2 and small 〈cos(2∆Ψ)〉 could
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lead to the situation of vout
2 > 0, and the phases of in-

plane and out-of-plane distributions, Fig. 2, would be the
same.

IV. SUMMARY AND OUTLOOK

We have presented general expressions of two parti-
cle azimuthal correlations due to anisotropic flow for the
case when one of the particles, referred to as the trig-
ger particle, is detected at fixed angles relative to the
reaction plane. Analytical formulae are given for two
cases, an ideal case when the reaction plane is exactly
known in every event, and for the case of finite reaction
plane resolution. For the so called in-plane and out-of-
plane conditions, we find that the correlation functions
are shifted in phase by π/2 for realistic values of elliptic
flow of the trigger particle and the reaction plane reso-
lution. This and the increase in modulation amplitude

in-plane compared to out-of-plane is easily visualized by
the fact that the trigger particle scans the peak region of
the elliptic flow pattern in the first case, but the valley
in the second.

We foresee that the results presented in this paper will
allow to disentangle non-flow generic two-particle corre-
lations, like those due to jets and analyze how such corre-
lations depend on the orientation of the jet with respect
to the reaction plane.
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H. Stöcker, Phys. Rev. C 44, 1091 (1991).

[11] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58,
1671 (1998).

http://arXiv.org/abs/nucl-ex/0303014

