
5 Detailed study of the e�ieny in simulation
5.1 IntrodutionThe raw yield extrated from data have to be orreted for the e�ieny of the experimen-tal setup. The best situation is when the e�et of the detetor on the observed signal anbe alulated analytially, but the urrent heavy ion experiments are too ompliated foranalytial treatment. The orretion fators due to e�ieny was studied using detailedMonte-Carlo simulation of the CERES setup.The total e�ieny was fatorized into three parts: aeptane, traking e�ieny andpeak extration e�ieny. The idea behind was to separate aeptane, whih is weaklydependent on the details of the Monte-Carlo and determined by the geometrial shape ofthe detetor from the parts that depend on the details of the simulation proedure.Aeptane for a single trak is de�ned as a fration of traks, whih momentum is ina �duial volume of the polar angle and transverse momentum. For pairs from K0S theaeptane means a fration of the primary K0S partiles, whih both deay produts fallinto the single trak aeptane and have ertain orientation with respet to the primarytrak.Traking e�ieny is de�ned as a fration of reonstruted traks (pairs) out of those thatfall into the aeptane. The e�ieny is not independent on the aeptane assumed,due to lower traking e�ieny at the borders of detetor. More generous de�nition ofthe aeptane will lead to lower e�ieny and a strit de�nition of the aeptane tohigher e�ieny. The produt of aeptane and e�ieny will be alled overall e�ieny.Atually, the overall e�ieny has a diret interpretation, and the aeptane and thee�ieny are useful terms to separate soures of the lost traks.After a pair is reonstruted, deision have to be made whether the pair omes fromthe real primary trak or from the ombinatorial bakground. This deision is based onthe invariant mass of the pair. The peak extration e�ieny fatorize with the overalle�ieny and four methods of peak extration will be disussed and their e�ieniespresented. 67



5.2 Simulation hainThe Monte-Carlo framework for CERES experiment is omposed of four ooperating pro-grams. Two of these programs are spei� for the analysis performed and two are universalsimulation tools used by the CERES ollaboration. The input and the output of the pro-grams is standardized and they are used onseutively.The �rst program, analysis spei�, is used to generate primary traks. These traks arethen propagated by the standard, GEANT [42℄ based program, and RAWMC digits areits output. The digits are proessed by CERES analyzer whih produes spae pointsout of digits and performs traking. Finally the reonstruted traks are proessed by V 0analysis program to evaluate the e�ieny of the K0S reonstrution.The notion MC, was used in the previous hapter for the Multipliity Counter. In thishapter is stands for Monte-Carlo and exatly for the tandem of GEANT with the CERESsetup and Monte-Carlo analyzer. This two programs are standard tools used by theCERES ollaboration and they were not modi�ed in this work.The details of the simulation hain proedure is the following:1. The primary K0S traks, following the Boltzmann distribution with T = 210 MeVand y 2 (1:85; 2:45) are generated. Sine the resulting e�ienies are (weakly)dependent on the parameters of the distribution thus the temperature for the MChave to be iteratively adjusted. The generation is done in a Root maro and dataare stored in text �les, eah ontaining 10 000 events with one K0S . Additionally, fortehnial reasons two muons are generated with every event.2. Every event is proessed by the GEANT with CERES setup. TheK0S are propagatedand deayed by the GEANT. If none of the deay produts of theK0S hits the detetorthe original partile is not present in the MC output. This feature was introduedto suppress gammas from bremsstrahlung whih did not produe any hit. Storingall gammas and eletrons from showers will blow-up output �les. For the analysisof weakly deaying partiles one would prefer to keep these primaries. The obstalewas work around injeting two muons and using the input text �les for the �nalanalysis.3. Data are analyzed with Monte-Carlo analyzer whih is in priniple the same programas used for the reonstrution of real events (step2). The analyzer an be used in twoways: as a lean MC or an overlay MC. In the lean MC only the hits reated by thesimulation are present. In the overlay MC the signal � hits from traks resulting from68



a deaying K0S are overlay with the raw-data events. The advantage of the lean MCis that it reprodues gross properties of the detetor and requires less omputing timeand disk spae. The overlay MC is more orret in partiularly when deteriorationdue to additional hits is important: studying the number of hits per trak or theinvariant mass resolution. For traks falling in the middle of the detetor there is nodi�erene in the reonstrution e�ieny between lean and overlay MC. Moving tolow polar angles, the oupany inreases and the e�ieny falls in the overlay MC,but this feature is not represented in the lean MC. Similarly for large polar angles,the deterioration of performane is not reprodued in the lean MC. Data presentedin the following setions were obtained with the overlay MC.4. Reonstruted hits and traks are assoiated with the simulated ones. The digitsin the RAWMC format ontain information, from whih trak they originate. Thisinformation is propagated further during the proessing and for the reonstruted hitis an be said from whih trak it originate. If the reonstruted trak is omposedout of hits belonging to a given GEANT trak, the traks are assoiated. Trakassoiation algorithm have two parameters. The �rst is the maximum distanebetween simulated and reonstruted hit, measured in standard deviations of theexpeted resolution at this point. This parameter is usually set to 5. The seondparameter is the purity: the fration of the hits in the trak that originate from thisgiven simulated trak, this parameter is usually set to 60%.5. After the analyzer, the data are in the format orresponding to the step2 output.Then the main part of the analysis takes plae � the reonstrution of the seondariesand evaluation of the e�ieny. This program will be desribed in great detail inthe next setion.5.3 Analysis proedure5.3.1 Phase-spae segmentationThe transverse momentum � rapidity spae of the primary K0S is segmented into a numberof bins. Five equally sized bins in the rapidity spae eah 0:15 units wide are reated,spanning the range 1:85� 2:60, the bins are numbered from (1) to (5). The three entralbins (2)�(4) spanning 2:00� 2:45 have full aeptane in the transverse momentum. Theside bins have only some small fration of the transverse momentum in the aeptane.The transverse momentum is divided into 9 bins spanning area pT < 1:6 MeV/. The�rst 6 bins have width equal 100 MeV/, next two bins have width equal 200 MeV/ and69



�nally the last bins are 300 MeV/ wide. The size of the bins is inreased to ompensatefor the diminishing signal.5.3.2 Analysis hainThe most important part of the simulation proedure is the analysis of the MC outputby the V0 analyzer. In this program data are proessed in steps, after every step theproperties of the primary K0S are histogramed. Eah step redues the number of K0S leftfor the further analysis. The steps are the following:1. The distribution of the transverse momentum and rapidity of the primary K0S isreonstruted using data in the text �les.2. Output of the MC is read. The existene of K0S in MC data is heked, its (pT ; y) isused for further analysis.3. Number of deay produts of the K0S is ounted. The fration with 2 pions shall beequal to the branhing ratio. Additional ompliation is the fat that the number ofdeay produts is orrelated with the probability neither of them will hit the ativevolume.4. The polar angle of the MC trak is heked. Three values of the lower ut werestudied � > 0:12; 0:13; 0:14 rad and the upper ut is � < 0:26 rad. Sine the partilean satter at the path between target and entrane of the TPC the atual ut isextended by 5 mrad in both diretions. This extend will be trimmed by a ut onthe atual polar angle of the reonstruted trak in step 8. The overall aeptanefor the three senarios will be ompared further.5. The orientation of the deay is heked using Armenteros�Podolanski spae. TheArmenteros ut is set to � 2 (�0:5; 0:5) ^ qT 2 (0:08; 0:5) and is applied on the �and qT using MC trak parameters. The de�nition of the Armenteros variables �and qT are presented in Eqs. 4.23�4.24.6. The existene of the TPC segments assoiated with both MC traks is heked. Atthis point the re�tting proedure is applied. In the step2 format, used by MC, theloal angles are not stored and to obtain them the Fitter program is used. Thisprogram uses the same lass for re�tting as used during step3 prodution. There�tting proedure ensures real data and MC data are equally proessed.7. The single trak uts are applied, following that in data:70



� polar angle of the trak, aording to the ut performed in the step 4.� number of �tted hits, dependent on the polar angle:Nhits � N0 � 2 (0:12; 0:22)Nhits � N0 � (#� 0:22) � 150 � 2 (0:22; 0:28) (5.1)with N0 set to 10, 12 and 14. The results presented are performed for N0 = 10.Other values will be used to estimate the systematial error.� transverse momentum pT > 100 MeV/ and pT > 150 MeV/, the value pre-sented here are for pT > 100 MeV/.8. The pair uts are applied:� Armenteros ut � the same as in step 5 but performed using the variables fromthe reonstruted TPC traks.� opening angle ut  2 (0:1; 0:45) rad.9. The transverse momentum and rapidity is realulated using data from the reon-struted TPC traks. This step does not redue the number of events but satterthem between bins.10. The invariant mass is alulated using two momentum measurements: ombinedmomentum and three-parameter �t.The steps from 1 to 5 de�ne the aeptane. These steps shall be weakly dependent on theorretness of the MC. The steps 6�9 de�ne e�ieny and are dependent on the detailsof the MC program. The steps 9 and 10 will be used to evaluate the e�ieny of thepeak extration. The �nal numbers and e�et of eah step on the number of K0S will bedisussed in detail in the following subsetions.5.4 Results5.4.1 Single trak e�ienyThe e�ieny as a funtion of the azimuthal angle is shown on the �rst panel of Fig. 5.1.The e�ieny is omposed out of a �at part, at the level of 70 � 80% with a hamberstruture visible. Additionally there are two holes: one deep at � ' �3 rad and seond,less pronouned at � ' �0:5 rad.The traking e�ieny as a funtion of the polar angle is shown on the onseutive panels.The upper right panel shows the whole range while the following panels zoom on the71
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Figure 5.1: Single trak e�ieny in a funtion of the polar and azimuthal angle. Lefttop: e�ieny as a funtion of azimuthal angle with hamber struture visible.Right top: e�ieny as a funtion of polar angle. Bottom: e�ieny as afuntion of the polar angle zoomed on the borders of the aeptane.
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Figure 5.2: Single trak e�ieny. Left top: e�ieny as a funtion of total momentum.Right top: e�ieny as a funtion of the longitudinal momentum. Bottom: ef-�ieny as a funtion of transverse momentum for two de�nition of the �duialvolume: � > 0:12 rad. (left) and � > 0:13 rad. (right)
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right panel in Fig. 5.3.The low rapidity bins (1) and (2) are not in�uened, and the higher the rapidity the higherthe gain when releasing the ut. For the uppermost bin the di�erene is by a fator of2:6. The inrease in the e�ieny is most pronouned hanging ut from � = 0:14 rad to� = 0:13 rad. Changing the ut from � = 0:13 rad to � = 0:12 rad does not inrease thee�ieny substantially but in this area the preise understanding of the traking e�ienybeomes ruial. In partiular the momentum resolution for the traks without a hit inthe �rst and the last ative plane is not fully understood.From the Monte-Carlo studies one an onlude, the optimum ut giving high e�ienyand independene on the details of the simulation is for � = 0:13 rad. The higher ut� = 0:14 rad an be used for the evaluation of the systematial error. In real data it isvisible, with the ut � = 0:13 rad the bin (5) an provide a partial spetrum, but with theut � = 0:14 rad only three bins (2) � (4) an provide a signal. Thus the ut of � = 0:13rad. was seleted and the results will be disussed is detail only for the polar angle ut� 2 (0:13; 0:26) rad.5.4.3 Aeptane and e�ieny in rapidity binsThe aeptane for eah rapidity bin is presented in the �rst panel in Fig. 5.4. Theaeptane exeeds 16% for the tree entral bins and falls below 7% for side bins.The e�ieny follows similar pattern, and is the highest for the entral bins at the levelof 60 � 70% and falls below 50% for side bins. The reason for the lower e�ieny in theside bins are the fall of the single trak e�ieny at the border of the polar aeptane.The overall e�ieny is shown in the next panel. The highest e�ieny, for the (3)bin exeeds 12%. The overall e�ieny is low, but it is dominated by the geometrialaeptane.The expeted relative strength of the signal is shown on the next panel. Higher yield loserto midrapidity partially ompensate for the low aeptane for the bin (5). The �rst binis unfavored by the aeptane, the e�ieny and the low yield and thus pratially nosignal is present in this bin. The sizable signal an be expeted in the tree entral binsand the weak signal in the (5) bin.The number of events surviving every ut is shown in Fig. 5.5. The �rst panel shows thenumber of events after a given ut is applied, and the seond panel shown fration of theevents rejeted by a given ut. The Fig 5.6 shows the same for bins (2)�(5). 75
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Figure 5.4: Signal, aeptane and e�ieny in the rapidity bins
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Figure 5.7: Details of the aeptane and e�ieny. In onseutive panels: total signalexpeted in every bin, e�ieny of deay topology, aeptane due to polarangle ut, aeptane due to Armenteros ut, e�ieny due to trak reon-strution and due to resolution of the mass. Rapidity bins depited in olors:(2) � blak, (3) � red, (4) � green, (5) � blue.
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and is inreasing with the transverse momentum. The higher the transverse momentum,the lower the opening angle and thus the lower probability, neither of the traks will hitative volume of the TPC, taking into aount, all generated K0S in the disussed rapidityrange are heading toward the TPC.The aeptane of the �duial volume is shown on the next panel. The aeptane inreasewith the transverse momentum for bins (3) � (5) and stays relatively �at for the bin (2).At transverse momentum of pT ' 200 MeV/ there is a non-monotoni behavior of theaeptane, this is due to hange of the aepted topology from bak-to-bak with largeopening angle to the topology with the two traks heading in the same part of the detetor.The aeptane is strongly onneted with the deay orientation, whih an be seen onthe next panel displaying e�ieny of the Armenteros ut. If a deay would be orientedrandomly in � with respet to the diretion of the K0S the e�ieny would be around60%. For low transverse momenta, only these K0S are aepted whih deay parallel tothe diretion of K0S , deay produts open wide and hit opposite sides of the TPC. Dueto this topology the Armenteros ut does not remove any K0S . With inreasing transversemomentum this topology is less pronouned and when pT > 500MeV/ the Armenteros utrejets around 60% of the pairs � for these partiles the deay topology in � is not orrelatedwith the aeptane. The area of steep variation of the e�ieny of the Armenteros ut isthe same as non-monotoni area in the aeptane disussed in the previous paragraph.The traking e�ieny is presented in the next panel. The e�ieny is relatively onstantand is at the level 60%� 70%. The pair uts, in partiular opening angle ut are inludedinto traking e�ieny whih is visible as lose of e�ieny of high momentum kaons. Thestrong opening angle ut of  > 0:1 rad kills the high transverse momentum spetrum inrapidity bins (4) and (5). This strong ut is not justi�ed by MC but by the shape of theinvariant mass in data. The high momentum spetrum were sari�ed to obtain a reliableyield of the kaons. The option of momentum dependent opening angle ut was studied indata and the results will be used for the estimation of the systemati error.In the MC studies the (pT ; y) bin of the K0S was taken form the Monte-Carlo, in realitythe (pT ; y) bin is taken from the TPC traks momenta. The reonstruted traks andthus also the momentum of the pair have a �nite resolution. Due to this fat some of theprimary traks are histogramed into a wrong bin. When the spetrum is falling rapidly, asit does at high momentum, the resolution e�et smears the signal into higher momentumand an arti�ial inrease in the slope parameter is observed. The orretion fator due tothis e�et is shown on the next panel. The orretion is small, well below 5% and sometrend with the mass is visible.The overall e�ieny is shown on the Fig. 5.8. For the �rst bin, the e�ieny drops with79
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Figure 5.9: Invariant mass spetra for rapidity bin y 2 (2�2:15). Conseutive panels showtransverse momentum bins.
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Figure 5.10: Invariant mass spetra for rapidity bin y 2 (2:15� 2:30). Conseutive panelsshow transverse momentum bins.

82



)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

10

20

30

40

50

60

70

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

20

40

60

80

100

120

140

160

180

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

50

100

150

200

250

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

50

100

150

200

250

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

20

40

60

80

100

120

140

160

180

200

220

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

20

40

60

80

100

120

140

160

180

200

220

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

50

100

150

200

250

300

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

20

40

60

80

100

120

140

160

180

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

)2 (GeV/cπ πm
0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

20

40

60

80

100

120

ounts(a.u.)

Figure 5.11: Invariant mass spetra for rapidity bin y 2 (2:30� 2:45). Conseutive panelsshow transverse momentum bins.
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The peaks does not follow the Gaussian shape. For the low momentum, with narrow peaksthe tails on the left side develop. For the high momentum peaks the sizable tails on thehigh invariant mass are present. The reasons for the tails are manifold:� multiple sattering for low momentum traks� usage of pomb for late deays, pronouned mostly for high � K0SFor the middle momentum traks the shape is not ompletely Gaussian, but the di�erenesare less pronouned and the non-Gaussian part is onentrated in the peak.Two methods are used to extrat the peak. The �rst method is to �t a Gaussian and usethe area under the urve as a yield. In this ase the peak extration e�ieny will bethe ratio of the area under the urve and the total number of entries. If the peak will beGaussian the e�ieny would be � = 100%. The seond method onsist on ounting thenumber of entries in a given area, for example �2� around the enter, the width takenfrom the �t. In this ase the e�ieny is the number of ounted entries divided by thetotal number of entries. If the peak would be fully Gaussian the seond method shall havethe e�ieny of � = 95%.The peak extration e�ieny is shown in Fig. 5.13. The upper row for the �rst method,lower for the seond. The left olumn for the ombined momentum and the right for por3.When the �t is used, for most of the points the e�ieny is at the level of 92 � 94%. Atthe edges, for high transverse momenta, it behaves di�erently for both senarios: in aseof pomb it drops to 80% and stays relatively onstant when por3 is used. When simpleounting is employed, the e�ieny is aidentally similar to the ase of �tting and isbelow the value of � = 95%.The four methods an be used for the data analysis and the di�erenes between resultswill give and insight into systemati errors. The numbers presented depend on details ofthe simulation and to justify their use the resolutions obtained with data have to followthe resolutions obtained with the simulation.For the �nal analysis of data the tree parameter �t will be used and not ombined momen-tum. This deision is based on two results from the Monte-Carlo. The �rst is better peakresolution of the tree-parameter �t at high momentum and the seond is a �at orretiondue to peak extration e�ieny.
85
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Figure 5.13: Peak extration e�ieny for two methods and two types of momentum. Top:integral of the Gaussian �t for ombined momentum (left) and por3 (right).Bottom: ounting the entries using ombined momentum (left) and por3(right)
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6 Final data analysis and results
After data proessing, the invariant mass spetra were obtained. A few more steps have tobe performed to obtain the �nal results. The �rst step is the extration of the peak fromthe invariant mass spetrum, with the help of the bakground estimated with mixed events.Here it is important to note that with the signal-to-bakground as small as in this asenot only the shape but also the normalization are ruial. The raw yields extrated fromthe spetra will be then ombined with the reonstrution e�ieny to obtain transversemomentum spetra and �nally, after integration, the rapidity spetrum.The assessment of the quality of data and the estimation of the systemati errors are ne-essary steps before omparing data to other measurements and to theoretial preditions.6.1 Peak extration proedureThe invariant mass spetra of same and mixed events were analyzed to extrat the peak.Sine the signal of the K0S is very weak ompared to the ombinatorial bakground thekey issue in the peak extration is a preise normalization of the mixed events. As anadditional hallenge is seuring the stability of the proedure to obtain a handle on thesystemati error introdued during peak extration.The proedure has a number of steps and starts with saling mixed events to math thenumber of entries in same events. The saling fator has two parts, the �rst due to mixingwith eg. 4 events and the seond due to di�erent number of pairs when events withdi�erent multipliity are mixed. The seond omponent varies from bin to bin and issmall, at the level of 10�4.After saling, the signal spetra are reated by subtrating mixed events from same events.Sine the mixed events are not exatly reproduing the ombinatorial bakground a setof 50 signal spetra is reated by saling the mixed events spetra by an additional smallfator ":G"(m) = S(m)� (1 + ")M(m) (6.1)87



where G"(m) is the signal spetrum, S(m) is same events spetrum and M(m) is normal-ized spetrum of mixed events. The small fator " is hanging from �103 to +0:6 � 103.It is worth noting that the mixed events spetrum is multiplied by a number, not by afuntion. Multiplying mixed events by a funtion, for example a seond-order polynomial,an simplify the proedure. On the other hand it would introdue an additional level ofarbitrariness into data analysis.Every signal spetrum G"(m) is analyzed by �tting a formula representing a Gaussiansitting on a slope:f(m) = A+B �m+ C � 1�p2� exp (m�m0)22�2 ! (6.2)where m is the invariant mass and the �t parameters: A, B, C, m0 and � representrespetively: A � the o�set of the bakground, B � the slope of the bakground, C � theintegral under the Gaussian, m0 � the reonstruted mass of the K0S and � is the width ofthe Gaussian peak. The range of �tting is hosen arbitrarily to be 0:37 < m < 0:8 GeV.The variation of the upper limit does not in�uene the �t stability, while the variation ofthe lower limit has an impat on the results obtained at the level of 3% of the extratedyield.The spetrum with the best �t is seleted. The seletion is based on the smallest valueof the redued �2 of the �t. Other methods were also tried, based on the smallest valueof �t parameter B, the slope. The seond method gives essentially the same results. Forthe ontrol over the systemati error the method an introdue, the parameters of the �t� integral under the Gaussian and the width of the Gaussian � are histogramed for everyspetra �t with redued �2=NDF < 2.The best spetrum is analyzed further. The funtion g(m) = A + B � m is subtratedfrom it and the number of entries in the histogram in the range m 2 (m0 � 2�;m0 + 2�)is ounted. The range was seleted arbitrarily, but this range ontains most of the signaland the �utuations of the bakground are not very strong. This estimation of the signalhas to be orreted for the range used. Theoretially, the number has to be saled by1=erf(2) = 1=0:95. Due to the experimental e�ets, eg. multiple sattering, the peak isnot fully Gaussian in partiular at the tails. Thus the orretion fator is estimated usingfull Monte-Carlo simulation. The orretion fator for tails is presented in Fig. 5.13.After this proedure there are three estimates of the raw yield: integral under the best�t, ounted entries after subtrating the slope and integral from a set of good �ts. Thestatistial error of the third estimation is the standard deviation of the obtained values.88



The statistial error of the yield is alulated using total number of entries in the givenrange of the histogram. Stritly speaking the error � equals:� = q�(S) + �(B) (6.3)where the �(S) is the statistial error of the signal and bakground and �(B) is theerror of the bakground. In this ase the �utuations of the signal are negligible and thebakground has to be ounted twie (in same and in mixed events) thus the statistialerror is:� = p2 � "Z M+aM�a dmS(m)#1=2 (6.4)where the integration is performed in some arbitrary range. The range is usually hosento span 4 units of standard deviation � the same range as used to estimate the yield byounting the entries. The estimated error sales like � pa, thus hanges of range will notgive muh di�erene in the estimation of the error.Another possibility to estimate the error is to take the value from the �tting program.This value shall ontain some information on non-Gaussian shape of the signal, but inpratie both values of error agree.After extrating the peak for every bin in (pT ; y) in a given rapidity range the sameproedure an be applied to the total signal in the rapidity bin � to assess the stability ofthe proedure.6.2 Results � transverse momentum spetrum6.2.1 The raw signalIn the hapter disussing Monte-Carlo simulations the rapidity spae was divided into 5bins starting from y = 1:85. Sine no signal was observed in the �rst bin, in this hapterthe rapidity bins, numbered from (1) to (4) over the range y 2 (2:0 � 2:45). The binshave the width of 0:15, the same as in Monte-Carlo simulations.The signal with the best �t for every rapidity bin is shown in Fig. 6.1. The number ofentries and its error is shown on the piture. The signal looks properly extrated. Theproedure in fat was not expeted to work properly on the data from the whole rapiditybin. The �t expets a Gaussian, and this assumption is true when analyzing a partiulartransverse momentum � rapidity bin. When analyzing the whole rapidity bin, the signalis a set of many Gaussians with di�erent widths. 89
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bakground normalization and the spetra thus obtained are not statistially independent,so the blak errors are often smaller than the red errors. This fat also means that thesystemati error introdued by the normalization of the bakground is below statistialerrors.The total signal and its error is also displayed and both numbers an be diretly omparedwith the numbers from Fig. 6.1. The omparison between the raw signal taken from wholerapidity bins and the sum of signals taken from every (pT ; y) bin is shown in Fig. 6.3.The left panel shows the raw yield in rapidity bins using two methods. Blak points showthe yield extrated from the total rapidity bin and the red points show the yield extratedbin by bin.The points are analyzed statistially and the redued variable is reated:�Y =  (YT � YB)2�2T + �2B !1=2 (6.5)where YT is the yield extrated from the whole rapidity range and the YB is the yieldextrated bin-by-bin, and their errors are �T and �B respetively. The variable reatedshould follow Gaussian distribution if the data are statistially independent. The resultsof the statistial analysis are shown in the right panel of Fig. 6.3. The data are fully om-patible and the residuals are below the values expeted from the statistial distributions.While looking arefully at the raw yields from di�erent method, one an observe that theblak points are systematially lower than the red points. This suggest that extrating theyield from the whole bin leads to a lose of yield. The lost yield is smaller than statistialerror and an be explained by the fat that the signal in not Gaussian in this ase.6.2.3 Fit parametersThe goal of this analysis is the reonstrution of the number of kaons. The other parame-ters of the �t: reonstruted mass and the width of the Gaussian are important to assessthe data quality.The parameters of the �t � reonstruted mass and the width of the Gaussian � are shownin Fig. 6.4. The �t parameters from data are depited in blak and overlaid with theMonte-Carlo values, depited in blue. The straight blue line shows the PDG value of K0Smass equal m = 497 MeV/2.The reonstruted mass is systematially lower than the value expeted from the Monte-Carlo studies. The systemati shift is omparable with the statistial error of the reon-strution and smaller than bin-size of the invariant mass spetrum equal to 5 MeV/2.92
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Figure 6.5: Transverse momentum and transverse mass spetrum for four rapidity bins.95



6.2.4.1 Transverse momentum �t representationThe transverse momentum spetrum was �t with the Boltzmann funtion. The ommonlyused formd2Ndy dpT = ApT exp0��qm2 + p2TT 1A (6.6)with two parameters of the �t: sale A and temperature T is not the best hoie to �tdata. In this representation the total yield � integral of the funtion � depends on bothparameters of the �t and thus the error of the yield is orrelated with the error of the saleand temperature. A di�erent representation of the funtion an be found with two un-orrelated parameters: total yield and temperature. This an be ahieved by substitutingparameter A by two parts: the total yield N and the temperature dependent normalizationfator 1=C(T ). The normalization fator 1=C(T ) an be found by integration:C(T ) = Z pmaxT0 pT exp(�mT =T )dpT (6.7)The integration yields the formula:d2Ndy dpT = N � pT exp(�mT =T )�T (m0 + T ) exp(�m0=T )� T (mMAXT + T ) exp(�mMAXT =T )� (6.8)where both parameters of interest: N � the total yield � and T � the temperature � arediret parameters of the �t. This form has an arbitrary number mMAXT , but when thisnumber runs to in�nity the fator:limmMAXT !inf T (mMAXT + T ) exp(�mMAXT =T )! 0 (6.9)runs to 0, and this part an be negleted. This results in the equation:d2Ndy dpT = N � pT exp(�mT =T )T (m0 + T ) exp(�m0=T ) : (6.10)whih was atually used for �tting.96



6.2.4.2 Disussion on the shape of the spetrumThe data points in Fig. 6.5 follow the �t very well. In partiular for the bin (2) the pointsare aligned on the �t line. For side bins there are deviations whih are onneted withthe rapid hanges of the deay topologies: from bak-to-bak to the topology with twotraks at the same side. The hange of the topology means that at least one trak is atthe border of the geometrial aeptane of the detetor. The deviations are omparableto the statistial �utuations.The values of the �2=NDF are at the level of �2=NDF � 3, higher than expeted forthe statistial distributions. The relatively large values of �2=NDF an be explained byone of two points with underestimated error. The struture of the relation between datapoints and the �t will be studied further.The important aspet of the transverse momentum spetrum is the fat that the totalyield in the rapidity range an be alulated by two methods: from the �t and by di-retly ounting the points. The seond method is free from the unertainties due to theextrapolation.Sine two methods use the same points the results of both estimations agree below thestatistial error.6.2.5 The transverse mass spetraThe transverse mass spetra are shown in the left olumn of Fig. 6.5. The points arerealulated from the transverse momentum and drawn in the logarithmi sale. Bothspetra � transverse momentum and transverse mass � are mathematially equivalent.However di�erent properties of the spetra are visible when displaying both quantities.On the plot with transverse momentum spetra, the points with the highest yield aremost visible, and the points with low yield, at high transverse momentum are pratiallyinvisible. On the other hand, in the plot of the transverse mass spetra the alignment ofthe points, the temperature, is the most visible. Both methods of presentation provideomplementary insight into the quality of the data. The presented transverse mass is �twith the exponent1mT d2NdmT dy = A � exp��mTT � (6.11)with two �t parameters: sale A and the temperature T . The temperature obtained isshown in the panel. The transverse mass spetra and its �ts are not used for furtheranalysis, they are used to hek the quality of the data. 97
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However, the two �ts give similar result. The width � = 1:31� 0:20 and the extrapolatedyield at midrapidity dN=dyjy=0 = 21:2� 0:9.6.4 Data qualityThe statistial error of the measurement is at the level of 5%. An analysis of the qualityof data has to be performed in order to establish systemati error. The quality of datawas heked in two di�erent ways. In the �rst method, the �tting proedure was analyzedin detail, by �tting a part of the spetrum and by the study of the relative errors withrespet to the �t. This method gives an insight into the struture of the data and itsrelation to the �t.The seond method is based on the oherent variation of the uts in data and simulation.Two data sets will be presented: one with di�erent opening angle uts and the seondwith di�erent uts on the minimum transverse momentum of the traks. Additional datasets were obtained and analyzed, but the results will not be detailed here.Additional heks were performed, for example dividing the data into two subsets withdi�erent orientation of deay (positive trak forward or bakward). This method gives aninsight into the peak extration proedure. Both data samples have the same signal butthe bakground is di�erent due to proton ontamination (see Fig. 4.23). The details ofthis analysis will not be presented here only the �nal results will be quoted.6.4.1 Stability of the Boltzmann �tThe stability of the Boltzmann �t to the transverse momentum spetrum was hekedby �tting a subset of data. Five onseutive points are �t by Boltzmann funtion, thestarting point ranging from (0) to (6). The graphs with the �t parameters, the yield andthe temperature, as a funtion of the starting point of the �t are shown in Fig. 6.7. Sinethe �ts share data points they are not statistially independent, however the �t startingat (5) do not share points with the �rst �t, starting at (0), thus the two are independentmeasurements of the yield and the temperature.The Boltzmann �t has a �xed value at pT = 0 and the rise at pT ' 0 is dominated bythe phase-spae fator not by the temperature. This feature makes the �t starting athigh transverse momentum stable but the �t starting at pT = 0 is not sensitive to thetemperature. This is visible in the �rst points of the temperature san.The data shows high quality and the variation of the reonstruted parameters are atthe level of the statistial errors. The rapidity bin (3) and (4) are not very stable for99
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Figure 6.7: Stability of the Boltzmann �t. Left olumn: reonstruted yield as a funtionof the starting bin. Right olumn: reonstruted temperature. The rows arefor rapidity bins. See text for details of �tting proedure.100
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7 DisussionThe data presented in the previous hapter an be ompared with other experiments attop SPS energy and with theoretial preditions. Three measurements an be used for theomparison. The �rst is the K0S yield reported by the NA57 experiment [23, 45, 46℄, theseond is the mean value of the harged kaons published by NA49 [48℄ and the last is thepreliminary data on K0S from NA49 [47℄.The results of other experiments were obtained with di�erent initial onditions: they arePb on Pb ollisions with 5% entrality for harged kaons from NA49 and neutral kaonsfrom NA57 and 10% entrality for K0S from NA49. Before the qualitative omparison anbe made the data have to be saled to CERES onditions. Results will be saled to thesame number of partiipants using the Glauber model.From a theoretial point of view, it is di�ult interpret of the yield of the neutral kaonsin isolation. Instead, the yield will be ompared to the global �t of the thermal model totop SPS data.7.1 ResultsBefore omparing the obtained results to other experiments, they will be repeated. Thetransverse momentum spetra for four rapidity bins are shown in Fig. 7.1. The fullspetrum was obtained in the range of 2 < y < 2:45 and a partial spetrum in the range2:45 < y < 2:6. The spetrum was reonstruted up to a transverse momentum of pT < 1:6GeV/.The rapidity spetrum and the temperature as a funtion of the rapidity are shown inFig. 7.2. The rapidity spetrum follows a Gaussian shape entered at midrapidity. Thestatistial preision of the extrapolation to midrapidity is at the level of 4% and thesystemati error is 8%.The temperature was obtained independently for eah spetrum. For the full spetra inthe �rst three bins, the reonstruted temperature is T = 220� 4 MeV and dereases forthe short spetrum. The systemati error of the temperature is estimated to be ÆT = 10MeV. 105
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Figure 7.1: Transverse momentum spetra for four rapidity bins.
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7.2 The Glauber modelThe experimental data show that the partile multipliities sale with the number ofnuleons partiipating in the reation. The geometrial piture allowing the alulation ofthe number of partiipants and the number of binary ollisions in heavy ion reations wasdeveloped by Glauber and also Bialas [50℄. The presentation of the method an be foundin Ref. [51℄.Within the model it is possible to alulate the number of binary ollisions and the numberof partiipants as a funtion of an impat parameter b for given nulei of target and pro-jetile. The values are obtained by numerially sampling the transverse plane to alulatethe number of nuleons in the target nT and in the projetile nP in a given transverseplane ell. The number of binary ollisions is:nNN = �NN � nPnT ; (7.1)where �NN = 30 mb is the ross setion of inelasti nuleon�nuleon ollision. If at leastone binary ollision was reorded for a given nuleon it is ounted as a partiipant. Theproedure was implemented in the program [52℄ used for the alulations presented here.In the previous paragraph it was assumed that the bulk properties depend on the numberof partiipants. This statement an be veri�ed with the CERES data. The multipliitydensity of harged partiles at midrapidity measured by CERES is shown on the leftpanel of Fig. 7.3. The multipliity density at midrapidity dNh=dyjy=0 was measured inthe entrality lasses of 5% of the geometrial ross setion �G. The measurement wasperformed in the Monte-Carlo independent way, using the silion traker. Details of theproedure are presented in Ref. [53℄.The mean values of the number of partiipants were alulated for the entrality lassesusing the program in Ref. [52℄. The multipliity density divided by the number of parti-ipants is shown in the right panel of Fig. 7.3 together with a linear �t. The data pointsare ompatible with the linear dependene and the mean multipliity is:dNhdy jy=0 = (1:189 � 0:005) �Npart:Using this value, the mean multipliity density for the analyzed data sample of 0�7% �Gis: dNh=dy = 337 � 1:189 = 400: 107
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7.3.2 NA49The NA49 data on harged kaons were published in Ref. [48℄. Charged kaons are identi�edusing the spei� energy loss dE=dX in the TPC. The statistial error of the measurementis at the level of 2%, the systemati error for positive and negative partiles is estimatedto be 5%. In the ase of a dE=dX measurement the statistis is not a limitation, thereal issue is the proper desription of the tails and is re�eted in the systemati error. Atmidrapidity an additional point was presented with the partile type separation using theTime Of Flight (TOF) detetor.The 0:5 � (K+ +K�) values were saled to 7% entrality and overlaid with the CERESresults. The omparison is shown in Fig. 7.6. The data from CERES and NA49 agreewell. The shape of both spetra is the same, with the normalization di�ering by around5%, at the level of the statistial errors. The two midrapidity points from NA49 agreebetter with the �t from CERES than with the �t from NA49.The di�erene observed, at the level of 5%, an have di�erent soures. It an be due tothe systemati error or impreision in the entrality measurement saling. This error ishowever at the level of the statistial one and below the systemati error quoted by bothexperiments, thus the full ompatibility an be laimed.As an additional hek, the omparison of the ratio of neutral kaons to multipliity anbe made. The value from CERES is:K0S=Nh = (21:4 � 1:1)=400 = (5:35 � 0:27)% (7.6)The NA49 value of the total multipliity was onstruted in [49℄ from the yields of pions,kaons and protons. The ratio is:K0S=Nh = (23:2 � 0:5)=430 = (5:39 � 0:12)% (7.7)The ratios are in perfet agreement, at a level below 1% of the yield, below statistialerrors. One has to remember the multipliity in CERES was measured independently ofthis measurement. This not the ase for NA49. The multipliity is the sum of primarypions, kaons and protons thus the numerator and denominator in the ratio are orrelated.The preliminary data on K0S prodution were obtained for 10% entrality. The interest-ing feature of this measurement is a wide aeptane in the rapidity around midrapidityallowing omparison of re�eted points. The data points after saling are shown in Fig.7.6 as blue triangles.112



The data points and the re�etions are ompatible within the statistial limit. In therapidity range ommonly measured the CERES data are ompatible with one point of theNA49 data, but not with the re�eted point. The large rapidity points are ompatiblewith the extrapolation of the �t, but the midrapidity points are not.The shape of the �t to the rapidity spetrum is similar, with the same width but thedisrepany is visible in the details and the absolute normalization. No onlusion an bedrawn, due to the lak of the systemati errors in the NA49 measurement.7.3.3 ConlusionThe results obtained with this analysis are ompatible with the mean of harged kaonsobtained by the NA49 experiment at the level of statistial error of 5%. Partial agreementwith results from NA57 is observed.7.4 Comparison to the thermal modelWith the neutral kaons alone one an not reonstrut the temperature and the baryohem-ial potential of the hemial freeze-out. One an extrat the parameters of the �reballusing other results from entral ollisions at top SPS energy. The �t to all published ratiosis shown in Fig. 7.7.The global �t gives the temperature of T = 160 MeV and baryohemial potential of�B = 240 MeV. For the volume of 350 partiipants the predited number of K0S in oneunit of rapidity at midrapidity is N = 24:8 [54℄.The predition has to be saled using the number of partiipants saling by a fator of� = 338=350 = 0:965, thus the predition of the thermal model for AuPb ollisions withentrality of 7% is N = 23:91.The value obtained in this work after integration of the �t is N = 20:6� 0:9stat � 1:6syst.The value is extrapolation dominated, sine in the range of one unit around midrapiditythere are no measured points. The thermal model gives yield greater by 16%.The best method to ompare the data and the model would be a statistial analysis.This an not easily be performed here, beause the measurement has both statistial andsystemati errors. Two options will be disussed. The �rst option is to add statistial andsystemati errors quadratially and treat the result as statistial, then the error is:�1 = 9%: (7.8)1The error of the model predition, due to �tting experimental data and saling to CERES trigger is notevaluated. The error an be expeted to be lower than the experimental error. 113
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8 Reonstrution of neutral strange baryons
The aim of this thesis was the preision measurement of the neutral strange mesons � K0S .With the programs and the proedures developed for this purpose the reonstrution of thestrange baryon � and anti-baryon � is possible. The full proedure of the reonstrutionwill not be desribed; only the results and important di�erenes of this analysis to the K0Sanalysis are presented.8.1 Hyperons in heavy ion ollisionsThe � have deay pattern similar to that of K0S :�! p�� (8.1)with the branhing ratio r = (63:9� 0:5)%. In ase of �, unlike the ase of K0S , the deayis not symmetri and the proton arries most of the momentum. This asymmetry is visiblein the Armenteros plot of the deay topology shown in Fig. 4.23.In ase of K0S the pions were not only symmetri but also have the same momentumdistribution as the primary pions, thus the deay topology was determined by the detetor.This is not the ase for � partile. The momentum released during the deay is low,q = 101 MeV/, and thus also the opening angle is low. Due to low opening angle, onean not expet the bak-to-bak deay topology will fall into the aeptane, thus theaeptane will not start at pT = 0 MeV/ and obtaining the yield of the neutral strangebaryon will need extrapolation of the transverse momentum spetrum.� is feed-down by �0 partile and multi-strange partiles. The �0 deays eletromagneti-ally �0 ! � with branhing ratio r = 100%. This deay is very di�ult to resolve andthus the � ontent in the thermal model ontains feed-down from �0.The multi-strange baryons � deay weakly into � and the pion:�0 ! ��0 (8.2)119



�� ! ��� (8.3)with the branhing ratio greater than r > 99%. Other deay hannels also lead to �.The relative abundane of �� partiles is ��=� = 0:1 aording to the results from NA57[23℄. For the ios-symmetry reasons the same number of �0 shall be present. Additionalorretion, suppressed by the other of magnitude is the ontribution from triple strangebaryon 
�. The 
� deays:
� ! �K� (8.4)with the branhing ratio of r = (67:8 � 0:7)%. Other deay hannels inlude � thus atthe end every 
 partile produes one �.The data presented here will not be orreted for feed-down from multi-strange baryons.The important question is if the e�ieny for the reonstrution of late �s is the same asfor prompt ones and if the spetrum of the �s from deays is the same as the spetrum ofthe prompt �s.The lifetime of multi-strange baryons is smaller than that of � and the � arries mostof the momentum of the original partile. These two fats suggest, the reonstrutione�ieny of prompt and late �s is the same. If both onditions are ful�lled the numbershave to be orreted down by around 20% � 25%. If the reonstrution e�ieny or thespetrum are di�erent, even be a small amount, the results an be signi�antly in�ueneddue to large extrapolation of the spetrum to low transverse momentum.8.2 Data analysis and reonstrution senario8.2.1 Aeptane and Phase�spae segmentationThe aeptane after phase�spae segmentation is shown in Fig. 8.1. The upper panelshows the signal in a given bin and the bottom shows the aeptane. The measurementis possible in the rapidity range 1:8 < y < 2:6 whih was segmented into 4 bins overing0:2 units eah. The rapidity bins will be numbered from (1) to (4).The aeptane for the � starts at transverse momentum pT > 0:5 GeV/. This fatmeans, a small fration of the ross-setion will be atually measured and obtaining totalnumber of � will need extrapolation. As disussed in the introdution, this is due to theabsene of the bak-to-bak topology. The shape of the aeptane is aligned along thepolar angle of the � and thus has a banana shape in the rapidity � transverse momentum120
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There are two extreme possibilities in the normalization of the mixed events. In the �rst,no normalization is applied and the seond is to normalize to the number of entries insame and mixed events. The seond method does not work properly, beause the ratioof the number of entries in the � peak to the total number of entries is at the level of10�3. The di�erene in the extrated � peak with two extreme normalizations amountsto around 5% and is greater than the statistial error of the yield.The atually applied proedure normalizes the mixed events to the bakground entries insame events. The proedure works on the bin-by-bins basis and is the following. First thesignal is reated without any arbitrary normalization of mixed events and the � signal isextrated. Then mixed events are normalized to the number of pairs in same events minusnumber of entries in the � peak. The number of entries in the � peak depends on thenormalization so the proedure is repeated iteratively for 10 times.8.3.2 Fit parameters and the raw yieldThe signal was divided into transverse momentum � rapidity bins and after the normal-ization was �t with a Gaussian. No o�set or residual bakground were present in the �t.The extrated parameters are shown on the onseutive panels. The extrated raw yieldsare shown on the left olumn in Fig. 8.5 for four rapidity bins and the right olumn showsthe statistial signi�ane of the signal. The signal is strong, the maximum signi�ane isaround 20� 30 in the bulk and dereases slowly toward high momentum.The reonstruted mass and the mass resolution on the bin-by-bin basis are shown in Fig.8.6 The left olumn shows the di�erene between the reonstruted mass and the PDGvalue. Exept the (3) rapidity bin where the high momentum � have higher reonstrutedmass, the mass does not diverge more than allowed by the statistial �utuations. Themass resolution is shown in the right olumn in Fig. 8.6. The trend of the resolution inMonte-Carlo and in data is the same and the two lines agree well. The resolution obtainedin data tends to be worse up to 10%.8.3.3 Correted transverse momentum spetrumThe raw yields presented in Fig. 8.5 where orreted for the aeptane and e�ieny andare shown in Fig. 8.7. The left olumn shows the transverse momentum spetrum in linearsale while the right olumn in the logarithmi sale. The data points are aompaniedby a set of lines. The blak lines show the orretion fators. The four orretion fatorshave all di�erent systematis. For low rapidity bins the orretion fator inreases withtransverse momentum, for high rapidity bin it dereases and for entral bins it is �at. The125
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8.3.4 Transverse mass spetrumThe transverse mass spetrum, realulated form the transverse momentum spetrum isshown in Fig. 8.8. It is important to note, the spetrum in bin (2) with the tempera-ture lower than the others is the longest spetrum spanning transverse mass range of 1:8GeV/2.8.3.5 Test of the transverse momentum spetrumThe stability of the �t was tested by �tting a subset of the spetrum. This proedure isthe same as for K0S and the results are displayed in Fig. 8.9. The left olumn shows thereonstruted yield and the right the reonstruted temperature.For most of the spetra the �ts are stable. The results obtained in bin (3) are di�ultfor the interpretation, taking into aount that the points are orrelated. Consideringunorrelated points: the �rst, 5th and 10th, the shape an be attributed to the statistial�utuations.From the plots presented above the onlusion an be drawn the transverse mass of �follows the exponential distribution in the region m�m� = 0:3 � 2 GeV/2.8.3.6 Rapidity spetrumThe rapidity spetrum is presented in the left panel in Fig. 8.10. The spetrum was�t with a straight line and the result of the �t is displayed in the �gure. The rapiditydependene of temperature is shown in the right panel if Fig. 8.10. The spetrum was �twith a straight line and gave the result T = 254 � 2 MeV.8.4 Comparison to other experimentsThe data an be ompared to results from NA49 and NA57. The yield reported by NA57[23℄ in the entral events, without feed-down orretion is:dNdy = 18:5� 1:1stat � 1:8syst (8.5)and the temperature [45℄:T = 305 � 15stat � 30syst MeV (8.6)130
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Figure 8.9: Analysis of the transverse momentum spetrum by �tting subsets of data. Seetext. 131
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shown in Fig. 8.13 and the � peak, after subtration of the ombinatorial bakgroundis shown in Fig. 8.14. The signal-to-bakground ratio is at the level of 10�3 and thesigni�ane of the peak is at the level of 15, thus the overall statistial preisions is low.The raw signal of � and � in four rapidity bins in the range 1:8 < y < 2:6 is shown inFig. 8.15. The signal for � was obtained for all bins and for � for the �rst three bins.The last bin ontains pratially no signal.The �=� rapidity spetrum was �t with a Gaussian and the result is presented in Fig.8.16. The points are well aligned on the �t and the extrapolated ratio at midrapidity is:�� jy=0 = 0:125 � 0:014 (8.9)the width is � = 1:0 � 0:2. The data were ompared in Fig. 8.17 to data points fromNA49 and the �t from NA57, the �t overs the aeptane of NA57.Relatively good agreement between all three experiments is visible. The data from NA49have higher ratio but the width of the spetrum is the same as for data reported here.The NA57 have the same value but the width reported by the ollaboration is fator 2smaller than the data obtained here. In terms of the aeptane the two measurementsare omplementary and the smooth transition from CERES to NA57 is visible.8.6 Interpretation and OutlookThe data presented here are not fully elaborated in terms of impat of deays of the multi-strange hyperons. Additional simulations are needed to lear the impat of the feed-downon the spetrum and total yield. With optimization of the kinemati uts one an expetto derease the lower border of the aeptane by �pT � 100 MeV/ this will give betteronstrain on the shape of the transverse momentum spetrum. With data at hand theSPS � question an not be answered in a reliable manner.The anti-baryon to baryon ratio gives similar results by all experiments. The data pre-sented here are loser to NA49 in terms of the width of the distribution and loser toNA57 in terms of absolute value.
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9 Summary and outlookIn the �rst hapter the question was asked whether the systematis of the strange partileprodution follows a smooth lines as predited by the thermal model or whether a sharpstruture develops. The subsequent preision measurement of the K0S presented in thiswork is one of the measurements to orroborate on the issue.The whole argument about the sharp strutures in the strangeness prodution was basedon data olleted by the NA49 experiment. The results were later hallenged by the yieldsobtained by the NA57 ollaboration.The results presented in this work are in the agreement with data of NA49 and also thesoure of disagreement with NA57 was pointed out. With data at hand the interpretationof K0S not following the thermal model of hadron gas is not statistially signi�ant. Alsoin the analysis of the temperature of the neutral kaons no strong statement an be made.The situation would be lari�ed with the measurement at energy ps = 60 AGeV.The neutral baryons did not reah the preision needed for the de�nitive omparison.More e�ort on the data analysis is needed for the solution of the disrepanies present inSPS data.Summarizing, the main progress of this work is the preision measurement of the neutralkaon and the lari�ation of the experimental status. This measurement is an importantstep in the ambitious plan of building a database of strangeness prodution. The futureprojet that will shed more light on the subjet is the K+� reonstrution. This work inprogress in the CERES ollaboration will give the spetrum and the preision ratio ofthe K+=K�. This ratio with ooperation of the measurement provided here an larifythe harged kaon prodution. Additional results an be obtained by reproessing and theanalysis of the short runs at beam momentum of 40 GeV/ and 80 GeV/ per nuleonwith programs disussed in this thesis.The new data on the energy region disussed will ome from the energy san of the RHICollider and in the future, high statistis will be olleted with new FAIR projet urrentlyunder development. At the same time new opportunities will appear at the new LHCollider with the ALICE experiment under onstrution. In the new energy regime thestrongly interating matter will be studied with hadrohemistry and penetrating probes.139
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Appendix A: Raw signal of K0S
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