Breaking SU(3)-Flavor in nonleptonic Charm Decays without Prejudice

Stefan Schacht

Informal LHCb Workshop

Neckarzimmern, 14/2/2013

in collaboration with Gudrun Hiller and Martin Jung Phys. Rev. D **87**, 014024 (2013), arXiv:1211.3734

Recent Spectacular Results: Large Direct CP Violation in Charm Decays

The Data

[Gersabeck 2012, Belle 2012, LHCb 2012, CDF 2012, BaBar 2008]

$$\Delta a_{\rm CP}^{\rm dir} = a_{\rm CP}^{\rm dir}(K^+K^-) - a_{\rm CP}^{\rm dir}(\pi^+\pi^-) = -0.00678 \pm 0.00147 \quad (4.6\sigma)$$

SM contribution is suppressed

Effectively 2-generational system, 3rd gen. and CPV entering in loops

• CKM factor
$$\propto 2 \operatorname{Im}\left(\frac{V_{ub}V_{cb}^*}{V_{us}V_{cs}^*}\right) \approx 1.2 \cdot 10^{-3}$$

• Loop factor
$$O\left(\frac{\alpha_s(m_c)}{\pi}\right) \sim 0.1$$
 (?)

Naive expectation: $\Delta a_{CP}^{dir} \leq O(0.001)$

• Drawback: Position in spectrum, relative to QCD: $m_c \gg \Lambda_{\text{OCD}}$ but also $m_c \neq \Lambda_{\text{OCD}}$

Charming Physics

Probing the up sector for New Physics (NP)

- Complementarity to B and K physics
- Only up quark with mesons that oscillate
- Large amounts of D mesons produced at colliders
- Direct CP Violation is measured.

Observable	Measurement	Experiment							
SCS CP asymmetries									
$\Delta a_{CP}^{\text{dir}}(K^+K^-,\pi^+\pi^-)$	-0.00678 ± 0.00147	LHCb, CDF, Belle, BABAR							
$\Sigma a_{CP}^{dir}(K^+K^-,\pi^+\pi^-)$	$+0.0014 \pm 0.0039$	LHCb, CDF, Belle, BABAR							
$A_{CP}^{(O)}(D^0 \to K_S K_S)$	-0.23 ± 0.19	CLEO							
$A_{CP}(D^0 \to \pi^0 \pi^0)$	$+0.001 \pm 0.048$	CLEO							
$A_{CP}(D^+ \to \pi^0 \pi^+)$	$+0.029 \pm 0.029$	CLEO							
$A_{CP}(D^+ \to K_S K^+)$	-0.0011 ± 0.0025	CLEO, BABAR, FOCUS, Belle							
$A_{CP}(D_s \to K_S \pi^+)$	$+0.031 \pm 0.015$	CLEO, BABAR, Belle							
$A_{CP}(D_s \to K^+ \pi^0)$	$+0.266 \pm 0.228$	CLEO							

Classification by Cabibbo suppression

Doubly-Cabibbo suppressed (DCS): $c \rightarrow d\bar{s}u \propto V_{cd}^* V_{us} \approx -\lambda^2$

Singly-Cabibbo suppressed (SCS): $c \rightarrow s\bar{s}u$ or $c \rightarrow d\bar{d}u$ $\propto V_{cs}^*V_{us} \approx -V_{cd}^*V_{ud} \approx \lambda$

Low Energy Effective Field Theory

 $\Delta C = 1 \text{-Hamiltonian: } \mathcal{H}_{eff}^{\Delta C=-1} = \mathcal{H}_{CA} + \mathcal{H}_{SCS} + \mathcal{H}_{DCS}$

$$\mathcal{H}_{SCS} = \frac{4G_F}{\sqrt{2}} \left[\sum_{i=1,2} \sum_{D=d,s} V_{cD}^* V_{uD} C_i \mathcal{O}_{i,D}^{SCS} - V_{cb}^* V_{ub} \sum_{i=3,\dots,6} C_i \mathcal{O}_i \right]$$

 O^X : Tree operators, $C_i \sim 1$ $O_{3,...,6}$: Penguin operators, $C_i \sim \alpha_s$ • Hierarchy could be destroyed by hadronic matrix elements.

> We do not know how to reliably calculate the hadronic matrix elements $\langle f | O_i | i \rangle$ for charm.

•What is the best we can do instead? Take them from data using a symmetry!

There is indeed lots of data for $D \rightarrow PP$

from LHCb,	CDF,	Belle,	BABAR,
CLEO and F	OCUS	S	

Observable	Measurement
SCS CP a	symmetries
$\Delta a_{CP}^{\rm dir}(K^+K^-,\pi^+\pi^-)$	-0.00678 ± 0.00147
$\Sigma a_{CP}^{dir}(K^+K^-,\pi^+\pi^-)$	$+0.0014 \pm 0.0039$
$A_{CP}(D^0 \to K_S K_S)$	-0.23 ± 0.19
$A_{CP}(D^0 \to \pi^0 \pi^0)$	$+0.001 \pm 0.048$
$A_{CP}(D^+ \to \pi^0 \pi^+)$	$+0.029 \pm 0.029$
$A_{CP}(D^+ \to K_S K^+)$	-0.0011 ± 0.0025
$A_{CP}(D_s \to K_S \pi^+)$	$+0.031 \pm 0.015$
$A_{CP}(D_s \to K^+ \pi^0)$	$+0.266 \pm 0.228$
Indirect C	P Violation
a_{CP}^{ind}	$(-0.027 \pm 0.163) \cdot 10^{-2}$
$\delta_L \equiv 2 \text{Re}(\varepsilon) / (1 + \varepsilon ^2)$	$(3.32 \pm 0.06) \cdot 10^{-3}$
$K^+\pi^-$ strong p	hase difference
$\delta_{K\pi}$	$21.4^{\circ} \pm 10.4^{\circ}$

Observable	Measurement
SCS bra	anching ratios
$\mathcal{B}(D^0 \to K^+ K^-)$	$(3.96 \pm 0.08) \cdot 10^{-3}$
$\mathcal{B}(D^0\to\pi^+\pi^-)$	$(1.401 \pm 0.027) \cdot 10^{-3}$
$\mathcal{B}(D^0 \to K_S K_S)$	$(0.17 \pm 0.04) \cdot 10^{-3}$
$\mathcal{B}(D^0\to\pi^0\pi^0)$	$(0.80 \pm 0.05) \cdot 10^{-3}$
$\mathcal{B}(D^+ \to \pi^0 \pi^+)$	$(1.19 \pm 0.06) \cdot 10^{-3}$
$\mathcal{B}(D^+ \to K_S K^+)$	$(2.83 \pm 0.16) \cdot 10^{-3}$
$\mathcal{B}(D_s \to K_S \pi^+)$	$(1.21 \pm 0.08) \cdot 10^{-3}$
$\mathcal{B}(D_s\to K^+\pi^0)$	$(0.62\pm 0.21)\cdot 10^{-3}$
CF bra	nching ratios
$\mathcal{B}(D^0 \to K^- \pi^+)$	$(3.88 \pm 0.05) \cdot 10^{-2}$
$\mathcal{B}(D^0 \to K_S \pi^0)$	$(1.19 \pm 0.04) \cdot 10^{-2}$
$\mathcal{B}(D^0 \to K_L \pi^0)$	$(1.00 \pm 0.07) \cdot 10^{-2}$
$\mathcal{B}(D^+ \to K_S \pi^+)$	$(1.47 \pm 0.07) \cdot 10^{-2}$
$\mathcal{B}(D^+ \to K_L \pi^+)$	$(1.46 \pm 0.05) \cdot 10^{-2}$
$\mathcal{B}(D_s \to K_S K^+)$	$(1.45\pm0.05)\cdot10^{-2}$
DCS bra	anching ratios
$\mathcal{B}(D^0 \to K^+ \pi^-)$	$(1.47 \pm 0.07) \cdot 10^{-4}$
$\mathcal{B}(D^+\to K^+\pi^0)$	$(1.83 \pm 0.26) \cdot 10^{-4}$

\Rightarrow 8 × a_{CP}^{dir} , 16 × \mathcal{B} , 1× strong phase = 25 observables

Emergency Toolkit for Uncalculable Matrix Elements

• Use flavor symmetry to relate several decay amplitudes of $D \rightarrow PP$.

Fit them from data. Take all data.

 Make predictions from symmetry correlations in different (NP) models.

Can we distinguish models?

Approximate SU(3)_F Symmetry of QCD for $D \rightarrow P_8 P_8$

[Gell-Mann, Ne'eman 1961]

 $m_s \neq m_{u,d}$

• Approximation: $m_u \sim m_d \sim m_s \ll \Lambda_{\text{QCD}}$ • u,d,s form SU(3) triplet

• SU(3) symmetry broken by mass terms $\sum_q m_q \bar{q}q$

Initial states: Antitriplet of D Mesons

$$\mathbf{\bar{3}} = \left(D^0 = |c\mathbf{\bar{u}}\rangle, \quad D^+ = |c\mathbf{\bar{d}}\rangle, \quad D_s = |c\mathbf{\bar{s}}\rangle \right)$$

Final states: Pions and Kaons belonging to Octet of pseudoscalars Identical bosons \Rightarrow Symmetrized product final states $[(8) \otimes (8)]_S = (1) \oplus (8) \oplus (27)$ **Reduce Parameters**

Operators: Flavor Structure of Hamiltonian

• Operator tensor product of $(\bar{u}s)(\bar{s}c), (\bar{u}d)(\bar{d}c), \ldots$

 $(\mathbf{3})\otimes(\mathbf{\bar{3}})\otimes(\mathbf{3})=(\mathbf{3}_1)\oplus(\mathbf{3}_2)\oplus(\mathbf{\bar{6}})\oplus(\mathbf{15})$

$$\mathbf{\mathbf{\mathbf{\mathbf{\mathcal{H}}}}}_{\mathrm{eff}}^{\mathrm{SCS}} \sim \underbrace{\lambda\left(\mathbf{15} + \bar{\mathbf{6}}\right)}_{\mathrm{CKM \ leading}} + \underbrace{\lambda^{5}(i\bar{\eta} - \bar{\rho})\left(\mathbf{15} + \mathbf{3}\right)}_{\mathrm{CKM \ suppressed, \ CPV}}$$

• 15 and 6 fixed already by *B*. Explain large CPV by 3 (penguins)

Reduce Parameters: Wigner-Eckart Theorem

- The matrix elements only depend on the representation.
- Not on other quantum numbers ⇒ Clebsch-Gordan coefficients

Express amplitudes by reduced matrix elements.

SU(3) decomposition in the limit $m_s = m_d = m_u$

[Quigg 1980]

$$\mathcal{H}_{0}(d) = CKM \times \sum_{i,j} c_{d;ij} A_{i}^{j}$$
How to read this table
• $\mathcal{A}_{0}(D^{0} \to K^{-}\pi^{+}) =$
 $V_{cs}^{*}V_{ud}\left(\frac{\sqrt{2}}{5}A_{27}^{15} - \frac{\sqrt{2}}{5}A_{1}^{15} + \frac{1}{\sqrt{5}}A_{6}^{5}\right)$
 $\frac{D^{0} \to K^{+}K^{-}}{10\sqrt{2}} \frac{3A_{4}^{15}}{\sqrt{2}} - \frac{A_{1}^{15}}{\sqrt{2}} - \frac{A_{1}^{15}}$

Stefan Schacht

Neckarzimmern 2013 10 / 34

SU(3)-Flavor is broken: $m_s \neq m_{u,d}$

Now it becomes complicated...

Include SU(3) breaking $\mathcal{A}(d) = \mathcal{A}_0(d) + \mathcal{A}_X(d)$

• Symmetry breaking term: $\mathcal{H} \sim m_s \bar{s} s$

•
$$\mathcal{A}_X(d) = \operatorname{CKM} \times \sum_{i,k} c_{d;ij} B_i^{j}$$

• Expansion in
$$\varepsilon \equiv m_s / \Lambda_{QCD} \sim 30\%$$

[Savage 1991, Hinchliffe Kaeding 1995, program by Kaeding Williams 1996, Grinstein Lebed 1996, Pirtskhalava Uttayarat 2011]

Clebsch-Gordan Coefficients of SU(3) Breaking

Decay d	$B_1^{3_1}$	$B_1^{3_2}$	$B_8^{3_1}$	$B_{8}^{3_{2}}$	$B_8^{6_1}$	$B_8^{6_2}$	$B_8^{15_1}$	$B_8^{15_2}$	$B_8^{15_3}$	$B_{27}^{15_1}$	$B_{27}^{15_2}$	$B_{27}^{15_3}$	$B_{27}^{24_1}$	$B_{27}^{24_2}$	B_{27}^{42}
SCS															
$D^0 \to K^+ K^-$	$\frac{1}{4\sqrt{10}}$	$\frac{1}{8}$	$\frac{1}{10\sqrt{2}}$	$\frac{1}{4\sqrt{5}}$	$\frac{1}{10}$	$-\frac{1}{10\sqrt{2}}$	$-\frac{7}{10\sqrt{122}}$	$\frac{\sqrt{\frac{3}{122}}}{5}$	$-\frac{1}{20}$	$-\frac{31}{20\sqrt{122}}$	$-\frac{17}{20\sqrt{366}}$	$\frac{7}{40}$	$-\frac{1}{10\sqrt{6}}$	$\frac{1}{10\sqrt{2}}$	$-\frac{13}{20\sqrt{42}}$
$D^0 \to \pi^+\pi^-$	$\frac{1}{4\sqrt{10}}$	$\frac{1}{8}$	$\frac{1}{10\sqrt{2}}$	$\frac{1}{4\sqrt{5}}$	$-\frac{1}{10}$	$\frac{1}{10\sqrt{2}}$	$-\frac{11}{10\sqrt{122}}$	$-\frac{2\sqrt{\frac{2}{183}}}{5}$	$\frac{3}{20}$	$-\frac{23}{20\sqrt{122}}$	$\frac{11}{20\sqrt{366}}$	$-\frac{1}{40}$	$\frac{1}{10\sqrt{6}}$	$-\frac{1}{10\sqrt{2}}$	$\frac{\sqrt{\frac{7}{6}}}{20}$
$D^0 \rightarrow \bar{K}^0 K^0$	$-\frac{1}{4\sqrt{10}}$	$-\frac{1}{8}$	$\frac{1}{5\sqrt{2}}$	$\frac{1}{2\sqrt{5}}$	0	0	$-\frac{9}{5\sqrt{122}}$	$-\frac{1}{5\sqrt{366}}$	1 10	$-\frac{9}{20\sqrt{122}}$	$-\frac{1}{20\sqrt{366}}$	$\frac{1}{40}$	$-\frac{1}{2\sqrt{6}}$	$-\frac{1}{2\sqrt{2}}$	$\frac{19}{20\sqrt{42}}$
$D^0 ightarrow \pi^0 \pi^0$	$-\frac{1}{8\sqrt{5}}$	$-\frac{1}{8\sqrt{2}}$	$-\frac{1}{20}$	$-\frac{1}{4\sqrt{10}}$	$\frac{1}{10\sqrt{2}}$	$-\frac{1}{20}$	$\frac{11}{20\sqrt{61}}$	$\frac{2}{5\sqrt{183}}$	$-\frac{3}{20\sqrt{2}}$	$-\frac{57}{40\sqrt{61}}$	$\frac{7}{20\sqrt{183}}$	$\frac{1}{40\sqrt{2}}$	$\frac{1}{5\sqrt{3}}$	1 20	$-\frac{1}{20\sqrt{21}}$
$D^+ \to \pi^0 \pi^+$	0	0	0	0	0	0	0	0	0	$-\frac{2(1-\Delta/\Sigma)}{\sqrt{61}}$	$\frac{5(1-\Delta/\Sigma)}{8\sqrt{183}}$	0	$\frac{1-\Delta/\Sigma}{4\sqrt{3}}$	0	$\frac{1-\Delta/\Sigma}{8\sqrt{21}}$
$D^+ \to \bar{K}^0 K^+$	0	0	$\frac{3}{10\sqrt{2}}$	$\frac{3}{4\sqrt{5}}$	$\frac{1}{10}$	$-\frac{1}{10\sqrt{2}}$	$\frac{7}{10\sqrt{122}}$	$-\frac{\sqrt{\frac{1}{122}}}{5}$	$\frac{1}{20}$	$-\frac{3\sqrt{\frac{2}{61}}}{5}$	$-\frac{23}{20\sqrt{366}}$	1 85	$-\frac{1}{10\sqrt{6}}$	$-\frac{\sqrt{2}}{5}$	$-\frac{19}{20\sqrt{42}}$
$D_s \rightarrow K^0 \pi^+$	0	0	$\frac{3}{10\sqrt{2}}$	$\frac{3}{4\sqrt{5}}$	$-\frac{1}{10}$	$\frac{1}{10\sqrt{2}}$	$\frac{11}{10\sqrt{122}}$	$\frac{2\sqrt{\frac{2}{183}}}{5}$	$-\frac{3}{20}$	$-\frac{3}{5\sqrt{122}}$	$\frac{19}{20\sqrt{366}}$	$-\frac{1}{10}$	$-\frac{\sqrt{\frac{2}{3}}}{5}$	$-\frac{1}{10\sqrt{2}}$	$-\frac{19}{20\sqrt{42}}$
$D_s \to K^+ \pi^0$	0	0	$-\frac{3}{20}$	$-\frac{3}{4\sqrt{10}}$	$\frac{1}{10\sqrt{2}}$	$-\frac{1}{20}$	$-\frac{11}{20\sqrt{61}}$	$-\frac{2}{5\sqrt{183}}$	$\frac{3}{20\sqrt{2}}$	$-\frac{17}{10\sqrt{61}}$	$\frac{\sqrt{\frac{3}{61}}}{20}$	$\frac{1}{10\sqrt{2}}$	$-\frac{\sqrt{3}}{10}$	$\frac{1}{20}$	$-\frac{\sqrt{\frac{3}{2}}}{20}$
								CF							
$D^0 \to K^- \pi^+$	0	0	0	0	15	$\frac{1}{5\sqrt{2}}$	$-\frac{\sqrt{\frac{2}{61}}}{5}$	$-\frac{7}{5\sqrt{366}}$	$-\frac{1}{5}$	$\frac{\sqrt{\frac{2}{61}}}{5}$	$\frac{7}{5\sqrt{366}}$	15	$\frac{1}{20\sqrt{6}}$	$\frac{1}{20\sqrt{2}}$	$-\frac{1}{2\sqrt{42}}$
$D^0\to \bar{K}^0\pi^0$	0	0	0	0	$-\frac{1}{5\sqrt{2}}$	$-\frac{1}{10}$	$\frac{1}{5\sqrt{61}}$	$\frac{7}{10\sqrt{183}}$	$\frac{1}{5\sqrt{2}}$	$\frac{3}{10\sqrt{61}}$	$\frac{7\sqrt{\frac{3}{61}}}{20}$	$\frac{3}{10\sqrt{2}}$	$-\frac{\sqrt{3}}{20}$	$-\frac{3}{20}$	0
$D^+ \rightarrow \bar{K}^0 \pi^+$	0	0	0	0	0	0	0	0	0	$\frac{1}{\sqrt{122}}$	$\frac{7}{2\sqrt{366}}$	1 2	$-\frac{1}{4\sqrt{6}}$	$-\frac{1}{4\sqrt{2}}$	$-\frac{1}{2\sqrt{42}}$
$D_s \to \bar{K}^0 K^+$	0	0	0	0	$-\frac{1}{5}$	$-\frac{1}{5\sqrt{2}}$	$-\frac{\sqrt{\frac{2}{61}}}{5}$	$-\frac{7}{5\sqrt{366}}$	$-\frac{1}{5}$	$\frac{\sqrt{\frac{2}{61}}}{5}$	$\frac{7}{5\sqrt{366}}$	1 5	$\frac{1}{5\sqrt{6}}$	$\frac{1}{5\sqrt{2}}$	$\frac{1}{\sqrt{42}}$
							Ι	DCS							
$D^0 \to K^+ \pi^-$	0	0	0	0	0	$-\frac{\sqrt{2}}{5}$	$\frac{2\sqrt{\frac{2}{61}}}{5}$	$\frac{7\sqrt{\frac{2}{183}}}{5}$	0	$-\frac{2\sqrt{\frac{2}{61}}}{5}$	$-\frac{7\sqrt{\frac{2}{183}}}{5}$	0	$-\frac{1}{4\sqrt{6}}$	$\frac{3}{20\sqrt{2}}$	$-\frac{1}{2\sqrt{42}}$
$D^0 \to K^0 \pi^0$	0	0	0	0	0	$\frac{1}{5}$	$-\frac{2}{5\sqrt{61}}$	$-\frac{7}{5\sqrt{183}}$	0	$-\frac{3}{5\sqrt{61}}$	$-\frac{7\sqrt{\frac{3}{61}}}{10}$	0	$-\frac{\sqrt{3}}{8}$	$-\frac{3}{40}$	0
$D^+ \to K^0 \pi^+$	0	0	0	0	0	$\frac{\sqrt{2}}{5}$	$\frac{2\sqrt{\frac{2}{61}}}{5}$	$\frac{7\sqrt{\frac{2}{183}}}{5}$	0	$-\frac{2\sqrt{\frac{2}{61}}}{5}$	$-\frac{7\sqrt{\frac{2}{183}}}{5}$	0	$-\frac{1}{4\sqrt{6}}$	$-\frac{3}{20\sqrt{2}}$	$-\frac{1}{2\sqrt{42}}$
$D^+ \to K^+ \pi^0$	0	0	0	0	0	$-\frac{1}{5}$	$-\frac{2}{5\sqrt{61}}$	$-\frac{7}{5\sqrt{183}}$	0	$-\frac{3}{5\sqrt{61}}$	$-\frac{7\sqrt{\frac{3}{61}}}{10}$	0	$-\frac{\sqrt{3}}{8}$	$\frac{3}{40}$	0
$D_s \to K^0 K^+$	0	0	0	0	0	0	0	0	0	$-\sqrt{\frac{2}{61}}$	$-\frac{7}{\sqrt{366}}$	0	$\frac{1}{2\sqrt{6}}$	0	$\frac{1}{\sqrt{42}}$

Full and correct table

How to abolish Prejudices about Charm

- Use only the symmetry.
- Do not assume a further dynamical understanding of QCD.
- Do not assume that certain matrix elements are more important than others.
- Every matrix element has in general a complex phase.

Status:

25 observables, 13 complex matrix elements \Rightarrow Fit

- Is SU(3) a reasonable expansion for charm decays?
- How large is the penguin (3) enhancement?
- Are there patterns of NP that are distinguishable from Standard Model / Minimal Flavor Violation?

How Large is the Breaking in $D \rightarrow PP$?

Evaluation of Convergence of SU(3)-expansion using complementary measures

$$\delta_{X} \equiv \frac{\max_{ij}|B_{i}^{j}|}{\max(|A_{27}^{15}|, |A_{8}^{\tilde{6}}|, |A_{8}^{15}|)}$$

$$\delta_{X}^{\prime} \equiv \max_{d} \left| \frac{\mathcal{A}_{X}(d)}{\mathcal{A}(d)} \right|$$

$$\delta_{X}^{\prime} \text{ ignores suppression by Clebsch-Gordan-coefficients.}$$

$$\delta_{X}^{\prime} \text{ ignores possible large cancellations.}$$

$$\delta_{X}^{\prime} \text{ ignores possible large cancellations.}$$

How Large Are the Penguins?

Naive expectation: $\delta_3^{(\prime)} \ll 1$

$$\delta_3 = \frac{\max(|A_1^3|, |A_8^3|)}{\max(|A_{27}^{15}|, |A_8^{\bar{6}}|, |A_8^{15}|)} \quad .$$

• Enhanced triplets $\delta_3 \sim 2$, $\delta'_3 \sim 7$ required at 95% C.L. 68% C.L. region far away

- Extremely unexpected!
- Regions of cancellations of large triplet matrix elements

What drives the Penguins?

Large CP asymmetries

[Feldmann Nandi Soni, 2012, Brod Grossman Kagan Zupan, 2012] Stefan Schacht

Neckarzimmern 2013 17 / 34

• Plot: **Without** these *A_{CP}*'s:

What have we learned?

- The SU(3) expansion does work.
- The triplet (penguin) matrix elements are enhanced.

SM:
$$\delta_3^{(\prime) \text{ naive}} \sim 0.1$$

 $\delta_3^{(\prime)} \sim 1$ enhanced
 $\delta_3^{(\prime)} \sim ?$ unlikely ?

... we cannot tell for sure...

SU(3)-Flavor Analysis of New Physics Models

- There are many possible new physics models.
- Match them on our ansatz: Analyze their SU(3)-flavor structure
- Characteristic SU(3)-flavor structure
 ⇒ Correlations and patterns?

Assume SU(3)-X of reasonable size: $\delta_X^{(\prime)} \le 50\%$

Characteristic SU(3)-Flavor Structures

MFV/SM:
$$\mathcal{H}_{SM} \sim \lambda \left(\mathbf{15} + \overline{\mathbf{6}} \right) + \underbrace{V_{cb}^* V_{ub} \left(\mathbf{15} + \mathbf{3} \right)}_{\mathcal{H}_{CPV}}$$

• Triplet model: $(\bar{u}c) \sum \bar{q}q, \bar{u}\sigma_{\mu\nu}G^{\mu\nu}c \sim \mathbf{3}^{NP}$

• Hochberg/Nir (HN) model: $(\bar{u}c)(\bar{u}u) \sim 15^{NP} + 3^{NP}$

[Hochberg Nir 2012]

•
$$\Delta U = 1 \text{ model: } (\bar{s}c)(\bar{u}s) \sim 15^{\text{NP}} + \bar{6}^{\text{NP}} + 3^{\text{NP}}$$

Stefan Schacht

0

Phenomenology

General

- Not able to distinguish SM and triplet model in nonleptonic decays.
- CKM-leading part of $D^0 \to K^0 \bar{K}^0$ only from SU(3)-X • general prediction $a_{CP}^{\text{dir}}(D^0 \to K^0 \bar{K}^0) \sim O(\text{CKM}/\delta_X^{(\prime)}) \sim 1\%$.

$\Delta U = 1 \mod$

- (sc)(ūs) operator breaks discrete U-spin symmetry of Hamiltonian
- Breaking of SU(3) limit relations

$$\begin{aligned} a_{CP}^{\text{dir}}(D^0 \to K^+ K^-) + a_{CP}^{\text{dir}}(D^0 \to \pi^+ \pi^-) &= 0\\ a_{CP}^{\text{dir}}(D^+ \to \bar{K}^0 K^+) + a_{CP}^{\text{dir}}(D_s \to K^0 \pi^+) &= 0 \end{aligned}$$

at O(1) in addition to SU(3)-X.

HN model: $(\bar{u}c)(\bar{u}u) \sim 15^{NP} + 3^{NP}$

Smoking gun: $a_{CP}(D^+ \rightarrow \pi^+ \pi^0) \neq 0$

[Grossman Kagan Zupan 2012]

MFV/SM	A_{27}^{15}	A_8^{15}	$A_8^{\overline{6}}$	A_{1}^{3}	A_{8}^{3}
$D^+ \to \pi^0 \pi^+$	$\frac{\tilde{\Delta}-1}{2}$	0	0	0	0

Strong and weak phase difference needed for direct CPV.

Besides Smoking Guns: Quantitative Study

• With present data no clear separation of different NP models possible.

Two Ways to make progress

- Insights in the strong dynamics, especially in SU(3) breaking.
- Significantly improved future data.

Observable	Future data					
SCS CP asymmetries						
$\Delta a_{CP}^{\rm dir}(K^+K^-,\pi^+\pi^-)$	-0.007 ± 0.0005					
$\Sigma a_{CP}^{\rm dir}(K^+K^-,\pi^+\pi^-)$	-0.006 ± 0.0007					
$a_{CP}^{\mathrm{dir}}(D^+ \to K_S K^+)$	-0.003 ± 0.0005					
$a_{CP}^{dir}(D_s \to K_S \pi^+)$	0.0 ± 0.0005					
$a_{CP}^{dir}(D_s \to K^+ \pi^0)$	0.05 ± 0.0005					
$K^+\pi^-$ strong phase difference						
$\delta_{K\pi}$	$21.4^{\circ} \pm 3.8^{\circ}$					

• Current data, future improved knowledge on SU(3) breaking

- Only 3 breaking matrix elements.
- Correlation of $a_{CP}^{\text{dir}}(D^0 \rightarrow \pi^0 \pi^0)$ and $\Sigma a_{CP}^{\text{dir}}(K^+K^-, \pi^+\pi^-)$ in triplet model

• Future data, all breaking matrix elements.

- Prediction of sizable CPV in $D^0 \rightarrow \pi^0 \pi^0$ in triplet model.
- $a_{CP}^{\text{dir}}(D^0 \rightarrow \pi^0 \pi^0) =$ $\Sigma a_{CP}^{\text{dir}}(K^+ K^-, \pi^+ \pi^-) = 0$ disfavored by triplet model.

Summary

- First unbiased comprehensive SU(3) analysis of $D \rightarrow PP$ decays.
- Current data can be described with reasonable *SU*(3) breaking.
- Higher representations are important in the SU(3) breaking.
- CP Violation indicates strongly enhanced penguins or New Physics beyond MFV.
- More precise measurements of all A_{CP} desperately needed. Especially: $A_{CP}(D^0 \rightarrow K_S K_S)$, $A_{CP}(D_s \rightarrow K_S \pi^+)$, $A_{CP}(D_s \rightarrow K^+ \pi^0)$.
- Current data allows to exclude various scenarios of SU(3) breaking.
- Future data or theoretical insights in SU(3) breaking could differentiate the triplet model from other models.

BACK-UP

Observables vs. Degrees of Freedom

- 17 amplitudes of $\{D^0, D^+, D_s\}$ to Pions/Kaons • 26 observables: 17 \mathcal{B} , 8 SCS A_{CP} , 1 relative strong phase. 25 measured observables $(\mathcal{B}(D_s \to K_L K^+) \text{ not measured})$
- 3 SU(3) limit MEs coming with Σ, 2 coming with Δ.
 Only relative phases ⇒ 9 SU(3) limit params. ∈ ℝ.
- Linear SU(3) breaking: 15 additional MEs
- 17×20 matrix of Clebsch-Gordan coefficients: Not full rank
- Consider terms coming only with Δ separately for calculating the rank
- Only 13 matrix element combinations have physical meaning
- Redefine MEs to reduce # MEs from 20 to 13. Example: $B_{1,8}^{3_1} \mapsto \sqrt{\frac{7}{2}}B_{1,8}^{3_1} - \sqrt{\frac{5}{2}}B_{1,8}^{3_2}$
- Further similar replacements found by Gaussian elimination: Remove $B_8^{\overline{6}_2}$, $B_8^{15_3}$, $B_{27}^{15_3}$, $B_{27}^{24_2}$ and B_{27}^{42} .

Direct and Indirect CP Violation

• CP asymmetries with final state K_S or initial state D^0 have contributions from indirect CPV

Get pure direct CPV by removing the mixing contributions

- Kaon mixing: $\propto \delta_L = 2 \operatorname{Re} \varepsilon / (1 + |\varepsilon|^2) = (3.32 \pm 0.06) \cdot 10^{-3}$ [PDG 2012]
- D^0 mixing: $a_{CP,\text{ind}} = (-0.027 \pm 0.163) \cdot 10^{-2}$

[Gersabeck 2012]

• Sign depends on appearing K^0 or \bar{K}^0 in tree level Feynman diagram

$$A_{CP}^{dir}(D^+ \to K_S K^+) = A_{CP}(D^+ \to K_S K^+) + \delta_L \qquad \text{(with } \bar{K}^0\text{)}$$
$$A_{CP}^{dir}(D_s \to K_S \pi^+) = A_{CP}(D_s \to K_S \pi^+) - \delta_L \qquad \text{(with } K^0\text{)}$$

• Neglect K and D mixing in $A_{CP}(D^0 \rightarrow K_S K_S) = -0.23 \pm 0.19$.

SU(3)-X Clebsch-Gordan Coefficients after Reparametrizations

Decay d	B_{1}^{3}	B_{8}^{3}	$B_8^{6_1}$	$B_8^{15_1}$	$B_8^{15_2}$	$B_{27}^{15_1}$	$B_{27}^{15_2}$	$B_{27}^{24_1}$
				SCS				
$D^0 \to K^+ K^-$	$\frac{\sqrt{\frac{421}{35}}}{16}$	$\frac{\sqrt{\frac{3937}{7}}}{160}$	$\frac{\sqrt{\frac{2869}{7}}}{80}$	$-\frac{\sqrt{9316783}}{29280}$	$\frac{\sqrt{\frac{2613}{2}}}{610}$	$-\frac{31\sqrt{\frac{5281}{7}}}{4880}$	$-\frac{17\sqrt{\frac{151}{21}}}{610}$	$-\frac{1}{5\sqrt{21}}$
$D^0 \to \pi^+\pi^-$	$\frac{\sqrt{\frac{421}{35}}}{16}$	$\frac{\sqrt{\frac{3937}{7}}}{160}$	$-\frac{\sqrt{\frac{2869}{7}}}{80}$	$-\frac{11\sqrt{\frac{1330969}{7}}}{29280}$	$-\frac{\sqrt{\frac{1742}{3}}}{305}$	$-\frac{23\sqrt{\frac{5281}{7}}}{4880}$	$\frac{11\sqrt{\frac{151}{21}}}{610}$	$\frac{1}{5\sqrt{21}}$
$D^0\to \bar{K}^0 K^0$	$-\frac{\sqrt{\frac{421}{35}}}{16}$	$\frac{\sqrt{\frac{3937}{7}}}{80}$	0	$-\frac{3\sqrt{\frac{1330969}{7}}}{4880}$	$-\frac{\sqrt{\frac{871}{6}}}{610}$	$-\frac{9\sqrt{\frac{5281}{7}}}{4880}$	$-\frac{\sqrt{\frac{151}{21}}}{610}$	$-\frac{1}{\sqrt{21}}$
$D^0 \to \pi^0 \pi^0$	$-\frac{\sqrt{\frac{421}{70}}}{16}$	$-\frac{\sqrt{\frac{3937}{14}}}{160}$	$\frac{\sqrt{\frac{2869}{14}}}{80}$	$\frac{11\sqrt{\frac{1330969}{14}}}{29280}$	$\frac{\sqrt{\frac{871}{3}}}{305}$	$-\frac{57\sqrt{\frac{5281}{14}}}{4880}$	$\frac{\sqrt{\frac{1057}{6}}}{305}$	$\frac{2\sqrt{\frac{2}{21}}}{5}$
$D^+ \to \pi^0 \pi^+$	0	0	0	0	0	$-\frac{\sqrt{\frac{5281}{14}}(1-\Delta/\Sigma)}{61}$	$\frac{5\sqrt{\frac{151}{42}}(1-\Delta/\Sigma)}{122}$	$\frac{1-\Delta/\Sigma}{\sqrt{42}}$
$D^+ \to \bar{K}^0 K^+$	0	$\frac{3\sqrt{\frac{3937}{7}}}{160}$	$\frac{\sqrt{\frac{2869}{7}}}{80}$	$\frac{\sqrt{9316783}}{29280}$	$-\frac{\sqrt{\frac{2613}{2}}}{610}$	$-\frac{3\sqrt{\frac{5281}{7}}}{610}$	$-\frac{23\sqrt{\frac{151}{21}}}{610}$	$-\frac{1}{5\sqrt{21}}$
$D_s \to K^0 \pi^+$	0	$\frac{3\sqrt{\frac{3937}{7}}}{160}$	$-\frac{\sqrt{\frac{2869}{7}}}{80}$	$\frac{11\sqrt{\frac{1330969}{7}}}{29280}$	$\frac{\sqrt{\frac{1742}{3}}}{305}$	$-\frac{3\sqrt{\frac{5281}{7}}}{1220}$	$\frac{19\sqrt{\frac{151}{21}}}{610}$	$-\frac{4}{5\sqrt{21}}$
$D_s \to K^+ \pi^0$	0	$-\frac{3\sqrt{\frac{3937}{14}}}{160}$	$\frac{\sqrt{\frac{2869}{14}}}{80}$	$-\frac{11\sqrt{\frac{1330969}{14}}}{29280}$	$-\frac{\sqrt{\frac{871}{3}}}{305}$	$-\frac{17\sqrt{\frac{5281}{14}}}{1220}$	$\frac{\sqrt{\frac{453}{14}}}{305}$	$-\frac{\sqrt{\frac{9}{5}}}{5}$
				CF				
$D^0 \to K^- \pi^+$	0	0	$\frac{\sqrt{\frac{2869}{7}}}{40}$	$-\frac{\sqrt{\frac{1330969}{7}}}{7320}$	$-\frac{7\sqrt{\frac{871}{6}}}{610}$	$\frac{\sqrt{\frac{5281}{7}}}{610}$	$\frac{2\sqrt{\frac{1057}{3}}}{305}$	$\frac{1}{10\sqrt{21}}$
$D^0\to \bar{K}^0\pi^0$	0	0	$-\frac{\sqrt{\frac{2869}{14}}}{40}$	$\frac{\sqrt{\frac{1330969}{14}}}{7320}$	$\frac{7\sqrt{\frac{871}{3}}}{1220}$	$\frac{3\sqrt{\frac{5281}{14}}}{1220}$	$\frac{\sqrt{\frac{3171}{2}}}{305}$	$-\frac{\sqrt{\frac{3}{14}}}{5}$
$D^+\to \bar{K}^0\pi^+$	0	0	0	0	0	$\frac{\sqrt{\frac{5281}{7}}}{244}$	$\frac{\sqrt{\frac{1057}{3}}}{61}$	$-\frac{1}{2\sqrt{21}}$
$D_s \to \bar{K}^0 K^+$	0	0	$-\frac{\sqrt{\frac{2869}{7}}}{40}$	$-\frac{\sqrt{\frac{1330969}{7}}}{7320}$	$-\frac{7\sqrt{\frac{871}{6}}}{610}$	$\frac{\sqrt{\frac{5281}{7}}}{610}$	$\frac{2\sqrt{\frac{1057}{3}}}{305}$	$\frac{2}{5\sqrt{21}}$
				DCS				
$D^0 \to K^+ \pi^-$	0	0	0	$\frac{\sqrt{\frac{1330969}{7}}}{3660}$	$\frac{7\sqrt{\frac{871}{6}}}{305}$	$-\frac{\sqrt{\frac{5281}{7}}}{305}$	$-\frac{4\sqrt{\frac{1057}{3}}}{305}$	$-\frac{1}{2\sqrt{21}}$
$D^0 \to K^0 \pi^0$	0	0	0	$-\frac{\sqrt{\frac{1330969}{14}}}{3660}$	$-\frac{7\sqrt{\frac{871}{3}}}{610}$	$-\frac{3\sqrt{\frac{5281}{14}}}{610}$	$-\frac{\sqrt{6342}}{305}$	$-\frac{\sqrt{\frac{3}{14}}}{2}$
$D^+ \to K^0 \pi^+$	0	0	0	$\frac{\sqrt{\frac{1330969}{7}}}{3660}$	$\frac{7\sqrt{\frac{871}{6}}}{305}$	$-\frac{\sqrt{\frac{5281}{7}}}{305}$	$-\frac{4\sqrt{\frac{1057}{3}}}{305}$	$-\frac{1}{2\sqrt{21}}$
$D^+ \to K^+ \pi^0$	0	0	0	$-\frac{\sqrt{\frac{1330969}{14}}}{3660}$	$-\frac{7\sqrt{\frac{871}{3}}}{610}$	$-\frac{3\sqrt{\frac{5281}{14}}}{610}$	$-\frac{\sqrt{6342}}{305}$	$-\frac{\sqrt{\frac{3}{14}}}{2}$
$D_s ightarrow K^0 K^+$	0	0	0	0	0	$-\frac{\sqrt{\frac{5281}{7}}}{122}$	$-\frac{2\sqrt{\frac{1057}{3}}}{61}$	$\frac{1}{\sqrt{21}}$

Classification of Decay Topologies I: Tree and Weak Annihilation

[Chau 1980, 1983, Chau Cheng 1986, 1989, Gronau Hernandez London Rosner 1994, 1995]

- Color-favored tree = external W emission = T Color-suppressed tree = internal W emission = CW-annihilation = A W-exchange = E
- Simplification of QCD with exact flavor flow.

Classification of Decay Topologies II: Penguin and Penguin Annihilation

Penguin = P

• Penguin annihilation = PA

Quantum Numbers and Hamiltonian

Initial states: Antitriplet of D MesonsNotation:
$$|\mu\rangle_{I,I_3,Y}$$
 $|D^0\rangle = |c\bar{u}\rangle = \bar{\mathbf{3}}_{\frac{1}{2},-\frac{1}{2},-\frac{1}{3}},$ $|D^+\rangle = |c\bar{d}\rangle = \bar{\mathbf{3}}_{\frac{1}{2},\frac{1}{2},-\frac{1}{3}},$ $|D_s^+\rangle = |c\bar{s}\rangle = \bar{\mathbf{3}}_{0,0,\frac{2}{3}}$

Final states from Octet of pseudoscalars: Pions and Kaons

Operators: Flavor Structure of Hamiltonian

$$\mathcal{H}_{\text{eff}} \sim \underbrace{V_{ud}V_{cs}^{*}\left(\bar{u}d\right)\left(\bar{s}c\right)}_{\text{CA}} + \underbrace{V_{us}V_{cs}^{*}\left(\bar{u}s\right)\left(\bar{s}c\right) + V_{ud}V_{cd}^{*}\left(\bar{u}d\right)\left(\bar{d}c\right)}_{\text{SCS}} + \underbrace{V_{us}V_{cd}^{*}\left(\bar{u}s\right)\left(\bar{d}c\right)}_{\text{DCS}}$$

Many solutions in different configurations of SU(3)-X

 For reasonable fit: At least two SU(3) breaking MEs must be present

 Only B³₁, B³₈ ⇒ Bad fit again with χ²/dof = 8.6 No contrubution to SU(3)-X in CF/DCS decays
 Need for higher representations in breaking

• Good fit with
$$B_1^3$$
, $B_{27}^{15_2}$: χ^2 /dof = 1.3