Soil Moisture measurement at the hectometer scale

using CRNS

for mobile applications

The Measurement Gap

via satellite remote sensing (optical, microwave)

~ 1 km

< 10 m

via local techniques (electrical resistivity, capacitance, etc) (even neutrons...)

[1] ESA SMOS (http://www.esa.int/Our_Activities/Observing_the_Earth/SMOS/Horn_of_Africa_drought_seen_from_space) [2] The Clay Research Group (http://www.theclayresearchgroup.org/images/ert.jpg)

The Measurement Gap

Cosmic Ray Neutron Sensing .CRNS.

Neutron Response to Water

3

Neutron Response to Water

active

small distinct domain **thermalization**

passive large area, diffusive

reflection

Neutron Response to Water

3

passive large area, diffusive **reflection**

ANNER LET B

HELMHOLTZ CENTRE FOR CENTRE FOR RESEARCH - UTZ

4

1 to a start

ELMHOLTZ

1013-004

ELMHOLTZ

000,004

6

How far do reflected neutrons travel?

NHORIZED CONTRACTOR

The Footprint in 2015

How far do reflected neutrons travel?

Köhli et Schrön et al.

COLOR

Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons Water Resources Research, **51**, 5772-5790

The Equipment

The CRNS Sensor

neutron pulse module (NPM)

datalogger and cell modem

bare³He tube (thermal detector)

moderated ³He tube (epithermal detector)

charge controller

maintenance-free battery (12V)

connection to external sensors (T, h), rain gauge, solar panel

The CRNS Sensor

ELMHOLTZ

GSM antenna 11 neutron pulse module (NPM) datalogger and cell modem bare³He tube (thermal detector) moderated ³He tube (epithermal detector) charge controller maintenance-free battery (12V)

M. Zreda et al. (CRNS Website)

connection to

external sensors (T, h), rain gauge, solar panel Ultra Rapid Adaptable Neutron-Only Simulation for Environmental Research

Physikalisches Institut Heidelberg University HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

URANOS

PODGADOS

9

Inhomogeneous Terrain

topography

COLLEGE

Inhomogeneous Terrain

<u>60</u>

Inhomogeneous Terrain

Mobile CRNS

UFZ Site Schäfertal

Local Effects

Local Effects

ODUBUS

-- Conventional, W^{conv}

-	Revised, W, (/	h, θ)	
	Condition	Humidity	Soil moisture
	Dry	h = 5 g m ⁻³	<i>θ</i> _v = 10 %
	Humid	h = 10 g m ⁻³	<i>θ</i> _v = 20 %
	Wet	h = 15 g m ⁻³	0 _v = 40 %

--- W^{*}_r average approximation (eq. B1)

Pool Transect

HODIL BORS

Pool Transect

Local Swimming Pool Effects

Intensity

TCENTRE FOR CONTRETOR

AND DELET

I .			E E
neutron sour	ce layer		=. N
air			39
detector laye	r		0.25
air			1.0
soil $ heta_{field}$	road $ heta_{road}$ soil	soil $ heta_{field}$	0.2
	θ = 5 % road width w	x in m	2.8

PERMIT

▲ in m

39

0.25

1.0

0.2

2.8

x in m

HELMHOLTZ CENTRE FOR CENTRE FOR CENTREMENTAL RESEARCH - STE

HODIL BORS

[1] https://www.meinromulus.de/ratgeber-community-rom/meilensteine/die-via-appia-eine-wichtige-handelsstrasse [2] http://chregu.veloblog.ch/post/94/2145

CONTRACTOR

CONTRACTOR

Road Experiments

15

HODOLEONS

Ф

Road Experiments

15

a **Ex B: Parallel tracks** at Sheepdrove Farm

ADDRESS OF

b **Ex B: Observed vol. soil moisture** in %

🚯 🛛 Road I

Road Experiments

15

a **Ex B: Parallel tracks** at Sheepdrove Farm

ADDRESS OF

b **Ex B: Observed vol. soil moisture** in %

Mobile CRNS

Mobile CRNS

The Measurement Gap

HODIL BORS

The Measurement Gap

And now here

Cosmic-Ray Neutron Sensing

Cosmic-Ray Neutron Sensing

- provides an average soil moisture measurement over several hectares and 0.5 m in depth
- can be understood by Monte-Carlo transport modelling
- road effect, small scale variations, inhomogeneous soil moisture patterns can now be corrected

Outlook:

Cosmic-Ray Neutron Sensing

- provides an average soil moisture measurement over several hectares and 0.5 m in depth
- can be understood by Monte-Carlo transport modelling
- road effect, small scale variations, inhomogeneous soil moisture patterns can now be corrected

- development of larger detectors for mobile sensing
- application in **heterogeneous** environments
- snowpack monitoring

