UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

Semileptonic charged-current b-hadron decays at LHCb
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They are copiously produced at the LHC: 10'16b pairs produced per o1
Non-B physics is great, too (but | had to restrict the topic a bit).

events / sec for £

10% cm?s”

B physics is the study of bound states containing one b quark and their decays / dynamics.

They decay in a multitude of final states, allowing the study of a wide range of physics.

[www.hep.ph.ic.ac.uk]


http://www.hep.ph.ic.ac.uk/~wstirlin/plots/crosssections2013.jpg

The LHCb detector (Run 1+2)
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Linguistics

e "Semileptonic decay” just refers to a final state with leptons and hadrons.

e Except for LHCb people where "semileptonic B decay” stands for b — ¢ and b — u transitions with

charged and neutral leptons in the final state.

e ie.nob— st~ transitionslike BY — K*0¢1 ¢~ (they arestill great..)



Motivation
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e The fundamental (theoretical) advantage of semi-leptonic decays is the non-coupling of the leptonic
system to the outgoing hadron.

e The fundamental (experimental) disadvantage of semi-leptonic decays is the non-reconstructible
neutrino.

e Experimental advantage: About 10% of all b-hadron decays: Very large samples, allows for many
precision tests of the Standard Model. @
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Techniques for semileptonic decays
(at LHCb)



The fundamental experimental problem

14000
= T T T o T E 0.04 . . .
10000 - LHCb 2011, Down e ] — B! - K*uv
% — Sum E 0035 B K
Z 10000 Bt K+t 3 é 003 )
« F A ] E
: 000 Background B £ 0.025
g ] 3
2 ] 2 002
= 6000 1 £
= ] g 0015
5 ] g 0
= 4000 — =]
3 1 Z 001

2000 -] 0.005

$itanr 3 0

5201 5250 5300 5350 5100 0
m(ptu” K+) [MeV/c? M, [GeV]

e The fundamental experimental problem with semileptonic decays (at LHCb) is the missing neutrino.
e Cannot construct a B meson / baryon invariant mass.
e "Visible mass”, i.e.invariant mass of all remaining particles has poor discrimination power.

e Need smarter approaches. °
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e One might not need a B invariant mass like object at all e.g. when studying B — Duv X.
o B(B— DuvX )= 10%(it's |Vep|)
e Displaced muon
e D resonance clean to select

e Fit m(K+7r_) and log(IPD) simultaneously to select the decay (and separate from prompt

charm).



Il: Anger
Cb Vs Vb

e The method on the last slide only really works well for abundant (Cabbibo favoured) signals with a
clean resonance, and where you do not care about additional particles.

e Fordecayssuchas Ag — pi~ vy and BSO — K_/ﬁ'l/u, this does not work so well.
e And neither for decays with 7 leptons in the final state, such as BY— D*trv

e |et’s seeif we can't make up an invariant mass variable that is as close as possible to the "standard”

one.



l1l: Bargaining (I)




[1l: Bargaining (II) Zhy "

mQB = (pvis + pu)2
= mgis + 7{,,2( + 2 pyispy
DPuis " Pv = EyisEy, — PllwisP||v — PTvisPTy
PTuis;_PTu

EyisEy, — PjvisP) v + pT2

e Assume: P|vis = P||,v
® Dyis * P is Lorentzinvariant. One can always boost along the flight direction in a system where

D||vis Vanishes.

o pm’s'puz\/m%i8+pT2'pT+pT2 @ @



[1l: Bargaining (lIl) Zhy "

e Assume: P|yis = P||,v
® Duyis * P is Lorentzinvariant. One can always boost along the flight direction in a system where

D||vis Vanishes.

° Duis - Dy = /M2, + o1 pr+ pr?
2
sz,corr = m?)is +2- \/ qu;is +pT2 - pT + 2. pT

2
= (mi o2+ pT)

2 2
. MB.corr = My, + DT° + D1



IV: Depression

0.13F
012
0.11r

0.1F
0.09
008
007
0.06
0051
004
003
002
001

% 1 2 3 4 5 6 71 8 o
MCU"[GeV]

—B! = K*uv
B! = K™*uv

Yy
A

=
=

Normalised entries

=
=

I
.
b

o
=)
>
Il
S
~
~
T
S ORI

® Morr Peaks at the nominal B mass (the case where, in the rest frame of the B, the visible particles
and the neutrino fly perpendicular to the flight direction).

e Butit has avery long tail to lower masses.

e Thisis a consequence of the assumption we made.
e Still: One can show that the corrected mass is the best possible variable one can construct (lacki @
additional information) (arxiv:2108.13820) @


https://arxiv.org/pdf/2108.13820.pdf
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e There are some points to consider:

e |nan experimental setup, the upper end of the distribution is broadened due to resolution effects.

One can also construct 1., for a missing particle with non-zero mass, e.g. one can reconstruct

KT — nt7~ 7t withamissingm ™.

MK, corr = \/m%}zs + pT2 + \/mgr + pT2

The width of the peak depends on the available phase space. @
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e Can calculate expected error of Moy (have fun with Jacobians...)

® Asexpected, error on secondary vertex dominates.

e Andthencutonit. @

e |mproves separation between signal and background, but greatly reduces event yield.



More resolutions
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As seen, there is a long tail to lower masses, bound by the available phase space.
On top of that, there are resolution effects.
Upper tail can be longer than lower tail, e.g. typically for Bj decays.

Main reason is the "precision of the lever arm” given by the precision of the secondary vertex.



q> (1): How
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e The corrected mass was constructed by assumingp”’ms = P||,v i.e. only one quantity was fixed.
e If we assume that the mother particle is a b hadron with the known mass, one can obtain D

e And calculate q2 = squared invariant mass of the dilepton system = squared invariant mass of the

virtual W.
e Downside: The mass is a squared quantitiy, one obtains two solutions (and only one is correct). @



q? (I1): Which solution to choose
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e Experimentally, one solution most often occurs more frequently than the other (due to acceptance
of the subdetectors, selection cuts in the analysis, etc...). Can choose this one.

e Or: Try to get an independent measure of the B momentum, and compare with the two solutions:
Pick the closer one.

e B momentum is correlated with flight length and angle wrt to beam axis. @



q? (11): Which solution to choose
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e Usealinear regression with flight length and angle wrt to beam axis to predict B momentum.

® Pick solution which is closer to predicted momentum: Significantly better than random choice.

50 100 150 200 250 300 350 400
Pirue [GeV]

e Depends on the decay in question.
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q> (IV): Br
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e Using DNNs and trainingon a o

specific decay channel performs

a bit better.
e No magic bullet though
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Other approaches: Collinear approximation
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® One can use other discriminating variables than m .oy, €.8. mgm-ss

e Approximate the B momentumwithp, p = "T;”_g Dz vis
VLS

® Py = (PB — Duis), i-.e. Mypss is mass of neutrino.
e [f only one neutrino missing: Signal peaks at O, rest higher.
[ )

Also energy of muon in B rest frame is discriminating.

e Note: Mcorr and mgm-ss are strongly correlated.



Other approaches: Using B*, — BT K~ (l)
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Use the decay B}, — BtK—

This adds another (narrow) resonance to the decay chain.

miss v

e Remember: only one component,p”ﬂj missing. @
Constrainto B mass, fitin B?, mass, or constrain to B}, mass, calculate m2 . (=m?2) @



Other approaches: Using B*,— BT K~ (ll)
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e Constrainto B}y, calculate m;, . .

e Canbeusedtoeg.calculate B— D, D*, D** uv fraction.

e Can be useful for certain decays, but not applicable to all problems.

e Downside: Number of BT reduced by about factor of 100 when requiring 3:2 resonance.



Other approaches: Using B*, — BT K~ (lll)
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e Constrainto BT, fitin B%,
e Alsoworks for e.g. Bt—> p,u"'y, but very little signal yield.

e At some point using the corrected mass becomes more advantageous compared to using B;‘2:
Bigger signal yield compensates for broad signal distribution.



Vertex isolation: charged isolation

e When looking at Cabibbo-supressed semileptonic decays ( \Vub ), need to fight |Vcb| background.
e Two handles: ¢ hadron flies a few mm and decays (mostly) into more tracks than signal.

® vertex- X2 is poor for |Vcb| background

° vertex-x2 increases only little by adding closest track.

e |nreality: Use as much information as possible and construct a multivariate classifier @



Vertex isolation: charged isolation
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e Runover all tracks in the event which are "close” to the pi vertex, evaluate BDT for them.

e As expected performs better for channels with at least one more track than on channels with

neutral particles.

e Different analyses use different techniques, but idea is always the same
e Charged vertex isolation usually most powerful (high-level) variable to extract signal in @

semileptonic decays.



Vertex isolation: neutral isolation
e
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e Main problem with neutral particles: One does not know their point of origin i.e. PV or SV.
e Neutral isolation mostly much less powerful than charged one.

e But similar strategy as charged one: See if you find neutral objects in vicinity of signal decay. @



Vertex isolation: "7 isolation"

e With 7 in the final state, can reconstruct them as Tt 7T+7T_7T+V-,-.

e The 3 pions form a vertex which has to be displaced from other vertices.

e Depends strongly on the resolution of the T vertex, as cT ~ 87 um @



Some semileptonic measurements at LHCb



Measuring V,;

m T T T T T T T T T T T T
= 500 I Vo EXCIus.ive ]
X § Ve Inclusive
Sarst $ B-D"v(1809.03290) 1
Preliminary
O 45.0 ]
o
42.5
40.0 1
EREREREE
375} ]
35.0 e' e' el v)l v)l v)l elelelelelel
[@) [@) O, O, re) [2) o) NN
D GG G G Yo o Y¥sYe %Y



Measuring V,
ONE DOES II[I'I' SIMPLY

a
__ GOUNT EVENTS TO GETVCB

How do you measure |V3|?

Or almost...

BB is proportional to |V5| 2, just count the events!



Measuring V,

Let’s consider the decay of a pion: t— /fruﬂ

2
+ + GE|Vual®f2 2 n,
it —pty,) = Fge—r g Mamy, (1 — 5

mz

Helicity suppressed and non-fundamental parameter f (i.e. the decay constant).

[ takes into account that the pion is a composite object.

Find a composite particle with b and ¢ quarks: the Bzr
.".Could measure B;f — 1. Well, good luck...



Measuring V,

More promising: Bg — Dg*)+uuz no helicity suppression.

dr(B°— D G2Zm3

(Be Do) = S (mp + mp)2nhyy [Vasl? (w? — 1)%/2(G(w) [

mQB—I—mQD—q2
2mpmp

Withw = and G a form-factor (only one assuming massless leptons).

More complicated in case of D;"" compared to D;" (= more form factors)

That means: In order to measure |Vcb’ we need to know (or measure) the form factors.

Important point: | V| does not depend on w, but G does.



[Phys. Rev. D101 (2020) 072004]

Be284 LHCD

Measuring V., using B? decays
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® Absolute branching fractions are hard to measure at LHCb: 800 18 19bg 19 2050
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e Perform relative measurement:
B(B»Diuw) _ Npoiptu R
B(B'—D—puv) — Ng

0—>D_;ux

e R accounts for different efficiencies, etc.
e Use D~ — KTK ™7~ and D; — KK~ : Signal and normalization channel have @ @
identical final state, many uncertainties cancel in ratio.


http://arxiv.org/abs/2001.03225

Measuring V., using B? decays
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e Given that these are \Vcb| decays, the sample is dominated by signal events.

o Dt — D¥vyor DIt — D} r0 Neutral objects with low pr are hard to reconstruct, so only

D;" is measured, and excited states are separated in M copr--
e But why not measure q2 to obtain w? @



Measuring V., using B? decays
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e Asseen before, q2 can only be computed up to a two-fold solution.
e But g2 is correlated with the pr of the D7 wrttothe Bg flight direction.

e Use this correlation to determine form factor parameters.



Measuring V., using B? decays
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e Need to measure the amount of signal events to determine | V|-

e Fit the two variables with templates: Histograms from MC that can be scaled up or down until the

overall shape fits.
e Take limited number of simulated events into account by allowing for fluctuations in each bin. @



Measuring V., using B? decays
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e Several form factor parametrizations exist.

e "Famous” ones: BGL and CLN. Can fit for both parameter sets and extract | V. | with one or the

other.
e Results are fully consistent. @ @



Measuring V,;, using B? decays
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Some comments to |V,;| at LHCb  ~ 35 ' PSR
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, but achieves a good precision still.

e |HCb was not built to measure |Vcb

e Always need to rely on precision of normalisation channel (i.e. an external measurement). For this
measurement also rely on fs/ fg.

e |HCb also measured shape of differential decay rate of Bg — D;+ILL_ v by fully reconstructing
Dt — D p~ (without measuring | Vop )

e Noinclusive measurement of | V3| so far at LHCb, but investigations using a sum-of-exclusive
approach with Bg decays are ongoing. @



Measuring V,;
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Measuring V,;

V! [107]
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e Much more background: | Vgp| > Vi)
e Useisolation techniques / machine learning.
e Hadronic system has lower mass (e.g. mass of pO vs mass of DO), mostly coming with more
background.

e Lessevents: Have not (yet) determined form factors and | V3| at the same time.

e Use theoretical predictions for the form factors



[Nature Physics 11 (2015) 743]

T T
I Combinatorial
I Mis-identified LHCb

Measuring V,,;, using A} baryons
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Protons as final states are less abundant than kaons or pions (easier to separate from background).

Measure

Use the corrected mass. Unfortunately not very clean, but not the dominant uncertainty.

Model all backgrounds with templates: Large contribution from AZ‘ decays.

Normalization to /12' decay reduces systematic uncertainties and dependence on ng. @
First measurement of the decay Ag — pp~ vy, about 15°000 events. @


http://arxiv.org/abs/1504.01568

[Phys. Rev. Let. 126,081804]

Exclusive |V,;| using B? mesons
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o Use BY — K~ v, decays tomeasure | V,p|: First observation of B — K~ pt v,

[Vaus| B(BY— K~ uty,) L .
e M r = B e iscrimin ignal an kground.
easure A Rrpp BB D ) , USe Myorr to disc ate signal and background

e Divide Bg — K‘;ﬁuﬂ in two bins of q2 with equal number of signal events. @

Rgg: form factor ratio


http://arxiv.org/abs/2012.05143

Exclusive |V,;| using B? mesons
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e High q2: LQCD based on [Phys. Rev. D100, 034501]

better.

ViVl

Two different FF predictions for B — K~ p 1, used to extract |Viyp:
e Low ¢>: LCSR based on [JHEP 08 112]

[Phys. Rev. Let. 126,081804]

Provide two values of | V5| Differential rate will help understanding the BS — K~y v, decai @


http://arxiv.org/abs/2012.05143
http://arxiv.org/abs/1703.04765
http://arxiv.org/abs/1901.02561

[Phys. Rev. Let. 126,081804]

Exclusive |V,;| using B? mesons

& F o T [ T R - 5 > - >
9 6F .§ § L ch 1 Uncertainty All ¢ low ¢* high ¢
= f o e E Tracking 2.0 2.0 2.0
> i} = ] Trigger 14 1.2 1.6
=} ;8 2'8 7 Particle identification 1.0 1.0 1.0
£ IVl Inclusive 7GeVHe o (Meorr) 0.5 05 05
4= WUV q2 z = Isolation 0.2 0.2 0.2
[Vl Exclusive "B = ™ B Charged BDT 0.6 0.6 0.6
3;/,,,/(]—;{/159 et] —— E Neutral BDT 1.1 11 11
:Ab/—*pu/’ 3 ¢* migration - 2.0 2.0
b < 1 Efficiency 1.2 1.6 1.6
2F - Fit template +2e hE iyt
= ) = Total R I S
Vel [109

e Measurement (in individual q2 bins) is systematically limited, many are connected with limited size
of simulation sample.

e More q2 bins will allow for a more precise measurement using the full LHCb data set.


http://arxiv.org/abs/2012.05143
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e Broad vector meson in final state, more difficult to describe theoretically an experimentally.

e Simulate many different templates to describe the background (b — ¢, b— u) and signal
(B — p°uv, B — f5(1270) pv, ..., with p¥, f2(1270), ... — 7+ 77) processes.

e Cannot just measure | V3|, but probe structure of V-A current.



Some comments to |V,;| at LHCb

[JHEP 03 (2020)146]
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LHCb was not built to measure |Vub

, but achieves a good precision still.

Much more background than for "/cb
number of b hadrons produced at LHCb.

Differential measurements on the way.

Inclusive |Vub| very hard at LHCb (but who knows if we can do it ®)

, partly compensated by machine learning and very large


https://arxiv.org/abs/1911.08187

Lepton Flavour Universality (LFU) in B — D*¢v

b
Vo

! 4’\\ c
d
e Measure lepton flavour universality in charged-current (tree) decays.
%\ B(EO—)D*+T_V)
e Measure R(D*) = B(BSD i 0)
e Canalsomeasure R(DV), R(D), R(AT),... with muons and taus.
e Or with muons and electrons (no measurement published by LHCb so far)
e Original motivation was sensitivity for a charged Higgs.

e Now missing (at least) 2 neutrinos in the final state.



[arxiv:2302.02886]

LFU in B® — D*¢v, muonic mode
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e UseT — u~ vv,ie T and [t modes have the same final state.

e Distinguish with kinematical distributions

e Measure R(D*) and R(D") simultaneously:
o R(D*)with D** 7=, D*+ — DOx+ @
e R(D*)and R(D°)with D° 7= with D** — D%+, D*0 — DO7Y /~y and just D° @


https://arxiv.org/abs/2302.02886

LFU in B® — D*¢v, muonic
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e Higher excited states of D meson: B® — D** {1 not well known.

e Use control sample where one additional pion is added to D*t 7= and DO 7~

[arxiv:2302.02886]


https://arxiv.org/abs/2302.02886

LFU in B® — D*¢v, muonic mode

Very challenging measurement (at LHCb):

Soft muons prone to misidentification

Form-factor uncertainties of B — D** (v,
Knowledge on B — D®DX templates.

Very large simulated samples needed (billions of events).

etc...

[arxiv:2302.02886]

Internal fit uncertainties ORr(p)(x107%) or(pn(x10~%) Correlation
Statistical uncertainty 18 6.0 —0.49
Simulated sample size 1.5 4.5

B— D®DX template shape 0.8 3.2

B— D™ 7, form-factors 0.7 2.1

B— D17, form-factors 0.8 12

B (B~ D'D; (=7 7,)X) 0.3 1.2

MisID template 0.1 0.8

B (B—D"r v, ) 0.5 0.5

Combinatorial <0.1 0.1

Resolution <0.1 0.1

Additional model uncertainty ORr(D)(X10"%)  oR(po)(x10~%)

B— D™DX model uncertainty 0.6 0.7

B~ D;*1" 7, model uncertainty 0.6 2.4

Data/simulation corrections 0.4 0.8

Coulomb correction to R(D*+)/R(D*°) 0.2 0.3

MisID template unfolding 0.7 12

Baryonic backgrounds 0.7 1.2

N ization uncertainties TR (1077) _ar(pn)(x10-2)
Data/simulation corrections 0.AxR(D*)  0.6xR(D")

T o puw ing fraction 0.2xR(D*)  0.2xR(D°)

Total systematic uncertainty 24 6.6 —0.39
Total uncertainty 3.0 8.9 —0.43



https://arxiv.org/abs/2302.02886

[arxiv:2302.02886]
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https://arxiv.org/abs/2302.02886

[Phys Rev D 97 072013]

LFU in B® — D**4v, 3-prong mode
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o UseT — 7 mi7m 1.3 pions form a vertex that can be used for displacement.

e Use B — D** 37 as normalisation channel,
and known ratio B( B — D**37)/B(B® — D** juv) to calculate Rp+

e Despite measuring the same physics, different challenges: Large background from @
B— D*~ D} X decays,with Df — ntn~ 7t X @


https://arxiv.org/abs/1711.02505

[Phys Rev D 97 072013]

LFU in B® — D**4v, 3-prong mode
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e Fitin 7 decay time, q2 and a BDT variable.
e Obtain about 1300 B® — D**7 v events

e New result with 2015 - 2016 data shown
last week (with very similar strategy),

Candidates/ 0.1

about 2x as many signal events.



https://arxiv.org/abs/1711.02505

LFU in B —

D**¢v, 3-prong mode
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Theory
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® Precision from LHCb starting to match precision of B factories.

03

D** v with hadronic 7 decays perfectly consistent with SM prediction.



LFU in B} — J/p£v and A) — Atev
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[PRL 128 191803]


https://arxiv.org/abs/2201.03497

Conclusions

e Semileptonic decays are a great tool to probe the fundamental structure and parameters of the SM,
with controlled theoretical uncertainties.

e Main experimental challenge with semileptonic decays (in LHCDb) is the missing neutrino. Have
developed ways to mitigate this in the last ~ 10 years.

e Many exciting results published, and more to come. @



