### **Tevatron**



## First analysis at the CDF II experiment

"Original Slides" on first results copied from overview talk from Ch. Paus



# Little History

CDF Run I: 1992-96,  $p\bar{p}$  collisions @  $\sqrt{s}$  = 1.8 TeV

CDF Run II: 2001-2009 (?),  $p\bar{p}$  collisions @  $\sqrt{s}$  = 1.96 TeV

- May-November 2001 :
  - detector commissioning, no quality data
  - January-June 2002 :

CDF Integrated Luminosity by Month 2002

25000 Delivered (nb-1) Recorded (nb-1) 20000 Recorded with silicon (nb-1). 15000 Ę 10000 5000 ebruary March August January April May Anr lune September Month

- first 40 pb<sup>-1</sup> of data, 10 pb<sup>-1</sup> "quality" data
- October 2002 :  $65 \text{ pb}^{-1}$  of quality data



Focus on analysis presented summer 2002 & winter 2003

# **B** Triggers

Trigger signatures: lepton (e, $\mu$ ) and displaced tracks

•  $B \to J/\psi X; J/\psi \to \mu^+ \mu^- \Rightarrow$  Di-Muon Trigger

+ muon provides easy trigger

- small branching ratio
- Semi-leptonic B decays ⇒ Lepton + Displaced
   + large branching ratios (≈ 20%) Track Trigger
   missing neutrino
- Fully hadronic *B* decays
  - + pprox 80% of branching ratio
  - requires displaced track trigger



 $\Rightarrow$  Two Track Trigger



# **Overview of First Results**

Results shown summer 2002 (5-10  $pb^{-1}$ ):

(rely only on understanding of tracking system)

- Mass difference measurements  $\leftarrow$  1. CDF II paper

- First *B* mass measurements
- Lifetime in  $B \to J/\psi X$  modes
- Relative BRs of Cabbibo suppressed charm decays (CLEO dominates the field here in the meantime)

Additional results winter 2003 (65  $pb^{-1}$ ): (need additional understanding of muon trigger/reconstruction)

- BR of rare  $D^0 \rightarrow \mu^+ \mu^-$  decay  $\Leftarrow$  4. CDF II paper
- $J/\psi$  production cross section  $\Leftarrow$  5. CDF II paper

### **Cross Section Measurements**

## **Prompt vs. Secondary Charm**



## **Prompt vs. Secondary Charm**

 $\sigma_i = \frac{N_i/2 \times f_{D,i}}{\int \mathcal{L} dt \times \epsilon_i \times BR_i}$ 

- Drift chamber (COT) tracking efficiency: Embedding MC tracks in data to mimic realistic occupancy
- Efficiency to attach silicon hits to COT tracks from data
- Single track trigger efficiency measured on data w/o trigger
- $\rightarrow$  combined trigger & reconstruction efficiency: 0.12-1.9% relative uncertainties 8-14%

Only tracking system required for this analysis, this is no precision measurements.

About 70k D mesons in 5.7 pb<sup>-1</sup> of data;

## **Prompt vs. Secondary Charm**



Preliminary Run II measurements

 $\sigma(D^{0}, p_{T} > 5.5 \text{ GeV}) = 13.3 \pm 0.2 \pm 1.5 \ \mu\text{b}$   $\sigma(D^{*+}, p_{T} > 6.0 \text{ GeV}) = 5.2 \pm 0.1 \pm 0.8 \ \mu\text{b}$   $\sigma(D^{+}, p_{T} > 6.0 \text{ GeV}) = 4.3 \pm 0.1 \pm 0.7 \ \mu\text{b}$  $\sigma(D^{+}_{s}, p_{T} > 8.0 \text{ GeV}) = 0.75 \pm 0.05 \pm 0.22 \ \mu\text{b}$ 

all measurements refer to rapidity range |Y| < 1

No prompt charm meson x-section measurements at large |Y|!

# $J/\psi$ Production X-Section



Very similar motivation & requirements as for charm x-section. However additionally muon reconstruction and muon trigger efficiency needed. Mass Measurements & Momentum Calibration

# **Momentum Calibration**



raw tracks nominal E loss fine tuned E loss adjusted overall B scale 500k  $J/\psi \rightarrow \mu^+\mu^-$ 

Situation probably tougher @ LHCb:

No homogeneous B field, harder to disentangle material, B field and misalignment effects.

However all of this can be studied in MC.

1 million reconstructed mainly prompt  $J/\psi$  events on disk.

This is a high profile analysis within the tracking group.

# **Momentum Calibration**



Basic input to any mass measurement performed at CDF II. No own paper, however still cited within many B publications.

# $m(D_s^+) - m(D^+)$

### Conceptual idea

- +  $D_s^+ \rightarrow \phi \pi^+ (\phi \rightarrow K^+ K^-)$
- +  $D^+ \rightarrow \phi \pi^+ (\phi \rightarrow K^+ K^-)$
- almost identical kinematics
- + measure difference
- + basically no systematics

Result  $m(D_s^+) - m(D^+)$ : 99.41 ± 0.38 (stat) ± 0.21 (syst) MeV/ $c^2$ 

### About the measurement

- + first Tevatron Run II publication
- + uses new SVT trigger
- + agrees with old world average  $99.5 \pm 0.50 \text{ MeV}/c^2$



# Recent BaBar: PRD 65(2002)091104 98.4 ± 0.1 (stat) ± 0.3 (syst) MeV/c<sup>2</sup>

Maybe at bit boring topic, however first CDF II paper. Many analysis tools established for this analysis and document in this PRD. Proof that detector & new TTT works.

# **B** Mass Measurements

### Largest $J/\psi$ modes

- +  $B^+ \rightarrow J/\psi K^+$
- +  $B^0 \rightarrow J/\psi K^{*0}, B^0 \rightarrow J/\psi K^0_S$
- +  $B_s^0 \rightarrow J/\psi \phi$
- +  $\Lambda_b^0 \rightarrow J/\psi \Lambda$

### B meson masses in MeV/ $c^2$

preliminary

 $B^+$ : 5279.32 ± 0.68 (stat) ± 0.94, (sys)  $B^0$ : 5280.30 ± 0.92 (stat) ± 0.92 (sys)  $B_s$ : 5365.5 ± 1.3 (stat) ± 0.94 (sys) in the pipeline: Λ<sub>b</sub>,  $B^0 → J/\psi K_S^0$ publishing soon!!

### CDF Momentum scale

- + best  $B_s$  in the world (soon  $\Lambda_b$ )
- + best systematic around ..
- excellent prerequisite



# **Systematics**

| Source                       | $B^0 \rightarrow J/\psi K^{*0}$ | $B^{\pm} \rightarrow J/\psi K^{\pm}$ | $B_s^0 \rightarrow J/\psi\phi$ |
|------------------------------|---------------------------------|--------------------------------------|--------------------------------|
| Tracking                     |                                 |                                      |                                |
| Momentum scale               | 0.20                            | 0.22                                 | 0.20                           |
| $\operatorname{Alignment}$   | 0.18                            | $0.18^{a}$                           | $0.18^{a}$                     |
| False Curvature              | $0.02^{b}$                      | 0.02                                 | $0.02^{b}$                     |
| Vertex Fitting               | 0.10                            | $0.10^{a}$                           | $0.10^{a}$                     |
| Resolution bias              | 0.13                            | 0.13                                 | 0.13                           |
| Bkg Systematics              |                                 |                                      |                                |
| $K$ - $\pi$ swap in $K^{*0}$ | 0.06                            |                                      |                                |
| $J/\psi\pi$ contamin.        |                                 | 0.13                                 |                                |
| Total Uncertainty            | 0.33                            | 0.36                                 | 0.33                           |
|                              |                                 |                                      |                                |

TABLE I: Summary of systematic uncertainties for the B meson mass measurements in MeV/ $c^2$ .

TABLE III: Summary of systematic uncertainties for the *b* hadron mass differences in  $MeV/c^2$ .

| mass difference             | mom. scale | fit model | total uncert. |
|-----------------------------|------------|-----------|---------------|
| $m(B^{\pm})$ - $m(B^0)$     | 0.00       | 0.14      | 0.14          |
| $m(B_s^0)$ - $m(B^0)$       | 0.01       | 0.06      | 0.06          |
| $m(B_s^0)$ - $m(B^{\pm})$   | 0.01       | 0.13      | 0.13          |
| $m(\Lambda_b^0)$ - $m(B^0)$ | 0.05       | -         | 0.05          |

Momentum scale: Comparing control masses to PDG

- Alignment: Comparing COT only mass w. COT+SVX mass
- False Curvature (misalignment): Comparing  $B^+$  to  $B^-$  masses
- Vertex Fit: Test diff. mass and pointing constraints
- Resolution Bias: Resolution on Curvature has impact on vertex position, cut on B impact parameter introduces asymmetrie in curvature resolution, thus in mass.

All of those effects cancel in mass difference measurements.

# Hunting For New States



• Ssssshhhh.....Wabbit hunting.



3rd CDF II paper

## **Precision Vertexing**

# Lifetime in $B o J/\psi X$

#### Large sample of $J/\psi \rightarrow \mu^+\mu^-$ events

- calibrate resolution
- + understand alignment
- + measure inclusive B lifetime
- + so far only  $r \phi$  silicon used

#### Inclusive $J/\psi$ (preliminary)

 $c\tau_{\textit{incl}} = 458 \pm 10 \text{ (stat)} \pm 11 \text{ (sys)} \ \mu\text{m}$ 

#### Exclusive $J/\psi$ (preliminary)

- $c\tau_{B^+} = 470 \pm 20 \text{ (stat)} \pm 6 \text{ (sys) } \mu m$
- $c\tau_{B^0} = 425 \pm 28 \, (\text{stat}) \pm 6 \, (\text{sys}) \, \mu\text{m}$

$$c\tau_{B_{\rm s}^0} = 379 \pm 59 \, ({\rm stat}) \pm 6 \, ({\rm sys}) \, \mu{\rm m}$$

#### About results

- + silicon already well understood
- + prerequisite for  $\Delta\Gamma_s$
- major improvements expected: Layer 00, 3D tracking, alignments
- important for B<sub>s</sub> mixing



### Cut on IP @ LHCb Trigger?



Lifetime (& lifetime resolution) analysis might become a bit more complicated with impact parameter significance cut on HLT.

## **Rare Decays**

# Rare Decays: $D^0 ightarrow \mu^+ \mu^-$



Measurement relative to kin. similar decay  $D^0 \rightarrow \pi \pi$ :

$$BR(D^0 \to \mu^+ \mu^-) = \frac{N(\mu^+ \mu^-)}{N(\pi^+ \pi^-)} \frac{\epsilon(\mu^+ \mu^-)}{\epsilon(\pi^+ \pi^-)} BR(D^0 \to \pi^+ \pi^-)$$

CDF limit based on 65 pb<sup>-1</sup> current best limit:  $BR(D^0 \rightarrow \mu^+ \mu^-) \leq 3.3 \times 10^{-6}$  @ 95% C.L.

soon to come (360  $pb^{-1}$ ):  $BR(D^0 \to \mu^+ \mu^-) \le 0.53 \times 10^{-6}$  @ 95% C.L.

# How to reduce Background?

# Focus on $D^0$ from $D^*\to D^0\pi$ decays clean selection via $\Delta m (D^*-D^0)$ mass cut



#### Remaining largest background:

| Detector                              | CMU-CMU       | CMU-CMX       | CMX-CMX         |
|---------------------------------------|---------------|---------------|-----------------|
| Combinatorial Background              | 0.040 ± 0.007 | 0.008 ± 0.001 | 0.0007 ± 0.0001 |
| $D^0 \rightarrow \pi \pi$ Double Tags | 0.530 ± 0.005 | 0.057 ± 0.001 | 0.012 ± 0.002   |
| $D^0 \rightarrow K\pi$ Double Tags    | < 0.01        | < 0.01        | < 0.01          |
| Semileptonic D <sup>0</sup> Decays    | < 0.36        | < 0.20        | < 0.10          |
| B Decays Involving One Real Muon      | 0.54 ± 0.06   | 0.13 ± 0.03   | 0.07 ± 0.02     |
| B Decays Involving Two Real Muons     | 3.8 ± 1.3     | 2.5 ± 1.0     | 1.0 ± 0.5       |
| Total Expected Background             | 4.9 ± 1.3     | 2.7 ± 1.0     | 1.0 ± 0.5       |
| Observed Events                       | 3             | 0             | 1               |

# How to reduce Background?

Rejection of bkg from  $B \rightarrow \mu \mu X$ via impact parameter:



Mis-identified  $D \rightarrow \pi \pi$  events:



Mass resolution about a factor 1.6 better @ LHCb

# **Topics for LHCb**

- Momentum Calibration (we have tracking expertise to do it!) Extremely high visibility analysis, potential thesis topic: *B* mass measurements
- Charm Meson production X-sections Haven't been measured before at large  $|\eta|$
- $B \to J/\psi X$  lifetimes First step towards measurement of  $\phi_s$  ( $B_s \to J/\psi \phi$ )
- $D^0 \rightarrow \mu^+ \mu^-$

Potential to improve world limit, good exercise for  $B \to \mu^+ \mu^-$ 

Other then that:

Get ready to reconstruct in automatized way generic mass peaks  $(D \rightarrow SS, D \rightarrow DS, D \rightarrow SSS \ D \rightarrow DD, D \rightarrow DDS)$ 

Make sure that our signals are in the trigger.