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B physics
[www.hep.ph.ic.ac.uk]

B0 = |db⟩,B+ = |ub⟩,B0
s = |sb⟩,Λ0

b = |udb⟩,B+
c = |cb⟩

• B physics is the study of bound states containing one b quark and their decays / dynamics.

• They decay in amultitude of final states, allowing the study of a wide range of physics.

• They are copiously produced at the LHC: 1011bb̄ pairs produced per fb−1

• Non-B physics is great, too (but I had to restrict the topic a bit). 2
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The LHCb detector (Run 1+2)
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• ”Semileptonic decay” just refers to a final state with leptons and hadrons.

• Except for LHCb people where ”semileptonic B decay” stands for b→ c and b→u transitions with

charged and neutral leptons in the final state.

• i.e. no b→ sℓ+ℓ− transitions likeB0→ K∗0ℓ+ℓ− (they are still great...)
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Motivation
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3 CP violation in mixing
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• The fundamental (theoretical) advantage of semi-leptonic decays is the non-coupling of the leptonic

system to the outgoing hadron.

• The fundamental (experimental) disadvantage of semi-leptonic decays is the non-reconstructible

neutrino.

• Experimental advantage: About 10% of all b-hadron decays: Very large samples, allows for many
precision tests of the StandardModel.
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The CKM matrix



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


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Techniques for semileptonic decays
(at LHCb)



The fundamental experimental problem
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Figure 12. Comparison of various kinematic variables between simulated B0
s decays to the Kµ⌫

and K⇤µ⌫ final states: (top left) visible mass, (top right) corrected mass, (lower left) b-hadron mass
using the 2-variable regression, (lower right) squared missing mass using the 2-variable regression.

distributions for the two B0
s decay modes. The lower row shows two new variables that can

be computed with the help of the regression based b-hadron momentum estimate. In the
first case it is assumed that the missing system has zero mass, which permits a computation
of the parent b-hadron mass, denoted Minf . The distribution of this variable is shown in
Fig. 12 (lower left). Alternatively, the mass of the decaying b-hadron can be assumed,
and a squared missing mass estimate can be made. The distribution of this variable,
denoted M2

miss,inf , is shown in Fig 12 (lower right). The two new variables provide clear
discrimination but their performance should be compared to the established Mcorr variable.
Fig. 13 shows the efficiency of B0

s ! K⇤�µ+⌫µ versus the efficiency B0
s ! K�µ+⌫µ for a

range of cuts on Mcorr, Mvis and Minf
2. Interestingly, Minf performs slightly better than

Mcorr in the region of signal efficiencies in excess of 90%. However, Mcorr performs better
in all other regions.

5.3 Application to the study of b meson mixing and production

Despite the obvious drawback of unreconstructible particles, semileptonic b-hadron decays
have several notable advantages for certain production and mixing studies. Some of these
benefit from the large signal yields in Cabibbo favoured semileptonic decays and/or from
the fact that these decays are dominated by a single tree-level amplitude which limits direct

2Since the b-hadron mass and missing mass squared variables are essentially different transformations of
the same information, we only consider the b-hadron mass.

– 11 –

• The fundamental experimental problemwith semileptonic decays (at LHCb) is themissing neutrino.

• Cannot construct a Bmeson / baryon invariant mass.

• ”Visible mass”, i.e. invariant mass of all remaining particles has poor discrimination power.

• Need smarter approaches. 8
59



I: Denial
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• Onemight not need aB invariant mass like object at all e.g.when studyingB→ DµνX .

• B(B→ DµνX )≈ 10% (it’s |Vcb|)
• Displacedmuon

• D resonance clean to select

• Fitm(K+π−) and log(IPD) simultaneously to select the decay (and separate from prompt

charm). 9
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II: Anger

Vcb Vs Vub

• Themethod on the last slide only really works well for abundant (Cabbibo favoured) signals with a

clean resonance, andwhere you do not care about additional particles.

• For decays such asΛ0
b→ pµ−νµ andB

0
s → K−µ+νµ, this does not work so well.

• And neither for decays with τ leptons in the final state, such asB0→ D∗+τ−ν

• Let’s see if we can’t make up an invariant mass variable that is as close as possible to the ”standard”

one.

10
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III: Bargaining (I)

Finding b ! ul⌫l at a hadron collider 73

6.3.3. q2
selection

In order to measure the branching fractions of ⇤0
b ! pµ�⌫µ and ⇤0

b ! ⇤+
c µ�⌫µ decays in the desired

regions of q2
= m2

µ⌫ , a reconstruction of the neutrino 4-momentum is required.

⇤0
b

hµ

h = p/⇤+
c

µ

⌫

p?

p?

Figure 6.1: Illustration of momentum conservation with respect to the ⇤0
b flight direction.

This is made possible through the constraints from the flight direction and the mass of the ⇤0
b

baryon. Momentum conservation with respect to the flight direction allows for the component of
the neutrino momentum transverse to this direction to be determined, as illustrated in Fig. 6.1.
The component of the neutrino momentum parallel to the flight direction, p(⌫)k, which is the only
remaining unknown, can then be solved for by using the ⇤0

b mass constraint,

(p⌫ + phµ)
2

= m2
⇤0

b
, (6.1)

where

p⌫ =

⇣q
p2

k(⌫) + p2
?, 0, �p?, pk(⌫)

⌘
(6.2)

phµ =

⇣q
p2

k(hµ) + p2
? + m2

hµ, 0, p?, pk(hµ)

⌘
. (6.3)

Here, mhµ and pk(hµ), are respectively the visible mass and the momentum component parallel to
the ⇤0

b flight direction for the hµ pair. Solving equation 6.1 leads to quadratic solutions for the
p(⌫)k,

p(⌫)k =
�b �

p
b2 � 4ac

2a
, (6.4)

11
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III: Bargaining (II)

Finding b ! ul⌫l at a hadron collider 73

6.3.3. q2
selection

In order to measure the branching fractions of ⇤0
b ! pµ�⌫µ and ⇤0

b ! ⇤+
c µ�⌫µ decays in the desired

regions of q2
= m2

µ⌫ , a reconstruction of the neutrino 4-momentum is required.
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c

µ
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Figure 6.1: Illustration of momentum conservation with respect to the ⇤0
b flight direction.

This is made possible through the constraints from the flight direction and the mass of the ⇤0
b

baryon. Momentum conservation with respect to the flight direction allows for the component of
the neutrino momentum transverse to this direction to be determined, as illustrated in Fig. 6.1.
The component of the neutrino momentum parallel to the flight direction, p(⌫)k, which is the only
remaining unknown, can then be solved for by using the ⇤0

b mass constraint,

(p⌫ + phµ)
2

= m2
⇤0

b
, (6.1)

where

p⌫ =

⇣q
p2

k(⌫) + p2
?, 0, �p?, pk(⌫)

⌘
(6.2)

phµ =

⇣q
p2

k(hµ) + p2
? + m2

hµ, 0, p?, pk(hµ)

⌘
. (6.3)

Here, mhµ and pk(hµ), are respectively the visible mass and the momentum component parallel to
the ⇤0

b flight direction for the hµ pair. Solving equation 6.1 leads to quadratic solutions for the
p(⌫)k,

p(⌫)k =
�b �

p
b2 � 4ac

2a
, (6.4)

m2
B = (pvis + pν)

2

= m2
vis +�

�m2
ν + 2 · pvispν

pvis · pν = EvisEν − p∥visp∥,ν − pTvispTν
pTvis=−pTν= EvisEν − p∥visp∥,ν + pT

2

• Assume: p∥vis = p∥,ν

• pvis · pν is Lorentz invariant. One can always boost along the flight direction in a systemwhere

p∥vis vanishes.

• pvis · pν =
√

m2
vis + pT2 · pT + pT

2

12
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III: Bargaining (III)

Finding b ! ul⌫l at a hadron collider 73

6.3.3. q2
selection

In order to measure the branching fractions of ⇤0
b ! pµ�⌫µ and ⇤0

b ! ⇤+
c µ�⌫µ decays in the desired

regions of q2
= m2

µ⌫ , a reconstruction of the neutrino 4-momentum is required.
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c

µ
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Figure 6.1: Illustration of momentum conservation with respect to the ⇤0
b flight direction.

This is made possible through the constraints from the flight direction and the mass of the ⇤0
b

baryon. Momentum conservation with respect to the flight direction allows for the component of
the neutrino momentum transverse to this direction to be determined, as illustrated in Fig. 6.1.
The component of the neutrino momentum parallel to the flight direction, p(⌫)k, which is the only
remaining unknown, can then be solved for by using the ⇤0

b mass constraint,

(p⌫ + phµ)
2

= m2
⇤0

b
, (6.1)

where

p⌫ =

⇣q
p2

k(⌫) + p2
?, 0, �p?, pk(⌫)

⌘
(6.2)

phµ =

⇣q
p2

k(hµ) + p2
? + m2

hµ, 0, p?, pk(hµ)

⌘
. (6.3)

Here, mhµ and pk(hµ), are respectively the visible mass and the momentum component parallel to
the ⇤0

b flight direction for the hµ pair. Solving equation 6.1 leads to quadratic solutions for the
p(⌫)k,

p(⌫)k =
�b �

p
b2 � 4ac

2a
, (6.4)

• Assume: p∥vis = p∥,ν

• pvis · pν is Lorentz invariant. One can always boost along the flight direction in a systemwhere

p∥vis vanishes.

• pvis · pν =
√

m2
vis + pT2 · pT + pT

2

m2
B,corr = m2

vis + 2 ·
√

m2
vis + pT2 · pT + 2 · pT2

=

(√
m2

vis + pT2 + pT

)2

∴ mB,corr =
√

m2
vis + pT2 + pT

13
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IV: Depression
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Figure 12. Comparison of various kinematic variables between simulated B0
s decays to the Kµ⌫

and K⇤µ⌫ final states: (top left) visible mass, (top right) corrected mass, (lower left) b-hadron mass
using the 2-variable regression, (lower right) squared missing mass using the 2-variable regression.

distributions for the two B0
s decay modes. The lower row shows two new variables that can

be computed with the help of the regression based b-hadron momentum estimate. In the
first case it is assumed that the missing system has zero mass, which permits a computation
of the parent b-hadron mass, denoted Minf . The distribution of this variable is shown in
Fig. 12 (lower left). Alternatively, the mass of the decaying b-hadron can be assumed,
and a squared missing mass estimate can be made. The distribution of this variable,
denoted M2

miss,inf , is shown in Fig 12 (lower right). The two new variables provide clear
discrimination but their performance should be compared to the established Mcorr variable.
Fig. 13 shows the efficiency of B0

s ! K⇤�µ+⌫µ versus the efficiency B0
s ! K�µ+⌫µ for a

range of cuts on Mcorr, Mvis and Minf
2. Interestingly, Minf performs slightly better than

Mcorr in the region of signal efficiencies in excess of 90%. However, Mcorr performs better
in all other regions.

5.3 Application to the study of b meson mixing and production

Despite the obvious drawback of unreconstructible particles, semileptonic b-hadron decays
have several notable advantages for certain production and mixing studies. Some of these
benefit from the large signal yields in Cabibbo favoured semileptonic decays and/or from
the fact that these decays are dominated by a single tree-level amplitude which limits direct

2Since the b-hadron mass and missing mass squared variables are essentially different transformations of
the same information, we only consider the b-hadron mass.

– 11 –

Finding b ! ul⌫l at a hadron collider 73

6.3.3. q2
selection

In order to measure the branching fractions of ⇤0
b ! pµ�⌫µ and ⇤0

b ! ⇤+
c µ�⌫µ decays in the desired

regions of q2
= m2

µ⌫ , a reconstruction of the neutrino 4-momentum is required.

⇤0
b

hµ

h = p/⇤+
c

µ

⌫

p?

p?

Figure 6.1: Illustration of momentum conservation with respect to the ⇤0
b flight direction.

This is made possible through the constraints from the flight direction and the mass of the ⇤0
b

baryon. Momentum conservation with respect to the flight direction allows for the component of
the neutrino momentum transverse to this direction to be determined, as illustrated in Fig. 6.1.
The component of the neutrino momentum parallel to the flight direction, p(⌫)k, which is the only
remaining unknown, can then be solved for by using the ⇤0

b mass constraint,

(p⌫ + phµ)
2

= m2
⇤0

b
, (6.1)

where

p⌫ =

⇣q
p2

k(⌫) + p2
?, 0, �p?, pk(⌫)

⌘
(6.2)

phµ =

⇣q
p2

k(hµ) + p2
? + m2

hµ, 0, p?, pk(hµ)

⌘
. (6.3)

Here, mhµ and pk(hµ), are respectively the visible mass and the momentum component parallel to
the ⇤0

b flight direction for the hµ pair. Solving equation 6.1 leads to quadratic solutions for the
p(⌫)k,

p(⌫)k =
�b �

p
b2 � 4ac

2a
, (6.4)

• mcorr peaks at the nominalB mass (the casewhere, in the rest frame of theB, the visible particles

and the neutrino fly perpendicular to the flight direction).

• But it has a very long tail to lowermasses.

• This is a consequence of the assumption wemade.

• Still: One can show that the correctedmass is the best possible variable one can construct (lacking

additional information) (arxiv:2108.13820) 14
59
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V: Acceptance

6.1 Monte-Carlo Fit

Figures 6 and 7 shows the mass distribution and the fits of the Monte-Carlo sample for cases
with 3 and 2 pions. Using the true particle ID from the generated events, truth matching is
applied to suppress background without any other cut parameters.
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Figure 7: Mass distribution and fit on Monte-Carlo sample with 2 pions reconstructed.

For the fits, two Gaussians are used for the cases with 3 pions, the small one take into account
the resolution. With 2 pions, two gaussians are needed for the signal peak as the distribution
is asymmetric and there is also a third gaussian for the resolution.

6.2 Data

For the case with 3 pions reconstructed, figure 8 represents the fit of the mass distribution.
The background and the signal peaks are distinct, the background distribution is represented
by a second order polynomial.
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Figure 8: Mass distribution and fit of data with all pions reconstructed without cut applied.

11

• There are some points to consider:

• In an experimental setup, the upper end of the distribution is broadened due to resolution effects.

• One can also constructmcorr for amissing particle with non-zeromass, e.g. one can reconstruct

K+→ π+π−π+ with amissingπ−.

• mK,corr =
√
m2

vis + pT2 +
√
m2

π + pT2

• Thewidth of the peak depends on the available phase space.
15
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σ(mcorr)

Finding b ! ul⌫l at a hadron collider 84

Fig 6.12 compares the corrected mass uncertainty computed using solely the covariance in-
formation for the primary and secondary vertex positions, �mcorr , to that including the impact
of the uncertainty on the pµ 4-momentum, �0

mcorr
. Fig 6.12 also shows the improvement in the

corrected mass resolution, mreco
corr �mtrue

corr , when requiring candidates either have �mcorr < 100 MeV/c2

or �0
mcorr

< 100 MeV/c2. While the selection criterion �0
mcorr

< 100 MeV/c2 results in a slightly
narrower mreco

corr � mtrue
corr distribution this condition results in a efficiency loss of 11% relative to the

condition �mcorr < 100. For this reason a selection was made using �mcorr as opposed to �0
mcorr

.

The requirement to reject candidates with a corrected mass uncertainty above 100 MeV/c2

reduces the RMS of the mreco
corr � mtrue

corr distribution from 250 MeV/c2 to 156 MeV/c2. Although this
tight selection criterion selects only around 23% of signal after preselection there is a significant
improvement in the separation between signal and background corrected mass shapes as shown in
Fig 6.13.
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Figure 6.12: The corrected mass uncertainty, �mcorr , distribution for simulated ⇤0
b ! pµ�⌫µ decays. In

the |Vub| analysis candidates with corrected mass uncertainty above 100 MeV/c2 are rejected
(left). The mreco

corr � mtrue
corr distribution for simulated ⇤0

b ! pµ�⌫µ decays is shown by the
solid line meanwhile the dashed requirement shows candidates which meet the additional
requirements of �mcorr < 100 MeV/c2 and �0

mcorr
< 100 MeV/c2 (right).

The choice of the selection criterion �mcorr < 100 MeV/c2 was made in order to limit systematic
uncertainties as opposed to optimising on a statistical basis. The cut value of 100 MeV/c2

corresponds to the peak of the corrected mass uncertainty distribution, this results in a smaller
impact for any potential mismatch in corrected mass uncertainty distribution in simulation to that
in data. This effect is quantified later in section 7.4.1 using a kaon and muon combination from
B+ ! (J/ ! µ+µ�

)K+ decays as a proxy for the signal proton and muon. Fig 6.14 shows the
RMS of the mreco

corr � mtrue
corr distribution as a function of �mcorr and xcut, where �mcorr < xcut.Initially

Bs Corr. mass (MeV)
2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

Ev
en

ts
 / 

( 5
6.

25
 M

eV
 )

0

0.02

0.04

0.06

0.08

0.1
2<100 MeV/cmcorrσsignal 

2>100 MeV/cmcorrσsignal 

2<100 MeV/cmcorrσSS data 

2>100 MeV/cmcorrσSS data 

Figure 6: The corrected mass for Monte Carlo signal decays and same sign candidates from data.
The e↵ect of rejecting events with a high or low corrected mass uncertainty is demonstrated.

large corrected mass uncertainty while those produced from the latter method will form a
secondary vertex with a large uncertainty resulting in a large corrected mass uncertainty.

When considering the decay B0

s
! D�

s
µ+⌫µ no selection is made on the corrected mass

uncertainty of the K�µ+ pair or the D�
s
µ+ pair, since all or most of the combinatoric is

removed by the D�
s
mass peak fit and particle ID requirement on the muon. Furthermore,

contrary to the B0

s
! K�µ+⌫µ case (b ! u), there is no need to separate further with a

shape of a b ! c background. The main background in this case, B0

s
! D�

s

⇤µ+⌫µ, has a
similar �mcorr distribution as shown in Fig.8.
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Figure 7: The corrected mass uncertainty for signal decays and B+
!J/ K+ decays recon-

structed as B0
s ! K�µ+⌫µ.

9

• Can calculate expected error ofmcorr (have funwith Jacobians...)

• As expected, error on secondary vertex dominates.

• And then cut on it.

• Improves separation between signal and background, but greatly reduces event yield. 16
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More resolutions
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Figure 6.5: Decay topologies for signal ⇤0
b ! pµ�⌫µ decays (left) and background ⇤0

b ! ⇤+
c µ�⌫µ decays

(right). In the case that background decays have additional charged tracks as shown in blue
these backgrounds are removed by identifying these tracks as opposed to other tracks in the
event shown in red, which originate from another b-hadron or the primary vertex.

Figure 6.6: Schematic view of a decision tree taken from [80]. Starting from a root node a sequential set
of cuts, which each maximise the separation between background and signal at a given node,
are applied. The final subsets of the parameter space selected by these splits, known as the
leaves of the tree, are labelled signal or background based on their dominate composition.

training sample into subsets using rectangular cuts on the N chosen variables, ~x = {x1, x2, ..., xN},
as shown in Fig 6.6. At each stage of splitting the variable and associated cut value which results
in the greatest separation of signal and background is chosen. This is done by comparing the
Gini index, p(1 � p), before and after a potential split where here p is the signal purity; this index
falls off to zero for complete separation. A maximum depth of five splits was allowed and subsets
of samples with less than 5% of the total training statistics were not split further. The final
subsets, which are known as the leaves of the tree, are classified as signal, h(~x) = 1 or background
h(~x) = �1, where here h(~x) is the classifier output for a single tree.

• As seen, there is a long tail to lowermasses, bound by the available phase space.

• On top of that, there are resolution effects.

• Upper tail can be longer than lower tail, e.g. typically forB+
c decays.

• Main reason is the ”precision of the lever arm” given by the precision of the secondary vertex.
17
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q2 (I): How
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• The correctedmass was constructed by assuming p∥,vis = p∥,ν , i.e. only one quantity was fixed.

• If we assume that themother particle is a b hadronwith the knownmass, one can obtain p∥,ν

• And calculate q2 = squared invariant mass of the dilepton system = squared invariant mass of the

virtualW .

• Downside: Themass is a squared quantitiy, one obtains two solutions (and only one is correct).
18
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q2 (II): Which solution to choose
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Figure 3. The left-hand figure shows the 1/sin✓flight distribution of the simulated b-hadrons that
are within the LHCb acceptance. The right-hand figure shows the distribution of the same variable
versus the b-hadron momentum.
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Figure 4. The left-hand figure (left) shows the |~F | distribution of the simulated b-hadrons that
are within the LHCb acceptance. The right-hand figure (right) shows the distribution of the same
variable versus the b-hadron momentum.

balance. Considering the LHCb detector, and the most optimistic use of all kinematic
information from the reconstructible particles, we can only achieve a correlation of around
20% between the missing pT and the pT of the signal b. As an alternative, we consider the
possibility to reconstruct the b̄-hadron that is produced in association with the signal b.
Even at b(b̄)-quark level the naive pT balance between the b and b̄ is spoilt by the broad
bb̄ pT spectrum. Various combinations of reconstructing the signal b and associated b̄ at
hadron or jet level are considered. Even before considering the inefficiency of reconstructing
the associated b̄ this approach does not seem promising.

We are left with the conclusion that there are only two pieces of information related to
the b-hadron flight vector, namely 1/ sin ✓flight and |~F |, which are of value in an estimator of
the b-hadron momentum. In the following section we utilise them in a regression algorithm.

4 Multivariate regression analysis

The two flight variables described in the previous section, 1/ sin ✓flight and |~F |, are considered
in a multivariate regression analysis in order to infer the momenta of the b-hadrons. A simple
least squares linear regression algorithm, as implemented in the sklearn package [11], is

– 5 –
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Figure 3. The left-hand figure shows the 1/sin✓flight distribution of the simulated b-hadrons that
are within the LHCb acceptance. The right-hand figure shows the distribution of the same variable
versus the b-hadron momentum.
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balance. Considering the LHCb detector, and the most optimistic use of all kinematic
information from the reconstructible particles, we can only achieve a correlation of around
20% between the missing pT and the pT of the signal b. As an alternative, we consider the
possibility to reconstruct the b̄-hadron that is produced in association with the signal b.
Even at b(b̄)-quark level the naive pT balance between the b and b̄ is spoilt by the broad
bb̄ pT spectrum. Various combinations of reconstructing the signal b and associated b̄ at
hadron or jet level are considered. Even before considering the inefficiency of reconstructing
the associated b̄ this approach does not seem promising.

We are left with the conclusion that there are only two pieces of information related to
the b-hadron flight vector, namely 1/ sin ✓flight and |~F |, which are of value in an estimator of
the b-hadron momentum. In the following section we utilise them in a regression algorithm.

4 Multivariate regression analysis

The two flight variables described in the previous section, 1/ sin ✓flight and |~F |, are considered
in a multivariate regression analysis in order to infer the momenta of the b-hadrons. A simple
least squares linear regression algorithm, as implemented in the sklearn package [11], is

– 5 –

• Experimentally, one solutionmost often occurs more frequently than the other (due to acceptance

of the subdetectors, selection cuts in the analysis, etc...). Can choose this one.

• Or: Try to get an independent measure of theB momentum, and compare with the two solutions:

Pick the closer one.

• B momentum is correlated with flight length and angle wrt to beam axis.
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q2 (III): Which solution to choose
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Figure 5. The distribution of Pinf versus the true b-hadron momentum.

used. This algorithm is trained on a randomly selected subset of the simulated event
sample. The independent data are used to evaluate the performance of the algorithm in
estimating the b-hadron momentum from the values of the two flight variables. Fig. 5
shows the distribution of the inferred b-hadron momentum, Pinf , versus the true b-hadron
momentum. The correlation coefficient is around 70%. In Tab. 1, the correlation coefficients
between Ptrue and the two flight variables are listed for the three centre of mass energies
and various selection requirements on the simulated B0

s ! K�µ+⌫µ decays. Also listed are
the correlations between Ptrue and the inferred momentum that would be returned by the
regression using only 1/ sin ✓flight, which is denoted P ✓

inf . It can be seen that as expected
these values are close to the corresponding correlations with the raw flight angle variable
itself. The final column of Tab. 1 lists the correlations between Ptrue and Pinf . It can
be seen that the combination of the two variables in the regression algorithm increases
the correlation by around 10% compared to the more powerful angular variable alone.
Hardly any dependence on the centre-of-mass energy is seen. There is a degradation of the
correlations of up to 10% when applying the acceptance and selection requirements on the
charged decay products of the simulated B0

s ! K�µ+⌫µ decays.
Fig. 6 (left) shows the distribution of (Pinf�Ptrue)/Ptrue and the corresponding distribu-

tion for P ✓
inf instead of Pinf . As expected the shapes of these distributions roughly resemble

the underlying b-hadron pT spectrum shown in Fig. 1. In Fig. 6 (right) the corresponding
profiles of the mean |Pinf �Ptrue|/Ptrue are shown as a function of ⌘. The resolution of Pinf

is around 60% and exhibits some dependence on ⌘. It is about 10–20% improved compared
to that of P ✓

inf which neglects the decay length information.

5 Physics applications

In this section, several physics applications are considered. Sect. 5.1 describes an application
to the study the decay B0

s ! K�µ+⌫µ. The b-hadron momentum estimate is used to resolve
the quadratic ambiguity and enhance the resolution in the kinematic quantities describing
the b-hadron decay. Sect. 5.2 describes an attempt to use the momentum estimate directly
to define variables that distinguish between different classes of decays. As an example, we
consider separating B0

s ! K�µ+⌫µ from B0
s ! K⇤�µ+⌫µ. Sect. 5.3 reports on the use

– 6 –
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Figure 7. The distribution of (P+�Ptrue)/Ptrue versus (P��Ptrue)/Ptrue in the subset of simulated
B0

s ! K�µ+⌫µ decays that satisfy the selection requirements as described in the text.
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uncertainty. Fig. 10 compares the q2 resolution that is obtained with a random choice of
solutions versus a choice based on Pinf . A useful figure of merit in unfolding problems is the
bin purity. For a given bin in the true quantity, we define its purity as the fraction of entries
for which the reconstructed quantity also falls into the same bin. Fig. 11 compares the q2

bin purities for the random quadratic solution versus the best solution with our method.

– 9 –

B0
s → K−µ+νµ

• Use a linear regression with flight length and angle wrt to beam axis to predictB momentum.

• Pick solution which is closer to predictedmomentum: Significantly better than random choice.

• Depends on the decay in question.
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q2 (IV): Bring on DNNs!
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(d) Reconstructed B0
s missing mass square using neural networks

Figure 17: Distribution of reconstructed B
0
s

mass and missing mass square with various methods.
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Figure 18: Fraction of which the correct B0
s

momentum solution is chosen as a function of pseudorapidity
and invariant mass of µ⌫µ system.
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Figure 17: Distribution of reconstructed B
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s

mass and missing mass square with various methods.
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Figure 18: Fraction of which the correct B0
s

momentum solution is chosen as a function of pseudorapidity
and invariant mass of µ⌫µ system.

19

Master Project • EPFL - PH - LPHE • S. Ek-In

larger widths than the neural networks models. This implies that the neural networks provide the
predicted PB0

s
more precisely. The RNN model has the best resolution among other neural network

models. We present the distribution of the B
0
s

momentum using this model (RNN) and the true value
in Figure 16. The correlation coefficient can reach upto almost 90% whereas around 70% was achieved
by [20].
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Figure 16: Distribution of predicted B
0
s

momentum using recurrent neural networks (RNN) PPRED

versus the true momentum at a generator level.

3.4 Application to study the semileptonic decy

We show the B
0
s

invariant mass as well as missing mass square M
2
miss

of the system. The M
2
miss

is an
alternative quantity to specify undetected particles’ masses which is supposed to be near zero because
of the massless neutrino. It is defined as

M
2
miss

=
⇣q

P 2
Bs

+m2
Bs

� Evis

⌘2

� (PB0
s
� P

||
vis

)2 � (P?
vis

)2, (18)

where PBs is acquired depending on the specific methods used. Figure 17 shows that the reconstructed
quantities with the linear regression by using only the flight vector has a larger width than the other
methods. By comparing the deterministic methods and neural networks, the latter provides distributions
that are closer to expected values than the former; mass distributions near the B

0
s

mass and missing
mass square near zero. The RNN is the best method to reconstruct both mass distribution and missing
mass square.

These models are also tested on how well they predict the correct PBs solution as shown in
Figure 18 as a function of ⌘ and q

2 (the true value). The proportional mass is clearly separated from the
others by having the lowest fraction of the correct solution. The average fractions of neural networks
linear regression methods have similar trends and are distinct from the proportional mass method. The
ratios of correct predictions from the neural networks increase as a function of q2(µ⌫µ) and fluctuate at
high q

2 value, but this is not the case for the RNN method which still rises and can reach up to around
80% in 14 < q

2
< 20 GeV2/c4.

18

B0
s → K∗−µ+ν

B0
s → K∗−µ+ν

B0
s → K∗−µ+ν• Using DNNs and training on a

specific decay channel performs

a bit better.

• Nomagic bullet though
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Other approaches: Collinear approximation
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• One can use other discriminating variables thanmcorr , e.g.m
2
miss

• Approximate theB momentumwith pz,B = mB
mvis

· pz,vis
• pν = (pB − pvis), i.e.mmiss is mass of neutrino.

• If only one neutrinomissing: Signal peaks at 0, rest higher.

• Also energy of muon inB rest frame is discriminating.

• Note:mcorr andm
2
miss are strongly correlated.
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Other approaches: Using B∗
s2→ B+K− (I)
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• Use the decayB∗
s2→ B+K−

• This adds another (narrow) resonance to the decay chain.

• Remember: only one component, p∥,ν missing.

• Constrain toB+ mass, fit inB∗
s2 mass, or constrain toB

∗
s2 mass, calculatem

2
miss (=m

2
ν ) 23
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Other approaches: Using B∗
s2→ B+K− (II)
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• Constrain toB∗
s2, calculatem

2
miss.

• Can be used to e.g. calculateB→ D,D∗, D∗∗µν fraction.

• Can be useful for certain decays, but not applicable to all problems.

• Downside: Number ofB+ reduced by about factor of 100when requiringB∗
s2 resonance. 24
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Other approaches: Using B∗
s2→ B+K− (III)

Fit the invariant B∗s2 mass distribution

Data samples: 2011, 2012, 2016, 2017 and 2018.
Selection: Applying BDT and NN independently.

Background: Second order Chebychev polynomial.
Signal: Two Gaussians with shapes from MC

Fit optimisation:

● The figure of merit
S�√S +B is maximized
by cutting
simultaneously on the
MVA response variables
and PID of the K−.

● Signal region:

5828 < m(B∗s2) < 5850
MeV/c2
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10• Constrain toB+, fit inB∗
s2

• Also works for e.g.B+→ ρµ+ν , but very little signal yield.

• At some point using the correctedmass becomesmore advantageous compared to usingB∗
s2:

Bigger signal yield compensates for broad signal distribution. 25
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Vertex isolation: charged isolation

Finding b ! ul⌫l at a hadron collider 78

PV

Xb̄

�0
b

µ�

⌫̄µ

p PV

Xb̄

�0
b

µ�⌫̄µ

p
�+

c

Figure 6.5: Decay topologies for signal ⇤0
b ! pµ�⌫µ decays (left) and background ⇤0

b ! ⇤+
c µ�⌫µ decays

(right). In the case that background decays have additional charged tracks as shown in blue
these backgrounds are removed by identifying these tracks as opposed to other tracks in the
event shown in red, which originate from another b-hadron or the primary vertex.

Figure 6.6: Schematic view of a decision tree taken from [80]. Starting from a root node a sequential set
of cuts, which each maximise the separation between background and signal at a given node,
are applied. The final subsets of the parameter space selected by these splits, known as the
leaves of the tree, are labelled signal or background based on their dominate composition.

training sample into subsets using rectangular cuts on the N chosen variables, ~x = {x1, x2, ..., xN},
as shown in Fig 6.6. At each stage of splitting the variable and associated cut value which results
in the greatest separation of signal and background is chosen. This is done by comparing the
Gini index, p(1 � p), before and after a potential split where here p is the signal purity; this index
falls off to zero for complete separation. A maximum depth of five splits was allowed and subsets
of samples with less than 5% of the total training statistics were not split further. The final
subsets, which are known as the leaves of the tree, are classified as signal, h(~x) = 1 or background
h(~x) = �1, where here h(~x) is the classifier output for a single tree.

• When looking at Cabibbo-supressed semileptonic decays ( |Vub|), need to fight |Vcb| background.
• Two handles: c hadron flies a fewmm and decays (mostly) intomore tracks than signal.

• vertex -χ2 is poor for |Vcb| background
• vertex-χ2 increases only little by adding closest track.

• In reality: Use asmuch information as possible and construct amultivariate classifier
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Vertex isolation: charged isolation

Finding b ! ul⌫l at a hadron collider 80
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Figure 6.8: Maximum BDT output distributions obtained when running the isolation BDT over all tracks
in an event for simulated signal ⇤0

b ! pµ�⌫µ decays and a variety of simulated background
decays. The output of �2 corresponds to the case when no tracks with and IP �2 < 50
with respect to the pµ vertex are found. For the |Vub| analysis, candidate events with a
maximum BDT output > 0 were rejected, thus removing the majority of background from
⇤0

b ! N⇤+µ�⌫µ, ⇤0
b ! D0pµ�⌫µ, ⇤0

b ! ⇤⇤+
c µ�⌫µ and ⇤0

b ! (⇤+
c ! pX)µ�⌫µ decays.

0 are rejected; this criterion is equivalent to requiring that the pµ vertex is well isolated from
any other tracks in the event. Although, after preselection, this selection criterion is only 68%

efficient on simulated ⇤0
b ! pµ�⌫µ decays, it rejects around 85% of ⇤0

b ! D0pµ�⌫µ decays, 61% of
⇤0

b ! N⇤+µ�⌫µ decays, 97% of ⇤0
b ! ⇤

⇤+
c µ�⌫µ decays and 95% of ⇤0

b ! (⇤+
c ! pX)µ�⌫µ decays

where X includes at least one charged particle. This sacrifice in signal is justified by the large
rejection of the b ! c background which is O(100) times larger than the signal. Given that the
analysis was not statistically limited the selection was not optimised for maximal signal significance.
While the isolation effectively removes many background types only 35% of ⇤0

b ! (⇤+
c ! pX)µ�⌫µ

decays where X represents solely neutral particles are rejected. This background category is the
dominant background for the analysis after the final selection.

Fig 6.9 compares the performance of the BDT in discriminating on a track by track basis to
the performance of the maximum BDT in discriminating between simulated ⇤0

b ! pµ�⌫µ and
⇤0

b ! (⇤+
c ! pX)µ�⌫µ decays (where X includes at least one charged particle) on a event by

event basis. The performance is quantified as the rejection of background type tracks/events,
1 � ⇠background, for a given signal efficiency, ⇠signal. For the chosen selection criterion the BDT has a
signal efficiency of ⇠95% and a background rejection of ⇠93%. On the other hand, when making
the same requirement on the maximum BDT output per event the signal efficiency is much lower
at ⇠68% while the background rejection is slightly higher at ⇠95%. This is due to the fact that

• Run over all tracks in the event which are ”close” to the pµ vertex, evaluate BDT for them.

• As expected performs better for channels with at least onemore track than on channels with

neutral particles.

• Different analyses use different techniques, but idea is always the same

• Charged vertex isolation usually most powerful (high-level) variable to extract signal in

semileptonic decays.
27
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Vertex isolation: neutral isolation

Neutral isolation
• Lot of feed-down with additional π0s.


• Reduce this by looking for neutral objects in a cone around the D+.

!8

• Reduce                       by 30% and keep 90% of                      .


• Could improve by looking at softer photons - next round.

B ! D�`+⌫`B ! D⇤�`+⌫`

O✏ine selection Neutral isolation

Combined neutral isolation BDT

A combined BDT is created, using the number of ”good” ⇡0s per event and the
neutral cone BDT output as input variables.

The training is done on the same signal and background samples as before, but
without any truth-matching requirement applied.

neutralBDT response
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MVA Method:

neutralBDT

Background rejection versus Signal efficiency

By setting the working point at a 90% signal e�ciency level, the cut on the combined
BDT is defined to be > �0.16.

Julián Garćıa Pardiñas (USC) Status of the selection 19th July 2017 23

A nice control region

• Main problemwith neutral particles: One does not know their point of origin i.e. PV or SV.

• Neutral isolationmostly much less powerful than charged one.

• But similar strategy as charged one: See if you find neutral objects in vicinity of signal decay.
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Vertex isolation: "τ isolation"

B0 →D*−τ +ντ

π −

π +

π +

ντ

D0

B0

π −

p

PV

p

B0 →D*−τ +ντ
π −K +

τ +

Δz > 4σ Δz

ντ

• With τ in the final state, can reconstruct them as τ+→ π+π−π+ντ .

• The 3 pions form a vertex which has to be displaced from other vertices.

• Depends strongly on the resolution of the τ vertex, as cτ ≈ 87µm
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Some semileptonic measurements at LHCb



Measuring Vcb

Florian Bernlochner EPS-HEP 2019 — Ghent, Belgium !16

Results

Caprini-Lellouch-Neubert  
Form Factors

Boyd-Grinstein-Lebed  
Form Factors

14

charm decays.

The uncertainties that only a↵ect the overall normal-
isation are: the tracking e�ciency for high momen-
tum tracks, the branching ratios B(D⇤+

! D
0
⇡
+), and

B(D0
! K

�
⇡
+), the total number of ⌥(4S) events in

the sample, and the B
0 lifetime.

VIII. RESULTS

The full results for the CLN fit are given below, where
the first uncertainty is statistical, and the second system-
atic.

⇢
2 = 1.106 ± 0.031 ± 0.007 ,

R1(1) = 1.229 ± 0.028 ± 0.009 ,

R2(1) = 0.852 ± 0.021 ± 0.006 ,

B(B0
! D

⇤�
`
+
⌫`) = (4.86 ± 0.02 ± 0.15)% ,

F(1)|Vcb|⌘EW ⇥ 103 = 35.06 ± 0.15 ± 0.54 .

These results are consistent with, and more precise than
those published in Refs. [4, 17–19]. We find the value of
branching fraction is insensitive to the choice of parame-
terisation. We also present the results for |Vcb| from the
BGL fit, where the first uncertainty is statistical, and the
second systematic.

F(1)|Vcb|⌘EW ⇥ 103 = 38.73 ± 0.25 ± 0.60.

These results are consistent with those based on a pre-
liminary tagged approach by Belle [20], as performed in
Refs. [14, 15]. Both sets of fits give acceptable �

2
/ndf:

therefore the data does not discriminate between the pa-
rameterisations. The result with the BGL paramterisa-
tion has a larger fit uncertainty.

Taking the value of F(1) = 0.906 ± 0.013 from Lattice
QCD in Ref. [21] and ⌘EW = 1.0066 from Ref. [13], we
find the following values for |Vcb|: (38.4±0.2±0.6±0.6)⇥
10�3 (CLN+LQCD) and (42.5 ± 0.3 ± 0.7 ± 0.6) ⇥ 10�3

(BGL+LQCD). The value of |Vcb| using CLN parameter-
isation is consistent with the world average value where
as the value we get using BGL parameterisation is higher
but consistent with the inclusive |Vcb| value shown in Eq.2
and Eq.1 respectively.

We perform a lepton flavour universality (LFU) test
by forming a ratio of the branching fractions of modes
with electrons and muons. The corresponding value of
this ratio is

B(B0
! D

⇤�
e
+
⌫)

B(B0 ! D⇤�µ+⌫)
= 1.01 ± 0.01 ± 0.03 ,

where the first error is statistical and the second is
systematic. The systematic uncertainty is dominated by
the electron and muon identification uncertainties, as all
others cancel in the ratio. This is the most stringent test
of LFU in B decays. This result is consistent with unity.

IX. CONCLUSION

In this conference paper we present a new study by the
Belle experiment of the decay B ! D

⇤
`⌫. We present the

most precise measurement of |Vcb| from exclusive decays,
and the first direct measurement using the BGL param-
eterisation. The BGL parameterisation gives a higher
value for |Vcb|, which is closer to that expected from the
inclusive approach [1, 22–24]. We also place stringent
bounds on lepton flavour universality violation, which
has been observed to be consistent with zero.
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FIG. 4. Result of the fits to the (cos ✓B,D⇤`, �m, p`) distributions in the e mode (left) and µ mode (right). The bin boundaries
are discussed in the text. The points with error bars on-resonance data. Where not shown, the uncertainties are smaller
than the black markers. The histograms are, top to bottom, the signal component, B ! D⇤⇤`⌫ background, signal correlated
background, uncorrelated background, fake ` component, fake D⇤ component and continuum background.

where NB0 is the number of B
0 mesons in the data sam-

ple, B(D⇤+
! D

0
⇡
+) and B(D0

! K
�

⇡
+) are the D

⇤

and D branching ratios into the final state studied in
this analysis, ⌧B0 is the B

0 lifetime, and �i is the width
obtained by integrating the CLN theoretical expectation
within the corresponding bin boundaries. The expected
number of events, N

exp.
i , must take into account finite

detector resolution and e�ciency,

N
exp.
i =

40X

j=1

(Rij✏jN
theory
j ) + N

bkg
i , (19)

where ✏j is probability that an event generated in bin j is
reconstructed and passes the analysis selection criteria,
and Rij is the detector response matrix (the probability

that an event generated in bin j is observed in bin i).
N

bkg
i is the number of expected background events as

constrained from the total background yield fit.
In the nominal fit we use the following �

2 function
based on a forward folding approach:

�
2 =

X

i,j

�
N

obs
i � N

exp
i

�
C

�1
ij

�
N

obs
j � N

exp
j

�
, (20)

where N
obs
i are the number of events observed in bin i of

our data sample, and C
�1
ij is the inverse of the covariance

matrix. The covariance matrix is the variance-covariance
matrix whose diagonal elements are the variances and the
o↵-diagonal elements are the covariance of the elements
from the i

th and j
th positions. The covariance is calcu-

|Vcb | = (38.3 ± 0.3 ± 0.7 ± 0.6) × 10−3|Vcb | = (38.4 ± 0.2 ± 0.6 ± 0.6) × 10−3

Lepton-Flavour-Universality 
Test between Electrons and Muons:

The tension is back :-(

Preliminary

12

TABLE VI. Fit results for the electron and muon sub-samples in the BGL parameterization where the following parameters
are floated: ãf

0 , ã
f
1 , ã

F1
1 , ãF1

2 , ãg
0 along with F(1)|Vcb|⌘EW (derived from ãf

0 ). The p-value corresponds to the �2/ndf using the
statistical errors only.

e µ

ãf
0 ⇥ 102 �0.0507 ± 0.0005 �0.0505 ± 0.0006

ãf
1 ⇥ 102 �0.0673 ± 0.0220 �0.0626 ± 0.0252

ãF1
1 ⇥ 102 �0.0292 ± 0.0086 �0.0247 ± 0.0096

ãF1
2 ⇥ 102 +0.3407 ± 0.1674 +0.3123 ± 0.1871

ãg
0 ⇥ 102 �0.0864 ± 0.0024 �0.0994 ± 0.0027

F(1)|Vcb|⌘EW ⇥ 103 35.01 ± 0.31 34.84 ± 0.35

�2/ndf 48/35 43/35

p-value 0.08 0.26

B(B0 ! D⇤�`+⌫`) [%] 4.91 ± 0.02 4.88 ± 0.03

TABLE VII. Statistical correlation matrix of the fit to the full
sample in the BGL parameterization.

ãf
0 ãf

1 ãF
1 ãF

2 ãg
0

ãf
0 +1.000 �0.790 �0.775 +0.669 �0.038

ãf
1 +1.000 +0.472 �0.411 �0.406

ãF
1 +1.000 �0.981 +0.071

ãF
2 +1.000 �0.057

ãg
0 +1.000

into 10 bins of equal width where the width of each dis-
tribution is equal to 0.05, 0.2, 0.2 and 2⇡

10 respectively.
The bins are labelled with a common index i where i

= 1,...,40. The bins i = 1,...,10 correspond to the 10
bins of w distribution with bin ranging from w = 1.0
to w = 1.50, i = 11,...,20 correspond to the 10 bins of
cos ✓` distribution with bin ranging from cos ✓` = �1.0 to
cos ✓` = +1.0, i = 21,...,30 correspond to the 10 bins of
cos ✓v distribution with bin ranging from cos ✓v = �1.0
to cos ✓v = +1.0 and i = 31,...,40 correspond to the 10
bins of � distribution with the bin ranging from � = �⇡

to � = ⇡.

The values of |Vcb| and the form factors extracted from
fits to these data are found to be compatible with the
nominal analysis approach used in this paper. The over-
all uncertainties may be slightly larger as non-linear cor-
relations of systematic uncertainties are not captured by
the covariance matrices.

IX. RESULTS

The full results for the CLN fit are given below, where
the first uncertainty is statistical, and the second system-

atic:

⇢
2 = 1.106 ± 0.031 ± 0.007, (24)

R1(1) = 1.229 ± 0.028 ± 0.009, (25)

R2(1) = 0.852 ± 0.021 ± 0.006, (26)

F(1)|Vcb|⌘EW ⇥ 103 = 35.06 ± 0.15 ± 0.56, (27)

B(B0
! D

⇤�
`
+
⌫`) = (4.90 ± 0.02 ± 0.16)%, (28)

where the first error is statistical and the second error
is systematic. The dominant systematic uncertainties
are the track reconstruction or the lepton ID uncertainty
which are correlated between di↵erent bins. These results
are consistent with, and more precise than, those pub-
lished in Refs. [7, 25–27]. We find the value of branching
fraction is insensitive to the choice of parameterization.
We also present the results from the BGL fit, where the
first uncertainty is statistical, and the second systematic.

ã
f
0 ⇥ 103 = �0.506 ± 0.004 ± 0.008, (29)

ã
f
1 ⇥ 103 = �0.65 ± 0.17 ± 0.09, (30)

ã
F1
1 ⇥ 103 = �0.270 ± 0.064 ± 0.023, (31)

ã
F1
2 ⇥ 103 = +3.27 ± 1.25 ± 0.45, (32)

ã
g
0 ⇥ 103 = �0.929 ± 0.018 ± 0.013, (33)

F(1)|Vcb|⌘EW ⇥ 103 = 34.93 ± 0.23 ± 0.59, (34)

B(B0
! D

⇤�
`
+
⌫`) = (4.90 ± 0.02 ± 0.16)%. (35)

These results are lower than those based on a prelim-
inary tagged approach by Belle [28], as performed in
Refs. [20, 21]. Both sets of fits give acceptable �

2
/ndf:

therefore the data do not discriminate between the pa-
rameterizations. The result with the BGL paramterisa-
tion is consistent with the CLN result but has a larger
fit uncertainty.

Taking the value of F(1) = 0.906 ± 0.013 from Lattice
QCD in Ref. [29] and ⌘EW = 1.0066 from Ref. [19], we
find the following values for |Vcb|: (38.4±0.2±0.6±0.6)⇥
10�3 (CLN+LQCD) and (38.3 ± 0.3 ± 0.7 ± 0.6) ⇥ 10�3

(BGL+LQCD). The errors correspond to the statistical,
systematic and lattice QCD uncertainties respectively.

Fermilab/MILC
[arXiv:1403.0635]

PD
G
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Measuring Vcb

• How do youmeasure |Vcb|?
• B is proportional to |Vcb| 2, just count the events!
• Or almost...
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Measuring Vcb

• Let’s consider the decay of a pion: π+→ µ+νµ

• Γ(π+→ µ+νµ) =
G2

F |Vud|2f2
π

8π mπm
2
µ

(
1− m2

µ

m2
π

)2

• Helicity suppressed and non-fundamental parameter fπ (i.e. the decay constant).

• fπ takes into account that the pion is a composite object.

• Find a composite particle with b and c quarks: theB+
c

• ∴CouldmeasureB+
c → µ+ν . Well, good luck...
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Measuring Vcb

• More promising:B0
s → D

(∗)+
s µν : no helicity suppression.

• dΓ(B0
s→D+

s µν)
dw =

G2
Fm3

D
48π3 (mB +mD)

2η2EW |Vcb|2(w2 − 1)3/2|G(w)|2

• Withw =
m2

B+m2
D−q2

2mBmD
andG a form-factor (only one assumingmassless leptons).

• More complicated in case ofD∗+
s compared toD+

s (= more form factors)

• That means: In order tomeasure |Vcb|, we need to know (ormeasure) the form factors.

• Important point: |Vcb| does not depend onw, butG does.
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Measuring Vcb using B0
s decays
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[Phys. Rev. D101 (2020) 072004]

• NB0
s→D+

s µν = L · σbb̄ · 2 · fs · B(B0
s → D+

s µν)

• Absolute branching fractions are hard tomeasure at LHCb:

LuminosityL not well known, bb̄ production cross section not well known,
fs not well known

• Perform relativemeasurement:
B(B0

s→D+
s µν)

B(B0→D−µν)
=

N
B0
s→D+

s µν

NB0→D−µν
·R

• R accounts for different efficiencies, etc.

• UseD−→ K+K−π− andD−
s → K+K−π−: Signal and normalization channel have

identical final state, many uncertainties cancel in ratio.
35
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Measuring Vcb using B0
s decays
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• Given that these are |Vcb| decays, the sample is dominated by signal events.
• D∗+

s → D+
s γ orD∗+

s → D+
s π

0: Neutral objects with low pT are hard to reconstruct, so only
D+

s is measured, and excited states are separated inmcorr .

• But why not measure q2 to obtainw? 36
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Measuring Vcb using B0
s decays
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• As seen before, q2 can only be computed up to a two-fold solution.

• But q2 is correlated with the pT of theD
+
s wrt to theB0

s flight direction.

• Use this correlation to determine form factor parameters. 37
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Measuring Vcb using B0
s decays
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• Need tomeasure the amount of signal events to determine |Vcb|.
• Fit the two variables with templates: Histograms fromMC that can be scaled up or down until the

overall shape fits.

• Take limited number of simulated events into account by allowing for fluctuations in each bin. 38
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Measuring Vcb using B0
s decays
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• Several form factor parametrizations exist.

• ”Famous” ones: BGL and CLN. Can fit for both parameter sets and extract |Vcb|with one or the
other.

• Results are fully consistent.
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Measuring Vcb using B0
s decays
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Some comments to |Vcb| at LHCb
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• LHCbwas not built to measure |Vcb|, but achieves a good precision still.
• Always need to rely on precision of normalisation channel (i.e. an external measurement). For this

measurement also rely on fs/fd.

• LHCb alsomeasured shape of differential decay rate ofB0
s → D∗+

s µ−ν by fully reconstructing

D∗+
s → D+

s µ
− (without measuring |Vcb|)

• No inclusivemeasurement of |Vcb| so far at LHCb, but investigations using a sum-of-exclusive
approachwithB0

s decays are ongoing. 41
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Measuring Vub
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Measuring Vub
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• Muchmore background: |Vcb|≫ |Vub|
• Use isolation techniques / machine learning.

• Hadronic system has lowermass (e.g.mass ofρ0 vsmass ofD0), mostly coming withmore

background.

• Less events: Have not (yet) determined form factors and |Vub| at the same time.
• Use theoretical predictions for the form factors
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Measuring Vub using Λ0
b baryons
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[Nature Physics 11 (2015) 743]

• Measure
|Vub|
|Vcb| = RFF · B(Λ0

b→pµ−νµ)

B(Λ0
b→Λ+

c µ−νµ)

• Protons as final states are less abundant than kaons or pions (easier to separate from background).

• Use the correctedmass. Unfortunately not very clean, but not the dominant uncertainty.

• Model all backgrounds with templates: Large contribution fromΛ+
c decays.

• Normalization toΛ+
c decay reduces systematic uncertainties and dependence on fΛ0

b
.

• First measurement of the decayΛ0
b→ pµ−νµ, about 15’000 events. 44
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Exclusive |Vub| using B0
s mesons
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[Phys. Rev. Let. 126, 081804]

RFF : form factor ratio

low q2 high q2

• UseB0
s → K−µ+νµ decays tomeasure |Vub|: First observation ofB0

s → K−µ+νµ.

• Measure
|Vub|
|Vcb| = RFF · B(B0

s→K−µ+νµ)

B(B0
s→D+

s µν)
, usemcorr to discriminate signal and background.

• DivideB0
s → K−µ+νµ in two bins of q

2 with equal number of signal events.
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Exclusive |Vub| using B0
s mesons
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[Phys. Rev. Let. 126, 081804]

• Two different FF predictions forB0
s → K−µ+νµ used to extract |Vub|:

• Low q2: LCSR based on [JHEP 08 112]

• High q2: LQCD based on [Phys. Rev. D100, 034501]

• Provide two values of |Vub|. Differential rate will help understanding theB0
s → K−µ+νµ decay

better. 46
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Exclusive |Vub| using B0
s mesons

35 40 45
]-3| [10cb|V

2

3

4

5

6

]
-3

| [
10

ub
|V | I

nc
lu

si
ve

cb
|V

| E
xc

lu
si

ve
cb

|V| Inclusiveub|V

| Exclusiveub|V
4c/2

 > 15 GeV2, qνµ p→ bΛ 4c/2
 < 7 GeV2, qνµ K→ sB

4c/2

 > 7 GeV2
, qνµ K→ sB

LHCb Uncertainty All q2 low q2 high q2

Tracking 2.0 2.0 2.0
Trigger 1.4 1.2 1.6
Particle identification 1.0 1.0 1.0
σ(mcorr) 0.5 0.5 0.5
Isolation 0.2 0.2 0.2
Charged BDT 0.6 0.6 0.6
Neutral BDT 1.1 1.1 1.1
q2 migration – 2.0 2.0
Efficiency 1.2 1.6 1.6
Fit template +2.3

−2.9
+1.8
−2.4

+3.0
−3.4

Total +4.0
−4.3

+4.3
−4.5

+5.0
−5.3

[Phys. Rev. Let. 126, 081804]

• Measurement (in individual q2 bins) is systematically limited, many are connected with limited size
of simulation sample.

• More q2 bins will allow for amore precise measurement using the full LHCb data set.
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B0→ ρ0µν
Recap: signal channel fit
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• The signal is extracted from a fit to  and  
in 10 non-uniform bins of  and in the full  region. 

• Using 26 templates: 

- MC: Signal, excl. SL decays, excl. SL decays, 
inclusive SL  decays (DFN model), charmonium decays, 
hadronic  decay with  (full list in back-up).  


- Data-driven methods: CombBg, misID  and misID .


• Some templates are constrained and the estimated shape 
uncertainty of certain templates are included in the fit (more info 
in back-up slides). 


 Stable fits, pulls look good, most constraints vary within 
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• The signal is extracted from a fit to  and  
in 10 non-uniform bins of  and in the full  region. 

• Using 26 templates: 

- MC: Signal, excl. SL decays, excl. SL decays, 
inclusive SL  decays (DFN model), charmonium decays, 
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• Some templates are constrained and the estimated shape 
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in back-up slides). 


 Stable fits, pulls look good, most constraints vary within 
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Signal

• Broad vector meson in final state, more difficult to describe theoretically an experimentally.

• Simulatemany different templates to describe the background (b→ c, b→ u) and signal
(B0→ ρ0µν ,B0→ f2(1270)µν , ..., withρ

0, f2(1270), ...→ π+π−) processes.

• Can not just measure |Vub|, but probe structure of V-A current.
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Some comments to |Vub| at LHCb
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[JHEP 03 (2020)146]

• LHCbwas not built to measure |Vub|, but achieves a good precision still.
• Muchmore background than for |Vcb|, partly compensated bymachine learning and very large

number of b hadrons produced at LHCb.

• Differential measurements on the way.

• Inclusive |Vub| very hard at LHCb (but who knows if we can do it,)
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Lepton Flavour Universality (LFU) in B0→ D∗ℓν
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• Measure lepton flavour universality in charged-current (tree) decays.

• MeasureR(D∗) = B(B0→D∗+τ−ν)

B(B0→D∗+µ−ν)

• Can alsomeasureR(D0),R(D+
s ),R(Λ+

c ), ... with muons and taus.

• Orwithmuons and electrons (nomeasurement published by LHCb so far)

• Original motivation was sensitivity for a chargedHiggs.

• Nowmissing (at least) 2 neutrinos in the final state.
50
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LFU in B0→ D∗ℓν, muonic mode
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[arxiv:2302.02886]

• Use τ−→ µ−νν , i.e. τ andµmodes have the same final state.

• Distinguish with kinematical distributions

• MeasureR(D∗) andR(D0) simultaneously:
• R(D∗)withD∗+ τ−,D∗+→ D0π+

• R(D∗) andR(D0)withD0 τ− withD∗+→ D0π+,D∗0→ D0π0/γ and justD0 51
59
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LFU in B0→ D∗ℓν, muonic mode
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[arxiv:2302.02886]

• Higher excited states ofDmeson:B0→ D∗∗ℓν not well known.

• Use control sample where one additional pion is added toD∗+ τ− andD0 τ−
52
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LFU in B0→ D∗ℓν, muonic mode
Internal fit uncertainties σR(D∗)(×10−2) σR(D0)(×10−2) Correlation
Statistical uncertainty 1.8 6.0 −0.49
Simulated sample size 1.5 4.5
B→ D(∗)DX template shape 0.8 3.2
B→ D(∗)`−ν` form-factors 0.7 2.1
B→ D∗∗µ−νµ form-factors 0.8 1.2
B ( B→ D∗D−s (→ τ−ντ )X ) 0.3 1.2
MisID template 0.1 0.8
B ( B→ D∗∗τ−ντ ) 0.5 0.5
Combinatorial < 0.1 0.1
Resolution < 0.1 0.1
Additional model uncertainty σR(D∗)(×10−2) σR(D0)(×10−2)
B→ D(∗)DX model uncertainty 0.6 0.7
B0
s→ D∗∗s µ

−νµ model uncertainty 0.6 2.4
Data/simulation corrections 0.4 0.8
Coulomb correction to R(D∗+)/R(D∗0) 0.2 0.3
MisID template unfolding 0.7 1.2
Baryonic backgrounds 0.7 1.2
Normalization uncertainties σR(D∗)(×10−2) σR(D0)(×10−2)
Data/simulation corrections 0.4×R(D∗) 0.6×R(D0)
τ− → µ−νν branching fraction 0.2×R(D∗) 0.2×R(D0)
Total systematic uncertainty 2.4 6.6 −0.39
Total uncertainty 3.0 8.9 −0.43

[arxiv:2302.02886]

• Very challengingmeasurement (at LHCb):

• Soft muons prone tomisidentification

• Form-factor uncertainties ofB0→ D∗+ℓν .

• Knowledge onB→ D(∗)DX templates.

• Very large simulated samples needed (billions of events).

• etc...
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LFU in B0→ D∗ℓν, muonic mode
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[arxiv:2302.02886]

• R(D∗) = 0.281± 0.018± 0.024

• R(D0) = 0.441± 0.060± 0.066

• ρ = −0.43 (correlation) 54
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LFU in B0→ D∗+ℓν, 3-prong mode
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• Use τ−→ π−π+π−ν . 3 pions form a vertex that can be used for displacement.

• UseB0→ D∗+3π as normalisation channel,

and known ratioB(B0→ D∗+3π)/B(B0→ D∗+µν) to calculateRD∗

• Despite measuring the same physics, different challenges: Large background from

B→ D∗−D+
s X decays, withD+

s → π+π−π+X 55
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LFU in B0→ D∗+ℓν, 3-prong mode
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[Phys Rev D 97 072013]

• Fit in τ decay time, q2 and a BDT variable.

• Obtain about 1300B0→ D∗+τ−ν events

• New result with 2015 - 2016 data shown

last week (with very similar strategy),

about 2x asmany signal events.
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LFU in B0→ D∗+ℓν, 3-prong mode
R(D⇤

) with hadronic ⌧ decays NEW!
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• Including this result, the world average becomes

R(D⇤
) = 0.278 ± 0.011; R(D) = 0.362 ± 0.027

• The deviation w.r.t. the SM stays at 3.0� level for the combination of R(D)-R(D⇤
)
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R(D⇤
) with hadronic ⌧ decays NEW!

[LHCb-PAPER-2022-052] (In preparation) PRELIMINARY

K(D⇤
) =

B(B0
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Theory 

predictions

Combining with the Run 1 result

R(D⇤)2011�2016 = 0.257 ± 0.012 (stat) ± 0.014 (syst) ± 0.012 (ext)

Agreement within 1� to SM
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• B0→ D∗+ℓν with hadronic τ decays perfectly consistent with SM prediction.

• Precision from LHCb starting tomatch precision of B factories.
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LFU in B+
c → J/ψℓν and Λ0

b→ Λ+
c ℓν
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Conclusions

• Semileptonic decays are a great tool to probe the fundamental structure and parameters of the SM,

with controlled theoretical uncertainties.

• Main experimental challenge with semileptonic decays (in LHCb) is themissing neutrino. Have

developedways tomitigate this in the last∼ 10 years.

• Many exciting results published, andmore to come.
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