BARYOGENESIS

THE ORIGIN OF MATTER
IN OUR UNIVERSE

MICHAEL G. SCHMIDT INST. F. THEOR. PHYSIK UNIVERSITÄT HEIDELBERG COSMOLOGY/ ASTROPHYSICS

ELEMENTARY PARTICLE PHYSICS

WEINBERG "FIRST THREE MIN.

NEW OBSERY ATTOMS

- · CMB (WHAP...)
- LARGE REDSHIFT GALAXIES SUPERNOVAE
- GRAVITATIONAL LENSING-DEFERTS

THEORETICAL EXPLANATIONS

INFLATION ~> FLUCTUATIONS

DARK HATTER / ENERGY

STRUCTURE FORMATION

STILL NOT VERY SPECIFIC HINTS FOR ELEM. PARTICLE PHYSICS

M = NB-(NB) = (6.1 ± 0.4) 10-10 N8 = (6.1 ± 0.4) 10-10 FRON WHAP

IN AGREEMENT WITH PRINORDIAL NUCLEO SYNTHESIS

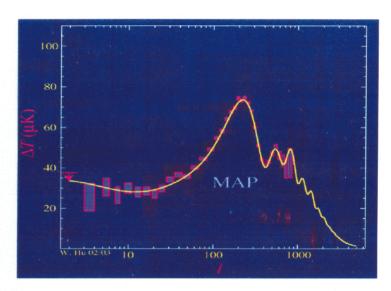
STRONGER CONNECTION TO ELEH. 9. PHYGCS

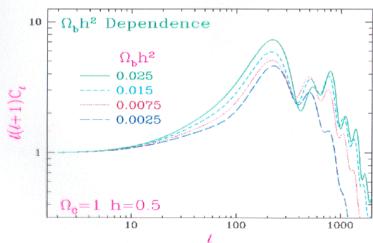
BEYOND THE SM NEFDED [2)

ESTIMATE OF MB

- STAR HATTER (LUMINOUS)
 GAS CLOUDS
- EARLY NUCLEOSYNTHESIS OF LIGHT ELEMENTS

$$P + e^{-} \leftrightarrow m + \chi$$
 $n + p \leftrightarrow D + \chi$
 $D + D \leftrightarrow He + \chi$
 $D + D \leftrightarrow He + \chi$
 $D + p \leftrightarrow He + \chi$
 $D + n \leftrightarrow He + \chi$
 $D + \eta \to He + \chi$
 $D \to He +$


MORERECENT


POSITION AND HEIGHT OF AC LUSTIC PEAKS

IN DISTORIBUTION OF AT-FLUCTUATIONS OF THE COSMIC MICrowave background (WMAP-Data)

NB INFLUENCES SOUND VELOCITY
AT RECOMBINATION TIME!

Baryonic matter and cmbr

baryons: increase compression (odd)
peaks, decrease rarefaction peaks

INFLATION

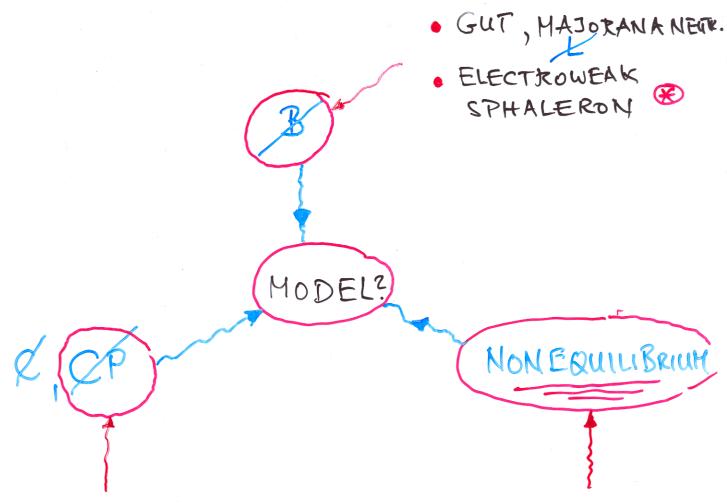
- · SOLVES CAUSALITY PROBLEM IN BIG BANG TH.
- $\Omega = 1$ ($g = g_c$) FLAT UNIVERSE
- · CREATES FLUCTUATIONS LEADING TO STRUCTURE **FORHATION**

NO PARTICLES LEFT AFTER EXPONENTIAL GROWTH

HAVE TO CREATE BARYON ASYMMETRY

 $n_{B} \sim \Delta n_{B} = n_{B} - n_{\overline{B}}$ Shall $\frac{n_{\overline{B}}}{n_{X}} \approx 10^{-18}$

AFTER PAIR ANNIHILATION


SAKHAROV NECESSARY CRITERIA

B-VIOLATION

· C, CP - VIOLATION

In the absence of preference for matte autimetter B nonconserving reactions will produce Bank at the Same mate

· NON EQUILIBRIUM Chemical potentiel for nonConserved 9.4. vanishes
MB = MB (CPT) - Samethernel distribution

- · CKM MATRIX 8
- . PHASES IN NONSTAND, -TH
- · SPONTANEOUS BREAKING

- EXPANDING UNIVERSE
- OUT OF EQUIL.

 DECAY
- PHASE TRANSITION

POSSIBLE IN SM?

PRO GRAY

SOME IMPORTANT MODELS

always needed

- ELECTROWEAK
 BARYOGENESIS
 CSM, MSSM, NHSSM
 n MSSM)
- · LEPTOGENESIS
- AFFLECK-DINE BARYOGENESIS
- · COHERENT BARYOGENESIS
- · COLD BARYOGENESIS Almost THE SM

TECHNICAL POINTS NEEDED

- e STANDARD MODEL
- SPHALERON TRANSITION
- Sheet UNIVERSE
 - · PHASE TRANSITION (ELWK.)
 - · SUPERIBY HHETRY
 - TRANS PORT EQS.
 (BOUTHANN...)
 - MAJORANA NEUTRINGS

• ELECTROWEAK THEORY
INSIDE THE STANDARD MODEL
OF ELEMENTARY PARTICLE PH.

THREE GENERATIONS OF QUARKS AND LEPTONS

$$3 \times \begin{pmatrix} \gamma \\ e^{-} \end{pmatrix}$$
LEFT HANDED, $\begin{pmatrix} u \\ d \end{pmatrix} = 1,2,3 \quad (Color)$

WEAK (ELWK) FORCES MEDIATED

BY WEAK GAUGE BOSONS COUPLING

TO L.H. QUARKS + LEPTONS

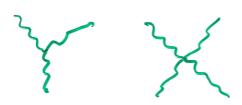
$$W_{\mu} = \sum_{i=1}^{3} W_{\mu}^{i} \tau_{i}; \quad \mathcal{L} = \frac{1}{2} \text{tr } F_{\mu\nu} F^{\mu\nu}$$

The Fundamental Fermions (a) Leptons

Lepton	Symbol	Charge (e)	Mass (GeV/c^2)
Electron e-Neutrino Muon μ-Neutrino Ταυ τ-Neutrino	$e^ v_e$ $\mu^ v_\mu$ τ^-	-1 0 -1 0 -1	$5 \cdot 1099906(15) \times 10^{-4}$ $< 1.8 \times 10^{-8}$ $0.10565839(6)$ $< 2.5 \times 10^{-4}$ $1.7841(32)$ $< 3.5 \times 10^{-2}$

(b) Quarks

Quark flavor Symbol	Charge (e)	Mass (GeV/c^2)
Down d	$-\frac{1}{3}$	0.008 0.004
Up u Strange s	$\frac{3}{-\frac{1}{3}}$	0.15
Charm c Bottom b	23 - 1	1.2 4.7
Top	2 2 3	≥40


The masses are given in the usual particle-physics units $1 \text{ GeV}/c^2 = 1.782662 \times 10^{-2}$

The Fundamental Bosons

Name		Symbol	Spin (h)	Mass (GeV/c^2)		Charge (e)
Graviton		G	2	0		0
Photon	i	γ	1	0		0
Charged weak bosons		W±	1	 81.0(1.3)		±1
Neutral weak boson	/ -	Z	1	92.4(1.8)		0
Gluons		g_1, \ldots, g_8	1	0		0
Higgs	-	H	0	 ?	: : : :	0

Fur = On Wu - Or Wu - gweak [Wu, Wr]

LIKE IN E-DYN. BILT WITH SELFCOUPLING

! MASSIVE W-BOSONS (FIELD / PARTICLES) (~80 GEV) → "WEAK" INTERACTION

COUPLING TO A DOUBLET OF COMPLEX

SCALAR "HIGGS" FIELDS = (\$\psi^+)
WITH A (GASSICAL!) (AMPLITUDE)2:

GAUGE COUPL, 92W

< \$\psi^+ \phi >

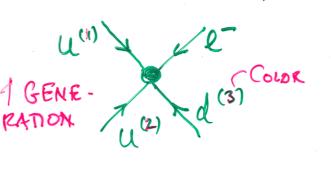
> LATER!

· PHASE TRANSMONS

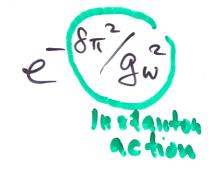
THERMODYNAMICS, STATISTICAL MECHANICS

GINZBURG-LANDAU THEORY ... HUANGSCHWAREL

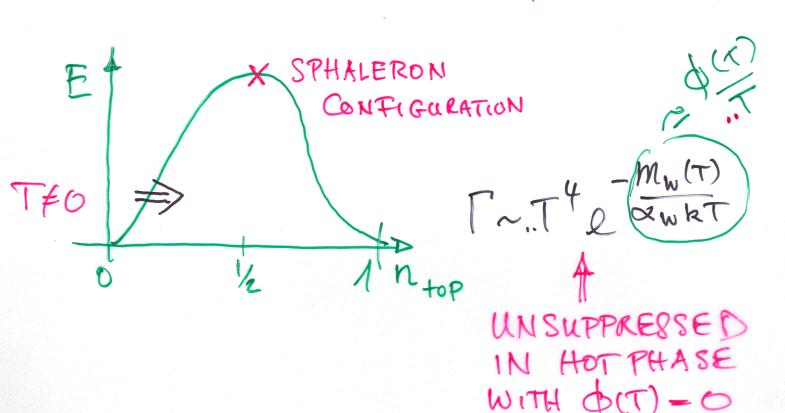
SPHALERON TRANSITION IN ELWH. TH


SU(2) WEAR HAS TOPOLOGIGAL MONTRIVIAL

GAUGE FIELD CONFIGURATIONS (WINDING

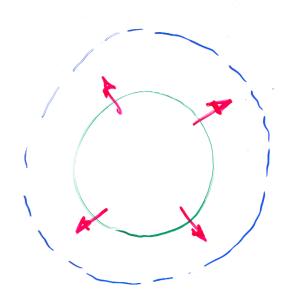

NUMBERS, CHERN-SIHONS NUMBER...) INDUCING

TUNNELING BETWEEN QUARK-AND LEPTON


BOUBLETS, YIOLATING B+L

INSTANTON
INDUCED
AT T=0

ALSO: THERMAL TRANSITION YIOLATES BOLL



SOME ARGUMENTS FOR B+L VIOLATION

· QUANTUH ANOTIALY in	
Sd4x du (4° x44°)	= 1 Gym2 Sdyx Fur Fur A
(1) CURREL OF Su (2) = Qi (+00) - Qi (-00)	MT }
CAUSS W	Doublets
= Q2 (+00) - Q2 (-10)	CHANGE IN TOPOLOG-
	QUANTUH NUMBER
	M = (1, 2,
Jr feet ION "i"	gnstauton
· (2/1 + ig Am) 1/2 = 2	42 DIRAC
# 1=0 ZEROHODES =	A TOPOL. QUALTUM
	R NUMBER OF An
(id 47 , p i) L (4)	
S[dy] eis[L(4)) GRASSMANN	4 = 2, C, 4, + Co40
	Concernation
= II SdC, SdC, e Co int X to NEED T	DEP. GKASSTIANAL .
\\$0	Fundame O
NEED .	TUKITEK CO

THE EARLY UNIVERSE

- HOW TO REACH ?THE TEMPERATURE OF THE ELECTROW.P.T.
- · IT IS HOMO GENEOUS
- IT COOLS DOWN IN EXPANDING
- . IT WAS VERY HOT!

To TODAY ~ 2.7°K

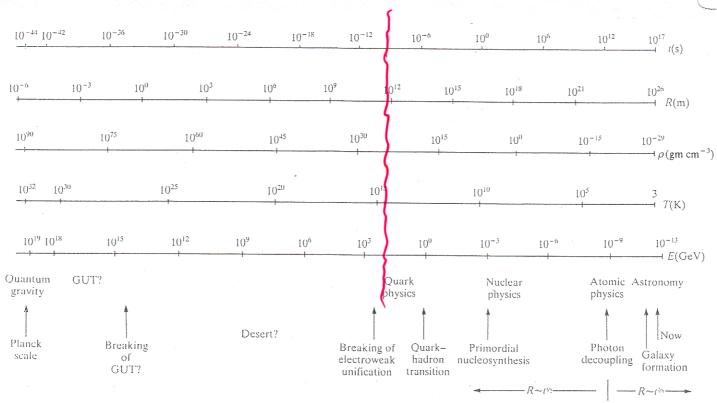
A SHORT STORY OF THE (VERY) EARLY UNIVERSE AND BARYOGENESS

- · EINSTEIN EQ. IN SYMM. UNIVERSE (Robertson-Walker)
- · RADIATION DOMINANCE

$$H^{2} = \left(\frac{RH}{R}\right)^{2} = \frac{K}{8}\left(\frac{1}{2}RAD\right) - 4$$

$$STEFAN \cdot BOLTEHAND$$

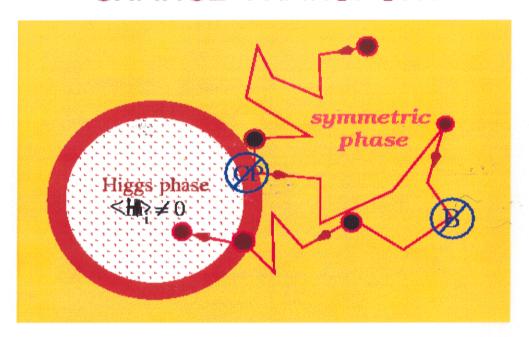
$$R(t) = \left(\frac{4KC}{3}\right)^{1/4} + \frac{1}{2}$$


$$RT \sim C$$

STILL LABORATORY ENERRY

R~ 1013 cm

(WEINBERG)


$$\Omega = \frac{3}{8} = \frac{3H^2}{8\pi G}$$

The "history" of the universe from the Planck time to the present, showing how the size of the presently observable universe R, the average density ρ , the temperature T, and the energy per particle kT, have varied with time t according to the hot big bang model. Some of the major "events" and the dominant type of physics in each epoch are indicated.

Electroweak baryogenesis at a strong 1st order transition

CHARGE TRANSPORT

- expanding bubbles of higgs phase
- [CP violation on bubble walls ⇒ CREATE CHIRAL ASYMM.
- ☐ B violation in symmetric phase (SPHALERON)

(NEED) STRONG B-VIOLATION IN HOT ("UNBROKEN") PHASE

· FREEZOUT OF B-VIOLATION

IN LOW TEMPERATURE ("HIGGS") PHASE (TSPACH)

> STRONG FIRST ORDER P.T.

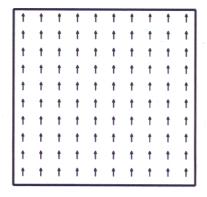
IT TURNED OUT THAT IN THE
SM THERE IS NO STRONG 1. ORDER
P.T.

LATER

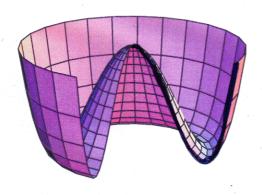
BUT: POSSIBLE IN VARIANTS OF
THE SM:

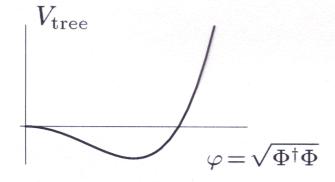
"BEYOND SM

THE SM" MMSSM NEXT TO ...

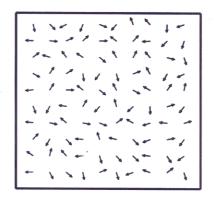

n MSSM NEARY ...

2-HIGGS MODELS

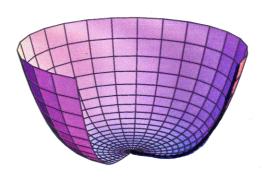

COSMOLOGY MIGHT REQUIRE TO MODIFY THE SM ANYWAY!

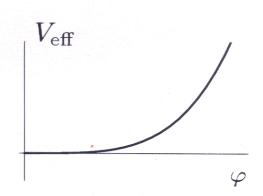

Symmetry Restoration

Low Temperature



Broken Symmetry

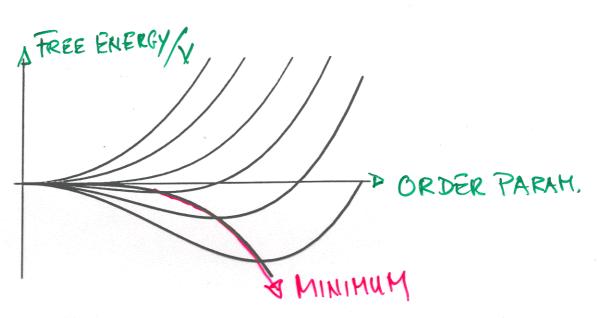




High Temperature

Restored Symmetry

First Versus Second Order


first order:

The field value at the global minimum jumps at the critical temperature (bubble nucleation).

There are deviations from the thermodynamic equilibrium.

econd order:

The field value at the global minimum departs continuously rom 0 at the critical temperature.

THE EFFECTIVE HIGGS POTENTIAL
AT T = 0

"TREE" COUPLING

TREE COUPLING
$$\mu^2 \phi^{\dagger} \phi$$

$$\phi = \langle \phi \rangle + \phi_{Q}$$
CLASSICAL

SIMPLE: CALCULATE GRAND CANONICAL POT.

OF GAUGE BOSONS (+ HEGGES ...)

$$Z_{J} = \sum_{N=0}^{\infty} \sum_{\{n \neq 1, 2, n \neq = N\}} (E\{n \neq 3, -1, N\})$$

$$E \{n_{\vec{p}}\} = \sum_{\vec{p}} n_{\vec{p}} (\vec{p}) = (m_{\vec{p}}^2(\phi) + \vec{p}^2)^{\frac{1}{2}}$$

J=-fla7= ((p))= = 1 \ \frac{d^2p}{620)^5} \alpha \(1-e^{-\beta} \left(m_G^2(\phi) + \vec{p}_1^2 \right) \) $= ... T^{4} + ... (T^{2} m_{6}^{2}(\phi), -... T (m_{6}^{2}(\phi))^{3/2}$ STEFAN-BOLTERANN - .. mg lu mg +--1-03-TERM REHEH BER FIRST ORDER P.T $= \sqrt{\rho + \sqrt{\Lambda}}$ "DEBYE" MASS ~ 92T2 SIMILAR: OF (LONGITUDINAL) GAUGE BOS.

NOT OF FRANSVERSAL

MORE CLEAN: THERMO FIELD THEORY

DISCIUSS INFRARED-REHAUTOR WITH MASSLESS TRANSV.GB

COMPARE

QUANTUM MECH, TRANSITION i -> j <jleiHt hili>

$$\begin{array}{c} X(0) = X_{i} \\ X(0) = X_{i} \end{array}$$

$$\begin{array}{c} X(0) = X(\beta) \\ Y = X_{i} \end{array}$$

$$\begin{array}{c} X(0) = X(\beta) \\ Y = X_{i} \end{array}$$

"EUCHDEAN TIME" it

Quantum Field Th. ~> Thermofield TH.

$$\phi(x_4, \vec{x}) = \phi(x_4 + \beta, \vec{x})$$
euclid

FOURIER-TRANSFORM

FEYNHAN - PROPAGATOR

(n=0,±1,...

MATSUBARA FRED. FOR BOSONS

EFFECTIVE POTENTIAL

N=O GIVES \$\psi^3 - TERM
(3 DIM.)

27

FOR < \$\dagger{\phi}\$ → 0

GAUGE BOSON

HAVE INTRARED PROBLEMS IMPORTANT ?!

FOR MASSLESS GAUGE BOSONS

n=0 :

P2 + .. 32 T2

AVOIDS IR -

"HARD THERMAL

LOOPS'

DIVERHENCE

FOR LONGITUDINAL GAUGE FIELDS N FLUENCE THE EFF. ACTION OF N=0

> "INTEGRATE OUT" n + 0

OBTAIN EFFECTIVE 3-DIMENSIONAL TH.

NAIV: Solte Sd3x - + Sd3x

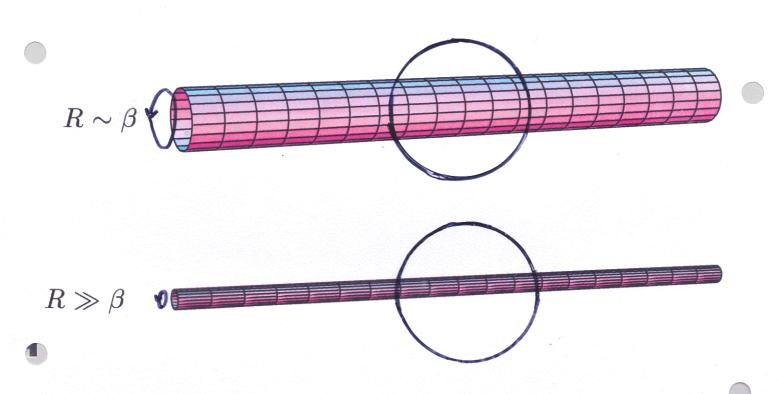
HAVE TO PERFORM 1/2-LOOP PERTURBATION
THEORY TO OBTAIN DIMENSCONALLY REDUCED"
THEORY >> AGAIN GAUGE THEORY WITH HIGGS
FIELD, NOW 3D - "TRUNCATED"

MASS SCALES

MH, T > GWT > GWT MATSUBARA DEBYE OTHER MASSIVE STATES

CAN BE STRONGLY

IR SENSITIVE (TRANSVERSAL


GAUGE ROSONS!

~ LATTICE GAUGE TH. CALCUL.

B=+

Dimensional Reduction

$$Y = \frac{1}{4} \text{ Wij Wij} + (\text{Di}\phi)^{+}(\text{Di}\phi)$$

$$+ \frac{\alpha}{3} \phi^{+} \phi + \frac{\lambda_{3}}{3} (\phi^{+} \phi)^{2} + \dots$$

$$X = \frac{\lambda_{3}}{3^{3}}, \quad Y = \frac{\alpha_{3}}{3} (9^{3}) / 9^{3}$$

$$+ \frac{\lambda_{3}}{3^{3}} \frac{3}{3^{3}} + \frac{\alpha_{3}}{3^{3}} \frac{3}{3^{3}} \frac{$$

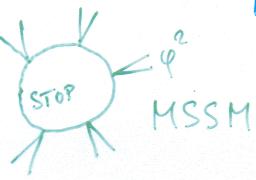
"CROSS-OVER" at MH > MW

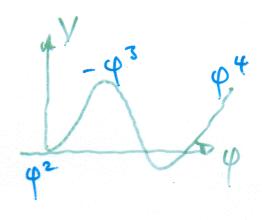
NO PHASE TRANSTION

ELECTROWEAK BARYOGENESIS

SM-

CKM - CP


VERY SMALL (BUT!! SEE LATER)


NO PHASE TRANSITION SLaine Rummulein

FOR Mh > Mw (~ CROSS OYER)

AND

SUPER SYMMETRIC VARIANTS IN CREASE "\$" TERM

BODEKER LAINE JOHN SCH.

> HUBER 2041,

NMSSM

GET STRONG I. ORDER,
PHASE TRANSITION

SUSY

H -> H₁, H₂,
$$\stackrel{\wedge}{H}_1$$
, H₂ HIGGSINOS

STANDARD MODEL COUPLINGS SOFT SUSY-BREAKING PARAM.

IN LOGP:

$$m_{\tilde{t}_R}^2 = m_u + m_{top} + (m_{THERNUI})$$
 $susy$
 $k_{REAKING}$
 $h_{t}^2 \rho$
 t_{RMS}
 $h_{t}^2 h_{t}$
 $h_{t}^2 h_{t}$
 $h_{t}^2 h_{t}$
 $h_{t}^2 h_{t}$
 $h_{t}^2 h_{t}$

MSSM) WITH STRONG FIRSTORDER PT (V(Te) ZL)

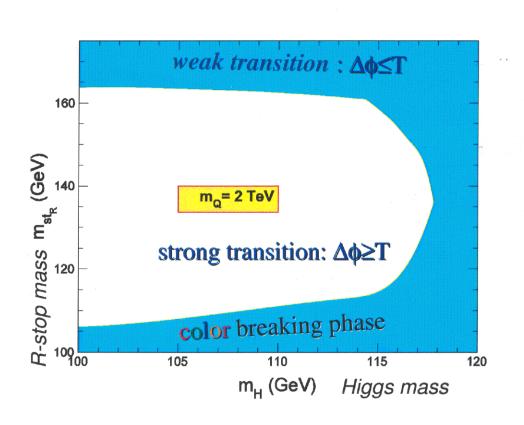
mh ≤ .. 110 GeV..

· experim. mh ≥ 108 GeV (MAo depend.) ((CERY 114 GeV 22))

 160 GeY≤ m_{stop} ≤ m_{top} (Conservativ. ..) avoid stopper · experim. M Stope > 100 GeV (MN entrelino depend.)

LOWERING THE EXPER. HIGES-MASS BOUND PILAFSIS WITH STRONG CP-VIOLATION WAGNER

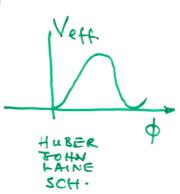
MODEL CAN BE RULED OUT BY EXPER. IN THE NEAR FUTURE - OR CONFIRMED!


NHSSM

S. HUBER M.G.Sch. STRONG FIRST ORDER PT. EVEN FOR mn ~ 120 GeV! REDUCTION OF EXP. MH - bound BY H-SINGET HIXING LARGE PARAMETER SPACE

Strong first order transition in MSSM

allowed "triangle" for MSSM:


Carena, Quiros, Seco, Wagner, 2000

ELECTROWEAK BARYGENESIS -

A CONCRETE PROCEDURE!

- · CRITICAL BUBBLE (1. ORDER P.T.!)
 - MULTIDIMENSIONAL IN FIELDS (HIGGS)
- TRANSITION PROBABILITY (LANGER FORMAL.) ~ 0 - Seft

- · SUPERCOOLING NUCLEATION TEMPERATURE ("1Bubble/UNIVERSE")
- · STATIONARY (EXPANSION) OF BUBBLE

HIGGS ! SYMM. PHASE

Vw = ? , WALL-PROFILE

DEFLAGATION

"OUR" SUSJECT

BUBBLE PRESSURE = - FRICTION

~ VW, & FNONE QUII. · DIFFUSION IN PRESENCE OF MOYING BUBBLE WALLS QUANTUM EQ

WITH (CP-VIOLATING) WALL OR (MSSM)

EXPLICIT CP INTER ACTION

GENERATES CHIRAL ASYMMETRY

mar - mar

BY "HOT" SPHALERON OF ELWK. THEORY IN FRONT OF BUBBLE WALL

TRANSPORT EQS.

•
$$(\frac{\partial}{\partial t} + \frac{d\tilde{X}}{\partial t}.\tilde{\nabla}_{x} + \frac{d\tilde{p}}{\partial t}.\tilde{\nabla}_{p})$$
 $f(\tilde{X},\tilde{p}t) = Collision$
TERM

BOLTZHANN EQ.

CP-VIOLATING FORCE IN BURBLE WALL. WE HAVE THICK WALL

WKB APPROXITIATION O.K.

- EXIPECT (" QUASICLASSICAL)

CP-VIOLATION IS TI-EFFECT (QUANTANT)

QUANTUM BOLTZMANN EQS. BAYH- KADANOFFERS.

CONSIDER CORRELATORS (GREEN: FUNCTIONS...)

. "SHPLE" WITH CP-VIOLATING DIRAC HASS $m = |m| e^{i\theta}$ $m=m(z) \rightarrow |m|(z), \Theta(z)$ Fz = - Imi + s (Imi B) (CP via. 九点分

MSSM

$$M = \begin{pmatrix} m_2 & g & H_2 \\ g & \mu \end{pmatrix}$$

CP-VIOLATING

MASS-MATRIX IN CHARGINO -HIGGSINO SYSTEM

PHASES UR = (WR) | YL = (WL)

NOTE QUANTUH TRANSPORT EQS. NOW ALSO USED IN LEPTO GENESIS MSSM

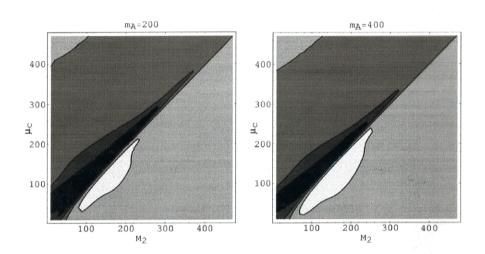


FIG. 5: The baryon-to-entropy ratio $\eta_{10}=10^{10}\times\eta$ in the (M_2,μ_c) parameter space from (0 GeV,0 GeV) to (400 GeV,400 GeV). For the left plot the value $m_A = 200$ GeV is used, for the right plot $m_A = 400$ GeV. The black region denotes $\eta_{10} > 1$, where baryogenesis is viable. The other four regions are bordered by the values of η_{10} , $\{-0.5, 0, 0.5, 1\}$, beginning with the lightest 1 de | ≤ 1.6 10 ecm color.

MAXIMAL CP-VIOLATION

| Cle | \le | \lambda | Decm |
| RESTRICTIONS BY exp. n/e - ELECTRIC DIPOL
| CP-VIOL. PHASE < 0.1 | LIMITS

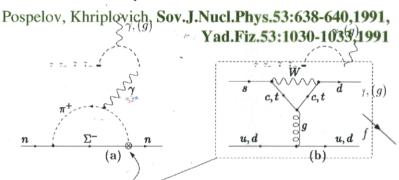
T. KONSTANDIN

T. PROHOPEC M. G. SCH. M. SECO

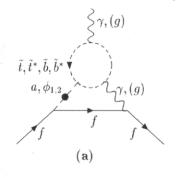
ELECTRIC DIPOLE MOMENT FROM MSSM

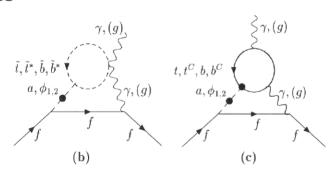
The current measurement bound of the electron electric dipole moment (EDM)

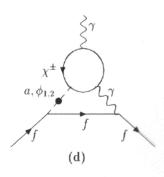
Regan et al, Phys. Rev. Lett. <u>88</u>:071805, 2002


 $|d_e| 1.6 \times 10^{-27} ecm$

The standard model (MSM) value for eEDM (4 loop)


 d_e^{CKM} 1x10⁻³⁸ecm


The standard model (MSM) value for neutron EDM (2 loop penguin)

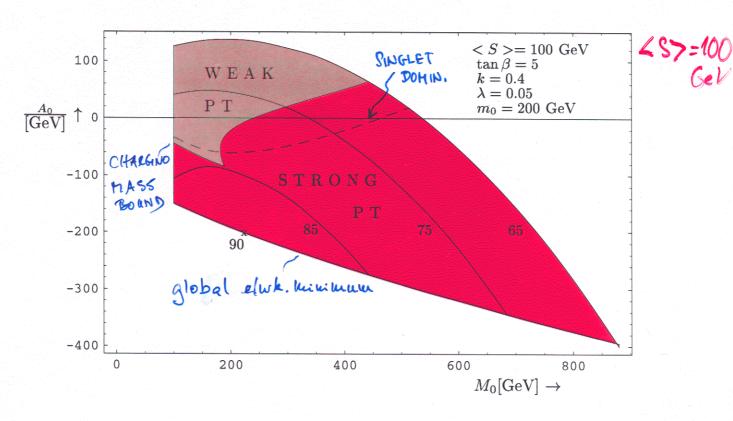

 $d_{h}^{CKM} \sim 1 \times 10^{-32} ecm$

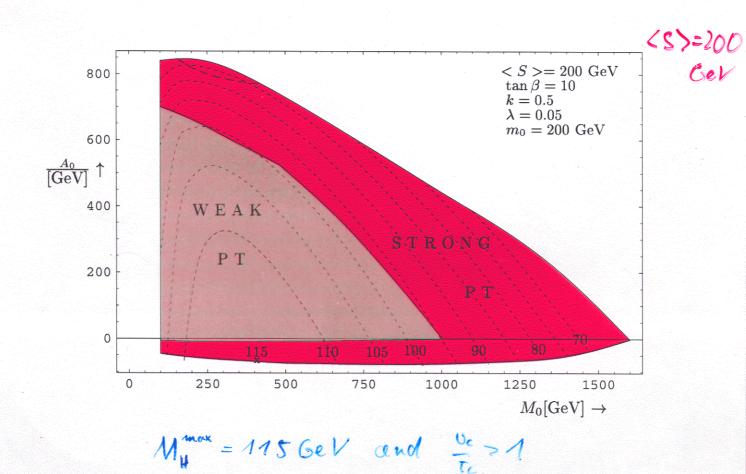
The MSSM 2 loop Higgs contribution for electron EDM

MSSM

"Superpotential"

NMSSM

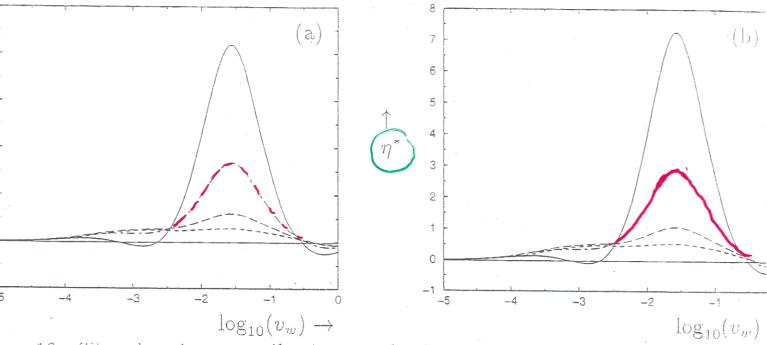

$$W = W_{MSSH} + \lambda S H_{1} \in H_{2} - m^{2} S + \frac{k}{3!} S^{3}$$


$$\vdots + \mu H_{1} \in H_{2};$$

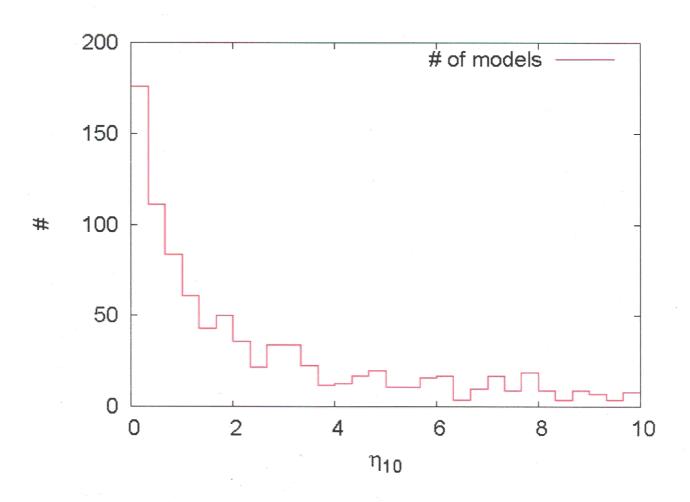
n MSSM

IMSSM RESULTS dow strength of the PT:

S. Huber M.G. SOH.



M* = M3/ MB observed


NHSSM

S. HUBER H. POH.

ure 10: The chargino contribution to the baryon asymmetry in units of 2×10^{-2} a function of the wall velocity for different values of the wall thickness T, 10/T, 5/T, 3/T (from below). We use the squark spectrum C and the examplicit CP-violation considered in the context of fig. 6. (b) The same quantity transitionally CP-violating bubble wall of fig. 7 and the squark spectrum D.

(nt in units of 2x 10-11!)

Produced baryon asymmetry in random nMSSM models.

HUBER 106 KONSTANDIN PROKOPEC SCHMIDT

· MAJORANA NEUTRINOS N

N_L N_L

Z = ... \frac{1}{2} NC M N

"Weyl note.

* MASORANA HASS VIOLATES LEPTON NUMBER!

m = y < H >

2 = ... ERMEL DIRAC MASS (IN DIRAC NOTATION)

data $\Delta m_{21}^2 = m_{Sol}^2 = (7.9 \pm 0.3) 10^{\frac{5}{6}} \text{V}^2$ DIRAC SPINOR (XIL)

Δ m32 - matm = (2.6 ± 0.2) 10 = V HASORAKA SPINOR (XIL)

SEESAW MECHANISM

 $(V_L N)$ (O m) (V_L) (V_L)

 \Rightarrow " $m_{\nu} \sim \frac{m^{2}}{M}$ diagonal. " m_{ν} " ~ M

INCLUDING FLAVOUR

y (e) (Hell) E.

+ Xik (H* L.) NK

+ 1 M; N.N.

EPTO GENESI'S

 $H = \begin{pmatrix} H^{-} \\ H^{0} \end{pmatrix}$

(WEYL NOT.)

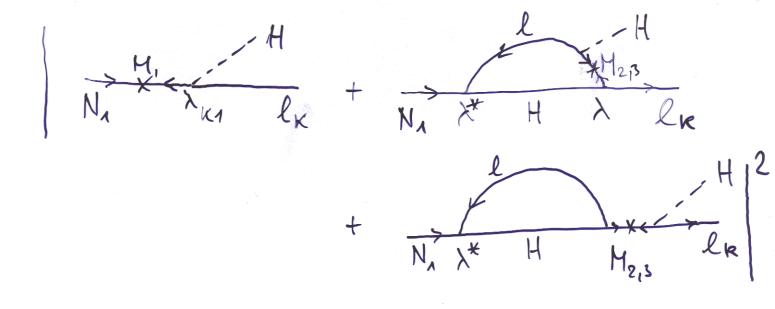
AFTER (PARTIAL) DIAGONALIZATION

ASSUME: "M" IN THERMAL EQUILIBRIUM (M23>> M1)

* OUT OF EQUILIBRIUM DECAY DECAY

HAVE 3 CP-PHASES (ONE OF CKHTYP)

* => CP VIOLATING DECAY


TREHEAT > M1/5 (DANGEROUS FOR SUSY

GRAVITINO PROJUEH

EK = T(N, > H+lk) - T(N, - Hlk)

W. BUCIMULLER 2"DAKK HATTER

NEED TREE ONELOOP INTERFERENCE

$$E_{K} = \frac{3M_{1}}{16\pi v_{H}^{2}} \left[\lambda^{+} \lambda^{-} \right]_{11}$$

$$= \frac{1}{8\pi} \left(\lambda^{+} \lambda^{-} \right)_{11}$$

LEPTON ASYMMETRY __ BARYON ASYMMETRY

M, > 109 GeV NEEDED

WASH OUT FOR my= of (xtx) = 10-3eV

BARYON ASYM, THEN IS INDEPENDENT OF INITIAL N, ABAINDANCE AND BARYON ASSYM.

ALSO: MONTHERMAL LEPTOGENESIS

LEPTOGEN.

BOLTZHANN ERS. (SHPLECASE!)

$$\frac{dN_{N_1}}{dz} = -(D+S)(N_{N_1}-N_{N_1})$$

IN CREASING 2 ~ DECREASINGTONET - IN CREASINGTIME

IN EQUILIBRIUM, SINGE CHEMICAL POTENTIAL
LEFT
T >> VIII

AFFLECK - DINE BARYO GENESIS/ LEPTO GENESIS

MSSM -> SCALAR SUPERPAPTNERS
OF LEPTONS AND QUARKS

-> SCALAR FIELD &: POTENTIAL

+ SUSY BREKING

=> 14(6)12 | Lie H1/2

11 O CARRIES LEPTON NUMBER

FLAT DIRECTION WITHOUT EXPANSION OF UNIVERSE AND GASY-BREAKING

" O - CONDENSATE" ROLLING DOWN POTENTIAL

$$\dot{\phi}(t) + 3H\dot{\phi} + \frac{3V}{3\phi} = 0 \qquad \left(H = \frac{1}{2t}\right)$$
IF RAD. DOM.

START $V = m^2 |\phi|^2$

(i) H>> m STRONG DAMPING ROTATING &

(ii) H << m \$\phi_0SCILLATION OF REIDM \$\phi\$
\$\phi_SHRINKING IN TIME

(iii) INTERACTION TERMS GP-VIOLATING $|\phi|^4 + b \phi^3 \phi^4 + c \phi^4 + c.c.$

GIVE PERTURBATIONS, CP-VIOLATING EFFECT (VIOL. OF "ANGULAR MOMENTUM") FOR A LIMITED TIME CREATES LEPTON NUMBER ~ : \$45.\$

(iv) CONDENGATE (HERE Lept.) DESTABILIZES

(BARYONIC IN OTHER TERMS)

DECAY INTO LEPTONS WITH ASYMM.

SPHALERON BARYON ASSYMLETRY

BARYONS

BARYONIC Q-BALLS

UNSTABLE

JARK HATTEL

- COHERENT BARYOGENESIS T.PROKOPEC h.l. Sch.
 - SCALAR FIELD CONDENSATE WITHOUT B/L INDUCES TIME DEPENDENT CHARGE!

 MASS (MATRIX) IN COSMOLOGY
 - OF SCALAR COND.
 - * CERTAIN CHARGE NUMBERS TRANS-FORMED TO B-L
 - CP OF MASS HATRIX ⇒

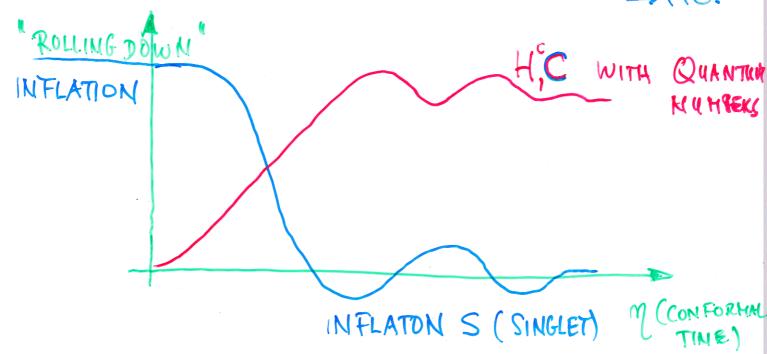
 ASYMMETRY → BARYON ASYM.

FRAMEWORK

AGAIN! CONSIDER "QUANTUM BOLTZMANN EQS."

(SCHWINGER - KELDISH CTP...)

THATRIX - EQS.


FOR FERMIONS / BOSONS

2 -> t

· APPLICATION: HYBRID INFLATION (SUPERSYM)

→ F16.

Muy

GUT - WATERFALL

EXAMPLES:

· SO(10) → SM

W_{Superpot.}
$$\supset KS(\overline{H}^{C}H^{C}-\mu^{2})+..-CP-VIOL.$$

 CC Couplings
 $H^{C}=(4,1,2)$ $C=[167]$

PATI-SALAM

SO (10)

HYBRID INFLATION

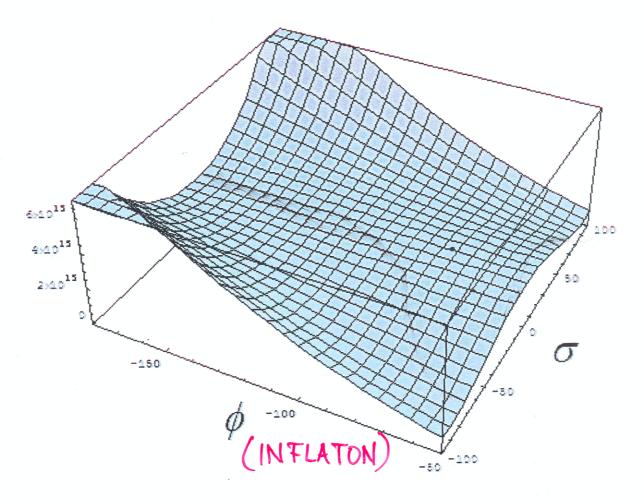
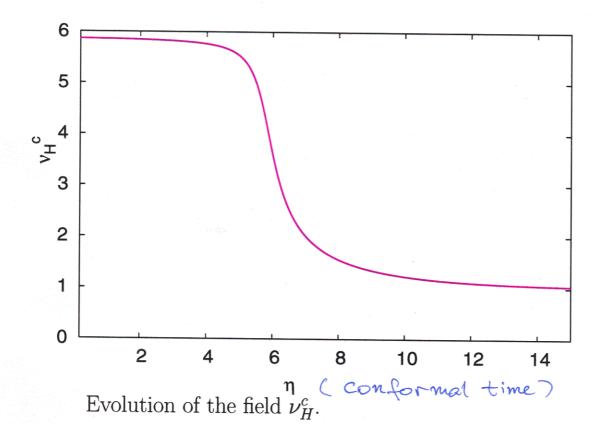
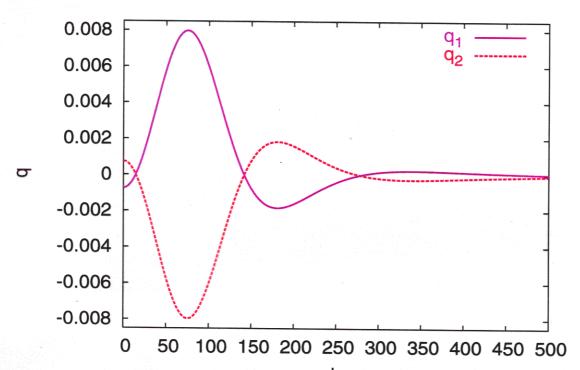




Figure 1: Hybrid Potential, using $m_{pl}=10^9,\ \lambda=10^4,\ g=8\cdot 10^3,\ m=1.5\cdot 10^{-5}m_{pl},$ and $M=10^{-3}\cdot m_{pl}.$

ADISORN ADULPRANTURA

COHERENT BARYOGENESIS IN HYBRID INFLATION

The produced charges of the Dirac fermions χ_{1j} , χ_{2j} , summed over both helicities.

$\kappa = 0.007$	$\mu = 2.0 \times 10^{16} \text{GeV}$	$\zeta = 0.12i$	$M_S = 50\mu$
$\beta = 1$		$\xi = 0.12$	$\Gamma = 0.1\mu$

REALISTIC
PARAMETERS
OF SENOGUE
CHAFI-INFLATION

· COUPLINGS

X = d = d + V MAJORANA

$$\langle v_{H}^{c} \rangle$$
SCALAR FERMION

NO CP DECAY

REQUIRED AS

IN LEPTOGENESIS.

(WITH TREE-ONE LOOP)

INTERFERENCE

$$AB-L = -\frac{2}{3}q_2 + \frac{1}{3}q_1 = q_1$$

AFTER SPHALERON PROCESSES $\frac{3}{31} = \frac{10}{31} (3-L)$

VACUUM ENERGY 9 = [K2 Ms - KM2] ~ TT2 gx TR30

S < 22 gx Tr3/45

B/ny > 10-10 EASILY CALCULATION

· NONTHERHAL LEPTOGENESIS (IN SAME MODEL)

(VH) > - HATORANA NEUTRINO MASS AFTER PREHEATING LIGHTEST MASS M₁ = 3.9 × 10 10 GeV 7 COMPARE TR - 2.7 109 GeV 1 NONTHERMAL!

MAXIMAL MIXING AND CP VIOLATION XIA 1-LOOP INTERFERENCE

$$\frac{h_L}{S} \leq 3.10^{-10} \frac{T_R}{m_{v_H}^2} \left(\frac{M_1}{10^6 \text{ GeV}}\right) \left(\frac{m_{v_3}^3}{0.04\text{ eV}}\right)$$

$$\approx f_{\times}10^{-11}$$

$$\Rightarrow \frac{h_R}{S} \leq 3 \times 10^{-11} \text{ SHALER!} \left(\text{SENOGUZ | SHAFI}\right)$$

COLD ELECTROWEAK BARYOGENESIS

ALMOST THE SM J. SHIT · 1412 - 12 1412 IN LOW SCALE (TEY) HYBRID INFLATION - REHEATING TEMP. SHALL << ELWKSCALE (100 GeY CP VIOLATING TERM MUCH BIGGER THAN "JARLSKOG DETERMINANT" IN THE EFFECTIVE ACTION! INTEGRATE OUT QUARKS A. HERNAUDEZ T. KONSTANDIN 2. GRDER IN DERIVATIVE EXPANSION HG. SQH. (-> "WORLD LINE HETHOD") IN CLUDING CKH - CP - VIOLATION

9 4 - H

DO CLASSICAL EVOLUTION WITH MILL
IN EFFECTIVE THEORY INCLUDING
CP-VIOLATING TERM ON LATTICE.

MEASURE BARYON NUMBER VIOLATION
INSPECTING

MCS (+) - NCS (0) = 1/16/12 Sdt Sd3x +r FM FMV

AND HIGGS - WINDING No

STATIONARY CASE (NO DERIVATIVES OF FIELDS)

JARLSKOG DETERMINANT RULES CP $\Delta_{CP} = JII \Delta \tilde{m}_{u} II \Delta \tilde{m}_{d} \simeq 10^{-19}$ BLUK SCALE DIAGONALIZED

 $C = U^{\dagger}D$ CKM HATRIX $J = 8^{2}_{1} S_{2} S_{3} C_{1} C_{2} C_{3} Jim \delta \cong (3.0 \pm 0.3) \times 10^{-5}$

Scr = 1/8 (4m)2 16 JKCP E MAG Sch (2 M/2 Wax x x x 2 M/2 Wax + Wa War) + CC)

KCP = 9.87 IN BROKEN PHASE

$$\begin{array}{l} \sum_{\tilde{m}_{c}^{CP}} \approx \frac{32}{9\bar{m}_{c}^{2}\left(\bar{m}_{c}^{2}-\bar{m}_{s}^{2}\right)^{3}\left(\bar{m}_{c}^{2}-\tilde{m}_{t}^{2}\right)^{3}\left(\bar{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{2}} \times\\ & \sum_{\tilde{m}_{c}^{6}} \sum_{\tilde{m}_{c}^{6}\left(\bar{m}_{s}^{2}-\tilde{m}_{s}^{2}\right)^{3}\left(\bar{m}_{c}^{2}-\tilde{m}_{t}^{2}\right)^{3}\left(\bar{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{2}} \times\\ & \sum_{\tilde{m}_{c}^{6}} \sum_{\tilde{m}_{c}^{6}\left(\bar{m}_{s}^{6}-\tilde{m}_{t}^{2}\right)^{2}+3\tilde{m}_{c}^{14}\left(\bar{m}_{s}^{2}+\tilde{m}_{t}^{2}\right)} \\ & -5\tilde{m}_{c}^{2}\tilde{m}_{s}^{4}\tilde{m}_{t}^{4}\left(\bar{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{2}\left(\bar{m}_{s}^{2}+\tilde{m}_{t}^{2}\right)-12\tilde{m}_{c}^{12}\left(\bar{m}_{s}^{4}+\tilde{m}_{t}^{4}\right) \\ & +\tilde{m}_{c}^{4}\tilde{m}_{s}^{2}\tilde{m}_{t}^{2}\left(\bar{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{2}\left(13\tilde{m}_{s}^{4}+28\tilde{m}_{s}^{3}\tilde{m}_{t}^{2}+13\tilde{m}_{t}^{4}\right)+18\tilde{m}_{c}^{10}\left(\bar{m}_{s}^{6}+\tilde{m}_{t}^{6}\right) \\ & +\tilde{m}_{c}^{8}\left(-12\tilde{m}_{s}^{8}+37\tilde{m}_{s}^{6}\tilde{m}_{t}^{2}-74\tilde{m}_{s}^{4}\tilde{m}_{t}^{4}+37\tilde{m}_{s}^{2}\tilde{m}_{t}^{6}-12\tilde{m}_{t}^{3}\right) \\ & +\tilde{m}_{c}^{6}\left(3\tilde{m}_{s}^{10}-41\tilde{m}_{s}^{8}\tilde{m}_{t}^{2}+41\tilde{m}_{s}^{6}\tilde{m}_{t}^{4}+41\tilde{m}_{s}^{4}\tilde{m}_{t}^{6}-41\tilde{m}_{s}^{2}\tilde{m}_{t}^{8}+3\tilde{m}_{t}^{10}\right)\right) \\ & -\frac{64\tilde{m}_{c}^{4}\tilde{m}_{s}^{2}\tilde{m}_{t}^{2}\left(\tilde{m}_{c}^{2}-\tilde{m}_{t}^{2}\right)\left(\tilde{m}_{c}^{2}-3\tilde{m}_{s}^{2}+2\tilde{m}_{t}^{2}\right)\log\left[\frac{\tilde{m}_{t}^{2}}{\tilde{m}_{c}^{2}}\right]}{3\left(\tilde{m}_{c}^{2}-\tilde{m}_{s}^{2}\right)^{4}\left(\tilde{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{3}} \\ & +\frac{64\tilde{m}_{c}^{4}\tilde{m}_{s}^{2}\left(\tilde{m}_{c}^{2}-\tilde{m}_{s}^{2}\right)\tilde{m}_{t}^{2}\left(\tilde{m}_{c}^{2}+2\tilde{m}_{s}^{2}-3\tilde{m}_{t}^{2}\right)\log\left[\frac{\tilde{m}_{t}^{2}}{\tilde{m}_{c}^{2}}\right]}{3\left(\tilde{m}_{c}^{2}-\tilde{m}_{t}^{2}\right)^{4}\left(\tilde{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{3}} \\ & +\frac{64\tilde{m}_{c}^{4}\tilde{m}_{s}^{2}\left(\tilde{m}_{c}^{2}-\tilde{m}_{s}^{2}\right)\tilde{m}_{t}^{2}\left(\tilde{m}_{c}^{2}+2\tilde{m}_{s}^{2}-3\tilde{m}_{t}^{2}\right)\log\left[\frac{\tilde{m}_{t}^{2}}{\tilde{m}_{c}^{2}}\right]}{3\left(\tilde{m}_{c}^{2}-\tilde{m}_{t}^{2}\right)^{4}\left(\tilde{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{3}} \\ & +\frac{64\tilde{m}_{c}^{4}\tilde{m}_{s}^{2}\left(\tilde{m}_{s}^{2}-\tilde{m}_{s}^{2}\right)\tilde{m}_{t}^{2}\left(\tilde{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{3}}{3\left(\tilde{m}_{c}^{2}-\tilde{m}_{t}^{2}\right)^{4}\left(\tilde{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{3}} \\ & +\frac{64\tilde{m}_{s}^{4}\tilde{m}_{s}^{2}}{3\left(\tilde{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{4}\left(\tilde{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{3}}{3\left(\tilde{m}_{c}^{2}-\tilde{m}_{t}^{2}\right)^{4}\left(\tilde{m}_{s}^{2}-\tilde{m}_{t}^{2}\right)^{3}} \\$$

NONPERTURBATIVE"

LITERATURE

- · COSMOLOGY + FLEM. PARTICLE PHYRCS
- · E. KOLB, M. TURNER "THE EARLY UNIVERSE"
- · V. MUKHANOV 'PHYSICAL FOUNDATIONS OF COSMOLOGY
 - · BARYOGENESIS
- · J. CLINE hep-ph/0609145 ELECTROWENK
- T. PROKOPEC, M.G. SCHHIDT, S. WEINSTOCK ANN. PHYS.; (rafler federical)
- W. BUCH HÜLLER, R. PECCEI, T. YANAGEDA hep-ph/0502169 LEPTOGENESS
- S. DAVIDSON, E.NARDI, Y. NIR 0802.2962
- M. DINE, A. KUSENKO hep-ph/0303068

AFF LECK | DINE