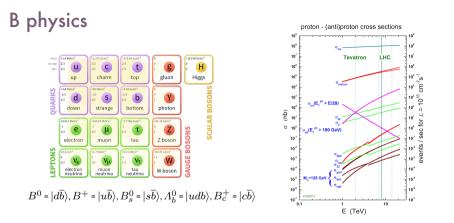


Semileptonic charged-current b-hadron decays at LHCb

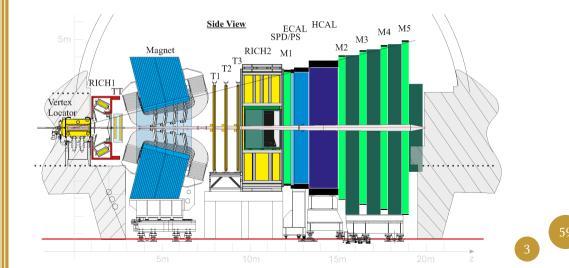
Neckarzimmern, March 16, 2023

Michel De Cian, Heidelberg

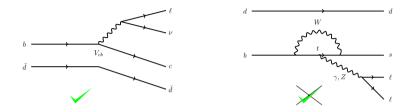


- B physics is the study of bound states containing one b quark and their decays / dynamics.
- They decay in a multitude of final states, allowing the study of a wide range of physics.
- They are copiously produced at the LHC: $10^{11}bar{b}$ pairs produced per fb $^{-1}$
- Non-B physics is great, too (but I had to restrict the topic a bit).

The LHCb detector (Run 1+2)

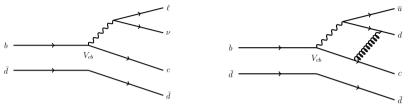


Linguistics



- "Semileptonic decay" just refers to a final state with leptons and hadrons.
- Except for LHCb people where "semileptonic B decay" stands for $b \to c$ and $b \to u$ transitions with charged and neutral leptons in the final state.
- i.e. no $b\to s\ell^+\ell^-$ transitions like $B^0\to K^{*0}\ell^+\ell^-$ (they are still great...)

Motivation



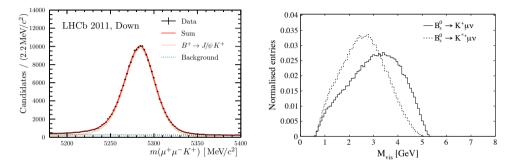
- The fundamental (theoretical) advantage of semi-leptonic decays is the non-coupling of the leptonic system to the outgoing hadron.
- The fundamental (experimental) disadvantage of semi-leptonic decays is the non-reconstructible neutrino.
- Experimental advantage: About 10% of all *b*-hadron decays: Very large samples, allows for many precision tests of the Standard Model.

The CKM matrix

 $egin{pmatrix} V_{ud} & V_{us} & V_{cs} & V_{cs} & V_{cs} & V_{ts} & V_{t$

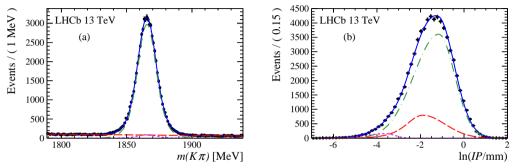
Techniques for semileptonic decaγs (at LHCb)

The fundamental experimental problem



- The fundamental experimental problem with semileptonic decays (at LHCb) is the missing neutrino.
- Cannot construct a B meson / baryon invariant mass.
- "Visible mass", *i.e.* invariant mass of all remaining particles has poor discrimination power.
- Need smarter approaches.

I: Denial

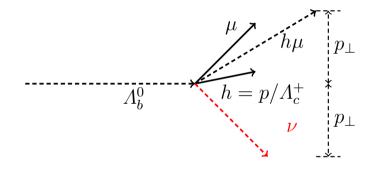


• One might not need a B invariant mass like object at all e.g. when studying $B \rightarrow D \mu \nu X$.

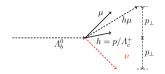
- $\mathcal{B}(B
 ightarrow D \mu
 u X$) pprox 10% (it's $|V_{cb}|$)
- Displaced muon
- D resonance clean to select
- Fit $m(K^+\pi^-)$ and $\log(\mathrm{IP}_{\mathrm{D}})$ simultaneously to select the decay (and separate from prompt charm).

- The method on the last slide only really works well for abundant (Cabbibo favoured) signals with a clean resonance, and where you do not care about additional particles.
- For decays such as $\Lambda^0_b o p\mu^- \overline{\nu}_\mu$ and $B^0_s o K^- \mu^+ \nu_\mu$, this does not work so well.
- And neither for decays with τ leptons in the final state, such as $B^0 \to D^{*+} \tau^- \nu$
- Let's see if we can't make up an invariant mass variable that is as close as possible to the "standard" one.

III: Bargaining (I)



III: Bargaining (II)



$$m_B^2 = (p_{vis} + p_{\nu})^2$$

$$= m_{vis}^2 + p_{\nu}^2 + 2 \cdot p_{vis} p_{\nu}$$

$$p_{vis} \cdot p_{\nu} = E_{vis} E_{\nu} - p_{\parallel vis} p_{\parallel,\nu} - p_{\mathrm{T}vis} p_{\mathrm{T}\nu}$$

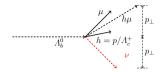
$$\stackrel{p_{\mathrm{T}vis} \equiv -p_{\mathrm{T}\nu}}{\equiv} E_{vis} E_{\nu} - p_{\parallel vis} p_{\parallel,\nu} + p_{\mathrm{T}}^2$$

• Assume: $p_{\parallel vis} = p_{\parallel, \nu}$

• $p_{vis} \cdot p_{\nu}$ is Lorentz invariant. One can always boost along the flight direction in a system where $p_{\parallel vis}$ vanishes.

•
$$p_{vis} \cdot p_{\nu} = \sqrt{m_{vis}^2 + p_{\rm T}^2 \cdot p_{\rm T} + p_{\rm T}^2}$$

III: Bargaining (III)



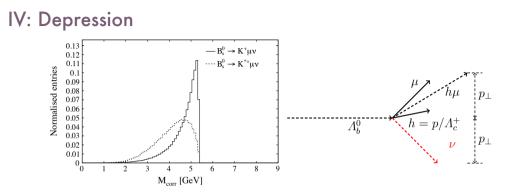
- Assume: $p_{\parallel vis} = p_{\parallel, \nu}$
- $p_{vis} \cdot p_{\nu}$ is Lorentz invariant. One can always boost along the flight direction in a system where $p_{||vis}$ vanishes.

$$p_{vis} \cdot p_{\nu} = \sqrt{m_{vis}^2 + p_{\rm T}^2 \cdot p_{\rm T} + p_{\rm T}^2}$$

$$m_{B,corr}^2 = m_{vis}^2 + 2 \cdot \sqrt{m_{vis}^2 + p_{\rm T}^2} \cdot p_{\rm T} + 2 \cdot p_{\rm T}^2$$

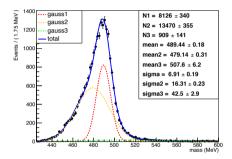
$$= \left(\sqrt{m_{vis}^2 + p_{\rm T}^2} + p_{\rm T}\right)^2$$

$$\therefore m_{B,corr} = \sqrt{m_{vis}^2 + p_{\rm T}^2} + p_{\rm T}$$



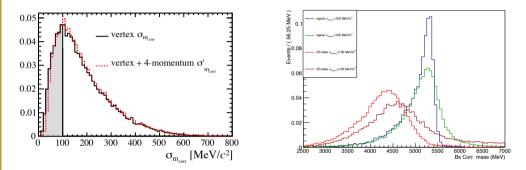
- m_{corr} peaks at the nominal B mass (the case where, in the rest frame of the B, the visible particles and the neutrino fly perpendicular to the flight direction).
- But it has a very long tail to lower masses.
- This is a consequence of the assumption we made.
- Still: One can show that the corrected mass is the best possible variable one can construct (lacking additional information) (arxiv:2108.13820)

V: Acceptance



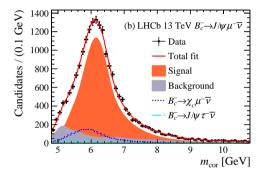
- There are some points to consider:
 - In an experimental setup, the upper end of the distribution is broadened due to resolution effects.
 - One can also construct m_{corr} for a missing particle with non-zero mass, *e.g.* one can reconstruct $K^+ \rightarrow \pi^+ \pi^- \pi^+$ with a missing π^- .
 - $m_{K,corr} = \sqrt{m_{vis}^2 + p_T^2} + \sqrt{m_{\pi}^2 + p_T^2}$
 - The width of the peak depends on the available phase space.

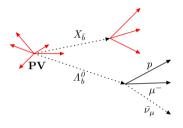
 $\sigma(m_{corr})$



- Can calculate expected error of m_{corr} (have fun with Jacobians...)
 - As expected, error on secondary vertex dominates.
- And then cut on it.
- Improves separation between signal and background, but greatly reduces event yield.

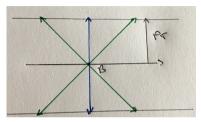
More resolutions

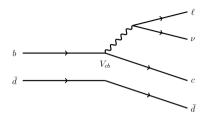




- As seen, there is a long tail to lower masses, bound by the available phase space.
- On top of that, there are resolution effects.
- Upper tail can be longer than lower tail, *e.g.* typically for B_c^+ decays.
- Main reason is the "precision of the lever arm" given by the precision of the secondary vertex.

 q^2 (I): How



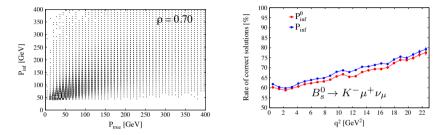


- The corrected mass was constructed by assuming $p_{\parallel,vis}=p_{\parallel,\nu}$, *i.e.* only one quantity was fixed.
- If we assume that the mother particle is a b hadron with the known mass, one can obtain $p_{\parallel,
 u}$
- And calculate q^2 = squared invariant mass of the dilepton system = squared invariant mass of the virtual W.
- Downside: The mass is a squared quantitiy, one obtains two solutions (and only one is correct).

 q^2 (II): Which solution to choose 400 $\rho = 0.63$ 0 = 0.49350 350 300 300 250 P [GeV] 250 P [GeV] 200 200 150 150 100 100 50 0 L 20 40 $1/\sin(\theta_{\text{triabel}})$ Flight length [mm]

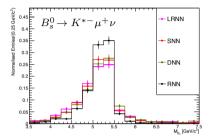
- Experimentally, one solution most often occurs more frequently than the other (due to acceptance of the subdetectors, selection cuts in the analysis, etc...). Can choose this one.
- Or: Try to get an independent measure of the B momentum, and compare with the two solutions: Pick the closer one.
- B momentum is correlated with flight length and angle wrt to beam axis.

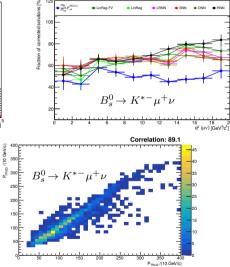
 q^2 (III): Which solution to choose



- Use a linear regression with flight length and angle wrt to beam axis to predict B momentum.
- Pick solution which is closer to predicted momentum: Significantly better than random choice.
- Depends on the decay in question.

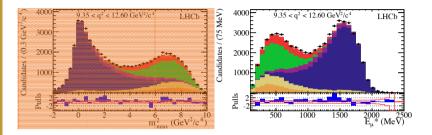
 q^2 (IV): Bring on DNNs!





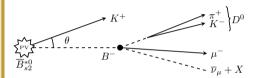
- Using DNNs and training on a specific decay channel performs a bit better.
- No magic bullet though

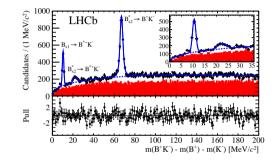
Other approaches: Collinear approximation



- One can use other discriminating variables than m_{corr} , e.g. m_{miss}^2
- Approximate the B momentum with $p_{z,B} = rac{m_B}{m_{vis}} \cdot p_{z,vis}$
- $p_{\nu} = (p_B p_{vis})$, *i.e.* m_{miss} is mass of neutrino.
- If only one neutrino missing: Signal peaks at 0, rest higher.
- Also energy of muon in ${\cal B}$ rest frame is discriminating.
- Note: m_{corr} and m^2_{miss} are strongly correlated.

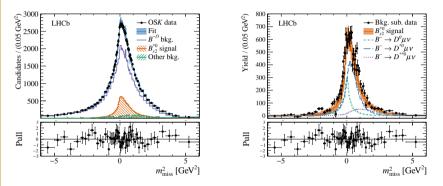
Other approaches: Using $B^*_{s2} ightarrow B^+ K^-$ (I)





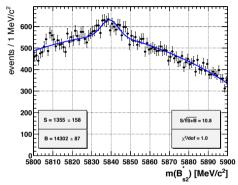
- Use the decay $B^*_{s2} \rightarrow B^+ K^-$
- This adds another (narrow) resonance to the decay chain.
- Remember: only one component, $p_{\parallel,
 u}$ missing.
- Constrain to B^+ mass, fit in B^*_{s2} mass, or constrain to B^*_{s2} mass, calculate m^2_{miss} (= m^2_{ν})

Other approaches: Using $B^*_{s2} ightarrow B^+K^-$ (II)



- Constrain to B^*_{s2} , calculate m^2_{miss} .
- Can be used to e.g. calculate $B \to D, D^*, D^{**} \mu \nu$ fraction.
- Can be useful for certain decays, but not applicable to all problems.
- Downside: Number of B^+ reduced by about factor of 100 when requiring B^st_{s2} resonance.

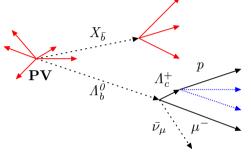
Other approaches: Using $B^*_{s2} ightarrow B^+K^-$ (III)



- Constrain to B^+ , fit in B^*_{s2}
- Also works for e.g. $B^+ \rightarrow \rho \mu^+ \nu$, but very little signal yield.
- At some point using the corrected mass becomes more advantageous compared to using B^*_{s2} : Bigger signal yield compensates for broad signal distribution.

25

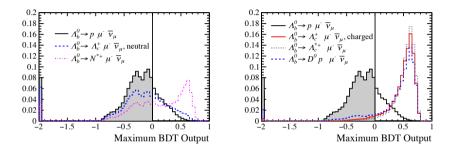
Vertex isolation: charged isolation



- When looking at Cabibbo-supressed semileptonic decays ($ert V_{ub} ert$), need to fight $ert V_{cb} ert$ background.
- Two handles: c hadron flies a few mm and decays (mostly) into more tracks than signal.
 - vertex χ^2 is poor for $|V_{cb}|$ background
 - vertex- χ^2 increases only little by adding closest track.
- In reality: Use as much information as possible and construct a multivariate classifier

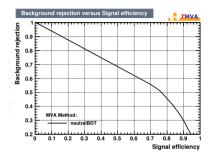
59

Vertex isolation: charged isolation



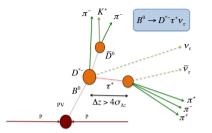
- Run over all tracks in the event which are "close" to the $p\mu$ vertex, evaluate BDT for them.
- As expected performs better for channels with at least one more track than on channels with neutral particles.
- Different analyses use different techniques, but idea is always the same
- Charged vertex isolation usually most powerful (high-level) variable to extract signal in semileptonic decays.

Vertex isolation: neutral isolation



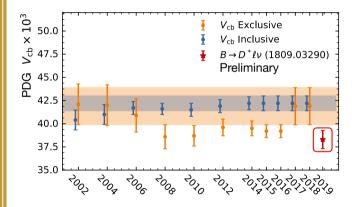
- Main problem with neutral particles: One does not know their point of origin *i.e.* PV or SV.
- Neutral isolation mostly much less powerful than charged one.
- But similar strategy as charged one: See if you find neutral objects in vicinity of signal decay.

Vertex isolation: "au isolation"



- With τ in the final state, can reconstruct them as $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \nu_{\tau}$.
- The 3 pions form a vertex which has to be displaced from other vertices.
- Depends strongly on the resolution of the τ vertex, as $c\tau\approx 87\,\mu {\rm m}$

Some semileptonic measurements at LHCb

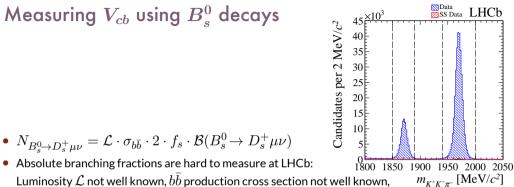


- How do you measure $|V_{cb}|$?
- ${\mathcal B}$ is proportional to $|V_{cb}|^2$, just count the events!
- Or almost...

- Let's consider the decay of a pion: $\pi^+
 ightarrow \mu^+
 u_\mu$
- $\Gamma(\pi^+ \to \mu^+ \nu_\mu) = \frac{G_F^2 |V_{ud}|^2 f_\pi^2}{8\pi} m_\pi m_\mu^2 \left(1 \frac{m_\mu^2}{m_\pi^2}\right)^2$
- Helicity suppressed and non-fundamental parameter f_π (*i.e.* the decay constant).
- f_{π} takes into account that the pion is a composite object.
- Find a composite particle with b and c quarks: the $B_c^+\,$
- . Could measure $B_c^+ \rightarrow \mu^+ \nu$. Well, good luck...

• More promising: $B_s^0 \to D_s^{(*)+} \mu \nu$: no helicity suppression. • $\frac{d\Gamma(B_s^0 \to D_s^+ \mu \nu)}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D)^2 \eta_{EW}^2 |V_{cb}|^2 (w^2 - 1)^{3/2} |\mathcal{G}(w)|^2$ • With $w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$ and \mathcal{G} a form-factor (only one assuming massless leptons). • More complicated in case of D_s^{*+} compared to D_c^+ (= more form factors)

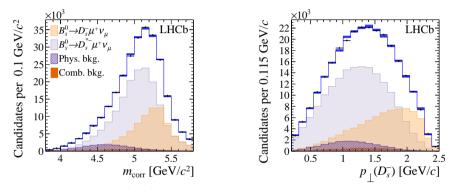
- That means: In order to measure $\left|V_{cb}
 ight|$, we need to know (or measure) the form factors.
- Important point: $|V_{cb}|$ does *not* depend on w, but ${\mathcal G}$ does.



 f_s not well known

- Perform relative measurement: $\frac{\mathcal{B}(B_s^0 \rightarrow D_s^+ \mu \nu)}{\mathcal{B}(B^0 \rightarrow D^- \mu \nu)} = \frac{N_{B_s^0 \rightarrow D_s^+ \mu \nu}}{N_{B^0 \rightarrow D^- \mu \nu}} \cdot R$
- R accounts for different efficiencies, etc.
- Use $D^- \to K^+ K^- \pi^-$ and $D^-_s \to K^+ K^- \pi^-$: Signal and normalization channel have identical final state, many uncertainties cancel in ratio.

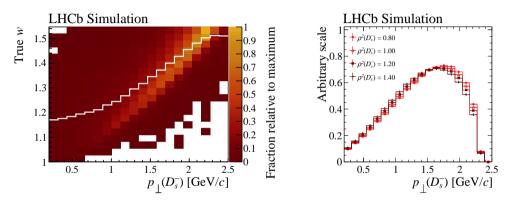
Measuring V_{cb} using B_s^0 decays



• Given that these are $\left|V_{cb}
ight|$ decays, the sample is dominated by signal events.

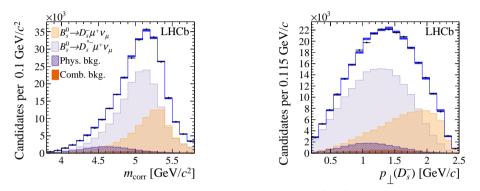
- $D_s^{*+} \rightarrow D_s^+ \gamma$ or $D_s^{*+} \rightarrow D_s^+ \pi^0$: Neutral objects with low p_T are hard to reconstruct, so only D_s^+ is measured, and excited states are separated in m_{corr} .
- But why not measure q^2 to obtain w?

Measuring V_{cb} using B_s^0 decays



- As seen before, q^2 can only be computed up to a two-fold solution.
- But q^2 is correlated with the $p_{\rm T}$ of the D_s^+ wrt to the B_s^0 flight direction.
- Use this correlation to determine form factor parameters.

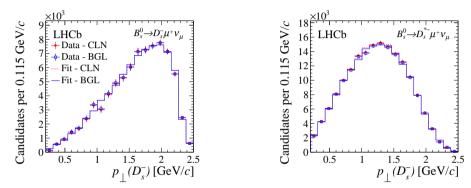
Measuring V_{cb} using B_s^0 decays



- Need to measure the amount of signal events to determine $ert V_{cb} ert$.
- Fit the two variables with templates: Histograms from MC that can be scaled up or down until the overall shape fits.
- Take limited number of simulated events into account by allowing for fluctuations in each bin.

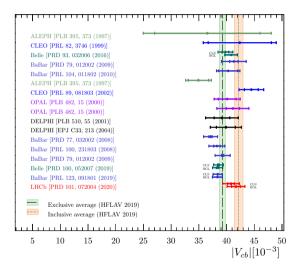
59

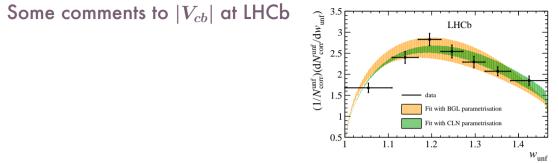
Measuring V_{cb} using B_s^0 decays



- Several form factor parametrizations exist.
- "Famous" ones: BGL and CLN. Can fit for both parameter sets and extract $|V_{cb}|$ with one or the other.
- Results are fully consistent.

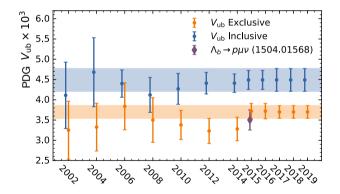
Measuring V_{cb} using B^0_s decays



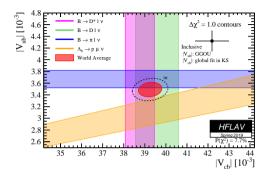


- LHCb was not built to measure $ert V_{cb} ert$, but achieves a good precision still.
- Always need to rely on precision of normalisation channel (*i.e.* an external measurement). For this measurement also rely on f_s/f_d .
- LHCb also measured shape of differential decay rate of $B_s^0 \to D_s^{*+} \mu^- \nu$ by fully reconstructing $D_s^{*+} \to D_s^+ \mu^-$ (without measuring $|V_{cb}|$)
- No inclusive measurement of $|V_{cb}|$ so far at LHCb, but investigations using a sum-of-exclusive approach with B^0_s decays are ongoing.

Measuring V_{ub}

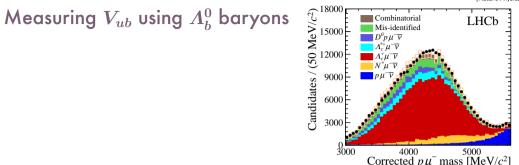


Measuring V_{ub}



- Much more background: $|V_{cb}| \gg |V_{ub}|$
 - Use isolation techniques / machine learning.
- Hadronic system has lower mass (*e.g.* mass of ρ^0 vs mass of D^0), mostly coming with more background.
- Less events: Have not (yet) determined form factors and $\left|V_{ub}
 ight|$ at the same time.
 - Use theoretical predictions for the form factors

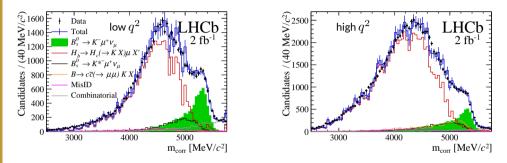
44



• Measure
$$\frac{|V_{ub}|}{|V_{cb}|} = R_{FF} \cdot \frac{\mathcal{B}(\Lambda_b^0 \to \mu\mu^- \overline{\nu}_{\mu})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})}$$

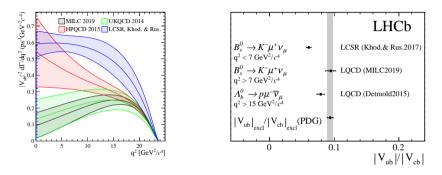
- Protons as final states are less abundant than kaons or pions (easier to separate from background).
- Use the corrected mass. Unfortunately not very clean, but not the dominant uncertainty.
- Model all backgrounds with templates: Large contribution from Λ_c^+ decays.
- Normalization to Λ_c^+ decay reduces systematic uncertainties and dependence on $f_{\Lambda_c^0}$.
- First measurement of the decay $\Lambda_b^0 \to p \mu^- \overline{\nu}_\mu$, about 15'000 events.

Exclusive $|V_{ub}|$ using B_s^0 mesons



- Use $B^0_s o K^- \mu^+ \nu_\mu$ decays to measure $|V_{ub}|$: First observation of $B^0_s o K^- \mu^+ \nu_\mu$.
- Measure $\frac{|V_{ub}|}{|V_{cb}|} = R_{FF} \cdot \frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^+ \mu \nu)}$, use m_{corr} to discriminate signal and background.
- Divide $B^0_s \to K^- \mu^+ \nu_\mu$ in two bins of q^2 with equal number of signal events.

Exclusive $|V_{ub}|$ using B_s^0 mesons

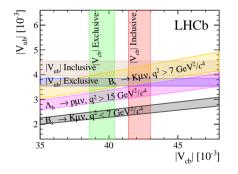


• Two different FF predictions for $B^0_s \to K^- \mu^+ \nu_\mu$ used to extract $|V_{ub}|$:

- Low q^2 : LCSR based on [JHEP 08 112]
- High q^2 : LQCD based on [Phys. Rev. D100, 034501]

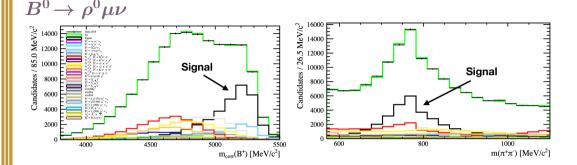
• Provide two values of $|V_{ub}|$. Differential rate will help understanding the $B_s^0 \rightarrow K^- \mu^+ \nu_\mu$ decay better.

Exclusive $\left|V_{ub}\right|$ using B_{s}^{0} mesons



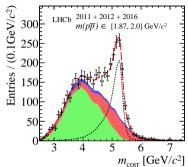
Uncertainty	All q^2	low q^2	high q^2
Tracking	2.0	2.0	2.0
Trigger	1.4	1.2	1.6
Particle identification	1.0	1.0	1.0
$\sigma(m_{\rm corr})$	0.5	0.5	0.5
Isolation	0.2	0.2	0.2
Charged BDT	0.6	0.6	0.6
Neutral BDT	1.1	1.1	1.1
q^2 migration	-	2.0	2.0
Efficiency	1.2	1.6	1.6
Fit template	$^{+2.3}_{-2.9}$	$^{+1.8}_{-2.4}$	$^{+3.0}_{-3.4}$
Total	$^{+4.0}_{-4.3}$	$^{+4.3}_{-4.5}$	$^{+5.0}_{-5.3}$

- Measurement (in individual q^2 bins) is systematically limited, many are connected with limited size of simulation sample.
- More q^2 bins will allow for a more precise measurement using the full LHCb data set.



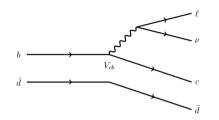
- Broad vector meson in final state, more difficult to describe theoretically an experimentally.
- Simulate many different templates to describe the background ($b \rightarrow c, b \rightarrow u$) and signal $(B^0 \rightarrow \rho^0 \mu \nu, B^0 \rightarrow f_2(1270) \mu \nu, \dots$, with $\rho^0, f_2(1270), \dots \rightarrow \pi^+\pi^-$) processes.
- Can not just measure $ert V_{ub} ert$, but probe structure of V-A current.

Some comments to $|V_{ub}|$ at LHCb



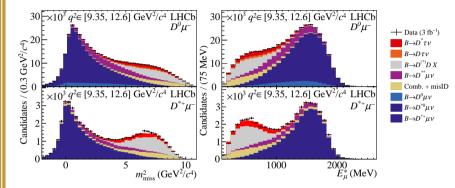
- LHCb was not built to measure $\left|V_{ub}
 ight|$, but achieves a good precision still.
- Much more background than for $|V_{cb}|$, partly compensated by machine learning and very large number of b hadrons produced at LHCb.
- Differential measurements on the way.
- Inclusive $|V_{ub}|$ very hard at LHCb (but who knows if we can do it O)

Lepton Flavour Universality (LFU) in $\overline B{}^0 o D^* \ell u$



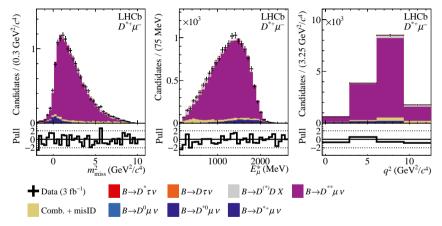
- Measure lepton flavour universality in charged-current (tree) decays.
- Measure $R(D^*) = \frac{\mathcal{B}(\overline{B}^0 \to D^{*+} \tau^- \nu)}{\mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \nu)}$
- Can also measure $R(D^0), R(D^+_s), R(\Lambda^+_c),$... with muons and taus.
- Or with muons and electrons (no measurement published by LHCb so far)
- Original motivation was sensitivity for a charged Higgs.
- Now missing (at least) 2 neutrinos in the final state.

LFU in $\overline{B}{}^0 ightarrow D^* \ell u$, muonic mode



- Use $\tau^- \rightarrow \mu^- \nu \nu$, *i.e.* τ and μ modes have the same final state.
 - Distinguish with kinematical distributions
- Measure $R(D^*)$ and $R(D^0)$ simultaneously:
 - $R(D^*)$ with $D^{*+}\,\tau^-$, $D^{*+}\,{\rightarrow}\,D^0\pi^+$
 - $R(D^*)$ and $R(D^0)$ with $D^0 \, \tau^-$ with $D^{*+} \to D^0 \pi^+, D^{*0} \to D^0 \pi^0 / \gamma$ and just D^0

LFU in $\overline{B}{}^0 \rightarrow D^* \ell \nu$, muonic mode



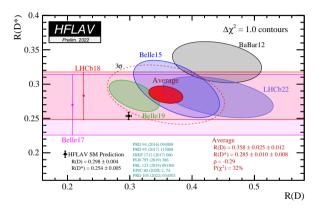
- Higher excited states of D meson: $\overline B{}^0 \to D^{**}\ell\nu$ not well known.
- Use control sample where one additional pion is added to $D^{*+}\,\tau^-$ and $D^0\,\tau^-$

LFU in $\overline{B}{}^0 ightarrow D^* \ell u$, muonic mode

- Very challenging measurement (at LHCb):
- Soft muons prone to misidentification
- Form-factor uncertainties of $\overline{B}{}^0 \rightarrow D^{*+} \ell \nu$.
- Knowledge on $B \rightarrow D^{(*)}DX$ templates.
- Very large simulated samples needed (billions of events).
- etc...

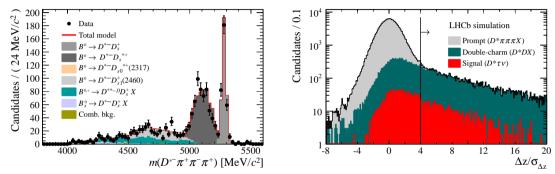
Internal fit uncertainties	$\sigma_{R(D^*)}(\times 10^{-2})$	$\sigma_{R(D^0)}(\times 10^{-2})$	Correlation
Statistical uncertainty	1.8	6.0	-0.49
Simulated sample size	1.5	4.5	
$B \rightarrow D^{(*)}DX$ template shape	0.8	3.2	
$\overline{B} \rightarrow D^{(*)} \ell^- \overline{\nu}_{\ell}$ form-factors	0.7	2.1	
$\overline{B} \rightarrow D^{**} \mu^- \overline{\nu}_{\mu}$ form-factors	0.8	1.2	
\mathcal{B} ($\overline{B} \rightarrow D^* D^s (\rightarrow \tau^- \overline{\nu}_\tau) X$)	0.3	1.2	
MisID template	0.1	0.8	
$\mathcal{B} (\overline{B} \rightarrow D^{**}\tau^- \overline{\nu}_{\tau})$	0.5	0.5	
Combinatorial	< 0.1	0.1	
Resolution	< 0.1	0.1	
Additional model uncertainty	$\sigma_{R(D^*)}(\times 10^{-2})$	$\sigma_{R(D^0)}(\times 10^{-2})$	
$B \rightarrow D^{(*)}DX$ model uncertainty	0.6	0.7	
$\overline{B}_{s}^{0} \rightarrow D_{s}^{**} \mu^{-} \overline{\nu}_{\mu}$ model uncertainty	0.6	2.4	
Data/simulation corrections	0.4	0.8	
Coulomb correction to $\mathcal{R}(D^{*+})/\mathcal{R}(D^{*0})$	0.2	0.3	
MisID template unfolding	0.7	1.2	
Baryonic backgrounds	0.7	1.2	
Normalization uncertainties	$\sigma_{R(D^*)}(\times 10^{-2})$	$\sigma_{R(D^0)}(\times 10^{-2})$	
Data/simulation corrections	$0.4 \times \mathcal{R}(D^*)$	$0.6 \times \mathcal{R}(D^0)$	
$\tau^- \rightarrow \mu^- \nu \overline{\nu}$ branching fraction	$0.2 \times \mathcal{R}(D^*)$	$0.2 \times \mathcal{R}(D^0)$	
Total systematic uncertainty	2.4	6.6	-0.39
Total uncertainty	3.0	8.9	-0.43

LFU in $\overline{B}{}^0 \rightarrow D^* \ell \nu$, muonic mode



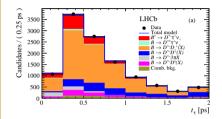
- $R(D^*) = 0.281 \pm 0.018 \pm 0.024$
- $R(D^0) = 0.441 \pm 0.060 \pm 0.066$
- ho=-0.43 (correlation)

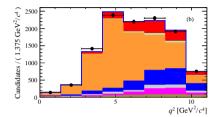
LFU in $\overline{B}{}^0 ightarrow D^{*+} \ell u$, 3-prong mode



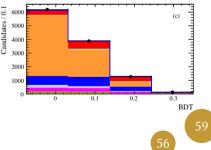
- Use $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu$. 3 pions form a vertex that can be used for displacement.
- Use $\overline{B}{}^0 \to D^{*+}3\pi$ as normalisation channel, and known ratio $\mathcal{B}(\overline{B}{}^0 \to D^{*+}3\pi)/\mathcal{B}(\overline{B}{}^0 \to D^{*+}\mu\nu)$ to calculate R_{D^*}
- Despite measuring the same physics, different challenges: Large background from $B\to D^{*-}D^+_sX$ decays, with $D^+_s\to\pi^+\pi^-\pi^+X$

LFU in $\overline{B}{}^0 ightarrow D^{*+} \ell u$, 3-prong mode

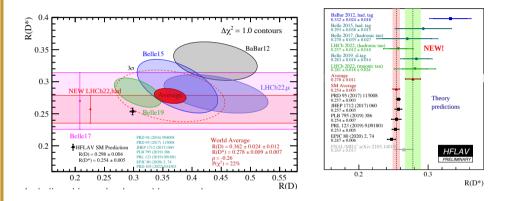




- Fit in au decay time, q^2 and a BDT variable.
- Obtain about 1300 $\overline B{}^0 o D^{*+} au^-
 u$ events
- New result with 2015 2016 data shown last week (with very similar strategy), about 2x as many signal events.

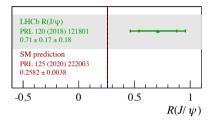


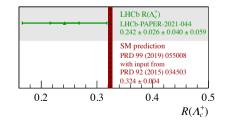
LFU in $\overline{B}{}^0 ightarrow D^{*+} \ell u$, 3-prong mode



- $\overline B{}^0 o D^{*+} \ell \nu$ with hadronic au decays perfectly consistent with SM prediction.
- Precision from LHCb starting to match precision of B factories.

LFU in $B^+_c o J/\psi\,\ell u$ and $\Lambda^0_b o \Lambda^+_c\ell u$





Conclusions

- Semileptonic decays are a great tool to probe the fundamental structure and parameters of the SM, with controlled theoretical uncertainties.
- Main experimental challenge with semileptonic decays (in LHCb) is the missing neutrino. Have developed ways to mitigate this in the last \sim 10 years.
- Many exciting results published, and more to come.

