

Bundesministerium für Bildung und Forschung

High Resolution Neutron Detection by the (y)TPC method

International Workshop on Position Sensitive Neutron Detectors 2018 17.05.2018

Physikalisches Institut (LCTPC) Rheinische Friedrich-Wilhelms-Universität Bonn

Markus Köhli

F. P. Schmidt, M.Gruber J. Kaminski, K. Desch

Physikalisches Institut Ruprecht-Karls-Universität Heidelberg

Jalousie (Powtex)

- ToF Diffractometer -

1

CASCADE (Reseda/Mira)

- Spin Echo-

MARKUS KÖHLI

Physikalisches Institut

Physikalisches Institut University of Bonn

III The Detector

MARKUS KÖHLI

Physikalisches Institut

Physikalisches Institut Universit

- 256 \times 256 pixels @ 55 \times 55 μm^2
- $-1.4 \times 1.4 \text{ cm}^2$
- 40 MHz clock
- ENC ca. 90 e-

Physikalisches Institut	Uni

- 256 \times 256 pixels @ 55 \times 55 μm^2
- 1.4 × 1.4 cm²
- 40 MHz clock
- ENC ca. 90 e-

X 1m E2	EHT = 5.00 kV Tilt Corrn. = On Aperture Size = 30.00 μm	100 µm	Stage at T = 63.0 ° FIB Imaging = SEM	Fraunhofer IZM K Kaletta Date :28 May 2013

Physikalisches Institut

- 256 \times 256 pixels @ 55 \times 55 μm^2
- $-1.4 \times 1.4 \text{ cm}^2$
- 40 MHz clock
- ENC ca. 90 e⁻

Modes:

MARKUS KÖHLI

- Time Over Threshold (TOT)
- Time of Arrival (ToA)
- Geiger Counter

 Physikalisches Institut	lι

Scalable Readout System FPGA/ ICs SRU FPGA/ ICs FPGA FPGA/ ICs or FPGA/ ICs FPGA/ ICs

Hybrid \rightarrow HDMI cable \rightarrow Adapter card + FEC \rightarrow Ethernet \rightarrow Switch \rightarrow Ethernet \rightarrow PC

University of Bonn Physikalisches Institut

Scalable Readout System FPGA/ ICs SRU FPGA/ ICs FPGA FPGA/ ICs or FPGA/ ICs FPGA/ ICs

Hybrid \rightarrow HDMI cable \rightarrow Adapter card + FEC \rightarrow Ethernet \rightarrow Switch \rightarrow Ethernet \rightarrow PC

University of Bonn Physikalisches Institut

Gnanvo, K., et al. Nuclear Science Symposium Conference Record (NSS/MIC), 2010 IEEE. IEEE, 2010.

MARKUS KÖHLI

Physikalisches Institut

.....

[1] M. Lupberger, The Pixel-TPC - A feasibility study, Thesis 2016 [2] H. Muller, RD51 SRS Status December 2016, CERN

Physikalisches Institut Uni

Octoboard:

[1] M. Lupberger, The Pixel-TPC - A feasibility study, Thesis 2016 [2] H. Muller, RD51 SRS Status December 2016, CERN

.....

Physikalisches Institut	Un

[1] M. Lupberger, The Pixel-TPC – A feasibility study, Thesis 2016

Octoboard:

Physikalisches Institut

University of Bonn

[2] H. Muller, RD51 SRS Status December 2016, CERN

MARKUS KÖHLI

[1] http://newsline.linearcollider.org

Physikalisches Institut Universit

Detecting Neutrons

Physikalisches Institut Ur

Track Topology

Track Topology

MARKUS KÖHLI

Neutron Conversion Tracks

> Neutron Conversion Tracks

5-23 % Time Pixel (Random Pattern)

Physikalisches Institut

Event Example: Lithium

14

Event Example: Helium

MARKUS KÖHLI

Physikalisches Institut University of Bonn

Analysis and Results

MARKUS KÖHLI Physikalisches Institut University of Bonn

Energy Loss in Gas

Spatial Projection

Energy Spectrum

Physikalisches Institut Univ

Energy Spectrum

Physikalisches Institut Uni

Physikalisches Institut University of Bonn

Physikalisches Institut

Markus Köhli

Physikalisches Institut (LCTPC)

Rheinische Friedrich-Wilhelms-Universität Bonn

High Resolution Neutron Detection The Neutron Time Projection Chamber

Markus Köhli

Physikalisches Institut (LCTPC)

High Resolution Neutron Detection The Neutron Time Projection Chamber

• Trigger & Track Principle

BODELAIRE

Markus Köhli

Physikalisches Institut (LCTPC)

High Resolution Neutron Detection The Neutron Time Projection Chamber

Rheinische Friedrich-Wilhelms-Universität Bonn

BODELAIRE

- Trigger & Track Principle
 - Using both conversion products

Markus Köhli

Physikalisches Institut (LCTPC)

Rheinische Friedrich-Wilhelms-Universität Bonn

High Resolution Neutron Detection The Neutron Time Projection Chamber

- Trigger & Track Principle
 - Using both conversion products
 - Combination of gaseous tracking detector [TimePix] and a photo sensitive detector [SiPMs]

Markus Köhli

Physikalisches Institut (LCTPC)

Rheinische Friedrich-Wilhelms-Universität Bonn

High Resolution Neutron Detection The Neutron Time Projection Chamber

- Trigger & Track Principle
 - Using both conversion products
 - Combination of gaseous tracking detector [TimePix] and a photo sensitive detector [SiPMs]
- $\begin{bmatrix} \text{Spatial Resolution } \sigma \\ (95 + / 4) \ \mu\text{m} \end{bmatrix}$

BODELAIRE

Markus Köhli

Physikalisches Institut (LCTPC)

Rheinische Friedrich-Wilhelms-Universität Bonn

BODELAIRE

High Resolution Neutron Detection The Neutron Time Projection Chamber

- Trigger & Track Principle
 - Using both conversion products
 - Combination of gaseous tracking detector [TimePix] and a photo sensitive detector [SiPMs]
- $\begin{bmatrix} \text{Spatial Resolution } \sigma \\ (95 + / 4) \ \mu\text{m} \end{bmatrix}$

Markus Köhli

Physikalisches Institut (LCTPC)

Rheinische Friedrich-Wilhelms-Universität Bonn

High Resolution Neutron Detection The Neutron Time Projection Chamber

- Trigger & Track Principle
 - Using both conversion products
 - Combination of gaseous tracking detector [TimePix] and a photo sensitive detector [SiPMs]
- $\begin{bmatrix} \text{Spatial Resolution } \sigma \\ (95 + / 4) \mu m \end{bmatrix}$

BODELAIRE