PAUL SCHERRER INSTITUT

Andreas Crivellin

University of Zuich & PSI

The Flavour Anomalies and New Physics Models Neckarzimmern, 16.03.2023

Outline

- Introduction: Flavour anomalies
 - −b→sµµ
 - -b→стv
 - -a_μ
 - -τ→μνν
 - Cabibbo Angle Anomaly
 - Non-resonant di-leptons
 - $-\Delta A_{FB}$
- New Physics explanations for the anomalies
 - Z', W', Leptoquarks, MSSM, 2HDMs, extra dimensions...
- Simultaneous explanations
- Conclusions and outlook

Andreas Crivellin

- More symmetries
- Additional CP violating interactions
- Matter anti-matter asymmetry
- Neutrinos not exactly massless Right-handed (sterile) neutrinos
- New weakly interacting particles
- cosmological scales
- Dark Matter existence established at
- Physics Beyond the Standard Model

Discovering New Physics

- Cosmic Frontier Energy Cosmic rays and neutrinos **Frontier** – Dark Matter – Dark Energy Energy Frontier NP -LHCCosmic Intensity - Future colliders **Frontier Frontier** Intensity Frontier
 - Flavour
 - Neutrino-less double-β decay
 - Test of fundamental symmetries
 - Proton decay

Direct Searches for New Physics

- Searches for resonances in the spectrum
- Direct information of the mass

Limited by the available energy of the collider

Finding New Physics with Flavour

 At colliders one produces many (up to 10¹⁴) heavy quarks or leptons and measures their decays into light flavours

Flavour observables are sensitive to higher energy scales than collider searches

Andreas Crivellin

Flavour Anomalies

Lepton Flavour (Universality) Violation

In the Standard Model:

Lepton Flavour is conserved

(for vanishing neutrino masses)

- Excellent approximation: branching ratios smaller than 10⁻⁴⁵
- Any observation proves **new physics**
- Gauge Interactions are Lepton Flavour Universal
- Only Higgs Yukawa distinguish flavors

> Very small effect (except for phase space)

LFUV is an excellent probe of the SM

b→sl+l-

- Flavour Changing Neutral Current (FCNC)
- In the SM it is suppressed by
 - > The CKM elements $V_{cb} \approx 0.04$
 - \succ Electroweak scale m_t^2 / m_W^4
 - \succ Loop-factor $1/(16\pi^2)$

Suppressed and very sensitive to New Physics

$B \rightarrow K \mu \mu$ and $B_s \rightarrow \phi \mu \mu$

- \bullet 4 $\sigma\text{-}5\sigma$ deficit in the total branching ratios using lattice QCD and LCSR
- Signs for NP in angular $B_s \rightarrow \phi \mu \mu$ observables as well

Br's ≈ 20% below SM expectations

Reducing hadronic uncertainties

- Angular observable with minimized dependence on the form factors (P observables)
- Zero crossing of the forward-backward asymmetry
- Ratios of different lepton modes
- Lepton flavour violating decays

Clever choice of observables can reduce hadronic uncertainties

The P₅' Anomaly

- P_5 angular S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, JHEP 2013 observables in $B \rightarrow K^* \mu \mu$
- Constructed in A and A
 - Confirmed by latest LHCb analysis for the charged mode

ATLAS data

$>3\sigma$ deviation from the SM prediction

R(K)&R(K*)

No sign of LFV anymore

Global Fit to $b \rightarrow s\mu^+\mu^-$ Data

- Perform global model independent fit to include all observables (≈150)
- Several NP hypothesis are significantly preferred over the SM hypothesis
- Study via effective interactions $O_{9} = \overline{s} \gamma^{\mu} P_{L} b \overline{\ell} \gamma_{\mu} \ell$ $O_{10} = \overline{s} \gamma^{\mu} P_{L} b \overline{\ell} \gamma_{\mu} \gamma^{5} \ell$

Fit is >7 σ better than the SM

b→cτv Transitions

- B→Dτν, B →D*τν
- Tree-level decays in the SM
- Form factors needed
- With light leptons (μ, e) used to determine the CKM elements
- CKM fit works very well, i.e. tree-level in agreement with ΔF=2 processes

Largest B branching ratios, used to determine the CKM elements, usually assumed to be free of NP

$b \rightarrow c\tau v$ Measurements

All measurements above the SM prediction O(10%) constructive effect at 3 σ preferred

ΔA_{FB} in $B \rightarrow D^* l v$

- $\Delta A_{FB} = A_{FB} (b \rightarrow c \mu \nu) A_{FB} (b \rightarrow c e \nu)$
- 4σ deviation found by 2104.02094 based on BELLE data 1809.03290
- Scalar and/or tensor operators required for an angular asymmetry
- g-2 and b→sµµ motivate new physics related to muons

Hint for scalar/tensor NP in $b \rightarrow c\mu v$

Muon Anomalous Magnetic Moment

Theory prediction challenging (hadronic effects)

 $\Delta a_{\mu} = (251 \pm 49) \times 10^{-11}$ T. Aoyama et al., arXiv:2006.04822

- Need NP of the order of the SM EW contribution
- Chiral enhancement necessary for heavy NP
- Soon more experimental results from Fermilab
- Vanishes for $m_{\mu} \rightarrow 0 \implies measure of LFUV$

4.2σ deviation from the SM prediction

τ→μνν

$\approx 2\sigma$ hint for LFUV in tau decays

Cabibbo Angle Anomaly

- V_{ud} from super-allowed beta decays
- V_{us} from
 Kaon and
 tau decays

 τ decays

 $K \rightarrow \pi \ell \nu$

 $0^+ - 0^+$

 $K \rightarrow \mu \nu / \pi \rightarrow \mu \nu$

SM fit 68% CL

$$V_{ud}^2 + |V_{us}^2| + |V_{ub}^2| = 0.9985 \pm 0.0005 (PDG)$$

CMS, SGPR: radiative corrections

CMS

$\approx 3\sigma$ hint for LFUV in the charged current

CAA and LFUV

- Assume modified Wev couplings $L = i g_2 / \sqrt{2} v_f \gamma^{\mu} P_L \ell_i W_{\mu} \left(\delta_{fi} + \varepsilon_{fi} \right)$
- V_{ud} from beta decays depends on Fermi constant $1/\tau_{\beta} \sim \left|V_{ud}\left(1+\varepsilon_{ee}\right)\right|^2 G_F^2$
- Fermi constant determined from

muon decay

$$\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} (1 + \Delta q) \left(1 + \varepsilon_{ee} + \varepsilon_{\mu\mu}\right)^2$$

• Dependence on \mathcal{E}_{ee} cancels

$$R(V_{us}) = \frac{V_{us}^{K_{\mu 2}}}{V_{us}^{\beta}} = \frac{V_{us}^{K_{\mu 2}}}{\sqrt{1 - (V_{ud}^{\beta})^2 - |V_{ub}|^2}} \approx 1 - \left(\frac{V_{ud}}{V_{us}}\right)^2 \varepsilon_{\mu\mu}$$

The CAA can be interpreted as a sign of LFUV

Non-Resonant Di-Leptons

- Excess in di-electrons at m_{ee}>1800GeV
 - Observed: 44 events
 - Expected 29.2 ± 3.6 events

- Also ATLAS (2006.12946) and HERA (1902.03048) observe slightly more electrons than expected.
- No excess in muon data

≈3σ hint for LFUV

ΔA_{FB} in $B \rightarrow D^* lv$

$$\bullet \Delta A_{FB} = A_{FB} \left(B \to D^* \mu \nu \right) - A_{FB} \left(B \to D^* e \nu \right)$$

- 4σ deviation found by 2104.02094 based on BELLE data 1809.03290
- Scalar and/or tensor operators
 required for an angular asymmetry
- g-2 and b→sµµ motivate new physics related to muons

Hint for scalar/tensor NP in $b \rightarrow c \mu v$

EW fit: W mass and $Z\rightarrow bb$,

- 3.7σ tension

 in the W mass
 using a
 conservative
 error
 combination
- 2σ tension
 in Z→bb
 from LEP

Related to LFUV?

Hint for New Higgses in Di-Photons

 Hints for a resonance decaying to photons around 96 GeV, 151 GeV and 680 GeV

New Scalar (Higgs) boson? Relation to DM?

h→eµ

- CMS and ATLAS partially compatible
- Partially compatible with 151

LFV resoance?

Di-(Di-)Jets

 ATLAS excess in di-jets searches 0.2 ATLAS 95% CL upper limits 0.18 - TLA Observed √s = 13 TeV TLA Expected (± 1-2σ) 0.16F 3.6 fb⁻¹ 29.3 fb⁻¹ Agrees with the di-jet mass Dijet Observed 0.14 y* < 0.3 |y*| < 0.6 0.12 0.1 of the CMS analysis 0.08 0.06 0.04 • $Y \rightarrow XX$ M(X) / M(Y) = 0.290.02 400 600 800 1000 1200 1400 1600 1800 2000 m_z [GeV] Global A [pb]CMS $XX \rightarrow (jj)(jj)$ 10signifi-95% CL Limits $B \times$ Observed 10^{-2} Expected ± 1 s.d. cance х b Expected ± 2 s.d. Top squark: $\tilde{t} \ \tilde{t}^* \rightarrow (\bar{d} \ \bar{s})(ds)$ 10^{-3} RPV coupling $\lambda_{312}^{"}$, B(ds)=1-3.6σ 10^{-4} New 3 5 6 8 4 10⁻⁵ 2.4TeV particle in RS setup 1.5 2.5 2 Dijet resonance mass [TeV]

New Heavy Gluons?

Hints for New Physics

Extensions of the Standard Model

- On the renormalizable level on can add:
 - Scalars (spin 0, mass dimension 1)

Fermions (spin ½, mass dimension 3/2)

Vectors (spin 1, mass dimension 1)

Limited number of new interactions

Leptoquarks

- Scalars or Vectors
- 5 gauge representations each which are invariant under the SM gauge group
- Couple quarks to leptons
- Maybe also quarks to quarks
 - Proton decay
- Are present in Grand Unified Theories

Z' and W'

• Z': new neutral heavy gauge boson

• W': new charged heavy gauge boson

New heavy gauge bosons

 Left-handed and handed fields have the same quantum numbers

> Bare mass term (without symmetry breaking)

 $M_F \overline{F}_L F_R \longrightarrow$

• Can mix with SM fermions

Massive new fermions

Scalars (uncharged under QCD)

• H: new neutral boson

• H⁺: new charged heavy gauge boson

New Higgses

Grand Unified Theories

- Unification forces in a simply connected group
- SU(5)
 - Proton decays, 2 representationPati Salam
- Pati Salam
 - SU(4)xSU(2)_LxSU(2)_R
 - No Proton decay, right-handed neutrinos with See-Saw mechanism
- SO(10)
 - Single representation, right-handed neutrinos

Coupling unification and leptoquarks

MSSM

- Minimal Supersymmetric Standard Model
- All SM particles get partners with differ in spin

Particle spectrum doubled

- Additional (compact) dimension
- Kaluza Klein excitations:
 - Massive vector bosons
 - Heavy vector like fermions
- SM particle are 0 modes
- No zero mode for gauge bosons corresponding to broken generators
- Duality with Technicolor

Tower of heavy copies of the SM particles

Explanations of the Anomalies

R(D) & R(D*)

- Charged scalars
 - Problems with q² distributions and B_c lifetime
- W'
 - Strong constraints from direct LHC searches
- Leptoquark (also in the RPV MSSM)
 - Strong signals in $qq \rightarrow \tau\tau$ searches

Explanation difficult but possible with Leptoquarks

 a_{μ} : MSSM

PAUL SCHERRER INSTITUT

(d)

e.g. D. Stockinger, hep-ph/0609168

tan(ß) enhanced slepton and sneutrino loops

Leptoquarks in a₁₁

Chirally enhanced effects via top-loops

Correlations with $h \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$

$a_{\mu} vs h \rightarrow \mu \mu$

- Chirally enhanced effects via top-loops
- Same coupling structure \rightarrow direct correlation

A.C., D. Mueller, F. Saturnino, PRL 2021

 $h \rightarrow \mu \mu$ at future colliders

b→sµ+µ⁻: Z'

 $C_9^{\mu\mu} \propto \Gamma_{23}^{dL} g'^2 / m_{Z'}^2$

Effect in B_s mixing expected

b-s coupling must be small

b→sµ+µ-: LQ

Important Loop-Effects

 Explanation of b→cτν requires large bτ and sτ couplings (follows from SU(2) invariance)

AC, C. Greub, D. Müller, F. Saturnino, PRL 2018

Large loop effects in $b \rightarrow s \mu \mu$

Important Loop-Effects

- Explanation of b \rightarrow c $\tau\nu$ requires large LQ-b τ and LQ-c- ν_{τ} couplings
- Via SU(2) invariance this leads to large effects in

b→stt processes

- Closing the tau-loop gives a LFU effect in $b \rightarrow sll$ M. Algueró, B. Capdevila, S. Descotes-Genon, P. Masjuan, J. Matias, PRD, 2019
- Effect goes in the right direction

Explanation of $b \rightarrow c\tau v$ leads to loop effects in $b \rightarrow s\mu\mu$

$R(D^{(*)})$ and $b \rightarrow s\tau\tau$ (model-independent)

- Large couplings to the second generation
- Cancelation in b \rightarrow svv needed: C⁽¹⁾=C⁽³⁾

Lepton flavour universal effect B_s mixing constraints

Cabibbo Angle Anomaly and EW Fit

$>5\sigma$ improvement over SM hypothesis with VLLs

Non-Resonant Di-Leptons

Constructive heavy NP in electrons

ΔA_{FB}

- Right-handed vector operators LFU
- Good fit requires the tensor operator

Hint for scalar leptoquarks

scalar LQ

τ→μνν

A.C., F. Kirk, C. Manzari, L. Panizzi, arXiv:2012.09845

4σ hint for modified neutrino couplings

W mass

- Loop effects of fermions or scalars with sizable Higgs couplings $M_{Q_7} = 2 \text{ TeV}$
- Z-Z' mixing
- SU(2) triplet scalar
- Leptoquarks
 - – ΔM_s
 - $--- b \rightarrow s\ell\ell$
 - EWPO (with CDF M_W)
 - global
 - · · EWPO (without CDF M_W)
 - ····· Higgs decays
 - ---- ${\rm Br}(t \to cZ) \times 10^5$
 - $\langle \times t \to cZ \text{ (LHC excluded)} \rangle$

Possible relation to $t \rightarrow cZ$

Conclusions

- Many intriguing anomalies emerged in the last years:
 - LFUV
 - EW observables
 - Direct LHC searches

The Standard Model is crumbling

Outlook: Multi Lepton Anomalies

Final state	Characteristic	Dominant SM process	Significance
l⁺l [.] + jets, b-jets	m _{II} <100 GeV, dominated by 0b- jet and 1b-jet	tt+Wt	>5σ
l ⁺ l ⁻ + full-jet veto	m _{II} <100 GeV	ww	~3σ
l≐l≐ & l≐l≐l + b- jets	Moderate H _T	ttW, 4t	>3σ
l±l± & l±l±l et al., no b-jets	In association with h	Wh, WWW	~4.5 σ
Z(→I⁺I ⁻)+I	р _{тz} <100 GeV	ZW	>3σ

Talk of Bruce Mellado, ICNFP 2021, Crete

Leptons + jets + missing energy

Outlook: Beyond the Standard Model

Implications for FCC-ee

