# Semileptonic charged-current $b$-hadron decays at LHCb 

Neckarzimmern,

March 16, 2023

Michel De Cian, Heidelberg



- B physics is the study of bound states containing one $b$ quark and their decays / dynamics.
- They decay in a multitude of final states, allowing the study of a wide range of physics.
- They are copiously produced at the LHC: $10^{11} b \bar{b}$ pairs produced per $\mathrm{fb}^{-1}$
- Non-B physics is great, too (but I had to restrict the topic a bit).

The LHCb detector (Run 1+2)


## Linguistics



- "Semileptonic decay" just refers to a final state with leptons and hadrons.
- Except for LHCb people where "semileptonic B decay" stands for $b \rightarrow c$ and $b \rightarrow u$ transitions with charged and neutral leptons in the final state.
- i.e. no $b \rightarrow s \ell^{+} \ell^{-}$transitions like $B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}$(they are still great...)


## Motivation



- The fundamental (theoretical) advantage of semi-leptonic decays is the non-coupling of the leptonic system to the outgoing hadron.
- The fundamental (experimental) disadvantage of semi-leptonic decays is the non-reconstructible neutrino.
- Experimental advantage: About 10\% of all b-hadron decays: Very large samples, allows for many precision tests of the Standard Model.

The CKM matrix

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & \\
V_{c d} & V_{c s} & \\
& { }_{v n} & V_{t b}
\end{array}\right)
$$

Techniques for semileptonic decays (at LHCb)

## The fundamental experimental problem




- The fundamental experimental problem with semileptonic decays (at LHCb ) is the missing neutrino.
- Cannot construct a B meson / baryon invariant mass.
- "Visible mass", i.e. invariant mass of all remaining particles has poor discrimination power.
- Need smarter approaches.


## I: Denial




- One might not need a $B$ invariant mass like object at all e.g. when studying $B \rightarrow D \mu \nu X$.
- $\mathcal{B}(B \rightarrow D \mu \nu X) \approx 10 \%\left(\right.$ it's $\left.\left|V_{c b}\right|\right)$
- Displaced muon
- $D$ resonance clean to select
- Fit $m\left(K^{+} \pi^{-}\right)$and $\log \left(\mathrm{IP} \mathrm{P}_{\mathrm{D}}\right)$ simultaneously to select the decay (and separate from prompt charm).


## II: Anger

## $V_{c b}$

 Vs $\quad V_{u b}$- The method on the last slide only really works well for abundant (Cabbibo favoured) signals with a clean resonance, and where you do not care about additional particles.
- For decays such as $\Lambda_{b}^{0} \rightarrow p \mu^{-} \bar{\nu}_{\mu}$ and $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$, this does not work so well.
- And neither for decays with $\tau$ leptons in the final state, such as $B^{0} \rightarrow D^{*+} \tau^{-} \nu$
- Let's see if we can't make up an invariant mass variable that is as close as possible to the "standard" one.

III: Bargaining (I)


## III: Bargaining (II)



$$
\begin{array}{rll}
m_{B}^{2} & = & \left(p_{v i s}+p_{\nu}\right)^{2} \\
& = & m_{v i s}^{2}+n 2_{\nu}^{2}+2 \cdot p_{v i s} p_{\nu} \\
p_{v i s} \cdot p_{\nu} & = & E_{v i s} E_{\nu}-p_{\| v i s} p_{\|, \nu}-p_{\mathrm{T} v i s} p_{\mathrm{T}_{\nu}} \\
p_{\mathrm{T} v i s} & =-p_{\mathrm{T} \nu} \\
& E_{v i s} E_{\nu}-p_{\| v i s} p_{\|, \nu}+p_{\mathrm{T}}
\end{array}
$$

- Assume: $p_{\| v i s}=p_{\|, \nu}$
- $p_{v i s} \cdot p_{\nu}$ is Lorentz invariant. One can always boost along the flight direction in a system where $p_{\| v i s}$ vanishes.
- $p_{v i s} \cdot p_{\nu}=\sqrt{m_{v i s}^{2}+p_{\mathrm{T}}{ }^{2}} \cdot p_{\mathrm{T}}+{p_{\mathrm{T}}}^{2}$


## III: Bargaining (III)



- Assume: $p_{\| v i s}=p_{\|, \nu}$
- $p_{v i s} \cdot p_{\nu}$ is Lorentz invariant. One can always boost along the flight direction in a system where $p_{\| v i s}$ vanishes.
- $p_{v i s} \cdot p_{\nu}=\sqrt{m_{v i s}^{2}+p_{\mathrm{T}}{ }^{2}} \cdot p_{\mathrm{T}}+{p_{\mathrm{T}}}^{2}$

$$
\begin{aligned}
m_{B, c o r r}^{2} & =m_{v i s}^{2}+2 \cdot \sqrt{m_{v i s}^{2}+p_{\mathrm{T}}^{2}} \cdot p_{\mathrm{T}}+2 \cdot p_{\mathrm{T}}^{2} \\
& =\left(\sqrt{m_{v i s}^{2}+p_{\mathrm{T}}^{2}}+p_{\mathrm{T}}\right)^{2} \\
\therefore m_{B, c o r r} & =\sqrt{m_{v i s}^{2}+p_{\mathrm{T}}^{2}}+p_{\mathrm{T}}
\end{aligned}
$$

## IV: Depression



- $m_{\text {corr }}$ peaks at the nominal $B$ mass (the case where, in the rest frame of the $B$, the visible particles and the neutrino fly perpendicular to the flight direction).
- But it has a very long tail to lower masses.
- This is a consequence of the assumption we made.
- Still: One can show that the corrected mass is the best possible variable one can construct (lackino additional information) (arxiv:2108.13820)


## V: Acceptance



- There are some points to consider:
- In an experimental setup, the upper end of the distribution is broadened due to resolution effects.
- One can also construct $m_{\text {corr }}$ for a missing particle with non-zero mass, e.g. one can reconstruct $K^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$with a missing $\pi^{-}$.

- The width of the peak depends on the available phase space.
$\sigma\left(m_{\text {corr }}\right)$


- Can calculate expected error of $m_{\text {corr }}$ (have fun with Jacobians...)
- As expected, error on secondary vertex dominates.
- And then cut on it.
- Improves separation between signal and background, but greatly reduces event yield.


## More resolutions




- As seen, there is a long tail to lower masses, bound by the available phase space.
- On top of that, there are resolution effects.
- Upper tail can be longer than lower tail, e.g. typically for $B_{c}^{+}$decays.
- Main reason is the "precision of the lever arm" given by the precision of the secondary vertex.


## $q^{2}$ (I): How



- The corrected mass was constructed by assuming $p_{\|, v i s}=p_{\|, \nu}$, i.e. only one quantity was fixed.
- If we assume that the mother particle is a $b$ hadron with the known mass, one can obtain $p_{\|, \nu}$
- And calculate $q^{2}$ = squared invariant mass of the dilepton system = squared invariant mass of the virtual $W$.
- Downside: The mass is a squared quantitiy, one obtains two solutions (and only one is correct).


## $q^{2}$ (II): Which solution to choose




- Experimentally, one solution most often occurs more frequently than the other (due to acceptance of the subdetectors, selection cuts in the analysis, etc...). Can choose this one.
- Or: Try to get an independent measure of the $B$ momentum, and compare with the two solutions: Pick the closer one.
- $B$ momentum is correlated with flight length and angle wrt to beam axis.


## $q^{2}$ (III): Which solution to choose




- Use a linear regression with flight length and angle wrt to beam axis to predict $B$ momentum.
- Pick solution which is closer to predicted momentum: Significantly better than random choice.
- Depends on the decay in question.


## $q^{2}$ (IV): Bring on DNNs!





## Other approaches: Collinear approximation



- One can use other discriminating variables than $m_{\text {corr }}$, e.g. $m_{\text {miss }}^{2}$
- Approximate the $B$ momentum with $p_{z, B}=\frac{m_{B}}{m_{v i s}} \cdot p_{z, v i s}$
- $p_{\nu}=\left(p_{B}-p_{v i s}\right)$, i.e. $m_{\text {miss }}$ is mass of neutrino.
- If only one neutrino missing: Signal peaks at 0 , rest higher.
- Also energy of muon in $B$ rest frame is discriminating.
- Note: $m_{c o r r}$ and $m_{m i s s}^{2}$ are strongly correlated.


## Other approaches: Using $B_{s 2}^{*} \rightarrow B^{+} K^{-}$(I)




- Use the decay $B_{s 2}^{*} \rightarrow B^{+} K^{-}$
- This adds another (narrow) resonance to the decay chain.
- Remember: only one component, $p_{\|, \nu}$ missing.
- Constrain to $B^{+}$mass, fit in $B_{s 2}^{*}$ mass, or constrain to $B_{s 2}^{*}$ mass, calculate $m_{m i s s}^{2}\left(=m_{\nu}^{2}\right)$


## Other approaches: Using $B_{s 2}^{*} \rightarrow B^{+} K^{-}$(II)




- Constrain to $B_{s 2}^{*}$, calculate $m_{m i s s}^{2}$.
- Can be used to e.g. calculate $B \rightarrow D, D^{*}, D^{* *} \mu \nu$ fraction.
- Can be useful for certain decays, but not applicable to all problems.
- Downside: Number of $B^{+}$reduced by about factor of 100 when requiring $B_{s 2}^{*}$ resonance.


## Other approaches: Using $B_{s 2}^{*} \rightarrow B^{+} K^{-}$(III)



- Constrain to $B^{+}$, fit in $B_{s 2}^{*}$
- Also works for e.g. $B^{+} \rightarrow \rho \mu^{+} \nu$, but very little signal yield.
- At some point using the corrected mass becomes more advantageous compared to using $B_{s 2}^{*}$ : Bigger signal yield compensates for broad signal distribution.


## Vertex isolation: charged isolation



- When looking at Cabibbo-supressed semileptonic decays $\left(\left|V_{u b}\right|\right)$, need to fight $\left|V_{c b}\right|$ background.
- Two handles: $c$ hadron flies a few mm and decays (mostly) into more tracks than signal.
- vertex - $\chi^{2}$ is poor for $\left|V_{c b}\right|$ background
- vertex- $\chi^{2}$ increases only little by adding closest track.
- In reality: Use as much information as possible and construct a multivariate classifier


## Vertex isolation: charged isolation




- Run over all tracks in the event which are "close" to the $p \mu$ vertex, evaluate BDT for them.
- As expected performs better for channels with at least one more track than on channels with neutral particles.
- Different analyses use different techniques, but idea is always the same
- Charged vertex isolation usually most powerful (high-level) variable to extract signal in semileptonic decays.


## Vertex isolation: neutral isolation



- Main problem with neutral particles: One does not know their point of origin i.e. PV or SV.
- Neutral isolation mostly much less powerful than charged one.
- But similar strategy as charged one: See if you find neutral objects in vicinity of signal decay.


## Vertex isolation: " $\tau$ isolation"



- With $\tau$ in the final state, can reconstruct them as $\tau^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \nu_{\tau}$.
- The 3 pions form a vertex which has to be displaced from other vertices.
- Depends strongly on the resolution of the $\tau$ vertex, as $c \tau \approx 87 \mu \mathrm{~m}$


## Some semileptonic measurements at LHCb

## Measuring $V_{c b}$



## Measuring $V_{c b}$



- How do you measure $\left|V_{c b}\right|$ ?
- $\mathcal{B}$ is proportional to $\left|V_{c b}\right|^{2}$, just count the events!
- Or almost...


## Measuring $V_{c b}$

- Let's consider the decay of a pion: $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$
- $\Gamma\left(\pi^{+} \rightarrow \mu^{+} \nu_{\mu}\right)=\frac{G_{F}^{2}\left|V_{u d}\right|^{2} f_{\pi}^{2}}{8 \pi} m_{\pi} m_{\mu}^{2}\left(1-\frac{m_{\mu}^{2}}{m_{\pi}^{2}}\right)^{2}$
- Helicity suppressed and non-fundamental parameter $f_{\pi}$ (i.e. the decay constant).
- $f_{\pi}$ takes into account that the pion is a composite object.
- Find a composite particle with $b$ and $c$ quarks: the $B_{c}^{+}$
- $\therefore$ Could measure $B_{c}^{+} \rightarrow \mu^{+} \nu$. Well, good luck...


## Measuring $V_{c b}$

- More promising: $B_{s}^{0} \rightarrow D_{s}^{(*)+} \mu \nu$ : no helicity suppression.
- $\frac{d \Gamma\left(B_{s}^{0} \rightarrow D_{s}^{+} \mu \nu\right)}{d w}=\frac{G_{F}^{2} m_{D}^{3}}{48 \pi^{3}}\left(m_{B}+m_{D}\right)^{2} \eta_{E W}^{2}\left|V_{c b}\right|^{2}\left(w^{2}-1\right)^{3 / 2}|\mathcal{G}(w)|^{2}$
- With $w=\frac{m_{B}^{2}+m_{D}^{2}-q^{2}}{2 m_{B} m_{D}}$ and $\mathcal{G}$ a form-factor (only one assuming massless leptons).
- More complicated in case of $D_{s}^{*+}$ compared to $D_{s}^{+}$(= more form factors)
- That means: In order to measure $\left|V_{c b}\right|$, we need to know (or measure) the form factors.
- Important point: $\left|V_{c b}\right|$ does not depend on $w$, but $\mathcal{G}$ does.


## Measuring $V_{c b}$ using $B_{s}^{0}$ decays

- $N_{B_{s}^{0} \rightarrow D_{s}^{+} \mu \nu}=\mathcal{L} \cdot \sigma_{b \bar{b}} \cdot 2 \cdot f_{s} \cdot \mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{+} \mu \nu\right)$
- Absolute branching fractions are hard to measure at LHCb :
 Luminosity $\mathcal{L}$ not well known, $b \bar{b}$ production cross section not well known,
$m_{K^{+} K^{-} \pi}\left[\mathrm{MeV} / c^{2}\right]$ $f_{s}$ not well known
- Perform relative measurement:
$\frac{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{+} \mu \nu\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{-} \mu \nu\right)}=\frac{N_{B_{s}^{0} \rightarrow D_{s}^{+} \mu \nu}}{N_{B^{0} \rightarrow D^{-}-\mu \nu}} \cdot R$
- $R$ accounts for different efficiencies, etc.
- Use $D^{-} \rightarrow K^{+} K^{-} \pi^{-}$and $D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}$: Signal and normalization channel have identical final state, many uncertainties cancel in ratio.


## Measuring $V_{c b}$ using $B_{s}^{0}$ decays




- Given that these are $\left|V_{c b}\right|$ decays, the sample is dominated by signal events.
- $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$ or $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$ : Neutral objects with low $p_{\mathrm{T}}$ are hard to reconstruct, so only $D_{s}^{+}$is measured, and excited states are separated in $m_{\text {corr }}$.
- But why not measure $q^{2}$ to obtain $w$ ?


## Measuring $V_{c b}$ using $B_{s}^{0}$ decays




- As seen before, $q^{2}$ can only be computed up to a two-fold solution.
- But $q^{2}$ is correlated with the $p_{\mathrm{T}}$ of the $D_{s}^{+}$wrt to the $B_{s}^{0}$ flight direction.
- Use this correlation to determine form factor parameters.


## Measuring $V_{c b}$ using $B_{s}^{0}$ decays




- Need to measure the amount of signal events to determine $\left|V_{c b}\right|$.
- Fit the two variables with templates: Histograms from MC that can be scaled up or down until the overall shape fits.
- Take limited number of simulated events into account by allowing for fluctuations in each bin.


## Measuring $V_{c b}$ using $B_{s}^{0}$ decays




- Several form factor parametrizations exist.
- "Famous" ones: BGL and CLN. Can fit for both parameter sets and extract $\left|V_{c b}\right|$ with one or the other.
- Results are fully consistent.


## Measuring $V_{c b}$ using $B_{s}^{0}$ decays



## Some comments to $\left|V_{c b}\right|$ at LHCb



- LHCb was not built to measure $\left|V_{c b}\right|$, but achieves a good precision still.
- Always need to rely on precision of normalisation channel (i.e. an external measurement). For this measurement also rely on $f_{s} / f_{d}$.
- LHCb also measured shape of differential decay rate of $B_{s}^{0} \rightarrow D_{s}^{*+} \mu^{-} \nu$ by fully reconstructing $D_{s}^{*+} \rightarrow D_{s}^{+} \mu^{-}$(without measuring $\left.\left|V_{c b}\right|\right)$
- No inclusive measurement of $\left|V_{c b}\right|$ so far at LHCb, but investigations using a sum-of-exclusive approach with $B_{s}^{0}$ decays are ongoing.


## Measuring $V_{u b}$



## Measuring $V_{u b}$



- Much more background: $\left|V_{c b}\right| \gg\left|V_{u b}\right|$
- Use isolation techniques / machine learning.
- Hadronic system has lower mass (e.g. mass of $\rho^{0}$ vs mass of $D^{0}$ ), mostly coming with more background.
- Less events: Have not (yet) determined form factors and $\left|V_{u b}\right|$ at the same time.
- Use theoretical predictions for the form factors


## Measuring $V_{u b}$ using $\Lambda_{b}^{0}$ baryons

- Measure $\frac{\left|V_{u b}\right|}{\left|V_{c b}\right|}=R_{F F} \cdot \frac{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow p \mu^{-} \bar{\nu}_{\mu}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{\nu}_{\mu}\right)}$
- Protons as final states are less abundant than kaons or pions (easier to separate from background).
- Use the corrected mass. Unfortunately not very clean, but not the dominant uncertainty.
- Model all backgrounds with templates: Large contribution from $\Lambda_{c}^{+}$decays.
- Normalization to $\Lambda_{c}^{+}$decay reduces systematic uncertainties and dependence on $f_{\Lambda_{b}^{0}}$.
- First measurement of the decay $\Lambda_{b}^{0} \rightarrow p \mu^{-} \bar{\nu}_{\mu}$, about $15^{\prime} 000$ events.


## Exclusive $\left|V_{u b}\right|$ using $B_{s}^{0}$ mesons




- Use $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ decays to measure $\left|V_{u b}\right|$ : First observation of $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$.
- Measure $\frac{\left|V_{u b}\right|}{\left|V_{c b}\right|}=R_{F F} \cdot \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{+} \mu \nu\right)}$, use $m_{\text {corr }}$ to discriminate signal and background.
- Divide $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ in two bins of $q^{2}$ with equal number of signal events.


## Exclusive $\left|V_{u b}\right|$ using $B_{s}^{0}$ mesons




- Two different FF predictions for $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ used to extract $\left|V_{u b}\right|$ :
- Low $q^{2}$ : LCSR based on [JHEP 08 112]
- High $q^{2}$ : LQCD based on [Phys. Rev. D100, 034501]
- Provide two values of $\left|V_{u b}\right|$. Differential rate will help understanding the $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ decay better.


## Exclusive $\left|V_{u b}\right|$ using $B_{s}^{0}$ mesons



| Uncertainty | All $q^{2}$ | low $q^{2}$ | high $q^{2}$ |
| :--- | :---: | :---: | :---: |
| Tracking | 2.0 | 2.0 | 2.0 |
| Trigger | 1.4 | 1.2 | 1.6 |
| Particle identification | 1.0 | 1.0 | 1.0 |
| $\sigma\left(m_{\text {corr }}\right)$ | 0.5 | 0.5 | 0.5 |
| Isolation | 0.2 | 0.2 | 0.2 |
| Charged BDT | 0.6 | 0.6 | 0.6 |
| Neutral BDT | 1.1 | 1.1 | 1.1 |
| $q^{2}$ migration | - | 2.0 | 2.0 |
| Efficiency | 1.2 | 1.6 | 1.6 |
| Fit template | ${ }_{-2.9}^{+2.3}$ | ${ }_{-2.4}^{+1.8}$ | ${ }_{-3.4}^{+3.0}$ |
| Total | ${ }_{-4.3}^{+4.0}$ | ${ }_{-4.5}^{+4.3}$ | ${ }_{-5.3}^{+5.0}$ |

- Measurement (in individual $q^{2}$ bins) is systematically limited, many are connected with limited size of simulation sample.
- More $q^{2}$ bins will allow for a more precise measurement using the full LHCb data set.
$B^{0} \rightarrow \rho^{0} \mu \nu$


- Broad vector meson in final state, more difficult to describe theoretically an experimentally.
- Simulate many different templates to describe the background $(b \rightarrow c, b \rightarrow u)$ and signal $\left(B^{0} \rightarrow \rho^{0} \mu \nu, B^{0} \rightarrow f_{2}(1270) \mu \nu, \ldots\right.$, with $\rho^{0}, f_{2}(1270), \ldots \rightarrow \pi^{+} \pi^{-}$) processes.
- Can not just measure $\left|V_{u b}\right|$, but probe structure of V -A current.


## Some comments to $\left|V_{u b}\right|$ at LHCb



- LHCb was not built to measure $\left|V_{u b}\right|$, but achieves a good precision still.
- Much more background than for $\left|V_{c b}\right|$, partly compensated by machine learning and very large number of $b$ hadrons produced at LHCb.
- Differential measurements on the way.
- Inclusive $\left|V_{u b}\right|$ very hard at LHCb (but who knows if we can do it () )


## Lepton Flavour Universality (LFU) in $\bar{B}^{0} \rightarrow D^{*} \ell \nu$



- Measure lepton flavour universality in charged-current (tree) decays.
- Measure $R\left(D^{*}\right)=\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \nu\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \nu\right)}$
- Can also measure $R\left(D^{0}\right), R\left(D_{s}^{+}\right), R\left(\Lambda_{c}^{+}\right), \ldots$ with muons and taus.
- Or with muons and electrons (no measurement published by LHCb so far)
- Original motivation was sensitivity for a charged Higgs.
- Now missing (at least) 2 neutrinos in the final state.


## LFU in $\bar{B}^{0} \rightarrow D^{*} \ell \nu$, muonic mode



- Use $\tau^{-} \rightarrow \mu^{-} \nu \nu$, i.e. $\tau$ and $\mu$ modes have the same final state.
- Distinguish with kinematical distributions
- Measure $R\left(D^{*}\right)$ and $R\left(D^{0}\right)$ simultaneously:
- $R\left(D^{*}\right)$ with $D^{*+} \tau^{-}, D^{*+} \rightarrow D^{0} \pi^{+}$
- $R\left(D^{*}\right)$ and $R\left(D^{0}\right)$ with $D^{0} \tau^{-}$with $D^{*+} \rightarrow D^{0} \pi^{+}, D^{* 0} \rightarrow D^{0} \pi^{0} / \gamma$ and just $D^{0}$

LFU in $\bar{B}^{0} \rightarrow D^{*} \ell \nu$, muonic mode


- Higher excited states of $D$ meson: $\bar{B}^{0} \rightarrow D^{* *} \ell \nu$ not well known.
- Use control sample where one additional pion is added to $D^{*+} \tau^{-}$and $D^{0} \tau^{-}$


## LFU in $\bar{B}^{0} \rightarrow D^{*} \ell \nu$, muonic mode

- Very challenging measurement (at LHCb):
- Soft muons prone to misidentification
- Form-factor uncertainties of $\bar{B}^{0} \rightarrow D^{*+} \ell \nu$.
- Knowledge on $B \rightarrow D^{(*)} D X$ templates.
- Very large simulated samples needed (billions of events).

| Internal fit uncertainties | $\sigma_{\mathcal{R}\left(D^{*}\right)}\left(\times 10^{-2}\right)$ | $\sigma_{\mathcal{R}\left(D^{0}\right)}\left(\times 10^{-2}\right)$ | Correlation |
| :--- | :---: | :---: | :---: |
| Statistical uncertainty | 1.8 | 6.0 | -0.49 |
| Simulated sample size | 1.5 | 4.5 |  |
| $B \rightarrow D^{(*)} D X$ template shape | 0.8 | 3.2 |  |
| $\bar{B} \rightarrow D^{(*)} \ell^{-} \bar{\nu}_{\ell}$ form-factors | 0.7 | 2.1 |  |
| $\bar{B} \rightarrow D^{* *} \mu^{-} \bar{\nu}_{\mu}$ form-factors | 0.8 | 1.2 |  |
| $\mathcal{B}\left(\bar{B} \rightarrow D^{*} D_{s}^{-}\left(\rightarrow \tau^{-} \bar{\nu}_{\tau}\right) X\right)$ | 0.3 | 1.2 |  |
| MisID template | 0.1 | 0.8 |  |
| $\mathcal{B}\left(\bar{B} \rightarrow D^{* *} \tau^{-} \bar{\nu}_{\tau}\right)$ | 0.5 | 0.5 |  |
| Combinatorial | $<0.1$ | 0.1 |  |
| Resolution | $<0.1$ | 0.1 |  |
| Additional model uncertainty | $\sigma_{\mathcal{R}\left(D^{*}\right)\left(\times 10^{-2}\right)}$ | $\sigma_{\mathcal{R}\left(D^{0}\right)}\left(\times 10^{-2}\right)$ |  |
| $B \rightarrow D^{(*)} D X$ model uncertainty | 0.6 | 0.7 |  |
| $\bar{B}_{s}^{0} \rightarrow D_{s}^{* *} \mu^{-} \bar{\nu}_{\mu}$ model uncertainty | 0.6 | 2.4 |  |
| Data/simulation corrections | 0.4 | 0.8 |  |
| Coulomb correction to $\mathcal{R}\left(D^{*+}\right) / \mathcal{R}\left(D^{* 0}\right)$ | 0.2 | 0.3 |  |
| MisID template unfolding | 0.7 | 1.2 |  |
| Baryonic backgrounds | 0.7 | 1.2 |  |
| Normalization uncertainties | $\sigma_{\mathcal{R}\left(D^{*}\right)}\left(\times 10^{-2}\right)$ | $\sigma_{\mathcal{R}\left(D^{0}\right)}\left(\times 10^{-2}\right)$ |  |
| Data/simulation corrections | $0.4 \times \mathcal{R}\left(D^{*}\right)$ | $0.6 \times \mathcal{R}\left(D^{0}\right)$ |  |
| $\tau^{-} \rightarrow \mu^{-} \nu \bar{D}$ branching fraction | $0.2 \times \mathcal{R}\left(D^{*}\right)$ | $0.2 \times \mathcal{R}\left(D^{0}\right)$ |  |
| Total systematic uncertainty | 2.4 | 6.6 | -0.39 |
| Total uncertainty | 3.0 | 8.9 | -0.43 |

- etc...

LFU in $\bar{B}^{0} \rightarrow D^{*} \ell \nu$, muonic mode


- $R\left(D^{*}\right)=0.281 \pm 0.018 \pm 0.024$
- $R\left(D^{0}\right)=0.441 \pm 0.060 \pm 0.066$
- $\rho=-0.43$ (correlation)

LFU in $\bar{B}^{0} \rightarrow D^{*+} \ell \nu$, 3-prong mode



- Use $\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu .3$ pions form a vertex that can be used for displacement.
- Use $\bar{B}^{0} \rightarrow D^{*+} 3 \pi$ as normalisation channel, and known ratio $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} 3 \pi\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \mu \nu\right)$ to calculate $R_{D^{*}}$
- Despite measuring the same physics, different challenges: Large background from

$$
B \rightarrow D^{*-} D_{s}^{+} X \text { decays, with } D_{s}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} X
$$

## LFU in $\bar{B}^{0} \rightarrow D^{*+} \ell \nu, 3$-prong mode



- Fit in $\tau$ decay time, $q^{2}$ and a BDT variable.
- Obtain about $1300 \bar{B}^{0} \rightarrow D^{*+} \tau^{-} \nu$ events
- New result with 2015-2016 data shown last week (with very similar strategy), about $2 x$ as many signal events.


## LFU in $\bar{B}^{0} \rightarrow D^{*+} \ell \nu, 3-$ prong mode




- $\bar{B}^{0} \rightarrow D^{*+} \ell \nu$ with hadronic $\tau$ decays perfectly consistent with SM prediction.
- Precision from LHCb starting to match precision of B factories.

LFU in $B_{c}^{+} \rightarrow J / \psi \ell \nu$ and $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \ell \nu$



## Conclusions



- Semileptonic decays are a great tool to probe the fundamental structure and parameters of the SM, with controlled theoretical uncertainties.
- Main experimental challenge with semileptonic decays (in LHCb) is the missing neutrino. Have developed ways to mitigate this in the last $\sim 10$ years.
- Many exciting results published, and more to come.

