

A tour on semileptonic measurements at Belle (II)
Markus Prim - University of Bonn

Today's Tour

Exclusive $B \rightarrow D^{(*, * *)} \ell v_{\ell}$ Measurements with $\ell=e, \mu$	
Inclusive $B \rightarrow X_{c} \ell v_{\ell}$ Measurements with $\ell=e, \mu$	
Ratio Measurements (with τ $R=\frac{b \rightarrow q \tau v_{\tau}}{b \rightarrow q \ell v_{\ell}}$	LFU Test Extraction

- The experimental techniques also apply to $b \rightarrow u \ell v_{\ell}$

Additional challenge here is suppressing the abundant $b \rightarrow c \ell v_{\ell}$

- I present concepts, this means that some numbers or plots are possibly outdated

SuperKEKB Accelerator

- Asymmetric energy $e^{+} e^{-}$collider on the $\Upsilon(4 S)$ resonance
- Clean environment, production of the $\Upsilon(4 S) \rightarrow B \bar{B}$
- no additional particles
- no underlying event
- B mesons produced (almost) at rest
- Small cross-section ~ 1.1 nb

Event Topology at Belle II

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \quad(\mathrm{q} \in\{\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}\})$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Upsilon(4 \mathrm{~S}) \rightarrow \mathrm{B} \overline{\mathrm{~B}}
$$

Continuum suppression utilizes the difference in event topology:
Fox-Wolfram moments, Cleo cones, thrust variables, etc

Belle II Detector

Exclusive Measurements

Exclusive Measurements

- Exclusive measurements focus on explicit, resonant, final states
- For $b \rightarrow c \ell v$ transitions, these are

- $2 \mathrm{~L}=0$ states D, D^{*} These saturate $\sim 75 \%$ of the inclusive $B \rightarrow X_{C} \ell v$ rate and are the principal route to extract $\left|V_{c b}\right|$
- $4 \mathrm{~L}=1$ states: $D_{0}, D_{1}^{\prime}, D_{1}, D_{2}$ (or $D_{0}^{*}, D_{1}^{*}, D_{1}, D_{2}^{*}$, simply $D^{* *}$) These saturate $\sim 15 \%$ of the inclusive $B \rightarrow X_{C} \ell v$ rate and mostly a source of background
- What makes up the last $\sim 10 \%$ of the inclusive branching fraction?

Non-Resonant Decays and the „Gap"

$$
\mathcal{B}\left(\mathrm{B}^{+} \rightarrow X_{\mathrm{c}}^{0} \ell^{+} \nu_{\ell}\right) \approx 10.79 \%
$$

Decay	$\mathcal{B}\left(B^{+}\right)$	$\mathcal{B}\left(B^{0}\right)$
$B \rightarrow D^{+} \nu_{\ell}$	$(2.4098 \pm 0.0709) \cdot 10^{-2}$	$(2.2396 \pm 0.0664) \cdot 10^{-2}$
$B \rightarrow D^{*} \ell^{+} \nu_{\ell}$	$(5.5023 \pm 0.1146) \cdot 10^{-2}$	$(5.1137 \pm 0.1082) \cdot 10^{-2}$
$B \rightarrow D_{1} \ell^{+} \nu_{\ell}$	$(6.6322 \pm 1.0894) \cdot 10^{-3}$	$(6.1638 \pm 1.0127) \cdot 10^{-3}$
$B \rightarrow D_{0}^{*} \ell^{+} \nu_{\ell}$	$(4.2000 \pm 0.7500) \cdot 10^{-3}$	$(3.9033 \pm 0.6972) \cdot 10^{-3}$
$B \rightarrow D_{1}^{\prime} \ell^{+} \nu_{\ell}$	$(4.2000 \pm 0.9000) \cdot 10^{-3}$	$(3.9033 \pm 0.8366) \cdot 10^{-3}$
$B \rightarrow D_{2}^{*} \ell^{+} \nu_{\ell}$	$(2.9337 \pm 0.3248) \cdot 10^{-3}$	$(2.7265 \pm 0.3020) \cdot 10^{-3}$
$B \rightarrow D_{\pi \pi} \pi \ell^{+} \nu_{\ell}$	$(0.6228 \pm 0.8857) \cdot 10^{-3}$	$(0.5788 \pm 0.8232) \cdot 10^{-3}$
$B \rightarrow D^{*} \pi \pi \ell^{+} \nu_{\ell}$	$(2.1600 \pm 1.0247) \cdot 10^{-3}$	$(2.0074 \pm 0.9523) \cdot 10^{-3}$
$B \rightarrow D_{s} K \ell^{+} \nu_{\ell}$	$(0.3000 \pm 0.1421) \cdot 10^{-3}$	-
$B \rightarrow D_{s}^{*} K \ell^{+} \nu_{\ell}$	$(0.2900 \pm 0.1942) \cdot 10^{-3}$	
	$?$	

\Longrightarrow Well known
Some tension when comparing isospin modes
Broad states based on measurements by
BaBar, Belle, and DELPHI

Exclusive Measurements

- Exclusive measurements focus on explicit, resonant, final states
- Hadronic matrix element can not be calculated within the framework of perturbation theory. It is parametrized by form factors, e.g. for D^{*}
- In the past:
- Functional form of the form factors unknown, must be derived from data
- Normalization of the form factors from Lattice QCD
- Since last/this year:
- Beyond zero-recoil lattice predictions for the

$$
\begin{aligned}
\frac{\left\langle D^{*}\right| \bar{c} \gamma^{\mu} b|B\rangle}{\sqrt{m_{B} m_{D^{*}}}}= & i h_{h_{V}} \varepsilon^{\mu \nu \alpha \beta} \epsilon_{\nu}^{*} v_{\alpha}^{\prime} v_{\beta} \\
\frac{\left\langle D^{*}\right| \bar{c} \gamma^{\mu} \gamma^{5} b|B\rangle}{\sqrt{m_{B} m_{D^{*}}}}= & h_{h_{A_{1}}(w+1) \epsilon^{* \mu}-h_{A_{2}}\left(\epsilon^{*} \cdot v\right) v^{\mu}} \\
& -h_{A_{3}}\left(\epsilon^{*} \cdot v\right) v^{\prime \mu} .
\end{aligned}
$$ functional form of the form factors

Exclusive Measurements

- Access to more than form factors \& $\left|V_{c b}\right|$
- Forward-backward asymmetries $(\Delta) A_{F B}$

$$
A_{\mathrm{FB}}=\frac{\int_{0}^{1} \mathrm{~d} \cos _{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos _{\ell}-\int_{-1}^{0} \mathrm{~d} \cos _{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos _{\ell}}{\int_{0}^{1} \mathrm{~d} \cos _{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos _{\ell}+\int_{-1}^{0} \mathrm{~d} \cos _{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos _{\ell}}
$$

- Longitudinal polarization fraction $(\Delta) F_{L}$

$$
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta_{V}}=\frac{3}{2}\left(F_{L} \cos ^{2} \theta_{V}+\frac{1-F_{L}}{2} \sin ^{2} \theta_{V}\right)
$$

- Lepton flavor universality ratio $R_{e \mu}$

$$
R_{e \mu}=\frac{\mathcal{B}\left(B \rightarrow D^{*} \bar{\nu}_{e}\right)}{\mathcal{B}\left(B \rightarrow D^{*} \mu \bar{\nu}_{\mu}\right)}
$$

These are probes for new physics

Exclusive Measurement Strategies

Untagged Measurements

+ Very high efficiency
+ Absolute branching fraction straightforward
- Less experimental control, e.g., more backgrounds
- Signal B rest frame not directly accessible

Tagged Measurements

+ High degree of experimental control
+ Hadronic tagging gives access to the signal B rest frame
- Understanding efficiencies is difficult
- Tagging efficiency reduces effective statistical power

Tagging at B-factories

Full Event Interpretation

- Hierarchical bottom-up approach
- Classifiers (BDT or NN) are trained to identify correctly reconstructed (intermediate) candidates
- At each step:
- Input variables: four-momenta \& particle identification scores
$\mathrm{B}^{0} \mathrm{~B}^{+}$
- Output: score that can be interpreted as probability
- Mild selection on the output score
- Over 10 ’000 decay cascades are automatically reconstructed
- E.g., Hadronic tagging efficiency is $\sim 0.3 \%$

Full Event Interpretation

$$
m_{b c}=\sqrt{\frac{E_{b e a m}^{2}}{4}-\left|\vec{p}_{B_{t a g}}\right|^{2}} \approx m_{B}
$$

$P_{\text {tag }}=$ Output Classifier: Measure/Probability of how well the B-Meson is reconstructed

Full Event Interpretation

- Algorithm output is tunable based on the receiver operating characteristic
- Trade-off between efficiency and purity
- Calibration of the algorithm required depending on the working point

Full Event Interpretation - Calibration

- The algorithm uses:
- uncalibrated detector information
- possibly outdated simulation (branching ratios, line shapes)
- Aggregates into the output score
- Use a well-measured independent process to calibrate the efficiency
- Assumption: Signal- and Tag-Side factorize (are independent)

$\epsilon=\frac{N_{X_{c} \ell v}^{\text {Data }}}{N_{X_{C} \ell v}^{M C}}$

Full Event Interpretation - Calibration

The tagging algorithm can be calibrated, but this introduces an additional systematic uncertainty ($\sim 3 \%$) to the analysis

Tagged Exclusive

Tagged $B \rightarrow D^{(*)} \ell v$

How are they different?

- $B \rightarrow D^{*} \ell v$: measure $\left\{w, \cos \theta_{\ell} \cos \theta_{V}, \chi\right\}$
- Factor of ~ 3 larger branching fraction
- $D^{*} \rightarrow D \pi_{s}$ slow pion efficiency needs to be understood
- D^{*} more challenging on the lattice
- $B \rightarrow D \ell v$: measure $\left\{w, \cos \theta_{\ell}\right\}$
- Easier to reconstruct, but challenging large background component from $B \rightarrow D^{*} \ell v$ downfeed
- Future: Measure both decays simultaneously
- link $B \rightarrow D^{*} \ell v$ signal and downfeed
- Use that their form factors are not independent in the framework of HQET

Tagged $B \rightarrow D^{*} \ell v$

- Reconstruct $D^{*+} \rightarrow D^{0} \pi^{+}, D^{*+} \rightarrow D^{+} \pi^{0}, D^{* 0} \rightarrow D^{0} \pi^{0}$ $D^{*} \rightarrow D \gamma$ has a 30% branching fraction, why not add it in as well?
- B rest-frame can be directly reconstructed from the tag-side: Access to $w, \theta_{l}, \theta_{V}, \chi$
- But low effective statistics, reconstruct many D modes

Where is this turn on coming from?

Tagged $B \rightarrow D^{*} \ell v$ - Background Subtraction

- Need to subtract residual background contributions from
- Other semileptonic decays ($B \rightarrow D \ell v, B \rightarrow D^{* *} \ell \nu$)
- Other B decays (fake or real leptons)
- From continuum $\left(e^{+} e^{-} \rightarrow q \bar{q}\right)$

$$
0=m_{v}^{2}=\mathrm{M}_{\text {miss }}^{2}=\left(\mathrm{E}_{\text {miss }}, \mathrm{p}_{\mathrm{miss}}\right)^{2}=\left(\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{D}^{*}}-\mathrm{p}_{\ell}\right)^{2}
$$

Alternatively, but same principle:

$$
U=E_{m i s s}-\left|p_{m i s s}\right|
$$

Tagged $B \rightarrow D^{*} \ell v$ - Background Subtraction

- $M_{\text {miss }}^{2}$ is model independent, low impact of e.g., FF uncertainties
- But: MC modelling of $M_{\text {miss }}^{2}$ is challenging, non-trivial resolution effects due to the convolution of many variables
$\mathrm{M}_{\text {miss }}^{2}$ Resolution Fit on MC After Fit

Asymmetric Laplace distribution
$f_{\mathrm{AL}}(x ; m, \lambda, \kappa)=\frac{\lambda}{\kappa+1 / \kappa} \begin{cases}\exp ((\lambda / \kappa)(x-m)) & \text { if } x<m, \\ \exp (-\lambda \kappa(x-m)) & \text { if } x \geq m,\end{cases}$

Tagged $B \rightarrow D^{*} \ell v$ - Background Subtraction

- Different strategies available:
- Binned likelihood fits to 1D projections; coarse binning reduces modelling dependence on e.g., background shape and resolution

Tagged $B \rightarrow D^{*} \ell v$ - Detector Migrations

- Resolution caused by detector effects and misreconstructions causes migration of events into neighboring bins

- Parametrized as a migration matrix $M_{i j}=P($ reco. in bin i \mid true value in bin j$)$
- Recover "true" values by this mapping of reconstructed \rightarrow true
- "Simplest" method: Matrix inversion

$$
x_{t r u e}=M_{i j}^{-1} x_{\text {reco }}
$$

Unfolding is a whole topic on its own:

- Treatment of the variance-bias tradeoff
- Unbinned unfolding

Tagged $B \rightarrow D^{*} \ell v$ - Acceptance x Efficiency

Tagged $B \rightarrow D^{*} \ell v$ - Result

The „true" 1D projections of the 4D decay
 rate after:

- Background subtraction
- Unfolding
- Correcting for acceptance and efficiency

Each 1D projection shows the same data!

- Determine correlations between different projections with bootstrapping
- Replicate the data by sampling with replacement and repeat analysis N times
- N depends on the
- required precision on
- true value of
the correlation coefficients

Tagged $B \rightarrow D^{*} \ell v$ - Result

Both BGL and CLN can describe the data Caveat using BGL: Truncation of the series

Extract physics!

- Fit the 4D shapes with the model
- Choose the form factor parameterization - BGL, CLN, BLPR(XP)
- Extract form factors and $\left|V_{c b}\right|$ with the help from lattice QCD

Tagged $B \rightarrow D^{*} \ell v$ - Lattice Inputs

$$
\begin{aligned}
\chi^{2}= & \left(\frac{\Delta \vec{\Gamma}^{\mathrm{m}}}{\Gamma^{\mathrm{m}}}-\frac{\Delta \vec{\Gamma}^{\mathrm{p}}(\vec{x})}{\Gamma^{\mathrm{p}}(\vec{x})}\right) C_{\exp }^{-1}\left(\frac{\Delta \vec{\Gamma}^{\mathrm{m}}}{\Gamma^{\mathrm{m}}}-\frac{\Delta \vec{\Gamma}^{\mathrm{p}}(\vec{x})}{\Gamma^{\mathrm{p}}(\vec{x})}\right)^{T} \\
& +\left(\Gamma^{\mathrm{ext}}-\Gamma^{\mathrm{p}}(\vec{x})\right)^{2} / \sigma\left(\Gamma^{\mathrm{ext}}\right)^{2} \\
& +\left(h_{X}-h_{X}^{\mathrm{LQCD}}\right) C_{\mathrm{LQCD}}^{-1}\left(h_{X}-h_{X}^{\mathrm{LQCD}}\right)
\end{aligned}
$$

Tagged $B \rightarrow D^{*} \ell v$ - Truncation

- One model-independent way to parameterize are BGL form factors
- How to truncate the series?
- Truncate to soon: Introduces model dependence
- Truncate to late: Increase variance of the result
- BGL form factors:

$$
g(z)=\frac{1}{P_{g}(z) \phi_{g}(z)} \sum_{n=0}^{N} a_{n} z^{n}, \quad f(z)=\frac{1}{P_{f}(z) \phi_{f}(z)} \sum_{n=0}^{N} b_{n} z^{n}, \quad \mathcal{F}_{1}(z)=\frac{1}{P_{\mathcal{F}_{1}}(z) \phi_{\mathcal{F}_{1}}(z)} \sum_{n=0}^{N} c_{n} z^{n}
$$

Tagged $B \rightarrow D^{*} \ell v$ - Truncation

Nested hypothesis test

Bernlochner, Ligeti,

Challenge nested fits

Test statistics \& Decision boundary

$$
\Delta \chi^{2}=\chi_{N}^{2}-\chi_{N+1}^{2} \quad \Delta \chi^{2}>1
$$

Distributed like a χ^{2}-distribution with 1 dof
(Wilk's theorem)

Unitarity bounds
 e.g. Gambino, Jung, Schacht 1905.08209

Untagged Exclusive

Untagged $B \rightarrow D^{*} \ell v$

- Abundant statistics; reconstruct only the cleanest mode

$$
D^{*+} \rightarrow D^{0}\left[\rightarrow K^{+} \pi^{-}\right] \pi^{+}
$$

- Reconstruct signal side, everything else is assigned to the other B meson
- Event kinematics: ROE method

$$
\vec{p}_{\text {incl }}=\sum_{i} p_{i} \longrightarrow \vec{p}_{B_{s i g}}=-\vec{p}_{i n c l}
$$

Untagged $B \rightarrow D^{*} \ell v$

- Abundant statistics; reconstruct only the cleanest mode

$$
D^{*+} \rightarrow D^{0}\left[\rightarrow K^{+} \pi^{-}\right] \pi^{+}
$$

- Exploit that B meson lies on a cone, which has an opening angle defined by the visible particles

$$
\cos \theta_{B, D^{*} \ell}=\frac{2 E_{B} E_{D^{*} \ell}-m_{B}^{2}-m_{D^{*} \ell}^{2}}{2\left|\vec{p}_{B}\right|\left|\vec{p}_{D^{*} \ell}\right|}
$$

- Calculate for 10 points on the cone
$\left(E^{B}, p_{x}^{B}, p_{y}^{B}, p_{z}^{B}\right)=\left(E_{\text {Beam }}^{\mathrm{CM}} / 2,\left|\vec{p}_{B}^{\mathrm{CM}}\right| \sin \theta_{B Y} \cos \phi,\left|\vec{p}_{B}^{\mathrm{CM}}\right| \sin \theta_{B Y} \sin \phi,\left|\vec{p}_{B}^{\mathrm{CM}}\right| \cos \theta_{B Y}\right)$
- Utilize that the angular distribution of $\Upsilon(4 S) \rightarrow B \bar{B}$ is $\sin ^{2} \theta_{B}$
Weighted average over the 10 points $w_{i}=\sin _{\text {polarangle }}^{2} \theta_{B}$

Untagged $B \rightarrow D^{*} \ell v$

$$
\cos \theta_{B, D^{*} \ell}=\frac{2 E_{B} E_{D^{*} \ell}-m_{B}^{2}-m_{D^{*} \ell}^{2}}{2\left|\vec{p}_{B}\right|\left|\vec{p}_{D^{*} \ell}\right|}
$$

$\left(E^{B}, p_{x}^{B}, p_{y}^{B}, p_{z}^{B}\right)=\left(E_{\text {Beam }}^{\mathrm{CM}} / 2,\left|\vec{p}_{B}^{\mathrm{CM}}\right| \sin \theta_{B Y} \cos \phi,\left|\vec{p}_{B}^{\mathrm{CM}}\right| \sin \theta_{B Y} \sin \phi,\left|\vec{p}_{B}^{\mathrm{CM}}\right| \cos \theta_{B Y}\right)$ $\vec{p}_{\text {incl }}=\sum_{i} p_{i} \longmapsto \vec{p}_{B_{s i g}}=-\vec{p}_{\text {incl }}$

Both methods can be combined!

Untagged $B \rightarrow D^{*} \ell v$ - Background Subtraction

Subtract residual backgrounds using

- $\Delta M=m_{D^{*}}-m_{D}$ discriminates fake and true D^{*}
- $\cos \theta_{B, D^{*} \ell}=\frac{2 E_{B} E_{D^{*}} l^{-}-m_{B}^{2}-m_{D^{*} \ell}^{2}}{2\left|\vec{p}_{B}\right| \mid \overrightarrow{p_{D}} D^{*} \ell}$ discriminates signal and background
- p_{ℓ} to control fake leptons

From here proceed same as for the tagged analysis

Tagged Inclusive

Inclusive Measurements

- Inclusive measurements stay agnostic with respect to the hadronic system
- Theoretical framework is Operator Product Expansion (OPE)

$$
\mathrm{d} \Gamma=\mathrm{d} \Gamma_{0}+\mathrm{d} \Gamma_{\mu_{\pi}} \frac{\mu_{\pi}^{2}}{m_{b}^{2}}+\mathrm{d} \Gamma_{\mu_{G}} \frac{\mu_{G}^{2}}{m_{b}^{2}}+\mathrm{d} \Gamma_{\rho_{D}} \frac{\rho_{D}^{3}}{m_{b}^{3}}+\mathrm{d} \Gamma_{\rho_{L S}} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots
$$

- $d \Gamma$ are calculated perturbatively
- Non-perturbative dynamics encapsulated in the HQE parameters $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{L S}$
\rightarrow Extract HQE parameters from data (similar to the form factors)
\rightarrow Measure spectral moments: hadronic mass, lepton energy, momentum transfer, ...

Inclusive $B \rightarrow X_{C} \ell v\left\langle m_{X}, E_{l}\right\rangle$

Experiment	Hadron moments $<\mathrm{M}^{\mathrm{n}} \mathrm{X}^{>}$	Lepton moments $<\mathrm{E}^{\mathrm{n}}>$	References
BaBar	$\begin{aligned} & \mathrm{n}=2 \mathrm{c}=0.9,1.1 .1 .3,1.5 \\ & \mathrm{n}=4 \mathrm{c}=0.8,1.0,1.2,1.4 \\ & \mathrm{n}=6 \mathrm{c}=0.9,1.3[1] \end{aligned}$	$\begin{aligned} & \mathrm{n}=0 \mathrm{c}=0.6,1.2,1.5 \\ & \mathrm{n}=1 \mathrm{c}=0.6,6.0,1.0,1.2,1.5 \\ & \mathrm{n}=2 \mathrm{c}=0.6,1.0,1.5 \\ & \mathrm{n}=3 \mathrm{c}=0.8,1.2[1,2] \end{aligned}$	[1] Phys.Rev. D81 (2010) 032003 [2] Phys.Rev. D69 (2004) 111104
Belle	$\begin{aligned} & \mathrm{n}=2 \mathrm{c}=0.7,1.1,1.3,1.5 \\ & \mathrm{n}=4 \mathrm{c}=0.7,0.9,1.3 \end{aligned}$	$\begin{aligned} & \mathrm{n}=0 \mathrm{c}=0.6,1.4 \\ & \mathrm{n}=1 \mathrm{c}=1.0,1.4 \\ & \mathrm{n}=2 \mathrm{c}=0.6,1.4 \\ & \mathrm{n}=3 \mathrm{c}=0.8,1.2[4] \end{aligned}$	[3] Phys.Rev. D75 (2007) 032005 [4] Phys.Rev. D75 (2007) 032001
CDF	$\begin{aligned} & \mathrm{n}=2 \mathrm{c}=0.7 \\ & \mathrm{n}=4 \mathrm{c}=0.7 \end{aligned}$		[5] Phys.Rev. D71 (2005) 051103
CLEO	$\begin{aligned} & \mathrm{n}=2 \mathrm{c}=1.0,1.5 \\ & \mathrm{n}=4 \mathrm{c}=1.0,1.5[6] \end{aligned}$		[6]Phys.Rev. D70 (2004)032002
DELPHI	$\begin{aligned} & \mathrm{n}=2 \mathrm{c}=0.0 \\ & \mathrm{n}=4 \mathrm{c}=0.0 \\ & \mathrm{n}=6 \mathrm{c}=0.0[7] \end{aligned}$	$\begin{aligned} & \mathrm{n}=1 \mathrm{c}=0.0 \\ & \mathrm{n}=2 \mathrm{c}=0.0 \\ & \mathrm{n}=3 \mathrm{c}=0.0[7] \end{aligned}$	[7] Eur.Phys.J. C45 (2006) 35-59

$\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{c}} \ln \mathrm{u}\right)(\%)$	$\left\|\mathrm{V}_{\mathrm{cb}}\right\|\left(10^{-3}\right)$	$\mathrm{m}_{\mathrm{b}}{ }^{\text {kin }}(\mathrm{GeV}$)	$\mathbf{m u}^{\mathbf{2}} \mathbf{p i}^{\left(\mathrm{GeV}^{\mathbf{2}}\right)}$	
$10.65+/-0.16$	$42.19+/-0.78$	$4.554+/-0.018$	$0.464+/-0.076$	details

- HQE parameters extracted from the measured moments
- Semileptonic rate from theory

State-of-the-Art

- Relatively old measurements, but recent progress on the theory side! Semileptonic decay rate at N3LO
M. Fael, K. Schönwald, M. Steinhauser

Phys.Rev.D 104 (2021) 1, 016003, arXiv:2011.13654

- Updated inclusive fit to $\left\langle M_{X}\right\rangle,\left\langle E_{\ell}\right\rangle$ $\left|V_{c b}\right|=42.16 \times 10^{-3}$ with 1.2% precision
M. Bordone, B. Capdevila, P. Gambino

Phys.Lett.B 822 (2021) 136679, arXiv:2107.00604

Inclusive $B \rightarrow X_{c} \ell v\left\langle q^{2}\right\rangle$

- Number of matrix elements increase at higher orders

$$
\mathrm{d} \Gamma=\mathrm{d} \Gamma_{0}+\mathrm{d} \Gamma_{\mu_{\pi}} \frac{\mu_{\pi}^{2}}{m_{b}^{2}}+\mathrm{d} \Gamma_{\mu_{G}} \frac{\mu_{G}^{2}}{m_{b}^{2}}+\mathrm{d} \Gamma_{\rho_{D}} \frac{\rho_{D}^{3}}{m_{b}^{3}}+\mathrm{d} \Gamma_{\rho_{L S}} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots
$$

- New idea: Exploit reparameterization invariance
M. Fael, T. Mannel, K. Vos

JHEP 02 (2019) 177, arXiv:1812.07472

- Spectral moments

\[

\]

$\left\langle q^{2}\right\rangle$ moments measured by Belle and Belle II

Inclusive $B \rightarrow X_{C} \ell v\left\langle q^{2}\right\rangle$

Access to full event kinematics via hadronic tagging

Kinematic fit drastically improves resolution

Event-wise Master-formula

$$
\text { Inclusive } B \rightarrow X_{C} \boldsymbol{\ell} \boldsymbol{v}\left\langle\boldsymbol{q}^{2}\right\rangle \quad\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\text {data }}} w\left(q_{i, r e c o}^{2}\right) \times q_{i, \text { calib }}^{2 n}}{\sum_{j}^{N_{\text {data }} w\left(q_{j, r e c o}^{2}\right)} \times C_{\text {calib }} \times C_{\text {gen }}}
$$

- Step 1: Subtract Background

Determine background normalization by fitting M_{X} and determine event weights

Event-wise Master-formula

Inclusive $B \rightarrow X_{C} \ell v\left\langle q^{2}\right\rangle$
 $\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\text {data }}} w\left(q_{i, \text { reco }}^{2}\right) \times q_{i, \text { calib }}^{2 n}}{\sum_{j}^{N_{\text {data }}} w\left(q_{j, \text { reco }}^{2}\right)} \times C_{\text {calib }} \times C_{\text {gen }}$

- Step 2: Calibrate Moments

- Exploit linear dependence between reconstructed and true moments

$$
q_{i, c a l}^{2 m}=\left(q_{i, r e c o}^{2 m}-c\right) / m
$$

Event-wise Master-formula

Inclusive $B \rightarrow X_{C} \ell \nu\left\langle q^{2}\right\rangle$
 $\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\text {data }}} w\left(q_{i, \text { reco }}^{2}\right) \times q_{i, \text { calib }}^{2 n}}{\sum_{j}^{N_{\text {data }}} w\left(q_{j, \text { reco }}^{2}\right)} \times C_{\text {calib }} \times C_{\text {gen }}$

- Step 3: Refine calibration

- Correct for small deviations from the linear behavior

$$
C_{\text {calib }}=\left\langle q_{\text {gen,sel }}^{2 n}\right\rangle /\left\langle q_{\text {calib }}^{2 n}\right\rangle
$$

Event-wise Master-formula

- Step 4: Correct for selection efficiencies

- Dominant effect: lepton reconstruction efficiency

$$
C_{\text {gen }}=\left\langle q_{\text {gen }}^{2 n}\right\rangle /\left\langle q_{\text {gen }, \text { sel }}^{2 n}\right\rangle
$$

Inclusive $B \rightarrow X_{c} \ell \nu\left\langle q^{2}\right\rangle$

Perform analysis with different thresholds of q^{2}
... and extract $\left|V_{c b}\right|$

Inclusive $B \rightarrow X_{c} \ell \nu\left\langle q^{2}\right\rangle$

- Correlations can be extracted with bootstrapping
- Leading uncertainties are from
- Reconstruction
- Background subtraction
- X_{c} model

$\left|V_{c b}\right|$ from Inclusive $B \rightarrow X_{c} \ell v\left\langle q^{2}\right\rangle$

F. Bernlochner, M. Fael, K. Olschwesky, E. Persson, R. Van Tonder, K. Vos, M. Welsch [JHEP 10 (2022) 068, [arXiv:2205.10274]

- Inclusive fit $\left\langle q^{2}\right\rangle$ $\left|V_{c b}\right|=41.69$ with 1.5\% precision!

Summary on $b \rightarrow c \ell v_{\ell}$ and $\left|V_{c b}\right|$

Summary on $b \rightarrow c \ell v_{\ell}$ and $\left|V_{c b}\right|$

- Belle Il can measure $b \rightarrow c \ell v_{\ell}$ transitions
- exclusively (tagged and untagged)
- inclusively (tagged)
- Different experimental techniques to recover the event kinematics
- Different theoretical frameworks to extract $\left|V_{c b}\right|$

Summary on $b \rightarrow c \ell v_{\ell}$ and $\left|V_{c b}\right|$

- Belle ll can measure $b \rightarrow c \ell \nu_{\ell}$ transitions
- exclusively (tagged and untagged)
- inclusively (tagged)
- Different experimental techniques to recover the event kinematics
- Different theoretical frameworks to extract $\left|V_{c b}\right|$
- Different results!
- This is a decade old tension and yet to be understood

$R\left(D^{(*)}\right)$

HFLAV PRELIMINARY
[LHCb-PAPER-2022-052]
(In preparation)
$R\left(D^{*}\right)=0.278 \pm 0.011 ; \quad R(D)=0.362 \pm 0.027$

- The deviation w.r.t. the SM stays at 3.0σ level for the combination of $R(D)-R\left(D^{*}\right)$

Measurement Strategies

- Leptonic or hadronic τ decays?
- Leptonic is cleaner (less background)
- Hadronic allows to measure more properties (e.g., τ polarization)
- Exclusive or inclusive approach on the hadronic system?
- $R\left(D^{(*)}\right)$
- $R(X)$ (challenging due to X_{c} modelling)

- How to split signal from normalization?
- Tagging, matching topology, kinematics

Measurement Strategies

- $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$

No additional particles in the event

- Fully reconstruct signal and tag side
\rightarrow Each measured track/cluster has to be assigned
- Missing 4-momentum can be reconstructed

$$
p_{\text {miss }}=\left(p_{\text {beam }}-p_{B_{\text {tag }}}-\mathrm{p}_{\mathrm{D}^{(*)}}-\mathrm{p}_{\ell}\right)
$$

- Small tagging efficiency compensated by large data sample
(one of) Belle's $R\left(D^{(*)}\right)$
- with leptonic τ decays
- with semileptonic tagging

- Key variable: $E_{E C L}=\sum_{i} E_{i}^{\gamma}=E_{\text {extra }}$

- Require no additional tracks in the event
- Signal and normalization peak at $E_{E C L}=0$
- How to discriminate signal from normalization?
(one of) Belle's $R\left(D^{(*)}\right)$
- How to discriminate signal from normalization? $?^{\frac{D D}{2}} / \pi^{0}$
- Use difference in event kinematics

- $\cos \theta_{B, D^{(*)} \ell}=\frac{2 E_{B} E_{D^{(*)}}-m_{B}^{2}-m_{D^{(*)} \ell}^{2}}{2\left|\vec{p}_{B}\right|\left|\vec{p}_{D^{(*)}}\right|}$
- $\mathrm{M}_{\text {miss }}^{2}=\left(\mathrm{E}_{\text {miss }}, \mathrm{p}_{\text {miss }}\right)^{2}=\left(\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{D}^{(*)}}-\mathrm{p}_{\ell}\right)^{2}$
- $E_{v i s}=\sum_{i} E_{i}$ (visible Energy)
\rightarrow Construct a MVA classifier with these inputs

(one of) Belle's $R\left(D^{(*)}\right)$

$$
\begin{aligned}
\mathcal{R}(D) & =0.307 \pm 0.037 \pm 0.016 \\
\mathcal{R}\left(D^{*}\right) & =0.283 \pm 0.018 \pm 0.014
\end{aligned}
$$

Other LFU Measurements at Belle (II)

$\boldsymbol{R}(\boldsymbol{X})$

The challenge here: ${ }_{\mathcal{B}\left(\mathrm{B}^{+} \rightarrow X_{c}^{o} \ell^{+} \psi_{\ell}\right) \approx 10.79 \%}$
$\boldsymbol{R}(\mathbf{Y})$

U. Tamponi @ MESON 2021

