

A tour on semileptonic measurements at Belle (II)

Markus Prim – University of Bonn

Today's Tour

- The experimental techniques also apply to $b \rightarrow u \ell \nu_{\ell}$ Additional challenge here is suppressing the abundant $b \rightarrow c \ell \nu_{\ell}$
- I present concepts, this means that some numbers or plots are possibly outdated

SuperKEKB Accelerator

- Asymmetric energy e^+e^- collider on the $\Upsilon(4S)$ resonance
- Clean environment, production of the $\Upsilon(4S) \rightarrow B\overline{B}$
 - no additional particles
 - no underlying event
- *B* mesons produced (almost) at rest
- Small cross-section ~1.1nb

 $e^+e^- \to q\overline{q} \quad (q \in \{u, d, s, c\}) \qquad e^+e^- \to \Upsilon(4S) \to B\overline{B}$

Continuum suppression utilizes the difference in event topology: Fox-Wolfram moments, Cleo cones, thrust variables, etc

Belle II Detector

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

> Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

> > positron (4GeV)

- Exclusive measurements focus on explicit, resonant, final states
- For $b \rightarrow c \ell \nu$ transitions, these are
 - 2 L=0 states D, D^* These saturate ~75% of the inclusive $B \rightarrow X_c \ell \nu$ rate and are the principal route to extract $|V_{cb}|$
 - 4 L=1 states: D_0, D'_1, D_1, D_2 (or D^*_0, D^*_1, D_1, D^*_2 , simply D^{**}) These saturate ~15% of the inclusive $B \rightarrow X_c \ell \nu$ rate and mostly a source of background
- What makes up the last ~10% of the inclusive branching fraction?

Non-	Resona	ant De B(E	cays and the $X_{c}^{\theta}\ell^{+}\nu_{\ell} \approx 10.79$	e "Gap" % E	Metzner
	${ m D}^0\ell^+ u_\ell\ 2.31\%$		${ m D}^{*0}\ell^+ u_\ell$ 5.05%	$\mathrm{D}^{**0}\ell^+ u_\ell + \mathrm{Other} \ 2.38\%$	$\begin{array}{c} {\rm Gap} \\ \sim 1.05\% \end{array}$
$\begin{tabular}{ c c c c } \hline Decay \\ \hline B &\rightarrow D\ell^+\nu_\ell \\ \hline B &\rightarrow D^*\ell^+\nu_\ell \\ \hline B &\rightarrow D_1\ell^+\nu_\ell \\ \hline B &\rightarrow D_0^*\ell^+\nu_\ell \\ \hline B &\rightarrow D_2^*\ell^+\nu_\ell \\ \hline B &\rightarrow D\pi\pi\ell^+\nu_\ell \\ \hline B &\rightarrow DsK\ell^+\nu_\ell \\ \hline B &\rightarrow D_sK\ell^+\nu_\ell \\ \hline \end{array}$	$\begin{array}{ c c c c c } \mathcal{B}(B^+) \\ \hline (2.4098 \pm 0.0709) \cdot 10^{-2} \\ \hline (5.5023 \pm 0.1146) \cdot 10^{-2} \\ \hline (5.5023 \pm 0.1146) \cdot 10^{-2} \\ \hline (6.6322 \pm 1.0894) \cdot 10^{-3} \\ \hline (4.2000 \pm 0.7500) \cdot 10^{-3} \\ \hline (4.2000 \pm 0.9000) \cdot 10^{-3} \\ \hline (4.2000 \pm 0.9000) \cdot 10^{-3} \\ \hline (2.9337 \pm 0.3248) \cdot 10^{-3} \\ \hline (0.6228 \pm 0.8857) \cdot 10^{-3} \\ \hline (0.6228 \pm 0.8857) \cdot 10^{-3} \\ \hline (0.3000 \pm 0.1421) \cdot 10^{-3} \\ \hline (0.2900 \pm 0.1942) \cdot 10^{-3} \\ \hline \end{array}$	$\mathcal{B}(B^0)$ (2.2396 ± 0.0664) · 10 ⁻² (5.1137 ± 0.1082) · 10 ⁻² (6.1638 ± 1.0127) · 10 ⁻³ (3.9033 ± 0.6972) · 10 ⁻³ (3.9033 ± 0.8366) · 10 ⁻³ (2.7265 ± 0.3020) · 10 ⁻³ (0.5788 ± 0.8232) · 10 ⁻³ (2.0074 ± 0.9523) · 10 ⁻³ -	Well known Some tension Broad states BaBar, Belle, Measuremer	n when comparing is based on measurem and DELPHI hts by BaBar and Bell	ospin modes ents by e
$B o X_c \ell^+ u_\ell$	$(10.8\pm0.4)\cdot10^{-2}$	$(10.1\pm0.4)\cdot10^{-2}$			

- Exclusive measurements focus on explicit, resonant, final states
- Hadronic matrix element can not be calculated within the framework of perturbation theory. It is parametrized by form factors, e.g. for D^*
- In the past:
 - Functional form of the form factors unknown, must be derived from data
 - Normalization of the form factors from Lattice QCD
- Since last/this year:
 - Beyond zero-recoil lattice predictions for the functional form of the form factors

$$\begin{split} \frac{\langle D^* | \bar{c} \, \gamma^{\mu} b | B \rangle}{\sqrt{m_B m_{D^*}}} &= i \, h_V \varepsilon^{\mu\nu\alpha\beta} \, \epsilon^*_{\nu} \, v'_{\alpha} \, v_{\beta} \\ \frac{\langle D^* | \bar{c} \, \gamma^{\mu} \, \gamma^5 b | B \rangle}{\sqrt{m_B m_{D^*}}} &= h_{A_1} (w+1) \, \epsilon^{*\,\mu} - h_{A_2} (\epsilon^* \cdot v) \, v^{\mu} \\ &- h_{A_3} (\epsilon^* \cdot v) \, v'^{\mu} \, . \end{split}$$

Heavy quark symmetry basis

- Access to more than form factors & $|V_{cb}|$
- Forward-backward asymmetries $(\Delta)A_{FB}$

$$A_{\rm FB} = \frac{\int_0^1 \mathrm{d}\cos_\ell \mathrm{d}\Gamma/\mathrm{d}\cos_\ell}{\int_0^1 \mathrm{d}\cos_\ell \mathrm{d}\Gamma/\mathrm{d}\cos_\ell + \int_{-1}^0 \mathrm{d}\cos_\ell \mathrm{d}\Gamma/\mathrm{d}\cos_\ell}$$

• Longitudinal polarization fraction $(\Delta)F_L$

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_V} = \frac{3}{2} \left(F_L \cos^2\theta_V + \frac{1 - F_L}{2} \sin^2\theta_V \right)$$

• Lepton flavor universality ratio $R_{e\mu}$ $R_{e\mu} = \frac{\mathcal{B}(B \to D^* e \bar{\nu}_e)}{\mathcal{B}(B \to D^* \mu \bar{\nu}_\mu)}$ These are probes for new physics

Exclusive Measurement Strategies

Untagged Measurements

- + Very high efficiency
- + Absolute branching fraction straightforward
- Less experimental control, e.g., more backgrounds
- Signal B rest frame not *directly* accessible

Tagged Measurements

- + High degree of experimental control
- + Hadronic tagging gives access to the signal B rest frame
- Understanding efficiencies is difficult
- Tagging efficiency reduces effective statistical power

Tagging at B-factories

Full Event Interpretation

- Hierarchical bottom-up approach
- Classifiers (BDT or NN) are trained to identify correctly reconstructed (intermediate) candidates
- At each step:
 - Input variables: four-momenta & particle identification scores

 e^+

- Output: score that can be interpreted as probability
- Mild selection on the output score
- Over 10'000 decay cascades are automatically reconstructed
- E.g., Hadronic tagging efficiency is ~0.3%

Belle's Full Reconstruction arXiv:2008.06096 arXiv:1807.08680 works conceptually the same

Full Event Interpretation

 P_{tag} = Output Classifier: Measure/Probability of how well the B-Meson is reconstructed

Full Event Interpretation

- Algorithm output is tunable based on the receiver operating characteristic
- Trade-off between efficiency and purity
- Calibration of the algorithm required depending on the working point

Full Event Interpretation - Calibration

- The algorithm uses:
 - uncalibrated detector information
 - possibly outdated simulation (branching ratios, line shapes)
- Aggregates into the output score
- Use a well-measured independent process to calibrate the efficiency
- Assumption: Signal- and Tag-Side factorize (are independent)

Full Event Interpretation - Calibration

The tagging algorithm can be calibrated, but this introduces an additional systematic uncertainty (~3%) to the analysis

Tagged Exclusive

Tagged $B \rightarrow D^{(*)} \ell \nu$

How are they different?

- $B \to D^* \ell \nu$: measure $\{w, \cos \theta_\ell \cos \theta_V, \chi\}$
 - Factor of ~3 larger branching fraction
 - $D^* \rightarrow D\pi_s$ slow pion efficiency needs to be understood
 - D^* more challenging on the lattice
- $B \to D\ell\nu$: measure $\{w, \cos\theta_\ell\}$
 - Easier to reconstruct, but challenging large background component from $B \rightarrow D^* \ell \nu$ downfeed
- Future: Measure both decays simultaneously
 - link $B \rightarrow D^* \ell \nu$ signal and downfeed
 - Use that their form factors are not independent in the framework of HQET

Tagged $B \rightarrow D^* \ell \nu$

- Reconstruct $D^{*+} \rightarrow D^0 \pi^+$, $D^{*+} \rightarrow D^+ \pi^0$, $D^{*0} \rightarrow D^0 \pi^0$ $D^* \rightarrow D\gamma$ has a 30% branching fraction, why not add it in as well?
- B rest-frame can be directly reconstructed from the tag-side: Access to $w, \theta_l, \theta_V, \chi$
- But low effective statistics, reconstruct many D modes

Tagged $B \rightarrow D^* \ell \nu$ – Background Subtraction

- Need to subtract residual background contributions from
 - Other semileptonic decays $(B \rightarrow D\ell\nu, B \rightarrow D^{**}\ell\nu)$
 - Other B decays (fake or real leptons)
 - From continuum $(e^+e^- \rightarrow q\bar{q})$

 $0 = m_{\nu}^2 = M_{\text{miss}}^2 = (E_{\text{miss}}, p_{\text{miss}})^2 = (p_B - p_{D^*} - p_{\ell})^2$

Alternatively, but same principle: $U = E_{miss} - |p_{miss}|$

Tag Side

 D^0

Signal side

 $D/D^{*}/D^{**}$

Tagged $B \rightarrow D^* \ell \nu$ – Background Subtraction

- M_{miss}^2 is model independent, low impact of e.g., FF uncertainties
- But: MC modelling of M_{miss}^2 is challenging, non-trivial resolution effects due to the convolution of many variables $M_{miss}^2 \in [5.270, 5.275] \text{ GeV}$
- Smearing function f_{AL} derived from data

Asymmetric Laplace distribution

$$f_{\rm AL}(x; m, \lambda, \kappa) = \frac{\lambda}{\kappa + 1/\kappa} \begin{cases} \exp\left((\lambda/\kappa)(x - m)\right) & \text{if } x < m \\ \exp\left(-\lambda\kappa(x - m)\right) & \text{if } x \ge m \end{cases}$$

Tagged $B \rightarrow D^* \ell \nu - Background Subtraction$

- Different strategies available:
 - Binned likelihood fits to 1D projections; coarse binning reduces modelling dependence on e.g., background shape and resolution
 - Fit to the 4D distribution; binned approach suffers from curse of dimensionality; unbinned approach needs to deal with efficiency & migration
 - Measure angular coefficients

 $\frac{d^4\Gamma}{dq^2 d\cos\theta^* d\cos\theta_\ell d\chi} = \frac{9}{32\pi} \left[\left(I_1^s \sin^2\theta^* + I_1^c \cos^2\theta^* \right) + \left(I_2^s \sin^2\theta^* + I_2^c \cos^2\theta^* \right) \cos 2\theta_\ell \right. \\ \left. + I_3 \sin^2\theta^* \sin^2\theta_\ell \cos 2\chi + I_4 \sin 2\theta^* \sin 2\theta_\ell \cos \chi + I_5 \sin 2\theta^* \sin \theta_\ell \cos \chi \right. \\ \left. + \left(I_6^c \cos^2\theta^* + I_6^s \sin^2\theta^* \right) \cos \theta_\ell + I_7 \sin 2\theta^* \sin \theta_\ell \sin \chi \right. \\ \left. + I_8 \sin 2\theta^* \sin 2\theta_\ell \sin \chi + I_9 \sin^2\theta^* \sin^2\theta_\ell \sin 2\chi \right],$

Tagged $B \rightarrow D^* \ell \nu$ – Detector Migrations

- Resolution caused by detector effects and misreconstructions causes migration of events into neighboring bins
- Parametrized as a migration matrix $M_{ij} = P(\text{reco. in bin i} | \text{true value in bin j})$
- Recover "true" values by this mapping of reconstructed → true
- "Simplest" method: Matrix inversion $x_{true} = M_{ij}^{-1} x_{reco}$

Unfolding is a whole topic on its own:

- Treatment of the variance-bias tradeoff
- Unbinned unfolding

Tagged $B \rightarrow D^* \ell \nu$ – Acceptance x Efficiency

Tagged $B \rightarrow D^* \ell \nu - \text{Result}$

The "true" 1D projections of the 4D decay rate after:

- Background subtraction
- Unfolding
- Correcting for acceptance and efficiency Each 1D projection shows the same data!
- Determine correlations between different projections with bootstrapping
- Replicate the data by sampling with replacement and repeat analysis N times
- N depends on the
 - required precision on
 - true value of

the correlation coefficients

Tagged $B \rightarrow D^* \ell \nu - \text{Result}$

Both BGL and CLN can describe the data Caveat using BGL: Truncation of the series

Extract physics!

- Fit the 4D shapes with the model
- Choose the form factor parameterization
 - BGL, CLN, BLPR(XP)
- Extract form factors and $|V_{cb}|$ with the help from lattice QCD

Tagged $B \rightarrow D^* \ell \nu$ – Lattice Inputs

Tagged $B \rightarrow D^* \ell \nu - Truncation$

- One model-independent way to parameterize are BGL form factors
- How to truncate the series?
 - Truncate to soon: Introduces model dependence
 - Truncate to late: Increase variance of the result
- BGL form factors:

$$g(z) = \frac{1}{P_g(z)\phi_g(z)} \sum_{n=0}^N a_n z^n, \qquad f(z) = \frac{1}{P_f(z)\phi_f(z)} \sum_{n=0}^N b_n z^n, \qquad \mathcal{F}_1(z) = \frac{1}{P_{\mathcal{F}_1}(z)\phi_{\mathcal{F}_1}(z)} \sum_{n=0}^N c_n z^n,$$

Tagged $B \rightarrow D^* \ell \nu - Truncation$

Bernlochner, Ligeti,

Robinson 1902.09553

Nested hypothesis test

Test statistics & Decision boundary $\Delta \chi^2 = \chi_N^2 - \chi_{N+1}^2 \qquad \Delta \chi^2 > 1$

Distributed like a χ^2 -distribution with 1 dof (Wilk's theorem)

Untagged Exclusive

Untagged $B \rightarrow D^* \ell \nu$

 Abundant statistics; reconstruct on mode

$$D^{*+} \to D^0 [\to K^+ \pi^-] \pi^+$$

Other B

Untaggeo

 \overline{B}

 π

 $\vec{p}_{incl} = \sum p_i$

- Reconstruct signal side, everything else is assigned to the other *B* meson
- Event kinematics: **ROE** method

$$w = v_{B} \cdot v_{D^{(r)}} = \frac{m_{B}^{2} + m_{D^{(r)}}^{2} - q^{2}}{2m_{B}m_{D^{(r)}}}$$

t only the cleanest
 $\tau^{-}]\pi^{+}$
er B
 e^{+} Signal B
 e^{+} Signal B
 e^{+} D/D*/D**
 g_{ged}
 r^{+} p_{i} p_{sig} q_{i} p_{i} p_{i}

Untagged $B \rightarrow D^* \ell \nu$

Abundant statistics; reconstruct only the cleanest mode

$$D^{*+} \to D^0 [\to K^+ \pi^-] \pi^+$$

• Exploit that B meson lies on a cone, which has an opening angle defined by the visible particles $\cos \theta_{B,D^*\ell} = \frac{2E_B E_{D^*\ell} - m_B^2 - m_{D^*\ell}^2}{2|\vec{p}_P||\vec{p}_{D^*\ell}|}$

Calculate for 10 points on the cone

 $(E^B, p_x^B, p_y^B, p_z^B) = (E_{\text{Beam}}^{\text{CM}}/2, |\vec{p}_B^{\text{CM}}| \sin \theta_{BY} \cos \phi, |\vec{p}_B^{\text{CM}}| \sin \theta_{BY} \sin \phi, |\vec{p}_B^{\text{CM}}| \cos \theta_{BY})$

• Utilize that the angular distribution of $\Upsilon(4S) \rightarrow B\overline{B}$ is $\sin^2 \theta_B$ Weighted average over the 10 points $w_i = \sin^2 \theta_B$

$$w = v_B \cdot v_{D(*)} = \frac{m_B^2 + m_{D(*)}^2 - q^2}{2m_B m_{D(*)}}$$

 $(E^B, p_x^B, p_y^B, p_z^B) = (E_{\text{Beam}}^{\text{CM}}/2, |\vec{p}_B^{\text{CM}}| \sin \theta_{BY} \cos \phi, |\vec{p}_B^{\text{CM}}| \sin \theta_{BY} \sin \phi, |\vec{p}_B^{\text{CM}}| \cos \theta_{BY})$

Both methods can be combined!

Untagged $B \rightarrow D^* \ell \nu$ – Background Subtraction

Subtract residual backgrounds using

- $\Delta M = m_{D^*} m_D$ discriminates fake and true D^*
- $\cos \theta_{B,D^*\ell} = \frac{2E_B E_{D^*\ell} m_B^2 m_{D^*\ell}^2}{2|\vec{p}_B||\vec{p}_{D^*\ell}|}$ discriminates signal and background
- p_ℓ to control fake leptons From here proceed same as for the tagged analysis

arXiv:1809.03290

Tagged Inclusive

- Inclusive measurements stay agnostic with respect to the hadronic system
- Theoretical framework is Operator Product Expansion (OPE)

$$\mathrm{d}\Gamma = \mathrm{d}\Gamma_0 + \mathrm{d}\Gamma_{\mu_{\pi}} \frac{\mu_{\pi}^2}{m_b^2} + \mathrm{d}\Gamma_{\mu_G} \frac{\mu_G^2}{m_b^2} + \mathrm{d}\Gamma_{\rho_D} \frac{\rho_D^3}{m_b^3} + \mathrm{d}\Gamma_{\rho_{LS}} \frac{\rho_{LS}^3}{m_b^3} + \dots$$

- $d\Gamma$ are calculated perturbatively
- Non-perturbative dynamics encapsulated in the HQE parameters μ_{π} , μ_{G} , ρ_{D} , ρ_{LS}
- \rightarrow Extract HQE parameters from data (similar to the form factors)
- → Measure spectral moments: hadronic mass, lepton energy, momentum transfer, ...

Experiment	Hadron moments $< M^n_X >$	Lepton moments $\langle E^n_l \rangle$	References
BaBar	n=2 c=0.9,1.1,1.3,1.5 n=4 c=0.8,1.0,1.2,1.4 n=6 c=0.9,1.3 [1]	n=0 c=0.6,1.2,1.5 n=1 c=0.6,0.8,1.0,1.2,1.5 n=2 c=0.6,1.0,1.5 n=3 c=0.8,1.2 [1,2]	[1] Phys.Rev. D81 (2010) 032003 [2] Phys.Rev. D69 (2004) 111104
Belle	n=2 c=0.7,1.1,1.3,1.5 n=4 c=0.7,0.9,1.3 [3]	n=0 c=0.6,1.4 n=1 c=1.0,1.4 n=2 c=0.6,1.4 n=3 c=0.8,1.2 [4]	[3] Phys.Rev. D75 (2007) 032005 [4] Phys.Rev. D75 (2007) 032001
CDF	n=2 c=0.7 n=4 c=0.7 [5]		[<u>5] Phys.Rev. D71 (2005) 051103</u>
CLEO	n=2 c=1.0,1.5 n=4 c=1.0,1.5 [6]		[<u>6] Phys.Rev. D70 (2004) 032002</u>
DELPHI	n=2 c=0.0 n=4 c=0.0 n=6 c=0.0 [7]	n=1 c=0.0 n=2 c=0.0 n=3 c=0.0 [7]	[7] Eur.Phys.J. C45 (2006) 35-59

Br(B -> X _c lnu) (%)	$ V_{cb} (10^{-3})$	m _b ^{kin} (GeV)	mu ² _{pi} (GeV ²)	
10.65 +/- 0.16	42.19 +/- 0.78	4.554 +/- 0.018	0.464 +/- 0.076	<u>details</u>

- HQE parameters extracted from the measured moments
- Semileptonic rate from theory

Inclusive $B \to X_c \ell \nu \langle m_X, E_l \rangle$

State-of-the-Art

- Relatively old measurements, but recent progress on the theory side! Semileptonic decay rate at N3LO M. Fael, K. Schönwald, M. Steinhauser Phys.Rev.D 104 (2021) 1, 016003, arXiv:2011.13654
- Updated inclusive fit to $\langle M_X \rangle$, $\langle E_\ell \rangle$ $\begin{aligned} |V_{cb}| &= 42.16 \times 10^{-3} \text{ with } 1.2\% \text{ precision} \\ \text{M. Bordone, B. Capdevila, P. Gambino} \\ \text{Phys.Lett.B 822 (2021) } 136679, arXiv:2107.00604 \end{aligned}$

Inclusive
$$B \to X_c \ell \nu \langle q^2 \rangle$$

• Number of matrix elements increase at higher orders

$$\mathrm{d}\Gamma = \mathrm{d}\Gamma_0 + \mathrm{d}\Gamma_{\mu_{\pi}} \frac{\mu_{\pi}^2}{m_b^2} + \mathrm{d}\Gamma_{\mu_G} \frac{\mu_G^2}{m_b^2} + \mathrm{d}\Gamma_{\rho_D} \frac{\rho_D^3}{m_b^3} + \mathrm{d}\Gamma_{\rho_{LS}} \frac{\rho_{LS}^3}{m_b^3} + \dots$$

• New idea: Exploit reparameterization invariance

M. Fael, T. Mannel, K. Vos JHEP 02 (2019) 177, arXiv:1812.07472

Spectral moments

$$\begin{array}{l} v = p_B/m_B \\ \swarrow & \swarrow & \swarrow \\ \langle M^n[w] \rangle = \int d\Phi \ w^n(v, p_\ell, p_\nu) \ W^{\mu\nu} \ L_{\mu\nu} \\ w = (m_B v - q)^2 \Rightarrow \langle M_X^n \rangle \ \text{Moments} \qquad \text{not RPI (depends on } v) \\ w = v \cdot p_\ell \Rightarrow \langle E_\ell^n \rangle \ \text{Moments} \qquad \text{not RPI (depends on } v) \\ w = q^2 \Rightarrow \langle (q^2)^n \rangle \ \text{Moments} \qquad \text{RPI! (does not depend on } v) \\ \end{array}$$

$\langle q^2 \rangle$ moments measured by Belle and Belle II

PRD 104, 112011 (2021), arXiv:2109.01685 Submitted to PRD, arXiv:2205.06372

Inclusive
$$B \to X_c \ell \nu \langle q^2 \rangle$$

$$\langle q^{2n} \rangle = \frac{\sum_{i}^{N_{data}} w(q_{i,reco}^2) \times q_{i,calib}^{2n}}{\sum_{j}^{N_{data}} w(q_{j,reco}^2)} \times C_{calib} \times C_{gen}$$

• Step 1: Subtract Background

Determine background normalization by fitting M_X and determine event weights

Inclusive
$$B \to X_c \ell \nu \langle q^2 \rangle$$

Event-wise Master-formula

$$\langle q^{2n} \rangle = \frac{\sum_{i}^{N_{data}} w(q_{i,reco}^2) \times q_{i,calib}^{2n}}{\sum_{j}^{N_{data}} w(q_{j,reco}^2)} \times C_{calib} \times C_{gen}$$

• Step 2: Calibrate Moments

• Exploit linear dependence between reconstructed and true moments

$$q_{i,cal}^{2m} = (q_{i,reco}^{2m} - c)/m$$

Inclusive
$$B \to X_c \ell \nu \langle q^2 \rangle$$

$$\langle q^{2n} \rangle = \frac{\sum_{i}^{N_{data}} w(q_{i,reco}^2) \times q_{i,calib}^{2n}}{\sum_{j}^{N_{data}} w(q_{j,reco}^2)} \times C_{calib} \times C_{gen}$$

- Step 3: Refine calibration
- Correct for small deviations from the linear behavior

$$C_{calib} = \left\langle q_{gen,sel}^{2n} \right\rangle / \left\langle q_{calib}^{2n} \right\rangle$$

Inclusive
$$B \to X_c \ell \nu \langle q^2 \rangle$$

$$\langle q^{2n} \rangle = \frac{\sum_{i}^{N_{data}} w(q_{i,reco}^2) \times q_{i,calib}^{2n}}{\sum_{j}^{N_{data}} w(q_{j,reco}^2)} \times C_{calib} \times C_{gen}$$

- Step 4: Correct for selection efficiencies
- Dominant effect: lepton reconstruction efficiency

$$C_{gen} = \left\langle q_{gen}^{2n} \right\rangle / \left\langle q_{gen,sel}^{2n} \right\rangle$$

Inclusive $B \to X_c \ell \nu \langle q^2 \rangle$

Perform analysis with different thresholds of q^2

... and extract $|V_{cb}|$

Inclusive $B \to X_c \ell \nu \langle q^2 \rangle$

- Correlations can be extracted with bootstrapping
- Leading uncertainties are from
 - Reconstruction

 $p(\mathbf{p}^+)$

- Background subtraction
- X_c model

$\blacksquare \qquad \qquad \blacksquare (\square \rightarrow X_{c} \wr \nu_{\ell}) \approx 10.79\%$				
${f D}^0\ell^+ u_\ell \ 2.31\%$	${ m D}^{*0}\ell^+ u_\ell$ 5.05 %	${f D}^{**0}\ell^+ u_\ell + {f Other} \ 2.38\%$	$\begin{array}{c} \text{Gap} \\ \sim 1.05 \% \end{array}$	

 $\mathbf{v}^{\theta} (+, \mathbf{v}) \approx 10.70 \, \%$

$|V_{cb}|$ from Inclusive $B \rightarrow X_c \ell \nu \langle q^2 \rangle$

F. Bernlochner, M. Fael, K. Olschwesky, E. Persson, R. Van Tonder, K. Vos, M. Welsch [*JHEP* 10 (2022) 068, [arXiv:2205.10274]

• Inclusive fit $\langle q^2 \rangle$ $|V_{cb}| = 41.69$ with 1.5% precision!

Summary on $b \rightarrow c \ell \nu_{\ell}$ and $|V_{cb}|$

Summary on
$$b \rightarrow c \ell \nu_{\ell}$$
 and $|V_{cb}|$

- Belle II can measure $b \rightarrow c \ell \nu_{\ell}$ transitions
 - exclusively (tagged and untagged)
 - inclusively (tagged)
- Different experimental techniques to recover the event kinematics
- Different theoretical frameworks to extract $|V_{cb}|$

Summary on $b \rightarrow c \ell \nu_{\ell}$ and $|V_{cb}|$

- Belle II can measure $b \to c \ell \nu_\ell$ transitions
 - exclusively (tagged and untagged)
 - inclusively (tagged)
- Different experimental techniques to recover the event kinematics
- Different theoretical frameworks to extract $|V_{cb}|$
- Different results!
 - This is a decade old tension and yet to be understood

 $R(D^{(*)})$

HFLAV PRELIMINARY

[LHCb-PAPER-2022-052] (In preparation)

- Including this result, the world average becomes $R(D^*) = 0.278 \pm 0.011; R(D) = 0.362 \pm 0.027$
- The deviation w.r.t. the SM stays at 3.0σ level for the combination of $R(D)-R(D^*)$

Resmi P K (Oxford)

Measurement Strategies

- Leptonic or hadronic au decays?
 - Leptonic is cleaner (less background)
 - Hadronic allows to measure more properties (e.g., au polarization)
- Exclusive or inclusive approach on the hadronic system?
 - $R(D^{(*)})$
 - R(X) (challenging due to X_c modelling)
- How to split signal from normalization?
 - Tagging, matching topology, kinematics

$$R = \frac{b \to q\tau v_{\tau}}{b \to q\ell v_{\ell}}$$

$$V_{qb}$$

$$\overline{\nu}_{\ell}$$

 $D^{**0}\ell^+\nu_\ell + Other$

 $2.38\,\%$

 $\mathcal{B}(B^+ \to X_c^0 \ell^+ \nu_\ell) \approx 10.79 \%$

 $D^{*0}\ell^+\nu_\ell$

5.05%

 $D^0 \ell^+ \nu_\ell$

2.31%

Measurement Strategies

- $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ No additional particles in the event
- Fully reconstruct signal and tag side
- →Each measured track/cluster has to be assigned
- Missing 4-momentum can be reconstructed $p_{miss} = (p_{beam} p_{B_{tag}} p_{D^{(*)}} p_{\ell})$
- Small tagging efficiency compensated by large data sample

(one of) Belle's $R(D^{(*)})$

- with leptonic au decays
- with semileptonic tagging
- Key variable: $E_{ECL} = \sum_{i} E_{i}^{\gamma} = E_{extra}$ Arb. units Signal — $B \rightarrow D(^*) \tau \nu$ 0.2 Normalization - $B \rightarrow D(*) \mid v$ Background 0.15 0.1 0.05 0 0.2 0.6 0.8 0.4 1.2 0 E_{ECL}(GeV)

- Require no additional tracks in the event
- Signal and normalization peak at $E_{ECL} = 0$
- How to discriminate signal from normalization?

(one of) Belle's $R(D^{(*)})$

- How to discriminate signal from normalization?
- Use difference in event kinematics

•
$$\cos \theta_{B,D^{(*)}\ell} = \frac{2E_B E_{D^{(*)}\ell} - m_B^2 - m_{D^{(*)}\ell}^2}{2|\vec{p}_B||\vec{p}_{D^{(*)}\ell}|}$$

•
$$M_{miss}^2 = (E_{miss}, p_{miss})^2 = (p_B - p_{D^{(*)}} - p_{\ell})^2$$

- $E_{vis} = \sum_{i} E_{i}$ (visible Energy)
- \rightarrow Construct a MVA classifier with these inputs

(one of) Belle's $R(D^{(*)})$

 $\mathcal{R}(D) = 0.307 \pm 0.037 \pm 0.016$ $\mathcal{R}(D^*) = 0.283 \pm 0.018 \pm 0.014,$

Other LFU Measurements at Belle (II)

R(X)

 $R(\mathbf{Y})$

