Soil Moisture Measurements with Cosmic-Ray Neutrons

Particle Physics Colloquium November12th 2019

Physikalisches Institut

Ruprecht-Karls-Universität Heidelberg

Markus Köhli

AG Schmidt ANP-PAT

An interdisciplinary spin-off

An interdisciplinary spin-off

Heidelberg University 🚦 Physikalisches Institut

CNCS inelastic spectrometer, SNS

[1] http://www.iso.org/iso/2012_iso-in-action_water_vignette.jpg

MARKUS KÖHLI	Physikalisches Institut	Heidelberg University	
		0 1	

[1]

Where?

When?

How much?

[1]

[1] http://www.iso.org/iso/2012_iso-in-action_water_vignette.jpg

MARKUS KÖHLI

Physikalisches Institut	Heidelberg University	
	0 3	

http://www.wmo.int/pages/themes/climate/images/figures/ClimateModelnesting.jpg
 http://www.livetradingnews.com/wp-content/uploads/2014/04/precisionag.jpg
 http://upload.wikimedia.org/wikipedia/commons/3/37/Nam_steppe.jpg

via

local techniques (electrical resistivity, capacitance, etc) (even neutrons...) via satellite remote sensing (optical, microwave)

[1] ESA SMOS (http://www.esa.int/Our_Activities/Observing_the_Earth/SMOS/Horn_of_Africa_drought_seen_from_space) [2] The Clay Research Group (http://www.theclayresearchgroup.org/images/ert.jpg)

Cosmic-Ray Neutron Sensing .CRNS.

The Cosmic Neutron Basics

[1] Image by A. Chantelauze, S. Staffi, and L. Bret, https://www.theverge.com/2017/9/21/16335164/pierre-auger-observatory-cosmic-ray-galaxies-air-shower-particles

[1] Image by A. Chantelauze, S. Staffi, and L. Bret, https://www.theverge.com/2017/9/21/16335164/pierre-auger-observatory-cosmic-ray-galaxies-air-shower-particles

• X-Ray cross section depends on Z

• neutron cross section varies over periodic table

MARKUS KÖHLI Physikalisches Institut Heidelberg University

Courtesy: PSI

[1] Image by A. Chantelauze, S. Staffi, and L. Bret, https://www.theverge.com/2017/9/21/16335164/pierre-auger-observatory-cosmic-ray-galaxies-air-shower-particles

[1] Image by A. Chantelauze, S. Staffi, and L. Bret, https://www.theverge.com/2017/9/21/16335164/pierre-auger-observatory-cosmic-ray-galaxies-air-shower-particles

CRNS

More details please...

A REAL PROPERTY AND A REAL		

[2] Haungs, A. et al., "Energy spectrum and mass composition of high-energy cosmic rays." Rep. Prog. Phys., 66 (7) (2003)
[3] Heck, D. et al., "CORSIKA: A Monte Carlo code to simulate extensive air showers." FZKA 6019. Forschungszentrum Karlsruhe (1998)

Markus Köhli

[2] Haungs , A. et al., "Energy spectrum and mass composition of high-energy cosmic rays." Rep. Prog. Phys., 66 (7) (2003)

[5] Sato, T., "Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.", PLOS ONE 10(12) (2015)

MARKUS KÖHLI

Sea-level particle absorption lengths.

Particle	Length L (g/cm ²)		
Electrons	100		
Protons	110		
Pions	113		
Neutrons	136		
Muons and muon capture	261		

[4]

[2] Haungs et al., "Energy spectrum and mass composition of high-energy cosmic rays." Rep. Prog. Phys., 66 (7) (2003)

[4] Ziegler, J.F., "Terrestrial cosmic ray intensities." IBM Journal of Research and Development 42(1) (1998)

[5] Sato, T., "Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.", PLOS ONE 10(12) (2015)

[5] Andreasen, M. et al. "Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications." Vadose Zone Journal 16(8) (2017)

[5] Andreasen, M. et al. "Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications." Vadose Zone Journal 16(8) (2017) [6] Thomas, S.R. et al. "The 22-Year Hale Cycle in Cosmic Ray Flux -Evidence for Direct Heliospheric Modulation." Solar Physics 289(1) (2014)

MARKUS KÖHLI

Heidelberg University Physikalisches Institut

The Cosmic Neutron Basics

[5] Andreasen, M. et al. "Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications." Vadose Zone Journal 16(8) (2017)
[6] Thomas, S.R. et al. "The 22-Year Hale Cycle in Cosmic Ray Flux -Evidence for Direct Heliospheric Modulation." Solar Physics 289(1) (2014)
[7] Gaisser, T.K. "The Cosmic-ray Spectrum: from the knee to the ankle." Journal of Physics: Conference Series 47(1) (2006)

MARKUS KÖHLI

Neutrons in Calorimeters

Deposited Energy

[1] Anderson, D.F. et. al. "Proceedings Of The First International Conference on Calorimetry In High Energy Physics" (1991)
 [2] Schlepper, "Hadron Calorimeters" http://www.desy.de/~schleper/lehre/Det_Dat/SS_2018/06_lecture_calorimetry_HAD.pdf

The Cosmic Neutron Basics

[1] Image by A. Chantelauze, S. Staffi, and L. Bret, https://www.theverge.com/2017/9/21/16335164/pierre-auger-observatory-cosmic-ray-galaxies-air-shower-particles

The Cosmic Neutron Basics ------

MARKUS KÖHLI

Heidelberg University Physikalisches Institut

MARKUS KÖHLI

Historical References

Hendrick, L. D. and Edge, R. D., "Cosmic-ray neutrons near the Earth", Phys. Rev. Ser. II, 145 (1966)
 Kodama, M. et al., "Application of atmospheric neutrons to soil moisture measurement", Soil Sci., 140 (1985)

Markus Köhli	Physikalisches Institut	Heidelberg University
####「」」上来我的學家?」」上来我的學家?」」上来我的學家?」」上来我的學家?」」上来我的學家?」」上来我的學家?」」上来我的學家?」」上来我的學家?」」		

Thermal neutrons

Epithermal neutrons

MARKUS KÖHLI

Curiosity Rover

[2]

Trace Gas Orbiter

 W.C. Feldman, et. al "Global Distribution of Neutrons from Mars: Results from Mars Odyssey", Science 297 (5578) (2002), 75-78.
 http://exploration.esa.int/mars/48523-trace-gas-orbiter-instruments/?fbodylongid=2217

2002+

[1] Lawrence, D.J. et al., "Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles", Journal of Geophysical Research, 111 (2006) [2] http://www.tsgc.utexas.edu/spacecraft/lunar_prospector/ns.html

Rosolem, R. et al. "The Effect of Atmospheric Water Vapor on Neutron Count in the Cosmic-Ray Soil Moisture Observing System." J. of Hydrometeorology 14(5) (2013)
 McJannet, D. et al., "Field testing of the universal calibration function for determination of soil moisture with cosmic-ray neutrons." Water Resources Res. 50(6) (2014)

2015

- Neutron Transport Monte Carlo
- Voxel Engine
- Ray-Casting
- Cosmic Neutron Source Option
- written in C++
- linked against ENDF data bases

MARKUS KÖHLI

2015

Cosmic Neutron Propagation

dry land

Footprint

 ΜΑΡΚΗς ΚΌΗΗ	Dhusikalizahas Institut	Hoidelborg University
 WAKKUS KUHLI	Physikalisches Institut	neidelberg University
 		0 ,

water

2015

2015

@AGU PUBLICATIONS

WILEY

Heidelberg University

More V

MARKUS KÖHLI

Physikalisches Institut

Heidelberg University

WILEY

Detector Response Function

Heidelberg University

Intensity Function

Intensity Function Revised

CRNS

Examples and Recent Studies

[5] Andreasen, M. et al. "Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications." Vadose Zone Journal 16(8) (2017)

MARKUS KÖHLI		Physikalisches Institut	Heidelberg University
	***************************************		6

....

Markus Köhli

The Road Effect

Drip Irrigation

Schematical segment of the URANOS setup, total extent: 500 m

D. Li et al., to be published

In collaboration with Dazhi Li FZ Jülich

Lemon trees: 3 kg/m³ biomass 8 % of soil irrigated

Only a few percent change -> needs large sensor

Snow Water Equivalent

Heidelberg University Physikalisches Institut

Snow Water Equivalent

In collaboration with Paul Schattan Uni Insbruck

3D Laser scanner snow distribution measurements

P. Schattan et al., to be published

MARKUS KÖHLI

Neutron Detection

Basics

- No charge
- "Low" energies as low as thermal ($k_BT = 25 \text{ meV}$) MeV \longrightarrow neV

- No charge
- "Low" energies as low as thermal ($k_BT = 25 \text{ meV}$) MeV \longrightarrow neV

,converters'

20

0

40

Heidelberg University Physikalisches Institut

60

Atomic Number

80

100

MARKUS KÖHLI

Element		Reaction	CS at 25.2 meV
³ He	$^{3}\text{He}+n \longrightarrow$	$^{3}\text{H} + 764 \text{ keV} + p$	5327 b
⁶ Li	$^{6}\text{Li}+n \longrightarrow$	$^{3}\mathrm{H}+\alpha+4.78\mathrm{MeV}$	940 b
¹⁰ B	$^{10}B+n \longrightarrow$	$^{7}\text{Li} + \alpha + 2.79 \text{ MeV} (6 \%)$	3837 b
	$^{10}B+n \longrightarrow$	$^{7}\text{Li}^{*}+\alpha + 2.31 \text{ MeV} (94 \%)$	
¹⁵⁵ Gd	$^{155}Gd+n \longrightarrow$	156 Gd+ $\gamma + e^- + (30 - 180)$ keV	61000 b
¹⁵⁷ Gd	$^{157}Gd+n \longrightarrow$	$^{158}\text{Gd} + \gamma + e^- + (30 - 180) \text{ keV}$	254000 b
²³⁵ U	235 U+n \longrightarrow	fission fragments $+ 160 \mathrm{MeV}$	584 b

Markus Köhli

0.00		
		I laidalhang I Iniyansity
	MARKUS KOHLI Physikalisches Institut	Heidelberg University

CS vs. absorption coefficient

Langford et al., "Event Identification in 3He Proportional Counters Using Risetime Discrimination" arXiv:1212.4724v1

Markus Köhli	Physikalisches Institut	Heidelberg University
"你?",这些我的想象不了,这些我的意思??""这些我的意思?""这些我的意思?""这些我的意思?""这些我的意思?""这些我的意思?""这些我的意思?""这些我的意思?""这		

Conversion in ⁶Li

[1] P.F. Mastinu et al., "A low-mass neutron flux monitor for the n_TOF facility at CERN", Braz. J. Phys. vol.34 no.3, 2004 [2] "A Compact Neutron Detector Based on the use of a SiPM Detector", IEEE Nuc. Spring Symp., 2008

MARKUS KÖHLI

 Physikalisches Institut	Heidelberg University	
 	0 ,	

Conversion in ¹⁰B

MARKUS KÖHLI

Iarkus Köhli	Physikalisches Institut	Heidelberg University	-
	 		51

Neutron Detection

The rise and rise of citatation analysis

MARKUS KÖHLI Physikalisches Institut Heidelberg University

Titan II Rocket in Launch Silo, Arizona State Museum

S

MARKUS KÖHLI Physikalisches Institut Heidelberg Universit	versity
---	---------

[1] http://www.saphymo.com/photos/ecatalogue/116-2/access-control-clearance-monitors-rcp-radiological-control-for-pedestrian.jpg

[2] http://cits.uga.edu/uploads/1540compass/1540images/_compass750/RPM1.jpg

 $\label{eq:control-clearance-monitors-rcp-radiological-control-for-pedestrian.jpg \end{tabular} is the second sec$

[2] http://cits.uga.edu/uploads/1540compass/1540images/_compass750/RPM1.jpg

MARKUS KÖHLI

MARKUS KÖHLI	Physikalisches Institut	Heidel

leidelbergUniversity

ESS Instrumentation

Instrument	Detector area	Wavelength range	Time resolution	Spatial resolution	
3.5.1	[m-]	[A]	μsj		
Multi-purpose imaging	0.5	1 - 20	1	0.001 - 0.5	
General purpose polarised SANS	5	4 - 20	100	10	
Broad-band small sample SANS	14	2 - 20	100	1	
Surface scattering	5	4 - 20	100	10	
Horizontal reflectometer	0.5	5 - 30	100	1	
Vertical reflectometer	0.5	5 - 30	100	1	
Thermal powder diffractometer	20	0.6 - 6	< 10	2×2	
Bi-spectral powder diffractometer	20	0.8 - 10	< 10	2.5×2.5	
Pulsed monochromatic powder diffractom.	4	0.6 - 5	< 100	2×5	
Material science & engineering diffractom.	10	0.5 - 5	10	2	
Extreme conditions instrument	10	1 - 10	< 10	3×5	
Single crystal magnetism diffractometer	6	0.8 - 10	100	2.5×2.5	
Macromolecular diffractometer	1	1.5 - 3.3	1000	0.2	
Cold chopper spectrometer	80	1 - 20	10		
Bi-spectral chopper spectrometer	50	0.8 - 20	10	The	
Thermal chopper spectrometer	50	0.6 - 4	10		
Cold crystal-analyser spectrometer	1	2 - 8	< 10		
Vibrational spectroscopy	1	0.4 - 5	< 10	PhD .	
Backscattering spectrometer	0.3	2 - 8	<		
High-resolution spin echo	0.3	4 - 25	100	10	
Wide-angle spin echo	3	2 - 15	100	10	
Fundamental & particle physics	0.5	5 - 30	1	0.1	
Total	282.6				ESS TDR 2013

Alternative detection technologies

31× boron-coated straws, 4.43 mm diameter each

Aluminum tube, 1.15" ID

[2] J. L. Lacy et al., "The Evolution of Neutron Straw Detector -Applications in Homeland Security", IEEE Transactions on Nucl. Science, 60,2 (2013)

[1] F. Piscitelli, "Boron-10 layers, Neutron Reflectometry and Thermal Neutron Detectors", PhD Thesis 2014

MARKUS KÖHLI

I. Stefanescu et al., "Development of a novel macrostructured cathode for large-area neutron detectors based on the 10B-containing solid converter", NIMA 727 (2013)

F. Piscitelli et al., "Novel Boron-10-based detectors for Neutron Scattering Science" arXiv:1501.05201v1 (2015)

New Detectors – 3D Silicon

[1] R.J. Nikolic et al. "Roadmap for High Efficiency Solid-State Neutron Detectors", Barry Chin Li Cheung Publications, 15 (2005)
[2] D.S. McGregor et al., "High-efficiency microstructured semiconductor neutron detectors that are arrayed, dual-integrated, and stacked ", Applied Radiation and Isotopes 70 (2012)

MARKUS KÖHLI

New Detectors – Time Projection

Spatial Projection

Time Projection

Edge Projection

Markus Köhli

A. Tremsin et al., "High-resolution neutron radiography with microchannel plates: Proof-of-principle experiments at PSI", NIM A, 605 (2009) A. Tremsin et al., "Efficiency optimization of microchannel plate (MCP) neutron imaging detectors. I. Square channels with 10B doping", NIM A, 539 (2005)

MARKUS KÖHLI

New Detectors - WLSF

MARKUS KÖHLI

Spatial Resolution

Max

The Jalousie Detector Concept for Powtex (FZJ @ FRM II, Munich) and DREAM (FZJ @ ESS, Sweden)

Ch. J. Schmidt, "The 10B-based Jalousie Neutron Detector", DENIM 2015

Physikalisches Institut He

Heidelberg University

Neutron Detection

CRNS Inhouse Developments

	The second se	

 Mappills Köllul	Haidalbarg University
 WARKOS KOHLI Physikalisches Institut	Heldelberg University
	0 ,

MARKUS KÖHLI		Physikalisches Institut	Heidelberg University
	***************************************		0 ,

:::

MARKUS KÖHLI	Physikalisches Institut	Heidelberg University
WHICK CO KOTTER	ritysikaliselies ilisticat	inclucious oniversity

Challenges:

- radiopure materials
- good background suppression
- independent 24/7 operation
 - over months and years
- low power consumption
- wireless data transmission

Microcontroller Readout Electronics

MARKUS KÖHLI

nCatcher HV unit

Improvements/Features:

- Low temperature dependence (Remaining drift can be corrected by the firmware)
- Display: RL, p, event info
- High resolution for environmental variables (especially pressure)
- Battery/voltage monitoring
- Multi-purpose RJ45 Connector
- (SDI-12 implementation to come)

Heidelberg University Physikalisches Institut

MARKUS KÖHLI	Physikalisches Institut	Heidelberg University

In collaboration with Heye Bogena and Jannis Jakobi FZ Jülich

Measurements @ Wüstebach (Eifel)

Measurements @ Fendt (Bavaria)

MARKUS KÖHLI

The largest CRNS Detector

First Data:

Standard Sensor:	600 /h
Heidelberg Rover:	18000 /h

Team: Jannis Weimar Fabian Allmendinger Matthias Janke Markus Köhli

MARKUS KÖHLI

Physikalisches Institut Heide

Heidelberg University

An interdisciplinary Collaboration

DFG FOR 2694

improve CRNS understanding revise improve use hydrological understanding state-of-the-art methods technology RS Remote NS Neutron Simulation Sensing VG Vegetation **HG**Hydrogeodesy GNSS-R HM Hydrological Modeling MC Massive Coverage DD **RV** Roving Detector Development **GW**Groundwater recharge

DFG Research Group

https://www.uni-potsdam.de/de/cosmicsense.html

Cosmic Sense

Markus Köhli

Neutron Physics across the scales (detection) and disciplines

Particle Physics Colloquium November12th 2019

Soil Moisture Measurements with Cosmic-Ray Neutrons

Physikalisches Institut

Ruprecht-Karls-Universität Heidelberg

Markus Köhli

AG Schmidt ANP-PAT