Introduction to Operator Product Expansion

(Effective Hamiltonians, Wilson coefficients and all that ...)

Thorsten Feldmann

Neckarzimmern, March 2008

Outline

- $oldsymbol{1} oldsymbol{0} b
 ightarrow c dar{u}$ decays
 - Born level
 - Quantum-loop corrections
 - Effective Operators
 - Wilson Coefficients
- 2 $b \rightarrow s(d) q\overline{q}$ decays
 - Current-current operators
 - Strong penguin operators
 - Electroweak corrections
- B-B
 Mixing
- 4 Summary: Effective Theory for *b*-quark decays
- 5 Hadronic matrix elements for *B*-meson decays
 - $B \rightarrow D\pi$
 - $B \rightarrow \pi\pi$ and $B \rightarrow \pi K$

... Some introductory remarks ...

- Physical processes involve different typical energy/length scales
- Separate short-distance and long-distance effects:

New physics : $\delta x \sim 1/\Lambda_{\rm NP}$

Electroweak interactions : $\delta x \sim 1/M_W$

Short-distance QCD(QED) corrections : $\delta x \sim 1/M_W \rightarrow 1/m_b$

Hadronic effects : $\delta x < 1/m_b$

- → Sequence of Effective Theories.
- → Perturbative and non-perturbative calculations.
- → Definition / measurement of hadronic input parameters.

Central Notions to be explained

Disclaimer:

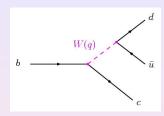
The dynamics of strong interactions in B-decays is very complex and has many faces. I will not be able to cover everything, but I hope that some theoretical and phenomenological concepts become clearer...

- Factorization
 - separation of scales in perturbation theory (OPE, ET)
 - 2 simplification of exclusive hadronic matrix elements (QCDF)
- Operators in the weak effective Hamiltonian (current-current, strong penguins, electroweak penguins)
- Matching and Running of Wilson coefficients

Example: $b \rightarrow cd\bar{u}$ decays

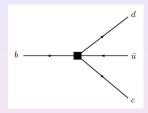
$b \rightarrow cd\bar{u}$ decay at Born level

Full theory (SM)



$$\longrightarrow$$

Fermi model



$$\left(\frac{g}{2\sqrt{2}}\right)^2 J_{\alpha}^{(b \to c)} \xrightarrow{-g^{\alpha\beta} + \frac{q^{\alpha}q^{\beta}}{M_W^2}} \overline{J}_{\beta}^{(d \to u)} \xrightarrow{|q| \ll M_W} \xrightarrow{G_F} J_{\alpha}^{(b \to c)} g^{\alpha\beta} \, \overline{J}_{\beta}^{(d \to u)}$$

$$|q| \ll M_W$$

$$\frac{G_F}{\sqrt{2}} J_{lpha}^{(b
ightarrow c)} g^{lphaeta} \overline{J}_{eta}^{(d
ightarrow u)}$$

- Energy/Momentum transfer limited by mass of decaying b-quark.
- b-quark mass much smaller than W-boson mass.

$$|q| \leq m_b \ll m_W$$

Effective Theory:

 Analogously to muon decay, transition described in terms of current-current interaction, with left-handed charged currents

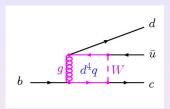
$$J_{lpha}^{(b
ightarrow c)} = \emph{V}_{\it cb} \left[ar{c} \, \gamma_{lpha} (extsf{1} - \gamma_5) \, b
ight] \, , \qquad ar{J}_{eta}^{(d
ightarrow u)} = \emph{V}_{\it ud}^* \left[ar{d} \, \gamma_{eta} (extsf{1} - \gamma_5) \, u
ight]$$

 Effective operators only contain light fields ("light" quarks, electron, neutrinos, gluons, photons).

• Effect of large scale M_W in effective Fermi coupling constant:

$$\frac{g^2}{8M_W^2} \longrightarrow \frac{G_F}{\sqrt{2}} \simeq 1.16639 \cdot 10^{-5} \, \mathrm{GeV}^{-2}$$

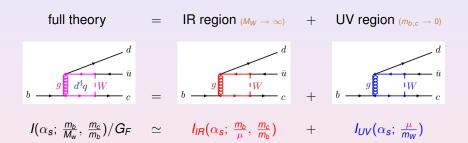
Quantum-loop corrections to $b \rightarrow cd\bar{u}$ decay



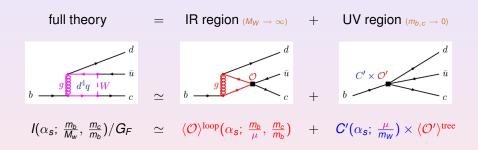
- Momentum q of the W-boson is an internal loop parameter that is integrated over and can take values between $-\infty$ and $+\infty$.
 - \Rightarrow We cannot simply expand in $|q|/M_W!$
- \Rightarrow Need a method to separate the cases $|q| \ge M_W$ and $|q| \ll M_W$.

→ OPE / Factorization

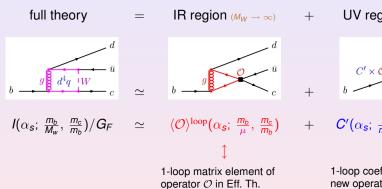
IR and UV regions in the Effective Theory



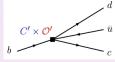
IR and UV regions in the Effective Theory



IR and UV regions in the Effective Theory



UV region $(m_{b,c} \rightarrow 0)$



$$C'(\alpha_s; \frac{\mu}{m_W}) \times \langle \mathcal{O}' \rangle^{\text{tree}}$$

1-loop coefficient for new operator \mathcal{O}' in ET

- independent of m_{b,c}
- IR divergent $\rightarrow \mu$

independent of M_W
 UV divergent → μ

For the curious: Operator Product Expansion

Study time-ordered product of two general operators:

$$\int d^4p \, e^{ipx} \, T\left(\phi(x)\phi(0)\right)$$

• For small values of x, the product can be expanded into a set of local composite (renormalized) operators $\mathcal{O}_i(0)$ and c-numbered Wilson coefficients $c_i(x)$:

$$T(\phi(x)\phi(0)) \stackrel{x\to 0}{=} \sum_{i} c_i(x) \mathcal{O}_i(0)$$

- Construction is independent of additional field operators appearing in Green functions / scattering amplitudes
 (i.e. universal for all processes involving the T-product under consideration)
- In momentum space, this corresponds to the limit of large momenta/energies/masses . . .

Effective Operators for $b \rightarrow cd\bar{u}$

- short-distance QCD corrections preserve chirality;
- quark-gluon vertices induce second colour structure.

$$H_{ ext{eff}} = rac{G_F}{\sqrt{2}} \ V_{cb} V_{ud}^* \ \sum_{i=1,2} \ C_i(\mu) \ \mathcal{O}_i + ext{h.c.}$$
 $(b o cdar{u})$

 $\bullet \ \ \, \hbox{Current-current operators:} \qquad (b \to cd\bar{u}, \ \hbox{analogously for} \ b \to qq'\bar{q}'' \ \hbox{decays})$

$$\begin{array}{lcl} \mathcal{O}_1 & = & (\overline{\boldsymbol{d}}_L^j \gamma_\alpha \boldsymbol{u}_L^j) (\overline{\boldsymbol{c}}_L^j \gamma^\alpha \boldsymbol{b}_L^j) \\ \\ \mathcal{O}_2 & = & (\overline{\boldsymbol{d}}_L^j \gamma_\alpha \boldsymbol{u}_L^j) (\overline{\boldsymbol{c}}_L^j \gamma^\alpha \boldsymbol{b}_L^j) \end{array}$$

• The so-called Wilson coefficients $C_i(\mu)$ contain all information about short-distance physics above the scale μ (SM)

Wilson Coefficients in Perturbation Theory

• 1-loop result:

$$C_i(\mu) = \left\{ \begin{array}{c} 0 \\ 1 \end{array} \right\} + \frac{\alpha_s(\mu)}{4\pi} \left(\ln \frac{\mu^2}{M_W^2} + \frac{11}{6} \right) \left\{ \begin{array}{c} 3 \\ -1 \end{array} \right\} + \mathcal{O}(\alpha_s^2)$$

ullet Wilson coefficients depend on the renormalization scale μ

"Matching"

For $\mu \sim M_W$ the logarithmic term is small, and $C_i(M_W)$ can be calculated in fixed-order perturbation theory, since $\frac{\alpha_s(M_W)}{\pi} \ll 1$.

Here M_W is called the matching scale.

Anomalous Dimensions

- In order to compare with experiment / hadronic models, the matrix elements of ET operators are needed at low-energy scale $\mu \sim m_b$
 - Only the combination

$$\sum_{i} C_{i}(\mu) \langle \mathcal{O}_{i} \rangle (\mu)$$

is μ -independent (in perturbation theory).

- ⇒ Need Wilson coefficients at low scale!
- Scale dependence can be calculated in perturbation theory:
 - Loop diagrams in ET are UV divergent ⇒ anomalous dimensions (matrix):

$$rac{\partial}{\partial \ln \mu} \, m{C}_{\!i}(\mu) \equiv \gamma_{\!j\!i}(\mu) \, m{C}_{\!j}(\mu) \, = \left(rac{lpha_{\!S}(\mu)}{4\pi} \, \gamma_{\!j\!i}^{(1)} + \ldots
ight) m{C}_{\!j}(\mu)$$

• $\gamma = \gamma(\alpha_s)$ has a perturbative expansion.

RG Evolution ("running")

In our case:

$$\gamma^{(1)} = \begin{pmatrix} -2 & 6 \\ 6 & -2 \end{pmatrix} \qquad \begin{cases} \text{Eigenvectors: } C_{\pm} = \frac{1}{\sqrt{2}} (C_2 \pm C_1) \\ \text{Eigenvalues: } \gamma_{\pm}^{(1)} = +4, -8 \end{cases}$$

Formal solution of differential equation:

(separation of variables)

$$\ln \frac{C_{\pm}(\mu)}{C_{\pm}(M)} = \int_{\ln M}^{\ln \mu} d \ln \mu' \, \gamma_{\pm}(\mu') = \int_{\alpha_{s}(M)}^{\alpha_{s}(\mu)} \frac{d \alpha_{s}}{2\beta(\alpha_{s})} \, \gamma_{\pm}(\alpha_{s})$$

• Perturbative expansion of anomalous dimension and β -function:

$$\gamma \quad = \quad \frac{\alpha_s}{4\pi} \, \gamma^{(1)} + \ldots \, , \qquad 2\beta \; \equiv \; \frac{d\alpha_s}{d\ln\mu} = -\frac{2\beta_0}{4\pi} \, \alpha_s^2 + \ldots \,$$

$$C_{\pm}(\mu) \simeq C_{\pm}(M_W) \cdot \left(rac{lpha_{s}(\mu)}{lpha_{s}(M_W)}
ight)^{-\gamma_{\pm}^{(1)}/2eta_{0}}$$
 (LeadingLogApprox)

Numerical values for $C_{1,2}$ in the SM

[Buchalla/Buras/Lautenbacher 96]

operator:	$\mathcal{O}_{1} = (\overline{\mathcal{C}}_{L}^{i} \gamma_{\mu} \mathcal{U}_{L}^{i}) (\overline{\mathcal{C}}_{L}^{i} \gamma^{\mu} \mathcal{D}_{L}^{i})$	$\mathcal{O}_2 = (\overline{m{d}}_{m{L}}^i \gamma_\mu m{T} m{u}_{m{L}}^i) (\overline{m{c}}_{m{L}}^j \gamma^\mu m{b}_{m{L}}^j)$
$C_i(m_b)$:	-0.514 (LL)	1.026 (LL)
	-0.303 (NLL)	1.008 (NLL)

(modulo parametric uncertainties from M_W , m_b , $\alpha_s(M_Z)$ and QED corr.)

(potential) New Physics modifications:

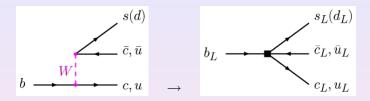
new left-handed interactions (incl. new phases)

$$C_{1,2}(M_W) \to C_{1,2}(M_W) + \delta_{NP}(M_W, M_{NP})$$

new chiral structures ⇒ extend operator basis (LR,RR currents)

Next Example: $b \rightarrow s(d) q\overline{q}$ decays

$b \rightarrow s(d) q\bar{q}$ decays – Current-current operators



Now, there are two possible flavour structures:

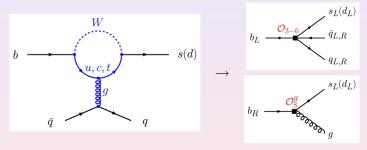
$$V_{ub}V_{us(d)}^* (\bar{u}_L\gamma_\mu b_L)(\bar{s}(d)_L\gamma^\mu u_L) \equiv \lambda_u \mathcal{O}_2^{(u)},$$

$$V_{cb}V_{cs(d)}^* (\bar{c}_L\gamma_\mu b_L)(\bar{s}(d)_L\gamma^\mu c_L) \equiv \lambda_c \mathcal{O}_2^{(c)},$$

• Again, α_s corrections induce independent colour structures $\mathcal{O}_1^{(u,c)}$.

$b \rightarrow s(d) q\bar{q}$ decays – strong penguin operators

New feature:
 Penguin diagrams induce additional operator structures



- Strong penguin operators: O_{3−6}
- Chromomagnetic operator: \mathcal{O}_8^g
- ullet Wilson coefficients numerically suppressed by $lpha_{ullet}$ / loop factor.

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{i=1,2} C_i(\mu) \left(\lambda_u \mathcal{O}_i^{(u)} + \lambda_c \mathcal{O}_i^{(c)} \right)$$
$$- \frac{G_F}{\sqrt{2}} \lambda_t \sum_{i=3}^6 C_i(\mu) \mathcal{O}_i - \frac{G_F}{\sqrt{2}} \lambda_t C_8^g(\mu) \mathcal{O}_8^g$$

$$\begin{split} \mathcal{O}_3 &= & (\bar{s}_L^i \gamma_\mu b_L^i) \sum_{q \neq t} (\bar{q}_L^j \gamma^\mu q_L^j) \,, \qquad \mathcal{O}_4 &= & (\bar{s}_L^i \gamma_\mu b_L^j) \sum_{q \neq t} (\bar{q}_L^j \gamma^\mu q_L^i) \,, \\ \mathcal{O}_5 &= & (\bar{s}_L^i \gamma_\mu b_L^j) \sum_{q \neq t} (\bar{q}_R^j \gamma^\mu q_R^j) \,, \qquad \mathcal{O}_6 &= & (\bar{s}_L^i \gamma_\mu b_L^j) \sum_{q \neq t} (\bar{q}_R^j \gamma^\mu q_R^i) \,, \\ \mathcal{O}_8^g &= & \frac{g_s}{8\pi^2} \, m_b \, (\bar{s}_L \, \sigma^{\mu\nu} \, T^A \, b_R) \, G_{\mu\nu}^A \,. \end{split}$$

- virtual *u* and *c*-contributions (with $m_u = m_c \rightarrow 0$): use $\lambda_u + \lambda_c = -\lambda_t$
- gluon couples to left- and right-handed currents.
- chromomagnetic operator requires one chirality flip! (ms is set to zero)

Matching and running for strong penguin operators

• Matching coefficients depend on top mass, $x_t = m_t^2/M_W^2$

$$C_3(M_W) \simeq C_5(M_W) = -rac{lpha_s}{24\pi} \, ilde{E}_0(x_t) + \dots$$

 $C_4(M_W) \simeq C_6(M_W) = +rac{lpha_s}{8\pi} \, ilde{E}_0(x_t) + \dots$

- Beware! Different conventions/schemes (BBL,CMM,BBNS)
- Mixing of \mathcal{O}_{1-6} under RG evolution described by 6×6 matrix:

$$\gamma = \left(\begin{array}{ccccccc} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ 0 & 0 & \bullet & \bullet & \bullet & \bullet \\ 0 & 0 & \bullet & \bullet & \bullet & \bullet \\ 0 & 0 & \bullet & \bullet & \bullet & \bullet \end{array}\right)$$

Chromomagnetic operator

Matching:

$$C_8^g(M_W)=-\frac{1}{2}\,E_0'(x_t)+\ldots$$

Usually, one considers scheme-independent linear combination:

$$C_8^{g,\,{
m eff}} = C_8^g(M_W) + \sum_{i=1}^6 z_i\,C_i(M_W)$$

 $(z_i : scheme-dependent coefficients)$

• RG mixing between C_{1-6} and $C_8^{g, eff}$

- Penguin and box diagrams with additional γ/Z exchange:
 - \rightarrow Electroweak Penguin Operators \mathcal{O}_{7-10}

$$\begin{split} \mathcal{O}_7 &=& \frac{2}{3} \left(\overline{s}_L^i \gamma_\mu b_L^i \right) \sum_{q \neq t} \, \textbf{e}_q \left(\overline{q}_L^j \gamma^\mu q_L^j \right), \quad \mathcal{O}_8 \, = \, \frac{2}{3} \left(\overline{s}_L^i \gamma_\mu b_L^j \right) \sum_{q \neq t} \, \textbf{e}_q \left(\overline{q}_L^j \gamma^\mu q_L^i \right), \\ \mathcal{O}_9 &=& \frac{2}{3} \left(\overline{s}_L^i \gamma_\mu b_L^i \right) \sum_{q \neq t} \, \textbf{e}_q \left(\overline{q}_R^j \gamma^\mu q_R^j \right), \quad \mathcal{O}_{10} \, = \, \frac{2}{3} \left(\overline{s}_L^i \gamma_\mu b_L^j \right) \sum_{q \neq t} \, \textbf{e}_q \left(\overline{q}_R^j \gamma^\mu q_R^i \right). \end{split}$$

depends on electromagnetic charge of final state quarks!

- Penguin and box diagrams with additional γ/Z exchange:
 - → Electroweak Penguin Operators O₇₋₁₀ depends on electromagnetic charge of final state quarks!
 - \rightarrow Electromagnetic operators \mathcal{O}_7^{γ}

$$\mathcal{O}_7^{\gamma} = rac{e}{8\pi^2} \, m_b \left(ar{s}_L \, \sigma_{\mu
u} \, b_R
ight) F^{\mu
u}$$

main contribution to $b \rightarrow s(d)\gamma$ decays.

- Penguin and box diagrams with additional γ/Z exchange:
 - → Electroweak Penguin Operators O₇₋₁₀ depends on electromagnetic charge of final state guarks!
 - → Electromagnetic operators \mathcal{O}_7^{γ} main contribution to $b \to s(d)\gamma$ decays.
 - \rightarrow Semileptonic operators \mathcal{O}_{9V} , \mathcal{O}_{10A}

$$\begin{array}{lcl} \mathcal{O}_{9\,V} & = & \left(\bar{s}_L\,\gamma_\mu\,b_L\right)\left(\bar{\ell}\,\gamma^\mu\,\ell\right), \\ \mathcal{O}_{10A} & = & \left(\bar{s}_L\,\gamma_\mu\,b_L\right)\left(\bar{\ell}\,\gamma^\mu\gamma_5\,\ell\right) \end{array}$$

main contribution to $b \to s\ell^+\ell^-$ decays.

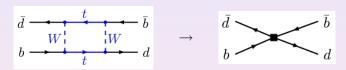
- Penguin and box diagrams with additional γ/Z exchange:
 - → Electroweak Penguin Operators O₇₋₁₀ depends on electromagnetic charge of final state quarks!
 - → Electromagnetic operators \mathcal{O}_7^{γ} main contribution to $b \to s(d)\gamma$ decays.
 - → Semileptonic operators \mathcal{O}_{9V} , \mathcal{O}_{10A} main contribution to $b \to s\ell^+\ell^-$ decays.
 - → electroweak corrections to matching coefficients

- Penguin and box diagrams with additional γ/Z exchange:
 - → Electroweak Penguin Operators O₇₋₁₀ depends on electromagnetic charge of final state quarks!
 - → Electromagnetic operators \mathcal{O}_7^{γ} main contribution to $b \rightarrow s(d)\gamma$ decays.
 - → Semileptonic operators \mathcal{O}_{9V} , \mathcal{O}_{10A} main contribution to $b \to s\ell^+\ell^-$ decays.
 - → electroweak corrections to matching coefficients
- Isospin effects in non-leptonic decays (e.g. B → πK) and radiative decays (b → s(d)γ, b → sℓ⁺ℓ⁻) are particularly sensitive to New Physics!

B-B Mixing

B-B Mixing

• $\Delta B = 2$ operators require two W^{\pm} exchanges \rightarrow box diagrams:



$$H_{\text{eff}}^{\Delta B=2} = \frac{G_F^2}{16\pi^2} M_W^2 (V_{tb}^* V_{td})^2 C(x_t, \mu) (\bar{b}_L \gamma^{\mu} d_L) (\bar{b}_L \gamma_{\mu} d_L) + \text{h.c.}$$

- only one colour structure due to symmetry of operator
- analogously for $B_s \bar{B}_s$ mixing

Summary: Effective Theory for b-quark decays

"Full theory" \leftrightarrow all modes propagate Parameters: $M_{W,Z}, M_H, m_t, m_q, g, g', \alpha_s \dots$

$$\uparrow \mu > M_W$$

$$C_i(M_W) = C_i\big|_{\text{tree}} + \delta_i^{(1)} \frac{\alpha_s(M_W)}{4\pi} + \dots$$

matching: $\mu \sim M_W$

"Eff. theory" ↔ low-energy modes propagate. High-energy modes are "integrated out".

Parameters: m_b , m_c , G_F , α_s , $C_i(\mu)$...

$$\downarrow \mu < M_W$$

$$\frac{\partial}{\partial \ln \mu} C_i(\mu) = \gamma_{ji}(\mu) C_j(\mu)$$

anomalous dimensions

Expectation values of operators $\langle O_i \rangle$ at $\mu = m_b$. All dependence on M_W absorbed into $C_i(m_b)$

resummation of logs

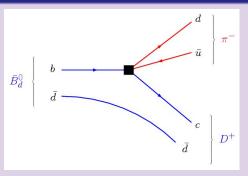
From $b \rightarrow cd\bar{u}$ to $\bar{B}^0 \rightarrow D^+\pi^-$

- In experiment, we cannot see the quark transition directly.
- Rather, we observe exclusive hadronic transitions, described by hadronic matrix elements, like e.g.

$$\langle D^{+}\pi^{-}|\mathcal{H}_{\mathrm{eff}}^{b\to cd\bar{u}}|\bar{B}_{d}^{0}\rangle = V_{cb}V_{ud}^{*}\frac{G_{F}}{\sqrt{2}}\sum_{i}C_{i}(\mu)r_{i}(\mu)$$
$$r_{i}(\mu) = \langle D^{+}\pi^{-}|\mathcal{O}_{i}|\bar{B}_{d}^{0}\rangle\Big|_{\mu}$$

• The hadronic matrix elements r_i contain QCD (and also QED) dynamics below the scale $\mu \sim m_b$.

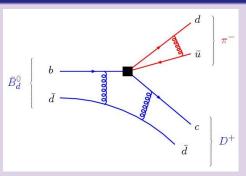
"Naive" Factorization of hadronic matrix elements



$$r_i = \underbrace{\langle D^+|J_i^{(b\to c)}|\bar{B}_d^0\rangle}_{}\underbrace{\langle \pi^-|J_i^{(d\to u)}|0\rangle}_{}$$

ullet Quantum fluctuations above $\mu \sim m_b$ already in Wilson coefficients

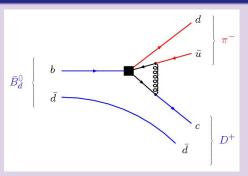
"Naive" Factorization of hadronic matrix elements



$$r_i = \underbrace{\langle D^+ | J_i^{(b \to c)} | \bar{B}_d^0 \rangle}_{\text{form factor}} \underbrace{\langle \pi^- | J_i^{(d \to u)} | 0 \rangle}_{\text{decay constant}}$$

• Part of (low-energy) gluon effects encoded in simple/universal had. quantities

"Naive" Factorization of hadronic matrix elements



$$r_i(\mu) = \underbrace{\langle D^+ | J_i^{(b \to c)} | \bar{B}_d^0 \rangle}_{\text{form factor}} \underbrace{\langle \pi^- | J_i^{(d \to u)} | 0 \rangle}_{\text{decay constant}} + \text{corrections}(\mu)$$

• Gluon cross-talk between π^- and $B \to D \Rightarrow QCD$ corrections

- light quarks in π^- have large energy (in B rest frame)
- gluons from the $B \rightarrow D$ transition see "small colour-dipole"
- \Rightarrow corrections to naive factorization dominated by gluon exchange at short distances $\delta x \sim 1/m_b$

New feature: Light-cone distribution amplitudes $\phi_{\pi}(u)$

Short-distance corrections to naive factorization given as convolution

$$r_i(\mu) \simeq \sum_i F_i^{(B \to D)} \int_0^1 du \left(1 + \frac{\alpha_s C_F}{4\pi} t_{ij}(u, \mu) + \ldots \right) f_\pi \phi_\pi(u, \mu)$$

- $\phi_{\pi}(u)$: distribution of momentum fraction u of a quark in the pion
- $t_{ii}(u, \mu)$: perturbative coefficient function (depends on u)

- light quarks in π^- have large energy (in B rest frame)
- gluons from the $B \rightarrow D$ transition see "small colour-dipole"
- \Rightarrow corrections to naive factorization dominated by gluon exchange at short distances $\delta x \sim 1/m_b$

New feature: Light-cone distribution amplitudes $\phi_{\pi}(u)$

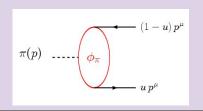
Short-distance corrections to naive factorization given as convolution

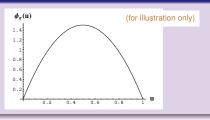
$$r_i(\mu) \simeq \sum_i F_j^{(B o D)} \, \int_0^1 du \, \left(1 + rac{lpha_s C_F}{4\pi} \, t_{ij}(u,\mu) + \ldots
ight) \, f_\pi \, \phi_\pi(u,\mu)$$

- $\phi_{\pi}(u)$: distribution of momentum fraction u of a quark in the pion.
- $t_{ii}(u, \mu)$: perturbative coefficient function (depends on u)

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Light-cone distribution amplitude for the pion



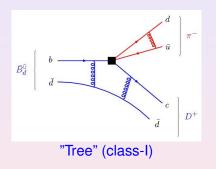


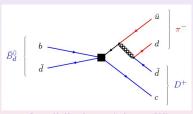
- Exclusive analogue of parton distribution function:
 - PDF: probability density (all Fock states)
 - LCDA: probability amplitude (one Fock state, e.g. $q\bar{q}$)
- Phenomenologically relevant $\langle u^{-1} \rangle_{\pi} \simeq 3.3 \pm 0.3$

[from sum rules, lattice, exp.]

Complication: Annihilation in $\bar{B}_d \to D^+\pi^-$

Second topology for hadronic matrix element possible:

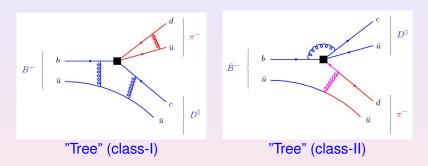




- "Annihilation" (class-III)
- annihilation is power-suppressed by Λ/m_b
- difficult to estimate (final-state interactions?)

Still more complicated: $B^- \rightarrow D^0 \pi^-$

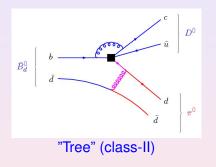
Second topology with spectator quark going into light meson:

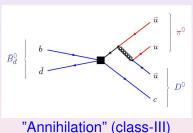


- class-II amplitude does not factorize into simpler objects (colour-transparency argument does not apply)
- again, it is power-suppressed compared to class-I topology

Non-factorizable: $\bar{B}^0 \rightarrow D^0 \pi^0$

In this channel, class-I topology is absent:



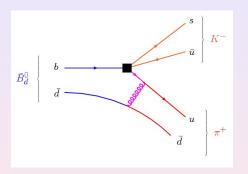


- The whole decay amplitude is power-suppressed!
- Naive factorization is not even an approximation!

$$B \rightarrow \pi\pi$$
 and $B \rightarrow \pi K$

$B \rightarrow \pi\pi$ and $B \rightarrow \pi K$

Naive factorization:



- Both final-state mesons are light and energetic.
- Colour-transparency argument applies for class-I and class-II topologies.
- $B \to \pi(K)$ form factors fairly well known (QCD sum rules)

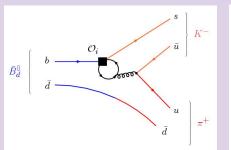
QCDF for $B \to \pi\pi$ and $B \to \pi K$ decays

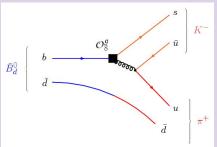
(BBNS 1999)

Factorization formula has to be extended:

- Vertex corrections are treated as in $B \rightarrow D\pi$
 - Include penguin (and electroweak) operators from $H_{\rm eff}$.
 - $\bullet \ \ \, \text{Take into account new (long-distance)} \ \, \text{penguin diagrams!} \qquad (\to \text{Fig.})$
- Additional perturbative interactions involving spectator in B-meson
 (→ Fig.)
 - Sensitive to the distribution of the spectator momentum ω \longrightarrow light-cone distribution amplitude $\phi_B(\omega)$

Additional diagrams for hard corrections in QCDF

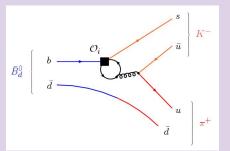


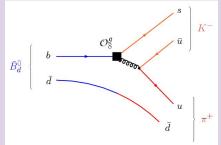


 \longrightarrow additional contributions to the hard coefficient functions $t_{ij}(u,\mu)$

$$r_i(\mu)\Big|_{\mathrm{hard}} \simeq \sum_i F_j^{(B\to\pi)}(m_K^2) \int_0^1 du \left(1 + \frac{\alpha_s}{4\pi} t_{ij}(u,\mu) + \ldots\right) f_K \phi_K(u,\mu)$$

Additional diagrams for hard corrections in QCDF

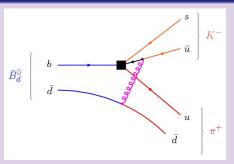




 \longrightarrow additional contributions to the hard coefficient functions $t_{ii}(u,\mu)$

$$\left. r_i(\mu) \right|_{\mathrm{hard}} \simeq \sum_i \left. F_j^{(B o \pi)}(m_K^2) \, \int_0^1 du \, \left(1 + rac{lpha_s}{4\pi} \, t_{ij}(u,\mu) + \ldots
ight) \, f_K \, \phi_K(u,\mu)
ight.$$

Spectator corrections with hard-collinear gluons in QCDF

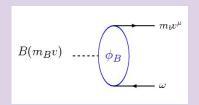


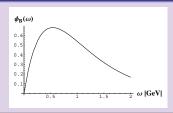
— additive correction to naive factorization

$$\Delta r_{i}(\mu)\Big|_{\text{spect.}} = \int du \, dv \, d\omega \, \left(\frac{\alpha_{s}}{4\pi} \, h_{i}(u, v, \omega, \mu) + \ldots\right) \\ \times f_{K} \, \phi_{K}(u, \mu) \, f_{\pi} \, \phi_{\pi}(v, \mu) \, f_{B} \, \phi_{B}(\omega, \mu)$$

Distribution amplitudes for all three mesons involved!

New ingredient: LCDA for the B-meson





• Phenomenologically relevant: $\langle \omega^{-1} \rangle_B \simeq (1.9 \pm 0.2) \text{ GeV}^{-1}$ (at $\mu = \sqrt{m_b \Lambda} \simeq 1.5 \text{ GeV}$)

(from QCD sum rules [Braun/Ivanov/Korchemsky])

(from HQET parameters [Lee/Neubert])

• Large logarithms ln m_b can be resummed using SCET

Complications for QCDF in $B \to \pi\pi, \pi K$ etc.

- Annihilation topologies are numerically important.
 BBNS use conservative model estimates.
- Some power-corrections are numerically enhanced by "chiral factor"

$$\frac{\mu_{\pi}}{f_{\pi}} = \frac{m_{\pi}^2}{2f_{\pi} m_q}$$

- Many decay topologies interfere with each other.
- Many hadronic parameters to vary.
 - \rightarrow Hadronic uncertainties sometimes quite large.

Summary

[from C. Berger's homepage]

" When looking for new physics, ...
... do not forget about the complexity of the old physics!"