A343-2

Messcontroller

1.	FUN	KTION	2
	1.1.	DATENBLATT	. 2
	1.1.1		
	1.1.2		
	1.1.3	=	
	1.1.4	· · · · · · · · · · · · · · · · · · ·	
	1.1.5	Stromversorgung	. 2
	1.2.	BLOCKDIAGRAMM	. 3
	1.3.	BESCHREIBUNG.	. 3
2.	BET	TRIEB	4
	2.1.	KONFIGURIERUNG	
	2.1.1		
	2.1.1.	1	
	2.2.	BEDIENUNG	
	2.3.	INTERFACE	
	2.4. 2.4.1		
	2.4.2		
	2.5.	BEFEHLE	
	2.6.	DIGITAL IO	
_			
3.	FER	TIGUNG	6
	3.1.	MECHANIK	. 6
	3.1.1	. Frontplatte	. 6
	3.1.2	C. Gehäuse	. 6
	3.2.	ELEKTRONIK	. 6
	3.2.1	. Schaltbild	. 6
	3.2.2	P. Bestückungsplan	. 6
	3.2.3	Stücklisten	. 6
	3.2.4	!. Display	. 6
	3.2.5	. Controller	. 6
4.	TES'	T	7
	4.1.	AUFBAU	
	4.2.	ERGEBNISSE	. 7
5.	MOI	DIFIKATION	8
	5.1.	VERSION	. 8
6.		HANG	
		RALISTEINLINTERI AGEN	9

1. FUNKTION

1.1. Datenblatt

1.1.1. Anwendung

Bei dem **A343-2** handelt es sich um einen vielseitig einsetzbaren Messcontroller. Das Gerät bietet folgende Mess- und Steueranschlüsse:

ADC 8 Eingänge über Lemobuchsen ADC* 8 Eingänge über Flachbandkabel DAC 8 Ausgänge über Lemobuchsen

DIG 8 IO über Lemobuchsen (mit Zusatzmodul auch ECL o. NIM-Pegel)

DIG* 8 IO über Flachbandkabel

Die zugehörigen Ein- und Ausgänge befinden sich alle an der Frontplatte, ebenso die Funktionstasten und ein LCD-Display zur Messwert- und Modusanzeige.

Über die vorhandene **RS232**- Schnittstelle bzw. **USB** läßt sich das Modul extern auslesen, steuern bzw. programmieren. Zusätzlich verfügt das Modul noch über ein **CAN**-Interface. Alle Interfaceanschlüsse befinden sich an der Modulrückseite.

1.1.2. Daten

Parameter	Bereich
8 Kanäle ADC, 12Bit, Unipolar/Bipolar, SingleEnded/Differential	-1010V; typ. 16KΩ
	AS12 Impedanzwandler: typ. >
	1GΩ, typ. 45pF
ALTERNATIV	04.095V; -2.047+2.046V
8 Kanäle ADC, 12Bit, Unipolar/Bipolar, SingleEnded/Differential	typ. $> 1G\Omega$, typ. 45pF
8 Kanäle ADC*, 10Bit	04.095V
	>5GΩ, typ. 3050pF
8 Kanäle DAC, 12Bit	-10+10V, 1,25mA
8 Kanäle DIG, Input und Output	TTL
8 Kanäle DIG*, Input und Output	TTL

1.1.3. Besonderheiten

Steuerung über MP35 Microcontroller.

1.1.4. Aufbau

2/12 NIM

1.1.5. Stromversorgung

Spannung	Strom	Leistung
+6V	230mA	1.38W
-6V	(Submodul)	
+24V	20mA	0.5W
-24V	20mA	0.5W
Gesamt		2.4W

1.2. Blockdiagramm

1.3. Beschreibung

2. Betrieb

2.1. Konfigurierung

2.1.1. Jumper

Betriebsart	Jumper	Bemerkung

2.2. Bedienung

Nach dem Einschalten wird im LCD-Display kurzzeitig der Gerätename, Seriennummer (#) und die Softwareversionsnummer angezeigt. Anschließend geht das Modul in den Anzeigemodus **ADC**. Im Display wird der **Mode**, **Kanalnummer** sowie der zugehörige **Meßwert** angezeigt.

Mit den Tasten an der Frontplatte lassen sich folgende Einstellungen vornehmen:

Display	Tasten	Bedeutung
ADC	Mode	-> ADC*
	+	Kanal=Kanal+1
	-	Kanal=Kanal-1
ADC*	Mode	-> DAC
	+	Kanal=Kanal+1
	-	Kanal=Kanal-1
DAC	Mode	-> DIG
	+	Kanal=Kanal+1
	-	Kanal=Kanal-1
	Mode, +	Wert(Kanal)=Wert(Kanal)+1
	Mode, -	Wert(Kanal)=Wert(Kanal)-1
	+, -	Wert(Kanal)=0V
DIG	Mode	-> DIG*
	+	Kanal=Kanal+1
	-	Kanal=Kanal-1
	Mode, +	Bit (Kanal)= 1
	Mode, -	Bit (Kanal)= 0
DIG*	Mode	-> ADC
	+	Kanal=Kanal+1
	-	Kanal=Kanal-1
	Mode, +	Bit (Kanal)= 1
	Mode, -	Bit (Kanal)= 0

2.3. Rücksetzen des Modules (RESET)

Die Tasten "Mode" und "+" gedrückt halten und die Taste "-" kurz betätigen.

2.4. Interface

2.4.1. RS232:

9600 Baud; 8Bit, 1 Startbit, 1 Stopbit, No Parity

Die Anschlüsse Transmit und Receive können durch Umstecken der Jumper J4 und J5 auf der Platine getauscht werden.

2.4.2. USB

Das Modul kann über die generischen COM-Treiber der Firma FTDI betrieben werden (www.ftdi.com).

2.5. Befehle

?	<cr></cr>	Help
\mathbf{A}	<cr></cr>	Read ADC (12bit) all
a n	<cr></cr>	Read ADC (12bit) channel \mathbf{n} (n = 07)
В	<cr></cr>	Read ADC* (10bit) all
b n	<cr></cr>	Read ADC* (10bit) channel \mathbf{n} (n = 07)
Cn, v	<cr></cr>	Set DAC (12bit) channel n (n = 07, ν = +1010)
c n	<cr></cr>	Read DAC (12bit) channel $\hat{\mathbf{n}}$ (n = 07)
P n , 1/0	<cr></cr>	Set DIG (P1) channel \mathbf{n} (n = 07)
p n	<cr></cr>	Get DIG (P1) channel \mathbf{n} (n = 07)
Qn, 1/0	<cr></cr>	Set DIG* (P5) channel \mathbf{n} (n = 07)
q n	<cr></cr>	Get DIG* (P5) channel \mathbf{n} (n = 07)
Ď p,text	<cr></cr>	Display Text at position p (0=unlock)
d	<cr></cr>	Get Keystate (1="Mode", 2="+", 4="-")
\mathbf{L}	<cr></cr>	Lock Keys
1	<cr></cr>	Unlock Keys
M n	<cr></cr>	Set Mode
		0= ADC*; 1=ADC; 2=DAC, 3=DIG*, 4=DIG
m n	<cr></cr>	Get Mode
K n	<cr></cr>	Set Channel (Mode) (07)
k n	<cr></cr>	Get Channel (Mode)
X m	<cr></cr>	Set Conversion Mode for AD186 (ADC)
		0= Bipolar, Differential
		1= Bipolar, Single Ended
		2= Unipolar, Differential
		3= Unipolar, Single Ended
X	<cr></cr>	Get current Conversion Mode for AD186 (ADC)

Alle Befehle lassen sich auch nacheinander in einer Zeile eingeben, wenn sie durch Komma getrennt sind:

z.B. Befehlsfolge: C0,8,a0,b7,P0,0,P1,1,Q5,0,p3,q4 <cr>

Aktion: DAC CH0 auf 8Volt setzen ADC CH0 Daten lesen ADC* CH7 Daten lesen DIG CH0 auf 0 setzen DIG CH1 auf 1 setzen DIG* CH5 auf 0 setzen DIG CH3 Status lesen DIG* CH4 Status lesen

2.6. Digital IO

Die Digital-Ports können sowohl gesetzt, wie auch gelesen werden. Falls ein Portbit von außen verändert und gelesen werden soll, muß es vorher auf "1" gesetzt werden!

3. FERTIGUNG

3.1. Mechanik

3.1.1. Frontplatte

Frontplatte A343F Mechanik A343

3.1.2. Gehäuse

Steckerbelegung A343F

3.2. Elektronik

3.2.1. Schaltbild

Schaltplan A343 (2 Blatt)

3.2.2. Bestückungsplan

Bestückungsplan A343

3.2.3. Stücklisten

Stückliste A343

3.2.4. Display

LCD - Display DV – 0802 Leiterplatte A320SW(Tasterboard)

3.2.5. Controller

Controllermodul MP46-0 oder MP35-1 (ohne CAN - Funktion).

4. TEST

4.1. Aufbau

4.2. Ergebnisse

5. MODIFIKATION

5.1. Version

6. ANHANG

6.1. Bausteinunterlagen

MAX197 DAC8420

AD186