Measurement of Asymmetries

in the B meson system

Ulrich Uwer

Physikalisches Institut Heidelberg

Neckarzimmern 2009

Asymmetries

Asymmetries very often give access to interference effects and offer the possibility to measure phases.

Historical example

$A_{FB}(e^+e^-\rightarrow\mu^+\mu^-)$

PETRA (1980s):

Clear interference of Z boson seen

LEP (1990s):

Measurement of the Z coupling, At Z pole: no interference, very small A_{FB} from Z couplings (~1%) $A_{FB} \sim g_A^e g_V^e g_A^f g_V^f$

Systematic effects:

• Luminosity

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

- Time dependent detector effciciencies
- Acceptance, selection efficiencies

Typ. systematic error: +/- 0.1% !!!!!!

Cancel in 1st order !

Mixing Phenomenology

Flavor eigenstates

$$\left| \mathsf{B}_{\mathsf{q}}^{\mathsf{0}} \right\rangle = \left| \overline{\mathsf{b}} \mathsf{q} \right\rangle \qquad \left| \overline{\mathsf{B}}_{\mathsf{q}}^{\mathsf{0}} \right\rangle = \left| \mathsf{b} \overline{\mathsf{q}} \right\rangle$$

Production = pure flavor states

$$i\frac{d}{dt}\left(\begin{vmatrix} B_q^0(t) \\ \overline{B}_q^0(t) \end{vmatrix}\right) = \left(\underbrace{M_q}_{q} - \frac{i}{2} \underbrace{\Gamma_q}_{q}\right) \left(\begin{vmatrix} B_q^0(t) \\ \overline{B}_q^0(t) \end{vmatrix}\right)$$

$$|B_{L}\rangle = p|B^{0}\rangle + q|\overline{B^{0}}\rangle \quad \text{with } m_{L,\Gamma_{L}} \qquad |p|^{2} + |q|^{2} = 1$$
$$|B_{H}\rangle = p|B^{0}\rangle - q|\overline{B^{0}}\rangle \quad \text{with } m_{H,\Gamma_{H}}$$

$$B_{H,L}(t) \rangle = |B_{H,L}(0)\rangle \cdot \underbrace{e^{-im_{H,L}t} \cdot e^{-\frac{1}{2}\Gamma_{H,L}t}}_{b_{H,L}(t)}$$

Mixing Observables

Mass difference and decay width difference

$$\Delta m_q = m_H - m_L$$
$$\Delta \Gamma_q = \Gamma_L - \Gamma_H$$

can be linked to eigenvalues of mixing matrix

$$\Phi_{M/\Gamma} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \qquad \Delta\Gamma_q = 2\left|\Gamma_{12}\right|\cos\Phi_{M/\Gamma} \qquad \Delta m_q = 2\left|M_{12}\right|$$
$$\neq \Phi_M = \arg\left(-M_{12}\right) \qquad a_{fs}^q = \Im\left(\frac{\Gamma_{12}}{M_{12}}\right) = \frac{\left|\Gamma_{12}^q\right|}{\left|M_{12}^q\right|}\sin\Phi_{M/\Gamma} = \frac{\Delta\Gamma}{\Delta M}\tan\Phi_{M/\Gamma}$$

$$\begin{pmatrix} M_{11} - \frac{i}{2}\Gamma_{11} & M_{12}^* - \frac{i}{2}\Gamma_{12}^* \\ M_{12} - \frac{i}{2}\Gamma_{12} & M_{22} - \frac{i}{2}\Gamma_{22} \end{pmatrix}$$

$$B_{\rm S} \quad \begin{array}{l} \Phi_{M/\Gamma}^{SM} = 3.4 \times 10^{-3} \\ \Phi_{M}^{SM} = 3.7 \times 10^{-2} \end{array}$$

Oscillation

$$\left| B^{0}(t) \right\rangle = \frac{\left| B_{L}(t) \right\rangle + \left| B_{H}(t) \right\rangle}{2\rho} = \frac{1}{2\rho} \left(b_{L}(t) \cdot \left(\rho \left| B^{0} \right\rangle + q \left| \overline{B^{0}} \right\rangle \right) + b_{H}(t) \cdot \left(\rho \left| B^{0} \right\rangle - q \left| \overline{B^{0}} \right\rangle \right) \right)$$

Ignoring $\Delta\Gamma$ and assuming q/p=1 (no CP in mixing):

Non-mixed
$$P(B^0 \to B^0) = \frac{\Gamma}{2} e^{-\Gamma t} [1 + \cos(\Delta m t)]$$

 $P(\overline{B^0} \to \overline{B^0})$

mixed
$$P(B^0 \to \overline{B^0}) = \frac{\Gamma}{2} e^{-\Gamma t} [1 - \cos(\Delta m t)]$$

 $P(\overline{B^0} \to B^0)$

Mixing Asymmetry

CP Asymmetry

$$A_{CP}(t) = \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)} = \frac{\Gamma(\overline{B} \to f_{CP}) - \Gamma(B \to f_{CP})}{\Gamma(\overline{B} \to f_{CP}) + \Gamma(B \to f_{CP})}$$

CP Asymmetry

$$\begin{split} \lambda_{f} &= \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} \quad \Im(\lambda_{f}) = -\eta_{f} \sin[2(\Phi_{M} + \Phi_{f})] \\ A_{CP}(t) &= \frac{\Gamma(\overline{B} \to f_{CP}) - \Gamma(B \to f_{CP})}{\Gamma(\overline{B} \to f_{CP}) + \Gamma(B \to f_{CP})} \\ B^{0} \\ \Delta\Gamma &\approx 0 \\ \Phi_{M} &= 2\beta \\ \end{split} \\ \begin{bmatrix} \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} \cos(\Delta mt) - \frac{2\Im(\lambda_{f})}{1 + |\lambda_{f}|^{2}} \sin(\Delta mt) \\ \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} \cos(\Delta mt) - \frac{2\Im(\lambda_{f})}{1 + |\lambda_{f}|^{2}} \sin(\Delta mt) \\ \end{bmatrix} \\ \underbrace{Direct CP \text{ violation } CP \text{ violation through interference}}_{Direct CP \text{ violation through interference}} \\ B_{s} \\ \Phi_{M} &= 2\beta_{s} \\ \begin{cases} = \frac{\eta_{f} \sin[2(\Phi_{M} + \Phi_{f})]\sin(\Delta mt)}{\cosh(\Delta\Gamma t/2) - \eta_{f} \cos[2(\Phi_{M} + \Phi_{f})]\sin(\Delta\Gamma t/2)} \\ \text{ ignore direct CP violation} \end{cases} \end{split}$$

Flavor specific asymmetry

$$\begin{aligned} \mathcal{A}_{fs}^{q}(t) &= \frac{\Gamma\left(B_{q}^{0} \mid \overline{B}_{q}^{0} \rightarrow f\right) - \Gamma\left(B_{q}^{0} \mid \overline{B}_{q}^{0} \rightarrow \overline{f}\right)}{\Gamma\left(B_{q}^{0} \mid \overline{B}_{q}^{0} \rightarrow f\right) + \Gamma\left(B_{q}^{0} \mid \overline{B}_{q}^{0} \rightarrow \overline{f}\right)} & B_{s}^{0} \rightarrow D_{s}^{-}\pi^{+} \\ B_{s}^{0} \rightarrow D_{s}^{-}\mu^{+}\nu_{\mu}X^{0} \\ &= \frac{a_{fs}^{q}}{2} - \frac{a_{fs}^{q}}{2} \frac{\cos(\Delta m_{q}t)}{\cosh(\Delta\Gamma_{q}t/2)} & \left(a_{fs}^{d}\right)^{SM} = -(5.0\pm1.1)\times10^{-4} \\ \left(a_{fs}^{s}\right)^{SM} = (2.1\pm0.4)\times10^{-5} \\ a_{fs}^{q} = \Im\left(\frac{\Gamma_{12}}{M_{12}}\right) = \frac{\left|\Gamma_{12}^{q}\right|}{\left|M_{12}^{q}\right|}\sin\Phi_{M/\Gamma} = \frac{\Delta\Gamma}{\Delta M}\tan\Phi_{M/\Gamma} \end{aligned}$$

New Physics Sensitivity

New Physics should effect mostly M_{12} (not Γ_{12}):

$$\begin{split} M_{12} &\to M_{12}^{SM} \cdot \Delta_{s} = M_{12}^{SM} \cdot \left| \Delta_{NP} \right| \exp(i\phi^{NP}) \\ \Phi_{M} &\to \Phi_{M}^{SM} + \phi^{NP} \qquad \Phi_{M}^{SM} = -2\beta_{s} = 0.037 \\ \Delta\Gamma^{meas} &= 2 \left| \Gamma_{12}^{SM} \right| \cos\left(\Phi_{M/\Gamma} + \phi^{NP} \right) \qquad a_{fs}^{meas} = \frac{\left| \Gamma_{12}^{SM} \right|}{\left| M_{12}^{SM} \right|} \frac{\sin\left(\Phi_{M/\Gamma} + \phi^{NP} \right)}{\left| \Delta_{NP} \right|} \end{split}$$

Experiment

Production of B Mesons

Lнср

 E_{pp} = 14 TeV

 $\sigma_{bb} = 500 \ \mu b$ \Longrightarrow 50 k

50 kHz

Boost $\beta \gamma = 15 \dots 30$

 $z{\approx}~7~\dots~15~mm$

Signal looks pretty much like background (~ x 200)

Measuring B_s Mixing

Event Reconstruction: Tracking

Event Reconstruction: K/\pi ID

Proper Time Measurement

Proper time resolution

$$ct = \frac{LM_B}{p} \qquad \qquad \sigma_{ct} = \sqrt{\left(\frac{M_B}{p} * \sigma_L\right)^2 + \left(\frac{LM_B}{p^2} * \sigma_p\right)^2} \\ \frac{\sigma_{ct}}{ct} = \sqrt{\left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_p}{p}\right)^2}$$

For fully reconstructed B decays:

Relative momentum error < 0.1%

Error dominated by vertex resolution

	<p(b)></p(b)>	<l></l>	σ_L	σ_{ct}
CDF	p_T = 12 GeV	L_T = 1.5 mm	25 μm	100 fs
Babar	$p pprox p_z$ = 3 GeV	L_z = 0.25 mm	150 μm	2000 fs
LHCb	$p \approx p_z$ = 50 GeV	L_z = 15 mm	100 μm	40 fs

	ATLAS	CMS
σ_{τ} [fs]	83	77

Finite Proper Time Resolution

also effects the seen asymmetry (see below)

Measurement of Proper Time Resolution

High-rate dimuon trigger provides valuable calibration calibration tool:

- Trigger on distinct $\mu\mu$ mass peaks: J/ $\psi,\,Y$ and Z
- Sample independent on lifetime
- Dominated by prompt J/ψ
 Ratio of bb

 cc
 events in pp collisions: 1:10
 Ratio of J/ψ out of B decays and J/ψ out of cc
 decays: 1:100

Production Flavor = Tagging

Flavour tagging algorithms are not perfect!

- Backgrounds in tagger selections
- The tagging B can oscillate incoherently (unlike in Bfactories):

40% B[±], I 0% baryons: no oscillation [©]

• 40%
$$\mathbf{B}_{d}$$
: $\Delta m_{d} \sim \Gamma_{d} \Longrightarrow$ oscillated 17.5% \bigcirc

• 10% **B**_s: $\Delta m_s >> \Gamma_s \Rightarrow$ oscillated 50% \bigotimes

Characterization:

 ε_{tag} = tagging effi.

 ω = wrong tag fraction

Interlude: Y(4S)→B⁰B⁰

Effect on Asymmetry

$$A(t) = \frac{N(B)(t) - N(\overline{B})(t)}{N(B)(t) + N(\overline{B})(t)}$$

Observed asymmetry w/ wrong tag fraction ω

$$\begin{aligned} \mathcal{A}_{meas}(t) &= \frac{N'(B)(t) - N'(\overline{B})(t)}{N'(B)(t) + N'(\overline{B})(t)} \\ &= \frac{N(B)(t)(1-\omega) + N(\overline{B})(t)\omega - N(\overline{B})(t)(1-\omega) - N(B)(t)\omega}{N(B)(t)(1-\omega) + N(\overline{B})(t)\omega + N(\overline{B})(t)(1-\omega) + N(B)(t)\omega} \\ &= (1-2\omega)\frac{N(B)(t) - N(\overline{B})(t)}{N(B)(t) - N(\overline{B})(t)} = (1-2\omega)\mathcal{A}(t) = \mathcal{D}\mathcal{A}(t) \end{aligned}$$

 $N'(B), N'(\overline{B})$ Observed number of events of given flavor $D = (1 - 2\omega)$ Tagging "dilution": $\omega = 50\% \rightarrow D = 0$ no measurement possible

Dilution

Sensitivity and Tagging Power

Statistical error of asymmetry

Total event number N = N(B) + N(B)

$$A = \frac{N(B) - N(\overline{B})}{N(B) + N(\overline{B})}$$

fixed

$$N_B = qN,$$

 $N_{\overline{B}} = (1-q)N = pN$
 $\langle q \rangle = \frac{N_B}{N}$
 $\sigma(qN)^2 = N(1-q)q$

= effective tagging power

Statistical error calculated according binominal distribution (A or notA):

$$\Delta A = \frac{1}{\sqrt{N}} (1 - A^2)^{1/2}$$

$$\Delta A_{meas} = \frac{1}{\sqrt{\varepsilon N}} (1 - (A_{meas})^2)^{1/2}$$

$$\frac{1}{\sqrt{\varepsilon N}} (1 - (A_{meas})^2)^{1/2}$$

$$\frac{1}{\sqrt{\varepsilon N}} (1 - (A_{meas})^2)^{1/2}$$

$$\frac{1}{\sqrt{\varepsilon N}} (1 - (A_{meas})^2)^{1/2}$$

We are interested in A and therefore also in the error of A

$$\Delta A = \frac{1}{D} \Delta A_{meas}$$

Flavor Tagging at LHCb

Dilution	D=(1-2 <i>w</i>)
Effective Power	Tagging $\epsilon_{eff} = \epsilon_{Tag} D^2$

Same Side Tagging

 \bullet fragmentation pion/kaon near B

Opposite Side Tagging

lepton

- kaon
- vertex charge

Dilution form oscillation if B⁰

tag	ϵ_{tag} [%]	ω [%]	ϵ_{eff} [%]
muon	11	35	1.0
electron	5	36	0.4
kaon	17	31	2.4
vertex charge	24	40	1.0
frag. kaon $\left(B_{s} ight)$	18	33	2.1
Σ			\sim 6

Effective Tagging Power

 $N_{\rm eff} = N \varepsilon D^2$

[%]	ϵD^2	Reduction of data set		
D0/CDF	2.5 - 5.0	× 20-50		
BABAR/BELLE	pprox 30	× 3-4		
LHCb (MC study)	pprox 6%	× 17		

Statistical Significance

Until now ignored: Proper time resolution

$$\implies \text{Dilution: } D_{\sigma_{ct}} \sim \exp\left[-\frac{\left(\Delta m_s \sigma_{ct}\right)^2}{2}\right]$$

Background: shape and level from side-bands

$$\sigma_{stat} \sim 1/\sqrt{S}$$

 $\rightarrow \sigma_{stat} \sim \frac{1}{\sqrt{S}} \left(\frac{S+B}{S}\right)^{\frac{1}{2}}$

Summary of different effects on mixing

Expected statistical resolution on Δm_s : $\sigma(\Delta m_s) = 0.007 \text{ps}^{-1}$ remember $\Delta m_s = 17.7 \text{ ps}^{-1}$; $\rightarrow \Delta m_s/m_s = 0.04\%$

CP Asymmetry in $B^0 \rightarrow J/\psi K_s$

$$\begin{aligned} A_{CP}(t) &= \frac{\Gamma(\overline{B} \to f_{CP}) - \Gamma(B \to f_{CP})}{\Gamma(\overline{B} \to f_{CP}) + \Gamma(B \to f_{CP})} \\ B^{0} \\ \Delta\Gamma &\approx 0 \\ \Phi_{M} &= 2\beta \end{aligned} \begin{cases} = \frac{1 - \left|\lambda_{f}\right|^{2}}{1 + \left|\lambda_{f}\right|^{2}} \cos(\Delta mt) - \frac{2\Im(\lambda_{f})}{1 + \left|\lambda_{f}\right|^{2}} \sin(\Delta mt) \\ - \frac{2\Im(\lambda_{f})}{1 + \left|\lambda_{f$$

$$\lambda_f = \frac{q}{p} \frac{A_f}{A_f} \qquad \Im(\lambda_f) = -\eta_f \sin[2(\Phi_M + \Phi_f)]$$

1.) CP eigenvalue

 B_d : $J^P = 0^{-1}$ (Pseudoskalar) J/ψ : : $J^{CP} = 1^{-1-1}$ (Vector) K_s : : $J^{CP} = 0^{-1-1}$ (Pseudoskalar) Angular momentum conservation: $0 = J (J/\psi\phi) = |\vec{S} + \vec{L}|; \rightarrow L = 1$

$$\begin{array}{ll} CP(J/\psi\phi) &= & \\ & CP(J/\psi)*CP(\phi)*(-1)^L \\ & \eta_f = -1 \end{array}$$

$$B^0 \rightarrow J/\psi K_s$$

$$\Phi_{M} = \arg\left(V_{td}V_{tb}^{*}\right) = 2\beta \qquad \Phi_{J/\psi K} = \arg\left(\left(V_{cb}V_{cs}^{*}\right)\left(V_{cs}V_{cd}^{*}\right)\right) = 0$$

$$A_{CP}(t) = \sin 2\beta \sin(\Delta m t)$$

Measurement of sin2β

sin2β

CP Asymmetry in $B_s \rightarrow J/\psi \phi$

 $\Phi_{M} = \arg(V_{ts}V_{tb}^{*}) = -2\beta_{s}$

$$\Phi_{J/\psi\phi} = \arg\left(V_{cb}V_{cs}^*\right) = 0$$

CP Asymmetry $B_s \rightarrow J/\psi \phi$

$$\lambda_f = \frac{q}{p} \frac{A_f}{A_f} \qquad \Im(\lambda_f) = -\eta_f \sin[2(\Phi_M + \Phi_f)]$$

$$A_{CP}(t) = \frac{\Gamma(\overline{B} \to f_{CP}) - \Gamma(B \to f_{CP})}{\Gamma(\overline{B} \to f_{CP}) + \Gamma(B \to f_{CP})}$$
$$= \frac{\eta_f \sin[2(\Phi_M + \Phi_f)]\sin(\Delta mt)}{\eta_f \sin[2(\Phi_M + \Phi_f)]\sin(\Delta mt)}$$

 $\int \cosh(\Delta \Gamma t/2) - \eta_f \cos[2(\Phi_M + \Phi_f)] \sinh(\Delta \Gamma t/2)$

$B_s \rightarrow J/\psi \phi$

Angular analysis to separate CP +/-1 states

Polarization Amplitudes

- In the Transversity basis the vector meson polarization w.r.t the direction of motion is:
- 🗸 Longitudinal

 $\Rightarrow A_0$ [CP even]

- ✓ Transverse and parallel to each other $\Rightarrow A_{\parallel}$ [CP even]
- ✓ Transverse and perpendicular to each other
 ⇒ A_⊥[CP odd]
- Strong phases:

 \checkmark δ_{||} ≡ arg(A^{*}_{||}A₀) \checkmark δ_⊥ ≡ arg(A^{*}_⊥A₀)

Physics parameters: m_s , Γ_s , Δm_s , $\Delta \Gamma_s$, ϕ_s A_0 , A_{II} , A_{\perp} , δ_{II} , δ_{\perp} Angles in transv. basis: θ, ψ, ϕ

Extraction of CP Asymmetry

Signal PDF

$$\begin{split} s\left(t,\cos\Theta,\phi,\cos\Psi\right) &= \frac{1+\xi D}{2} p\left(t,\cos\Theta,\phi,\cos\Psi\right) \\ &+ \frac{1-\xi D}{2} \bar{p}\left(t,\cos\Theta,\phi,\cos\Psi\right) \\ &= \frac{1+\xi D}{2} \sum_{i=1}^{6} A_i\left(t\right) \cdot f_i\left(\cos\Theta,\phi,\cos\Psi\right) \\ &+ \frac{1-\xi D}{2} \sum_{i=1}^{6} \bar{A}_i\left(t\right) \cdot f_i\left(\cos\Theta,\phi,\cos\Psi\right) \end{split}$$

 $\xi = +1$ for a B_s , $\xi = -1$ for a \overline{B}_s

Dilution reduces the observable CP asymmetry: we need to know the dilution to extract the correct CP asymmetry and thus $sin\phi_{s}$.

Angular Distributions

k	$A_i(t)$	$\bar{A}_i(t)$	$f_i(\cos\Theta,\phi,\cos\Psi)$
1	$ A_0(t) ^2$	$ \bar{A}_0(t) ^2$	$\frac{9}{32\pi}2\cos^2\psi\left(1-\sin^2\Theta\cos^2\phi\right)$
2	$ A_{ }(t) ^2$	$ \bar{A}_{\parallel}(t) ^2$	$\frac{9}{32\pi}\sin^2\psi\left(1-\sin^2\Theta\sin^2\phi\right)$
3	$ A_{\perp}(t) ^2$	$ \bar{A}_{\perp}(t) ^2$	$\frac{9}{32\pi}\sin^2\psi\sin^2\Theta$
4	$Im(A^*_{\parallel}(t)A_{\perp}(t))$	$Im(\bar{A}_{\parallel}^{*}(t)\bar{A}_{\perp}(t))$	$-\frac{9}{32\pi}\sin^2\psi\sin 2\Theta\sin\phi$
5	$Re(A_0^*(t)A_{\parallel}(t))$	$Re(\bar{A}_{0}^{*}(t)\bar{A}_{\parallel}(t))$	$\frac{9}{32\pi\sqrt{2}}\sin 2\psi \sin^2\Theta \sin 2\phi$
6	$Im(A_0^*(t)A_{\perp}(t))$	$Im(\bar{A}_0^*(t)\bar{A}_{\perp}(t))$	$\frac{9}{32\pi\sqrt{2}}\sin 2\psi\sin 2\Theta\cos\phi$

$$\begin{split} |A_{0}(t)|^{2} &= \frac{|A_{0}(0)|^{2}}{2} \left[(1 + \cos \Phi_{s})e^{-\Gamma_{L}t} + (1 - \cos \Phi_{s})e^{-\Gamma_{H}t} - 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right] \\ |A_{\parallel}(t)|^{2} &= \frac{|A_{\parallel}(0)|^{2}}{2} \left[(1 + \cos \Phi_{s})e^{-\Gamma_{L}t} + (1 - \cos \Phi_{s})e^{-\Gamma_{H}t} - 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right] \\ |A_{\perp}(t)|^{2} &= \frac{|A_{\perp}(0)|^{2}}{2} \left[(1 - \cos \Phi_{s})e^{-\Gamma_{L}t} + (1 + \cos \Phi_{s})e^{-\Gamma_{H}t} + 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right] \\ |\overline{A}_{0}(t)|^{2} &= \frac{|A_{0}(0)|^{2}}{2} \left[(1 + \cos \Phi_{s})e^{-\Gamma_{L}t} + (1 - \cos \Phi_{s})e^{-\Gamma_{H}t} + 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right] \\ |\overline{A}_{\parallel}(t)|^{2} &= \frac{|A_{\parallel}(0)|^{2}}{2} \left[(1 + \cos \Phi_{s})e^{-\Gamma_{L}t} + (1 - \cos \Phi_{s})e^{-\Gamma_{H}t} + 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right] \\ |\overline{A}_{\perp}(t)|^{2} &= \frac{|A_{\perp}(0)|^{2}}{2} \left[(1 - \cos \Phi_{s})e^{-\Gamma_{L}t} + (1 - \cos \Phi_{s})e^{-\Gamma_{H}t} - 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right] \\ |\overline{A}_{\perp}(t)|^{2} &= \frac{|A_{\perp}(0)|^{2}}{2} \left[(1 - \cos \Phi_{s})e^{-\Gamma_{L}t} + (1 - \cos \Phi_{s})e^{-\Gamma_{H}t} - 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right] \\ |\overline{A}_{\perp}(t)|^{2} &= \frac{|A_{\perp}(0)|^{2}}{2} \left[(1 - \cos \Phi_{s})e^{-\Gamma_{L}t} + (1 - \cos \Phi_{s})e^{-\Gamma_{H}t} - 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right] \\ |\overline{A}_{\perp}(t)|^{2} &= \frac{|A_{\perp}(0)|^{2}}{2} \left[(1 - \cos \Phi_{s})e^{-\Gamma_{L}t} + (1 - \cos \Phi_{s})e^{-\Gamma_{H}t} - 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right] \\ |\overline{A}_{\perp}(t)|^{2} &= \frac{|A_{\perp}(0)|^{2}}{2} \left[(1 - \cos \Phi_{s})e^{-\Gamma_{L}t} + (1 - \cos\Phi_{s})e^{-\Gamma_{H}t} - 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right] \\ |\overline{A}_{\perp}(t)|^{2} &= \frac{|A_{\perp}(0)|^{2}}{2} \left[(1 - \cos\Phi_{s})e^{-\Gamma_{L}t} + (1 - \cos\Phi_{s})e^{-\Gamma_{H}t} - 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right] \\ |\overline{A}_{\perp}(t)|^{2} &= \frac{|A_{\perp}(0)|^{2}}{2} \left[(1 - \cos\Phi_{s})e^{-\Gamma_{L}t} + (1 - \cos\Phi_{s})e^{-\Gamma_{H}t} - 2e^{-\Gamma t}\sin(\Delta m t)\sin\Phi_{s} \right]$$

Angular and proper time distribution

Expectation

Standard model prediction:

$$-2\beta_{\rm s} = -0.0368 \pm 0.0017$$

Tagging Calibration

Knowledge of tagging performance essential ! Mistag rate, ω , enters as first order correction to CP asymmetries: A_{CP} meas = (1-2 ω) A_{CP} true

Undesirable to use simulation to fix ω . Many things we don't properly know:

aim

Production mechanisms

 $\Delta \omega / \omega < 2\%$ Kinematical correlation between signal and tagging B depends on how $b\overline{b}$ are produced – predictions of relative contribution of various mechanisms (qq, gg, qg...) have significant uncertainties...

Material effects

K⁺ and K⁻ interact differently with the material of the detector. This affects tag efficiency and mistag rates.

Other

B hadron composition, B decay modelling, PID performance etc etc

Therefore intend to measure performance from data using control channels

Control Channels

- Idea: accumulate high statistics in flavour-specific modes
- ω can be extracted by:
 - B[±]: just comparing tagging with observed flavour
 - **B**_d and **B**_s: fitting known oscillation

	Channel	Yield/ 2 fb ⁻¹	δω /ω (2fb⁻1)	
Similar to signal	B+→J/ψ(μμ)K+	1.7 M	0.4%	
	B+→D ⁰ π ⁺	0.7 M	0.6%	
	B⁰→J/ψ(μμ)K*0	0.7 M	0.6%	
	$B_s \rightarrow D_s^+ \pi^-$	0.12 M	2%	
Semi- leptonics	$B_d^0 \rightarrow D^* - \mu^+ \nu$	9 M	0.16%	
	$B^+ \rightarrow D^{0} (^*) \mu^+ \nu$	3.5 M	0.3%	
	$B_s \rightarrow D_s^{(*)} \mu + \nu$	2 M	1%	B/S~0.2-0.

Tagging in Control Channels

However, the mistag rate is different between different channels, up to ~15%, while the requirement is to know $\Delta\omega/\omega <$ 2% with 2 fb⁻¹

The reason is that trigger and offline selections bias in a different way the phase space of the control and signal channels.

Due to the kinematical correlation between signal B and tagging B this translates into a different tagging power.

In case the trigger object is the tagging B the effect is even more obvious

Tagging in Control Channels

- 1. Split each channel in subsamples according to whether the trigger decision was based on signal or not
- 2. In each subsample, re-weight the events to get the same 3momentum distribution of the signal-B.
- 3. Different channels are now comparable!

Flavor specific asymmetry

$$\begin{aligned} \mathcal{A}_{ls}^{q}(t) &= \frac{\Gamma\left(B_{q}^{0} \mid \overline{B}_{q}^{0} \rightarrow f\right) - \Gamma\left(B_{q}^{0} \mid \overline{B}_{q}^{0} \rightarrow \overline{f}\right)}{\Gamma\left(B_{q}^{0} \mid \overline{B}_{q}^{0} \rightarrow f\right) + \Gamma\left(B_{q}^{0} \mid \overline{B}_{q}^{0} \rightarrow \overline{f}\right)} & B_{s}^{0} \rightarrow D_{s}^{-}\pi^{+} \\ B_{s}^{0} \rightarrow D_{s}^{-}\mu^{+}\nu_{\mu}X^{0} \\ &= \frac{a_{fs}^{q}}{2} - \frac{a_{fs}^{q}}{2} \frac{\cos(\Delta m_{q}t)}{\cosh(\Delta\Gamma_{q}t/2)} & \left(a_{fs}^{d}\right)^{SM} = -(5.0\pm1.1)\times10^{-4} \\ \left(a_{fs}^{s}\right)^{SM} = (2.1\pm0.4)\times10^{-5} \\ & \text{Up to } 10^{-3} \text{ with NP} \end{aligned}$$

Untagged, time-dependent measurement

$$A_{fs}^{q}(t) = \frac{a_{fs}^{q}}{2} - \left(\frac{a_{fs}^{q}}{2} + \frac{\delta_{p}^{q}}{2}\right) \frac{\cos(\Delta m_{q}t)}{\cosh(\Delta \Gamma_{q}t/2)} + \frac{\delta_{b}^{q}}{2} \left(\frac{B}{S}\right)^{q}$$

Extra constant and time-dependent terms

- Detector asymmetry δ_c
- Production asymmetry δ_{p}
- Background asymmetry δ_b

$$\delta_c = \frac{\varepsilon(\bar{f}_i)}{\varepsilon(f_i)} - 1$$

$$\delta_p = \frac{N(\overline{B}_q^0)}{N(\overline{B}_q^0)} - 1$$

$$\delta_b = \frac{\overline{B}}{B} - 1$$

Detection Asymmetries

- Matter detector \rightarrow hadronic interactions are asymmetric
- Magnet divides +/- charge, allowing +/- asymmetry

Charge distribution from MC

51

Production Asymmetries

As the LHC collides protons with protons, events are **not CP-symmetric**.

$$\frac{\text{produced antiparticles }\overline{P}}{\text{produced particles P}} = \frac{N(\overline{P})}{N(P)} = 1 + \delta_p$$

Production asymmetry is effect of competing processes:

Cluster Collapse

Enhances the production of species containing beam remnants at low transverse momentum (pt)

Production Asymmetries

Valence-Quark Scattering

Enhances production of high energy species containing beam constituents

Beam Drag

Redistributes particle-antiparticle content as a function of transverse momentum (pt) and rapidity (direction)

Production Asymmetrie

B_d : δ_p = -(**3.2**±0.5) x10⁻³

 $B_{s}: \delta_{p} = -(1.5\pm0.8) \times 10^{-3}$

$$\Delta A_{fs}^{s,d} \approx A_{fs}^s - A_{fs}^d$$

> Examine decays in different channels to the same final state:

detector asymmetries should be equal:

$$A_{fs}^{s} \approx \frac{\delta_{c}}{2} + \frac{a_{fs}^{s}}{2} \qquad A_{fs}^{d} \approx \frac{\delta_{c}}{2} + \frac{a_{fs}^{d}}{2}$$

• Measure
$$\Delta A_{fs}^{s,d}$$
 instead of a_{fs}^{q} :

$$\Delta A_{fs}^{s,d} \to \frac{a_{fs}^s}{2} - \frac{a_{fs}^d}{2} \to A_{fs}^s - A_{fs}^d$$

Independent of detector asymmetry

- High statistics of B_d and B_s.
- •Trigger sensitive to final states with leptons and only hadrons.
- •Excellent proper time resolution to measure the CP violating oscillation amplitudes of the Bs system.
- Good π/K/µ/e separation to reduce the combinatorial background and other B meson decays.
 K-id is also very useful for flavour tagging.
- •Good momentum and vertex resolution to reduce background

Different hadronization models

interaction

PYTHIA uses Lund String hadronization.

HERWIG uses clustering hadronization.