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MC Simulation of Direct Photon HBT Correlations in Central Pb+Pb Col-
lisions at

√
s =2.76 TeV

Hanbury-Brown Twiss (HBT) interferometry is known to be a powerful tool to explore
space-time dimensions of a Quark-Gluon Plasma created in heavy ion collisions. Ex-
perimental measurements of two-photon correlations at CERN SPS have been reported
by the WA98 collaboration [1]. Within this thesis, the feasibility of a measuring HBT
correlations of photons originated from a static thermal source with the ALICE detec-
tor at the LHC was studied. Since already existing HBT processors are not suitable
for massless particles, an algorithm is presented that enables the simulation of photon
pair correlations by making use of a new approach of detecting exactly one correlated
photon pair per event applying the extracted experimental parameters. The significance
of HBT correlations was estimated having regard to a huge background due to π0 de-
cay photons. By extracting the correlation strength, the fraction of direct photons was
determined and compared to theoretical calculations. The influence of various detector
and photon reconstruction constraints on the significance was analyzed by repeating the
measurements with and without accounting for those effects.

MC Simulation von HBT Korrelationen direkter Photonen in zentralen
Pb+Pb Kollisionen bei

√
s =2.76 TeV

Hanbury-Brown Twiss (HBT) Interferometrie bietet eine mächtige Möglichkeit, Infor-
mationen über die Raum-Zeit Entwicklung des Quark-Gluonen Plasmas zu erhalten.
Photon-Photon Korrelationen wurden bereits experimentell am CERN SPS Experiment
von der WA98 Kollaboration gemessen [1]. Im Rahmen dieser Bachelorarbeit wurde die
Machbarkeit einer Messung von HBT Korrelationen von Photonen, die nicht aus Hadron
Zerfällen entstehen, mit dem ALICE Detektor am LHC untersucht. Da die bereits im
verwendeten Analyse-Framework existierenden HBT Prozessoren für masselose Teilchen
ungeeignet sind, wurde ein Algorithmus entwickelt, der die Simulation von Photon-
Photon Korrelationen ermöglicht. Dabei wurde der Spezialfall betrachtet, dass genau
ein Paar korrelierter direkter Photonen pro Event gemessen wird. Als Parameter für die
Simulation wurden experimentelle Ergebnisse der WA98 Kollaboration verwendet. Die
Signifikanz von HBT Korrelationen direkter Photonen wurde unter der Berücksichtigung
des auftretenden hohen Untergrundes auf Grund von π0 Zerfallsphotonen abgeschätzt.
Durch Bestimmung der Korrelationsstärke wurde der Anteil direkter Photonen ermit-
telt und mit theoretischen Vorhersagen verglichen. Der Einfluss verschiedener Detektor-
und Photon Rekonstruktions-Eigenschaften auf die Signifikanz wurde untersucht indem
die Simulationen unter Berücksichtigung bzw. Nicht-Berücksichtigung dieser Effekte
wiederholt wurde.
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Chapter 1.

Introduction

The search for properties of the Quark-Gluon-Plasma (QGP), a deconfined phase of
matter where quarks and gluons are free of their usual hadronic boundaries, stand among
the most challenging as well as rewarding persuits of high energy nuclear physics today.
Recent experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and
the Large Hadron Collider (LHC) at CERN give evidence to the existence of photons
of low transverse momenta (pT <3 GeV/c) which follow a thermal spectrum [6] and are
not originated from hadronic decays. These observations shift the focus to even more
interesting questions about the time evolution of the QGP.

It is expected that the quantum statistical correlations due to Hanbury Brown-Twiss
(HBT) interference between these photons will provide valuable inputs for these inves-
tigations [12].
Theoretical investigations of the nature of photon correlations for relativistic heavy
ion collisions where a QGP may be formed have been carried out by several authors
[14, 15, 22]. Since photon interferometry in an experimental environment is faced with
considerable difficulties due to the huge background of decay photons, so far only one
measurement of direct-photon correlations in central Pb+Pb collisions has been reported
by the WA98 collaboration at CERN SPS [1] at

√
s =158 AGeV.

It is expected that such experiments will have higher possibility of success at LHC en-
ergies (

√
s =2.76 TeV) where a larger initial temperature is expected. Moreover, with

ALICE and its Time Projection Chamber (TPC) and Inner Tracking System (ITS) a
heavy ion experiment is available that provides a unique momentum resolution especially
for low transverse momenta [10].

This thesis presents a feasibility study for a measurement of photon-photon correlations
with the ALICE detector. The significance of a two-photon HBT signal is estimated in
the invariant mass spectrum of π0 → γγ decays which are the primary source of decay
photons with a typically amount of ∼= 90% [8]. The HBT processors that are already
existing in the used analysis framework only work for charged particles and particles
with mass. Thereby a new algorithm has been developed that is able to simulate HBT
correlations of photon pairs under the assumption of the special case that exactly one
correlated photon pair is detected per event.
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Chapter 1. Introduction

After the theoretical background of the QGP, direct photons and HBT interferometry
are explained briefly, the developed algorithm is described step-by-step in a detailed
manner.
In order to illustrate the MC simulation, direct photon HBT correlations are first ana-
lyzed without adding any decay photons. Thus, the input parameters of the simulation
can be obtained that reproduce correlation functions which are similar to the ones ex-
tracted in the WA98 experiment.
Neutral π0 decays are added to the simulation to study the influence of a huge back-
ground due to decay photons on the obtained correlation function. In order to simulate
an experimental setup, various detector- and photon reconstruction constraints are im-
plemented step-by-step. Thereby the impact of these constraints on the significance of
the HBT signal can be investigated.
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Chapter 2.

Theoretical Background

2.1. The Quark-Gluon-Plasma

High energy physics describes the strong force in terms of elementary particles (quarks)
interacting through the exchange of gauge bosons (gluons). The asymptotic freedom
states that the effective coupling constant of Quantum Chromodynamics (QCD) falls
with increasing momentum transfer q2. In a thermal medium, the characteristic momen-
tum transfer between particles is of the order of the temperature. Under low temperature
conditions, quarks are confined in hadrons. Increasing the temperature or baryon den-
sity would cause nuclei to deconfine and a hadron gas is formed. After further heating
or compressing, this hadron gas melts down to a strong interacting system of quarks and
gluons, the Quark-Gluon-Plasma (QGP).

It is believed that such a phase of matter has been existed in the early stage of our
universe until 10−5 s after the Big Bang [16]. Today, deconfined matter only exists in
neutron stars, super novae or artificially created in the laboratory. The best opportu-
nity for recreating the conditions of a QGP is provided by relativistic nucleus-nucleus
collisions such as Au+Au or Pb+Pb collisions. Such experiments have already been
performed at SPS [4] and RHIC [5].

2.2. Direct Photons

In relativistic heavy-ion collisions direct photons is used to mean photons not originated
from hadron decays. Observing direct radiation from a QGP state has been a central
part of the motivation to measure photon production in relativistic heavy-ion collisions.
Direct photons are created throughout the whole lifetime of a heavy-ion collision, so
that the measurement of them mainly serves two interests [8]:

• the study of prompt photon production to learn about hard processes in the dense
QGP medium

3



Chapter 2. Theoretical Background

• the understanding of the thermal properties of the early phase of the reaction from
thermal photons

While their identification is very difficult, especially at low transverse momenta, because
of the huge background from decay photons, direct photons do not interact strong, thus
they provide unique and unperturbated information on the earliest stages of the collision.
In the low pT domain (pT <3 GeV/c), the thermal photons dominate the spectrum.
There are several sources of thermal photons, including the early radiation from the
equilibrated QGP or the later radiation of the hot hadron gas [8].
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Figure 2.1.: Direct Photon Spectrum [9] for the 0− 40% most central events. For inves-
tigating thermal photons with transverse momenta pT <3 GeV/c the expo-
nential fit will be extrapolated towards lower pT .

As shown in Figure 2.1 the low pT (pT <3 GeV/c) domain of the spectrum of the 0−40%
most central events can be described by a thermal spectrum:

1

2πNev.

d2N

pTdpTdy
∝ exp (−pT

T
) (2.1)

where y is the rapidity and Nev. is the total number of measured events. The temperature
in this kinematic range can be extracted from the fit to T = (0.304± 0.051) GeV/c.
As this analysis investigates direct photons with transverse momenta pT <3 GeV/c,
this fit function will be extrapolated towards lower pT and used for generating thermal
photons in a MC simulation. Since the simulation has been performed before the above
preliminary plot was published, a slope of T =0.266 GeV/c has been used instead. This
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Chapter 2. Theoretical Background

parameter is substantially larger than the temperature obtained in central Au+Au at√
s =200 GeV collisions at PHENIX where the slope of the thermal spectrum has been

extracted to T = (0.220 ± 0.020) GeV/c [6, 7]. In the case of central Pb+Pb collisions
at
√
s =2.76 TeV a much higher temperature is expected. Which is why a parameter

of T =0.266 GeV/c was chosen. According to Figure 2.1 this guess agrees within 1σ
with the obtained temperature of T = (0.304 ± 0.051) GeV/c so that the pT spectrum
used in the MC simulation of this analysis describes the observed one to a reasonable
accuracy.
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Chapter 3.

Hanbury Brown-Twiss (HBT)
Interferometry

Historically Hanbury Brown-Twiss (HBT) interferometry was proposed and developed
by Hanbury-Brown and Twiss in the 1950’s as a method to determine the dimension of
distant astronomical objects. They applied the method to a measurement of the angular
diameter of the star Sirius [23]. A few years later, the same technique has been to pion
pairs emitted from proton-anti proton collisions [25].
By then HBT interferometry is known to be a powerful tool to explore space-time di-
mensions of the hot zone created in heavy ion collisions. It is expected that the quantum
statistical interference between emitted identical particles will provide valuable inputs
for these investigations [20, 35].
Since these hadronic correlations reflect the space-time dimensions of the source at freeze-
out time, further complementary information can be obtained from direct photon-photon
correlations. Photons are assumed to be emitted mostly from the central hot zone and
reflect the history of the hottest part of the collision.
There are some further advantages of using photons for such studies. They are free
from distorting effects like the re-scattering and Coulomb interaction. Therefore, HBT
parameters can be measured in the photon channel with smaller systematic errors [14].
Unfortunately, photon interferometry is faced with considerable difficulties due to the
small fraction of direct photons in comparison to the huge background of photons pro-
duced in meson decays (particularly π0 → γγ and η → γγ).
The following sections present some basics of HBT interferometry, before both a one-
and three-dimensional parametrization of the two-photon correlation function are dis-
cussed.

3.1. Basics of Intensity Interferometry

Intensity interferometry compares, in contrast to amplitude interferometry, the intensity
of two or more particle wave functions. While amplitude interferometry can only be used

7
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Figure 3.1.: Setup of an HBT intensity interferometry experiment. Since we cannot
distinguish between the two situations (black and red) both amplitudes have
to be added.

for coherent sources, HBT is only meaningful with an incoherent source.

The following derivations should give a brief introduction into the theoretical formalism
of HBT correlations in high energy physics. A very detailed theoretical review can be
found in [12].
Consider a source with a density function ρ(r), emitting two identical particles at space-
time points r1 and r2, as shown in Figure 3.1. Their four momenta p1 and p2 are
measured by some detectors at points A and B.
The HBT effect means that a correlation function C2 defined as

C2(p1, p2) =
P (p1, p2)

P (p1) ·P (p2)
(3.1)

is greater than unity for some values of p1 and p2. P (p1, p2) and P (p1,2) are the two-
and one-particle probabilities of observing events with particles of specific momenta.
Suppose also that a particle with momentum pi is detected at the space-time point xi.
In order to receive a more detailed description of this scenario we have to make the
following assumptions:

• The emission of both particles is uncorrelated, i.e., that the two-particle space-time
distribution of the emitting source ρ(r1, r2) can be written as the product of the
single-particle emissions, ρ(r1, r2) = ρ(r1)ρ(r2).

• The emitted particles propagate as free particles after their emission, i.e., that
they can be represented by plane waves [22]:

Ψi(pi) = N(pi) · eipi(xi−ri) (3.2)

where N(p) is a normalization constant only dependent on p and ri is the produc-
tion point of the particle.

These assumptions allow us to write

P (p1, p2) =

∫
|Ψ12(r1, r2;x1, x2)|2 · ρ(r1)ρ(r2)d4r1d

4r2 (3.3)

8
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with the two-particle wave function:

Ψ12(r1, r2;x1, x2) =
1√
2

[
eip1(x1−r1)eip2(x2−r2) + eip1(x1−r2)eip2(x2−r1)

]
(3.4)

To get the two-particle correlation function C2 one has to define the denominator of
equation 3.1. The single particle distributions P (pi) are given by:

P (pi) =

∫
|Ψi(ri;xi)|2 · ρ(ri)d

4ri (3.5)

with the wave function Ψi(ri;xi) defined in equation 3.2.
The correlation function C2 is then given by the following expression:

C2(p1, p2) = C2(q) = 1 + |F12|2 (3.6)

where

|F12| =
∫
d4xρ(x)eiqx; q = p1 − p2 (3.7)

Here, q is the momentum difference of the two particles, also called the relative momen-
tum.
As a consequence of the symmetric assumption in the wave function of equation 3.4,
identical bosons favor small relative momenta q compared to nonidentical particles. The
measurement of the correlation function C2 provides insight to the (single-particle) emit-
ting source function ρ(r) through its Fourier-transform. One usually assumes the shape
of ρ(r) and checks this against experimental data [14].
Since various experiments showed that C2(q = 0) is considerably smaller than 2 [22],
equation 3.6 has been modified by introducing the so called correlation strength λ ∈
(0, 1), which gives the fraction of pairs of identical particles which appear to interfere.
After introducing this parameter, the correlation function can be written as

C2(p1, p2) = C2(q) = 1 + λ · |F12|2 (3.8)

If we consider two emitted photons, we have to take into account the spin of the photons.
It was shown in [15] that an accurate treatment of the current conservation relations
leads to the following expression for the correlation strength for photons:

λ =
1

2
(3.9)

The correlation strength λ equals 1/2 for a fully chaotic source and 0 for a fully coherent
source.
This expression has lead to discussions for years, but since C2(q) is a Lorentz scalar
and it is impossible to construct a dimensionless Lorentz scalar from two massless four-
vectors, λ can only be a constant [14].

9
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Under the assumption of a fully chaotic photon source, λ is a measure of thermal photons
NDirect
γ vs. the total inclusive photon yield NTotal

γ = NDirect
γ +NDecay

γ [1, 18], where the
decay photons are assumed to be emitted mostly from neutral π0 → γγ decays.
The ratio of the obtained correlation strength λ and the assumed correlation strength
λin = 1/2 of the fully chaotic thermal photons is given by:

√
λ

λin
=
√

2λ =
NDirect
γ

NDirect
γ +NDecay

γ

=
NDirect
γ

NTotal
γ

(3.10)

By measuring the total photon yield NTotal
γ one can obtain the fraction of direct photons

from the intercept of C2 on the y-axis [1].

3.2. Parametrization of the Correlation Function for
Direct Photons

Equation 3.8 states a very general formulation of the correlation function. Assuming
that the original source density distribution ρ(r) is a Gaussian distribution, its Fourier
transform will also be a Gaussian, thus the correlation function will form a Gaussian
distribution, too [31].

3.2.1. Three-Dimensional Parametrization

The results for the correlation function C2(q) are best discussed by using so called “out-
side-long” coordinates, also known as “Bertsch-Pratt” coordinates. As shown in Figure
3.2, the relative three-momentum of both photons ~q = ~p1 − ~p2 gets decomposed into
outward (qout), sideward (qside) and longitudinal (qlong) components.
In order to transform the coordinate system it is suitable to introduce the average three
momentum k of both photons:

~k =
1

2
(~p1 + ~p2) (3.11)

The “out” component qout is the projection of ~q onto the direction of the pair transverse
momentum ( ~pT1 + ~pT2). qlong is the component of ~q along the beam direction and qside is
the projection of the relative momentum onto the third perpendicular direction.

After defining the difference and the average of the transverse momenta pT1 and pT2 ,

~qT = ~pT1 − ~pT2
~kT =

1

2
( ~pT1 + ~pT2) (3.12)

we can transform [36, 37] the components of ~q.
The reference frame most commonly used for this purpose is the so called Longitudinal
Co-Moving System (LCMS), where the longitudinal momentum of the pair vanishes:

10
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qout

qside

qlong

R
si
d
e

R lo
ng

Rout

p1

p2

q

Figure 3.2.: In the Longitudinal Co-Moving System (LCMS) the relative momentum ~q
gets decomposed into outward, sideward and longitudinal coordinates [18].
The

pLCMS
z1

+ pLCMS
z2

= 0 (3.13)

The conversion between the lab frame and the LCMS frame can be done as follows [38].
First one needs the necessary longitudinal velocity of the LCMS frame so that relation
3.13 holds:

βz =
pz1 + pz2
|~p1|+ |~p2|

(3.14)

Now the momenta of each photon in the lab frame are boosted by βz:

pLCMS
x = px; pLCMS

y = py (3.15)

pLCMS
z = γz · (pz − βz · ~p) ; γz =

1√
1− β2

z

(3.16)

The three coordinates of the relative momentum ~q can now be calculated by:

11
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qout =
~qT · ~kT∣∣∣ ~kT ∣∣∣ (3.17)

qside =
| ~pT1 × ~pT2 |∣∣∣ ~kT ∣∣∣ (3.18)

qlong = pLCMS
z1

− pLCMS
z2

(3.19)

In this coordinate system, the correlation function C2(q) can be approximated [36] by:

C2(qout, qside, qlong) = 1 + λ · exp
[
−
(
q2
outR

2
out + q2

sideR
2
side + q2

longR
2
long

)]
(3.20)

where the HBT radii parameters Rout, Rside and Rlong provide information about the
size of the extending system. In the language of Sinyukov [29] this size can be termed as
the “region of homogeneity”, i.e. the region from which particle pairs with momentum
p are most likely emitted.

3.2.2. One-Dimensional Parametrization

Since measuring the HBT correlations using a three-dimensional parametrization re-
quires very high statistics, from the experimental point of view it is much easier to
extract the source distribution over the invariant relative momentum qinv =

√
−q2.

A one-dimensional correlation function for photons can be constructed by [14]:

C2(qinv) = 1 + λ · e−R2
invq

2
inv (3.21)

where

qinv =
√
−(pµ1 − p

µ
2)2 =

√
(~p1 − ~p2)2 − (|~p1| − |~p2|)2

=
√

2 |~p1| |~p2| (1− cos θ)
(3.22)

In the case of massless particles qinv is equal to the pair invariant mass mγγ. Therefore
the one-dimensional measurement of the correlation function C2(qinv) can be used to
estimate the significance of two-photon correlations in the invariant mass spectrum.

Figure 3.3 shows some exemplary plots of C2(qinv), where Rinv and λ are varied.
However, the corresponding radius Rinv contains only averaged information about the
space-time dimensions. The actual two-photon correlation function C2 is decided by
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Figure 3.3.: The One-dimensional two-photon correlation function C2(qinv).(i) The cor-
relation strength λ can be obtained from the intercept on the y-axis.(ii) As
the radius grows, the width of the distribution gets smaller.

the range of the outward, sideward and longitudinal components of the momentum
difference. As even a given value of qinv will only provide a range of these momentum-
differences, the one-dimensional correlation function will be obtained by taking an av-
erage over the corresponding three-dimensional results. This will lead to an effective λ
which will not rise to 0.5, even if there were no decay photons.

3.3. Results of the WA98 Experiment at CERN

So far, the only experiment, which measured correlations of photons originated from
hadronic reactions and possibly quark matter, has been reported by the WA98 Collabo-
ration for central 208Pb+208Pb collisions at

√
s = 158 AGeV. The analysis presented in [1]

was performed on the 10% most central collisions with a total sample of 5.8×106 events.

As shown in Figure 3.4, the correlation function was calculated both for 0.1/c < kT <0.2 GeV/c
and 0.2/c < kT <0.3 GeV/c as the ratio of the distribution of photon pair invariant

relative momenta qinv. kT indicates the magnitude of ~kT . As it is typically done in
experimental constructions of the correlation function, the correlated numerator of eq.

13



Chapter 3. Hanbury Brown-Twiss (HBT) Interferometry

Figure 3.4.: The two-photon correlation function for average momenta 0.1 <
kT <0.2 GeV/c and 0.2 < kT <0.3 GeV/c. The solid line shows the fit
in the fit region used and the dotted line shows the extrapolation into the
low qinv region where backgrounds are large [1].

3.1 has been taken from photons from the same event. The denominator is used to be
the uncorrelated background distribution which is built by constructing pairs of photons
taken from different events (event mixing technique). The ratio was normalized to get
an equal number of photon pairs in the numerator and denominator.
The correlation function then has been fit with a one-dimensional Gaussian parametriza-
tion, as it is described in 3.2.2 and the invariant interferometric radii and correlation
strengths were extracted. The fit region does not include the very low qinv region, where
the rise of the correlation function is assumed to be superimposed by single hadron or
photon showers that are split into nearby clusters (cluster splitting) [1].
The following HBT parameters were obtained:

kT range λ Rinv [fm]

(1) 0.0028± 0.0004(stat.)±0.0006(syst.) 5.4± 0.8(stat.)±0.9(syst.)
(2) 0.0029± 0.0007(stat.)±0.0016(syst.) 5.8± 0.8(stat.)±1.2(syst.)

Table 3.1.: HBT correlation parameters for direct photons obtained by the WA98 col-
laboration for average momenta (1) 0.1 < kT <0.2 GeV/c and (2) 0.2 <
kT <0.3 GeV/c

The invariant interferometric radii Rinv were found to be similar to the ones obtained
in former π− correlation studies. This suggests that the direct photons of this kT region
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are emitted in the late, hadron gas, stage of the 208Pb +208 Pb collision.
Furthermore the correlation strength was used to extract the yield of direct photons
for kT <0.3 GeV/c. By applying equation 3.10 the ratio of direct photons to the total
number of photons was calculated to NDirect

γ /NTotal
γ

∼= 10%.
In ALICE a rate of NDirect

γ /NTotal
γ

∼= 5− 10% is assumed, thus a HBT analysis of direct
photons is expected to provide correlation strengths of the same magnitude.
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Chapter 4.

MC Simulation of Direct Photon HBT
Correlations

The following sections present a Monte Carlo method to simulate thermal Photons cor-
relations in AliRoot.
After a thorough description of the implemented algorithm, the significance of direct
photons is extracted when π0 decay photons are added. The obtained results are com-
pared to the ones from the WA98 experiment, listed in Table 3.1

4.1. Simulating Direct Photon HBT Correlations

As there is no HBT processor for direct photons yet implemented in the used analysis
framework (AliRoot), the first task was to develop a Monte Carlo simulator, which
adds photon-photon correlations to a given event generator.
The already existing and fully implemented AliGenHBTProcessor class only works
for charged particles and particles with mass, but no reasonable results were obtained
when trying to use the routine for photons. The method that is used in this generator
is based on random shifts of the particle three-momentum [40]. After each shift, a
comparison is made with the correlation function. The shift is kept if the χ2-test shows
better agreement. This process is iterated until satisfactory agreement is achieved.
Since this algorithm is very complex and suffers a long runtime it is not suitable to adopt
it for direct photon-photon HBT correlations.
Instead, a simpler method was designed that makes use of the following assumptions to
provide a rough estimate of the significance of photon correlations:

• All photons are generated according to a static thermal photon source.

• The simulation treats the special case that exactly two direct photons are emitted
and detected each event.

• Besides the photon correlations no correlations of other particles (e.g. π) are
contributing to the simulation.
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Chapter 4. MC Simulation of Direct Photon HBT Correlations

4.1.1. Description of the implemented Algorithm

The developed algorithm of simulating photon-photon correlations according to a given
two-photon correlation function C2 employs the three-dimensional parametrization de-
scribed in section 3.2.1.
The main idea is to generate one direct photon γ1 which fulfills the transverse momentum
pT , pseudo-rapidity η and azimuthal angle φ conditions for thermal photons. The second
photon then gets calculated on the basis of γ1 and a randomly picked (qout, qside, qlong)
set, which follows a distribution defined by the given three-dimensional correlation func-
tion C2(qout, qside, qlong).
The flow diagram shown in Figure 4.1 gives a rough overview of the single steps of the
simulation, which are presented hereafter in detail.
The simulation is divided into two main parts where the first part (red boxes) is respon-
sible for the generation of a distribution of ~q where the (qout, qside, qlong) set is picked
from. For this purpose the simulation makes use of coarse background histogram.
The second part (blue boxes) covers the actual generation of the HBT signal. Both
the final signal and background histograms are filled for different kT bins and the single
components of ~q can be projected.

1. Initialize Thermal Photon Generator
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Figure 4.1.: Flow diagram of the direct photon HBT simulation making use of the three-
dimensional parametrization of the two-photon correlation function C2(~q).
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1. Initialize Thermal Photon Generator:

The thermal photons are generated from a simple photon generator, which randomizes
the transverse momentum pT , the pseudo rapidity η and the azimuthal angle φ out of
the following distributions:

pT :
dN

dpTpT
∝ exp

(
−pT
T

)
, pT ∈ [pTmin

, pTmax ]

η : Uniformly distributed between (−ηmax, ηmax), ηmax = 0.9

φ : Uniformly distributed between (−π, π)
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Figure 4.2.: The simulated spectra slightly differ from the input distributions which are
indicated by the solid lines. The data points are provided by an exemplary
simulation of direct photons originated by the above generator in Nev. =
2 × 107 events. The distributions were normalized by the total number of
events and the corresponding bin width.

Figure 4.2 shows the input (solid lines) and output distributions of pT , η and φ, where
photons with a kinematic window of pT ∈ [0.1, 1.0] GeV/c, |η| < 0.9 and φ ∈ (−π, π) are
generated. The single distributions were normalized by the number of events and the
corresponding bin width.
The pT spectrum most closely corresponds to the thermal spectrum that was put in.
The extracted temperature T of a fit in the low pT domain matches the input parameter
quite well (T =0.266 GeV/c).
The occurring deviations for η > 0.7 and φ are resulting from the two-photon correla-
tions.

2. Fill Coarse Background:

A coarse background histogram is generated from the photons given by the thermal
photon generator. After two photons with four-momenta p1 and p2 are generated, the
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Figure 4.3.: One-dimensional projections of qout, qside and qlong of the three-dimensional
coarse signal and coarse background histogram together with the corre-
sponding correlation functions C2(qi). C2(qi) are obtained by division of the
correlated spectra (red markers) by the uncorrelated spectra (blue markers).

relative momentum ~q = (qout, qside, qlong) gets calculated as presented in eq. 3.17-3.19
and filled into a three-dimensional coarse background histogram B(~q).

3. Fill Coarse Signal:

Once the coarse background is filled with a suitable number of entries to guarantee
appropriate statistics, the coarse signal histogram A(~q) is produced by multiplying the
coarse background bin by bin by the required three-dimensional two-photon correlation
function:

A(~q) = C2(~q) ·B(~q)

C2(~q) = C2(qout, qside, qlong) =

= 1 + λ · exp
[
−
(
q2
outR

2
out + q2

sideR
2
side + q2

longR
2
long

)] (4.1)

Figure 4.3 shows the one-dimensional projections of the three-dimensional coarse back-
ground and coarse signal histograms together with the corresponding projections of the
correlation function C2(~q). The sample is multiplied by a correlation function where the
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radii are Rout = Rside = Rlong =5.5 fm. When projecting on one axis, the other two
components were required to be within (-0.02,0.02) GeV/c.

4. Generate correlated Photons:

The actual HBT signal can now be produced by randomizing out of the coarse signal
distribution. While the first photon γ1 with four-momentum p1 is taken from the thermal
photon generator in (1.), the four momentum p2 of the second photon γ2 gets calculated
on the basis of the first one and a relative momentum ~q = (qout, qside, qlong) that is picked
randomly out of the coarse signal distribution.
For this calculation a numerical method included in the AliRoot class AliGenHBTosl
is applied.

5. Process Photons:

While the final three-dimensional signal histogram is filled by calculating the relative
momenta ~q according to equations 3.17-3.19 for each photon pair taken from the same
event, the background histogram is produced by taking both photons from different
events.
Besides filling the three-dimensional histograms, both the invariant relative momentum
qinv (eq. 3.22) and the average transverse momentum kT (eq. 3.12) are computed out
of the four momenta p1 and p2 of the two generated photons γ1 and γ2.
If one is only interested in entries within a given kT -range, the signal and background
histograms are filled after a cut in kT .

6. Project Histograms:

The one-dimensional distributions of the relative momentum components qout, qside, qlong
are obtained by projecting the three-dimensional signal and background histograms.

When projecting on one axis qi the other two components qj,k (i, j, k ∈ {out, side, long})
are required to be within a given momentum range [−∆qj,k

2
;

∆qj,k
2

], where ∆qj,k will now
be termed as projection width. The entries of the projection then get integrated over
this range.
The one-dimensional projections and their correlation functions are illustrated in Figure
??, where an exemplary simulation of 2 × 107 events is analyzed within a kT window
of kT ∈(0.2, 0.3) GeV/c. The one-dimensional two-photon correlation function is calcu-
lated by dividing the projection of the correlated signal histogram (red markers) by the
uncorrelated background histogram (blue markers).
Additionally the qinv histogram and its corresponding correlation function C2(qinv) are
illustrated on the right hand side.
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4.1.2. Analysis of the Coarse Signal

Before we start to simulate HBT photons it is reasonable to have a look at the method
which provides us with the one-dimensional projections of the three components of the
relative momentum ~q. Here it is suitable to investigate the generated three-dimensional
coarse signal histogram because the correlation functions C2(qi,j,k) i, j, k ∈ {out, side, long})
of the projected one-dimensional coarse histograms can be calculated without having
large statistics.
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Figure 4.4.: (i) The fits of the two-photon correlation function for five different projec-
tion widths ∆qj,k ∈[0.0, 0.08, 0.16, 0.24, 0.32] GeV/c. (ii) As the projection
width ∆qj,k increases, the correlation strength λi of the projected momenta
decreases. The shape of this dependency stays constant for all λ0

i and all
projections.

The one-dimensional distributions of the relative momentum component qi was calcu-
lated for different projection widths ∆qj,k ∈[0.0, 0.4] GeV/c. After projecting one axis qi
of the coarse background B(~q) and coarse signal histogram A(~q), the two-photon corre-
lation function C2(qi) of one component can be obtained by dividing the signal by the
background:

C2(qi) =
A(qi)

B(qi)
(4.2)

The results of the divisions are then be fitted by the one-dimensional functions of the
two-photon correlation function given in expression 3.20:

C2(qi) = 1 + λ · exp
(
−q2

iR
2
i

)
(4.3)

The input correlation strength for this analysis has been λ0 = 0.5, while all three radii
were set to Ri,j,k =5.5 fm.
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As shown in Figure 4.4 the amplitude, i.e. the correlation strength λ, of the fitted cor-
relation functions decreases with increasing projection width ∆qj,k. As the projection
width gets larger, a larger number of entries of the three-dimensional histogram are pro-
jected. The projection method integrates the values within the projection range. Hence,
the amplitude of the single projections gets smaller. The shape of this dependency stays
constant, no matter which input correlation strength λ0 is used.

This has to be kept in mind when obtaining the projections of the three-dimensional
two-photon correlation function for simulated HBT photons. In order to receive good
fits of the projections, a sufficiently large number of photon pairs with relative momenta
(qout, 0, 0), (0, qside, 0) and (0, 0, qlong) is required.
This is one reason of investigating the (averaged) one-dimensional parametrization of
the correlation function C2(qinv) instead of the three-dimensional one.
However, the radius parameter of the projected correlation function seems to be inde-
pendent of the projection width, wherefore it can be obtained if there is at least enough
statistics to gain a fit of the projection.

4.1.3. Analysis of HBT Photons

In the first run the HBT signal has been investigated without adding any decay pho-
tons for both an average transverse momentum window of 0.10 < kT <0.20 GeV/c and
0.20 < kT <0.30 GeV/c. These ranges were chosen as the photon interferometry experi-
ment reported by the WA98 collaboration utilized photon pairs of the same kT windows.
Since the implemented algorithm makes use of the three-dimensional parametrization of
the correlation function C2(~q), an explicit analysis of the HBT photon generation will
provide us with the input parameters Rout, Rside and Rlong that we have to choose to
obtain the invariant radii Rinv of the WA98 experiment.
For the transverse momentum windows kT ∈(0.1, 0.2) GeV/c and kT ∈(0.2, 0.3) GeV/c,
the WA98 collaboration assigned values of Rout =5.0 fm, 5.5 fm and 5.1 fm for the Rside

and 5.4 fm and 5.9 fm for the Rlong, based on the values obtained from pion interferom-
etry [17].
After running a simulation using some input values for Rout, Rside and Rlong, the re-
sulting HBT radii can be compared with the experimental results for each kT bin. This
way, one can check whether the performed assignment of the values obtained from pion
interferometry is justified.
In order to simulate the probabilistic selection of photons, a sufficiently large number
(2 × 107 events) of photons according to the thermal distribution was generated in a
transverse momentum window pT ∈[0.1, 2.5] GeV/c. This high number has been chosen
to guarantee good statistics and to receive small statistical errors. Especially the error
bars of the correlation function would be too high to gain reasonable fits, if Nev. is con-
siderably smaller. The photons were randomly distributed uniformly over the azimuthal
directions φ ∈ (−π, π) and the pseudo rapidity window η ∈ (−0.9, 0.9). Next, photon
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Figure 4.5.: Projections of the three-dimensional γγ correlation function (points) and
the respective fits (lines), simulated in 2 × 107 events, η < |0.9|, 0.1 ≤
pT ≤2.5 GeV/c, λ = 0.5, Ri =5.5 fm. When projecting on one axis, the
other two components were required to be within (−0.024, 0.024) GeV/c.
The kT range is indicated on the right-hand side axis.

pairs were sampled so that their average transverse momentum kT was in the appropri-
ate window. The correlation function was then calculated using expression 3.1. While
the correlated numerator has been taking from photon pairs from the same event, the
event mixing technique is applied to receive the uncorrelated denominator.

kT [GeV/c] Rout [fm] Rside [fm] Rlong [fm]

(0.1, 0.2) 5.1± 0.2 4.5± 0.3 5.6± 0.2
(0.2, 0.3) 5.4± 0.3 5.7± 0.6 5.9± 0.4

Table 4.1.: Extracted radii Rout, Rside and Rlong for two kT bins.

Before analyzing the results for Rinv, we should have a look on the three-dimensional
determination of the correlation function.
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The input parameters of the radii were set to Rout = Rside = Rlong =5.5 fm for an overall
transverse momentum range kT ∈[0.1, 2.5] GeV/c.
To receive a significant statistic, the one-dimensional projections of the two-photon corre-
lation function (see Figure 4.5) were generated within a projection width of ∆qj,k =0.048 GeV/c.
The results of the three-dimensional determination of the correlation radii are listed in
Table 4.1.

The reconstructed radii were found to differ slightly from the ones obtained from pion
interferometry by up to 10%, depending on the component and kT .
Since the projection width was chosen to be ∆qj,k =0.048 GeV/c, the obtained corre-
lation strengths λ cannot reach the input parameter 0.5. As shown in Figure 4.4(ii),
a maximal correlation strength of λ ∼= 0.3 is expected for this projection width. The
obtained results are in good agreement with the expected ones.

Let us now have a look at the results for the one-dimensional correlation function in
terms of the invariant momentum difference qinv. As shown in Figure 4.6 the results are
described to a reasonable accuracy by the form:

C2(qinv) = 1 + λ · exp (−R2
invq

2
inv)

where Rinv = (5.12± 0.14)fm and λ = 0.31± 0.01 for the transverse momentum window
0.10 < kT < 0.20 GeV/c and Rinv =(5.93± 0.21) fm and λ = 0.19 ± 0.01 for the trans-
verse momentum window 0.20 < kT <0.30 GeV/c.

However, there are some deviations of the fit for qinv <0.01 GeV/c. The two-photon
correlation function C2(qinv) gets calculated by division of a correlated signal histogram
by an uncorrelated background histogram. In the lower qinv domain both the signal and
the background gets very small, thus the signal bins are divided by very small numbers
and deviations from the theoretical correlation function are more pronounced in this
region. Another explanation of this deviation is given by the fact, that the simulation
accounts for momentum smearing due to Bremsstrahlung of the converted electrons.

The corresponding experimental results for Rinv obtained by the WA98 experiment are
(5.4± 1.7) fm and (5.8± 2.0) fm, respectively.
The predictions of Rinv are in reasonable agreement with the experimental findings
(within the errors).
Thus, the assignment of the radius parameters obtained from pion interferometry as it
has been done in the WA98 experiment are a justified assumption and can be adopted
to direct photon interferometry.
As the obtained results fit the experimental ones quite well, the overall input parameters
Rout = Rside = Rlong =5.5 fm are retained unchanged for further investigations.
Since no decay photons were added yet, the obtained values of λ cannot be compared.
However, the one-dimensional two-photon correlation function C2(qinv) approves the
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Figure 4.6.: The one-dimensional two-photon correlation function C2(qinv) for the
average transverse momentum windows of kT ∈(0.1, 0.2) GeV/c and
kT ∈(0.2, 0.3) GeV/c, assuming a fully chaotic source. Simulated in 2× 107

events within the kinematic windows of pT ∈[0.1, 2.5] GeV/c, η ∈ (−0.9, 0.9)
and φ ∈ (−π, π).

forecast that the effective correlation strength is considerably smaller than 1/2, even
if there were no decay photons. This effect occurs, when we average over different
projections of relative momentum, producing the same qinv.
Obviously, the correlation strength decreases with kT . Equation 3.22 of the invariant
relative momentum qinv can be rewritten in terms of ηi, φi and pTi of the two photons
(i ∈ {1, 2}) [18]:

qinv =
√

2pT1pT2 [cosh(η1 − η2)− cos(φ1 − φ2)] (4.4)

As qinv ∝
√
pTi , small values for qinv can be obtained only if pTi are quite small. For

larger values of pTi , the necessary η and φ bins would be too small to admit meaningful
statistics. Thus it is no wonder that the WA98 experiment utilized only photon pairs
having very low kT .
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4.2. Adding Decay Photons

The following sections present the obtained two-photon correlation functions after adding
decay photons originated from π0 → γγ decays, which are the primary source of decay
photons with a typically amount of ≈ 90% [8]. Other sources, including the decay
of the η (5 − 10%) and η′ and ω (on the order of 1% each) are neglected within this
simulation. A reasonable estimate of the significance of HBT correlations can be received
by accounting only for the π0 decay photons.
The simulation also considers various detector and photon reconstruction properties,
which are explained briefly. A run of the simulation of direct photon HBT correlations
plus π0 decay photons has been performed with and without some of these properties.
Thereby, the impact of the single detector properties on the HBT significance can be
analyzed. The results of these investigations are presented within a one-dimensional
analysis of the two-photon correlation function C2(qinv). Moreover, the final results are
compared with the experimental ones obtained in the WA98 experiment.

4.2.1. Experimental Technique

One method of reconstructing π0s is by detecting the photons of their primary decay
π0 → γγ (with a branching ratio of ∼= 98.8% [32]) via Photon Conversion:

π0 → γγ → e+e−e+e− (4.5)

The converted photons can be reconstructed by the Central Tracking System of ALICE.
Photon pairs with a (combined) pT are binned in pair invariant mass mγγ, which equals
the invariant relative momentum qinv in the case of massless particles, and the π0s appear
as a peak at mγγ = qinv = mπ0 ≈0.135 GeV/c2 on top of the combinatorial background.

In the MC simulation the π0 decay photons are added by making use of the PYTHIA6
[34] decayer class while having regard of the following constraints:

The geometrical acceptance of the detector is again given by the pseudo-rapidity range,
wherefore only photons with |η| < 0.9 can be reconstructed. Since the reconstructed
π0s of the MC decayer appear as a δ-function, the peak is smeared to account for
Bremsstrahlung of the electrons according to a certain function, which has been adapted
from real data plots.

High energy photons lose energy in the detector material that leads to a low conversion
probability Pconv., which is defined as the fraction of converted to all generated photons
P γ
conv. = Nγ

conv./N
γ
tot.. Within the pseudo-rapidity range of |η| < 0.9, P γ

conv. is about ∼= 8%
[33], integrated from the vertex to the middle of the TPC. Although there is a drop in
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Figure 4.7.: (i) The efficiency to reconstruct a photon depends on its transverse momen-
tum pT . To account for the photon efficiency in the simulation, efficiency
measurements observed in real data were interpolated. No photons can be
reconstructed for pT <0.1 GeV/c. (ii) As the γ multiplicity for the 0− 40%
most central events is not constant, it gets picked randomly out of a distri-
bution, which has been obtained in real data.

the conversion probability towards low transverse momenta this simulation assumes a
constant conversion probability of P γ

conv. = 8%.
In order to reduce the runtime of the simulation, the case that both photons originated
from a π0 cannot be reconstructed is neglected so that at least one photon is recon-
structed. While the conversion probability is applied for the decay photons, it is also
assumed that two direct HBT photons are converted per event.

Figure 4.7(i) shows the reconstruction efficiency εγreco. for the photon candidates at√
s =2.76 TeV within |η| < 0.9 as a function of transverse momentum pT . Due to

the strength of the magnetic fields in the detector, the e+ and e− originated from pho-
tons with pT <0.1 GeV/c have a very small radius of curvature, thus they are curling
up and cannot be reconstructed anymore. Since photons convert under a certain energy
asymmetry, it is possible, that the electron (positron) receives the main fraction of the
γ energy, while the energy of the positron (electron) is too small to be reconstructible.
This effect decreases with higher pT , thus the photon reconstruction efficiency increases
and reaches its maximum of ∼= 60% for transverse momenta pT >1.5 GeV/c.
To account for εγreco. the data points of the histogram shown in Figure 4.7(i) are inter-
polated, starting from pT =0.1 GeV/c.

Another property that we have to account for is the non-constant photon multiplicity,
i.e. the number of photons per event. Therefore the γ multiplicity gets picked randomly
out of a distribution (see Figure 4.7(ii)), which has been obtained in the 0− 40% most
central events of central Pb+Pb collisions at

√
s =2.76 TeV within a pseudo-rapidity

window of |η| < 0.75.
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4.2.2. One dimensional Analysis

The one-dimensional two-photon correlation function C2(qinv) has been analyzed after
decay photons were added to the MC simulation for both an average transverse momen-
tum window of 0.10 < kT <0.20 GeV/c and 0.20 < kT <0.30 GeV/c. The measurement
has been repeated under consideration of different detector and photon reconstruction
properties.
In order to compare the results of the different measurements, the following input pa-
rameters of the simulation stayed constant:

• To gain sufficient statistics, a total number of Nev. = 2×107 events were simulated
. Although the WA98 collaboration investigated a total sample of only 5.8 × 106

events [1], I adhered to a higher number of events to reduce statistical errors.

• The simulation considers the special case that exactly two direct photons are
detected each event:

Nγ
direct

Nev.

= 2 (4.6)

Thus, the simulation does not account for photon conversion probability in the
case of direct photons.

• All photons (direct and decay photons) are generated within a transverse mo-
mentum window pT ∈[0.1, 2.5] GeV/c, a pseudo-rapidity window |η| < 0.9 and
azimuthal directions φ ∈ (−π, π).
While the direct photons follow the distributions described in 4.1.1 (1. Initialize
Thermal Photon Generator), the decay photons are generated with the PYTHIA6
decayer class of AliRoot.

• Photons are not reconstructed if their transverse momentum is below 0.1 GeV/c
or their pseudo-rapidity exceeds |η| > 0.9.

• The three-dimensional coarse background histogram of the correlated photons is
generated with a total number of 1010 entries.

• A fully chaotic source of direct photons is assumed, thus the input correlation
strength was set to λ = 1/2. The input HBT radii for the theoretical three-
dimensional two-photon correlation function C2(~q) wereRout = Rside = Rlong =5.5 fm.
This assignment has been turned out to provide results of the invariant Radius
Rinv which are in good agreement with the ones obtained in the WA98 experiment
(compare section 4.1.3).

The two photon correlation function C2(qinv) was calculated for both bins of kT as
the ratio of the photon pair invariant relative momentum qinv where both photons are
taken from the same event, to the same distribution but with photon pairs taken from
different events. The ratio is normalized in the invariant relative momentum region of
qinv >0.15 GeV/c, where neither the HBT signal is located nor the π0 peak.
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Constant γ-Multiplicity, No Photon Efficiency for Direct Photons

At first a constant decay photon multiplicity of Nγ
decay/Nev. = 20 is assumed. Thereby

the fraction of direct photons is approximately:

Nγ
direct

Nγ
tot.

=
Nγ
direct

Nγ
decay +Nγ

direct

=
2

22
≈ 9% (4.7)

which is a reasonable estimate of the expected fraction of direct photons.
While the photon reconstruction efficiency εγreco. has been applied for the π0 decay pho-
tons to simulate a realistic fraction of decay photons, no restrictions were made for the
direct ones. This way the influence of the huge background due to the decay photons
on the pure HBT signal can be studied. Additionally the relation of λ and the fraction
of direct photons (equation 3.10) can be verified.

Figure 4.8 shows the resulting one-dimensional two-photon correlation functions with
(left hand side) and without (right hand side) consideration of the π0 decay photons.
Both the correlation strength λ and the invariant radius parameter Rinv were extracted
from a fit of the one-dimensional parametrization of C2(qinv) and are listed in Table
4.2.

Scenario kT [GeV/c] Rinv [fm] λ
√

2λ = Nγ
direct/N

γ
tot.

HBT only
(0.1, 0.2) 5.2± 0.1 0.34± 0.01 -
(0.2, 0.3) 6.1± 0.2 0.21± 0.01 -

HBT+Decay
(0.1, 0.2) 4.9± 1.0 (4.4± 0.7)× 10−3 (9± 3)%
(0.2, 0.3) 6.6± 1.0 (5.9± 1.2)× 10−3 (11± 5)%

Table 4.2.: Extracted invariant radii Rinv and correlation strengths λ for two kT bins
with and without adding π0 decay photons.

The values for Rinv for the scenario without consideration of the decay photons are
in good agreement with the ones obtained in the analysis of HBT Photons in section
4.1.3 (within the errors), which were (5.1 ± 0.1) fm for the transverse momentum win-
dow 0.10 < kT <0.20 GeV/c and (5.9± 0.2)± fm for the transverse momentum window
0.20 < kT <0.30 GeV/c. Also both values for λ conform within the errors (λ = 0.31±0.01
and λ = 0.19± 0.01 for the respective kT windows).
When analyzing the corresponding correlation functions under consideration of the π0

decay photons (see Figure 4.2, right hand side) it is apparent that the extracted corre-
lation strength drops dramatically from λ = 0.33± 0.01 and λ = 0.21± 0.01 to values of
the magnitude of ∼= 5× 10−3. After adding decay photons, the overall spectrum of qinv
is composed of a large number of photon pairs where at least one photon is not a direct
one. These photon pairs superimpose the HBT signal both in the signal histogram and
the (mixed events) background histogram, thus the correlation strength decreases.
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Figure 4.8.: The one-dimensional two-photon correlation function C2(qinv) for both the
average transverse momenta kT ∈(0.1, 0.2) GeV/c and kT ∈(0.2, 0.3) GeV/c
with (left) and without (right) π0 decay photons. While a constant γ mul-
tiplicity of 20 was considered, the photon efficiency εγreco. was not applied
for the direct photons. The correlation strength λ and the invariant Radii
Rinv are obtained by fits (red lines) of the one-dimensional parametrization
of C2(qinv) .

The fraction of direct photons can be calculated according to equation 3.10. Under
the assumption of a fully chaotic direct photon source Nγ

direct/N
γ
total can be obtained

by calculating
√

2λ. As listed in Table 4.2, the obtained fractions are ∼= 9% for the
first transverse momentum window kT ∈ (0.1, 0.2) GeV/c and ∼= 11% respectively for
kT ∈ (0.2, 0.3) GeV/c, which are in good agreement with the fraction of photons which
has been put into (∼= 9%).
Contrary to λ, the invariant radius parameter stays roughly constant with and without
decay photons. The extracted Rinv comply within 1σ. However, the statistical errors
increase in the case of considering direct plus decay photons because the histograms are
fitted within a range where the statistical error of each bin is large compared to the
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corresponding value of C2(qinv).
While the π0 peak at qinv ∼=0.135 GeV/c2 is significant in the average transverse momen-
tum of 0.20 < kT <0.30 GeV/c, it is vaguely perceptible for 0.10 < kT <0.20 GeV/c. In
this momentum region the reconstruction efficiency is too low to provide a significant
π0 signal.

Non-constant γ Multiplicity and Photon Reconstruction Efficiency for HBT
Photons

In the next step the simulation of direct photons plus decay photons originated from π0

decays is approximated progressively to an experimental environment.
To account for a non-constant decay photon multiplicity the γ multiplicity distribution
of Figure 4.7(ii) was implemented. The multiplicity of the decay photons are then picked
randomly out of this distribution for each event.
Again the two-photon correlation function C2(qinv) is calculated for the kT bins (0.1, 0.2) GeV/c
and (0.1, 0.2) GeV/c. The extracted HBT parameters can then be compared to the ob-
tained results of the above analysis when a constant γ multiplicity of 20 was assumed.
This has been done in a first simulation, where again the photon reconstruction efficiency
εγreco. shown in Figure 4.7(i) has been applied only for the π0 decay photons.
Additionally a second simulation ran where εγreco. has been applied both for the π0 decay
photons and the direct photons. To account for the reconstruction efficiency, the ther-
mal pT spectrum of the direct photon generator was multiplied by the interpolated εγreco.
histogram. This way the influence of εγreco. on the HBT signal can be studied explicitly
for the case of a non-constant γ multiplicity.

The two-photon correlation functions C2(qinv) of both simulations are presented in Fig-
ure 4.9, where the results of the first simulation (regardless of εγreco. for the HBT photons)
are shown on the left hand side. The obtained correlation functions having regard to
εγreco. for the direct photons can be seen on the right hand side.
Again the HBT parameters were extracted from a fit of the one-dimensional parametriza-
tion of C2(qinv):

Scenario kT [GeV/c] Rinv [fm] λ
√

2λ

εγreco. for HBT photons OFF
(0.1, 0.2) 5.6± 0.8 (10.0± 1.5)× 10−3 (14± 5)%
(0.2, 0.3) 4.9± 0.7 (10.5± 1.5)× 10−3 (14± 5)%

εγreco. for HBT photons ON
(0.1, 0.2) 4.3± 1.4 (2.4± 1.1)× 10−3 (7± 5)%
(0.2, 0.3) 10.8± 6.2 (3.1± 3.1)× 10−3 (8± 8)%

Table 4.3.: Extracted invariant radii Rinv and correlation strengths λ for the two kT bins
when a non-constant γ multiplicity was considered.
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Figure 4.9.: Obtained two-photon correlation functions C2(qinv) for both the average
transverse momenta kT ∈(0.1, 0.2) GeV/c and kT ∈(0.2, 0.3) GeV/c under
consideration of a non-constant γ multiplicity, with (left) and without
(right) accounting for the photon reconstruction efficiency εγreco. for the direct
photons.

Let us first have a look on the results without accounting for εγreco. for the direct photons
(Scenario: εγreco. for HBT photons OFF). The obtained values for Rinv agree with the
corresponding radii obtained in the former analyses within 1σ. This observation leads
to the declarative statement that the invariant radii seem to be quite robust, no matter
which fraction of direct photons is put into.
Compared to the extracted correlation strengths λ obtained under the consideration of
a constant γ multiplicity of 20 (see Table 4.2), the extracted values of λ increased by a
factor of ∼= 2.
To study this rise we have to look at the γ multiplicity distribution (Figure 4.7(ii)).
The mean of the distribution is approximately ∼= 15. Thus, the input fraction of direct
photons can be estimated to Nγ

direct/N
γ
total = 2/17 ∼= 12%.

Whilst taking into account this estimate, the obtained results for
√

2λ coincide within
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their errors for both the average transverse momentum windows 0.1 < kT <0.2 GeV/c
and 0.2 < kT <0.3 GeV/c.

As opposed to this, the second scenario where the simulation accounts for εγreco. for both
the decay photons and the direct photons, no significant HBT signal can be registered
in the low qinv region. In this case the transverse momenta pT of the direct photons
gets randomized out of the product of a thermal pT spectrum and εγreco.. Since εγreco. is
of the order of ∼= 2× 10−1 in the pT window of 0.1 < pT <0.3 GeV/c, the probability of
generating photons with transverse momenta pT <0.3 GeV/c decreases, while higher pT
are getting more likely. These higher pT photons do not contribute in the qinv spectrum
of the investigated kT bins. Therefore the statistical errors of the qinv distribution
increase and the performed fits of C2(qinv) do not describe the correlation functions to
a reasonable accuracy.
In spite of that the extracted fractions of direct photons

√
2λ = Nγ

direct/N
γ
total are in

agreement with the expected value of ∼= 12% (within their errors) for both kT bins.
While the invariant radius Rinv of a kT window of (0.1, 0.2) GeV/c provides a result that
complies with the ones obtained in the previous analyses, the extracted Rinv of the kT
window of (0.2, 0.3) GeV/c is about 2 times larger than expected (∼=5.5 fm) and suffers
a large statistical error of ∆Rinv =6.2 fm.

All in all it can be noted that no significant HBT signal can be observed for a total
number of 2 × 107 events if we consider the photon reconstruction efficiency for all
photons (decay photons and direct photons). If the reconstruction efficiency would be
higher, especially for low transverse momenta pT <0.3 GeV/c, a way more significant
signal would be observable. This can be seen particularly in the first simulations where
the photon efficiency was omitted.
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4.2.3. Comparison to WA98 results

All simulations were performed in that manner that the invariant radii Rinv agree with
the ones determined by the WA98 collaboration.
In order to cross-check the simulation the extracted Rinv, can be compared to the ex-
perimental results. The relative deviation of Rinv is given by:

δRinv

RWA98
inv

=

∣∣∣∣1− Rinv

RWA98
inv

∣∣∣∣ (4.8)

Table 4.4 summarizes the results of the three different MC simulations and lists the
deviations of Rinv.

Scenario kT [GeV/c] Rinv [fm] δRinv/R
WA98
inv

WA98
(0.1, 0.2) 5.4± 1.7 -
(0.2, 0.3) 5.8± 2.0 -

Const. Multiplicity (20), εHBTreco. OFF
(0.1, 0.2) 4.9± 1.0 9% (1σ)
(0.2, 0.3) 6.6± 1.0 14% (1σ)

Non-Const. Multiplicity, εHBTreco. OFF
(0.1, 0.2) 5.6± 0.8 4% (1σ)
(0.2, 0.3) 4.9± 0.7 16% (1σ)

Non-Const. Multiplicity, εHBTreco. ON
(0.1, 0.2 4.3± 1.4 20% (1σ)
(0.2, 0.3) 10.8± 6.2 86% (1σ)

Table 4.4.: Extracted HBT parameters of the WA98 experiment and three MC simu-
lations after adding π0 decay photons where different γ reconstruction con-
straints and γ multiplicities were used.

The term εHBTreco. (ON) means that the respective simulation has been performed under
consideration of the photon reconstruction efficiency for the direct photons (εHBTreco. OFF
if not).
The Rinv are in a 1σ agreement with the experimental results for both kT bins and sim-
ulations. This approves the observation that Rinv is mostly independent of the fraction
of direct photons to the total number of photons. Though, the deviation for the average
transverse momentum window of 0.2 < kT < 0.3 GeV/c of the last simulation where the
HBT signal is not significant and no reasonable fit of the correlation function has been
achieved rises up to 86%.

4.2.4. Significance of the HBT signal

Table 4.5 summarizes the extracted fractions of direct photons
√

2λ = Nγ
dir./N

γ
tot. and

compares them with the fraction that is put into for each performed MC simulation.
The significance of an HBT signal is given by the correlation strength λ.
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Scenario kT [GeV/c] λ [×10−3]
√

2λ (Nγ
dir./N

γ
tot.)Input

Const. Mult. (20), εHBTreco. OFF
(0.1, 0.2) 4.4± 0.7 (9± 3)%

9%
(0.2, 0.3) 5.9± 1.2 (11± 5)%

Non-Const. Mult., εHBTreco. OFF
(0.1, 0.2) 10.0± 1.5 (14± 5)% ∼= 12%
(0.2, 0.3) 10.5± 1.5 (14± 5)%

Non-Const. Mult., εHBTreco. ON
(0.1, 0.2) 2.4± 1.1 (7± 5)% ∼= 12%
(0.2, 0.3) 3.1± 3.1 (8± 8)%

Table 4.5.: Extracted fractions of direct photons for all different MC simulations The
significance of the HBT signal is given by the correlation strength λ.

Under the hypothesis that an HBT signal is measured if λ > 0 and no HBT signal is
measured if λ = 0, the single scenarios can be compared.
Significant HBT signals can be observed when we do not account for the photon efficiency
for the direct photons (εHBTreco. OFF). Having regard to the corresponding errors, the
extracted values for λ are substantially larger than 0 and the calculated fraction of
direct photons agrees with the input fraction within 1σ.
Indeed, the 1σ deviation of the calculated fraction of direct photons holds also for the
last scenario where the photon efficiency for the direct photons is considered (εHBTreco. ON),
but the corresponding values of λ are no longer significant, especially for the average
transverse momentum range 0.2 < kT < 0.3 GeV/c where λ = (3.1± 3.1)× 10−3.
The huge background due to π0 decay photons is the main reason of not gaining a
significant fit of the correlation function. Obviously the background becomes a larger
influence in the case when we additionally account for the γ reconstruction efficiency
for the direct photons. Here, the thermal transverse momentum spectrum whence the
direct photons are picked is multiplied with the γ reconstruction efficiency distribution
and the probability of picking photons with small transverse momenta (pT <0.5 GeV/c)
decreases dramatically.
As the invariant pair relative momentum qinv ∝ pTi (compare eq. 4.4) of the single
photons of the pair, a rise of small values for qinv can only be observed if pTi are quite
small. Thus, no significant HBT signal can be observed if we additionally determine the
correlation function for kT >0.3 GeV/c.
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Conclusion

5.1. Summary of the Results

Within this thesis the feasibility to observe a significant signal of direct photon corre-
lations with the ALICE detector was studied. For this purpose an algorithm has been
developed that is able to simulate HBT correlations of direct photons originated from a
static thermal source. There is no other generator of HBT correlations yet implemented
in the AliRoot framework that provides reasonable results for photons. In order to
reduce the complexity of such a simulation the special case of emitting and detecting
two correlated direct photons per event has been considered. The developed algorithm
makes use of a three-dimensional parametrization of the two-photon correlation func-
tion. Thus, it is possible to study both the three-dimensional and the one-dimensional
determination of the correlation function in an elegant manner.

Section 4.1.2 demonstrates that if one is interested in a projection of the three-dimensional
correlation function (C2(qout), C2(qside) or C2(qlong)) the used projection width of the
others plays a major role. While the extracted radii Rout, Rside and Rlong are mostly
independent of the projection width, λ is highly correlated to the projection width.

In an explicit analysis of HBT correlations of direct photons (without adding any decay
photons) the simulation was performed in this manner that the invariant radii Rinv

approximately match the ones of the WA98 experiment. Thereby the corresponding
values of Rout, Rside and Rlong for Rinv were obtained for both kT bins. It has been
shown in 4.1.3 that the assignment of three-dimensional radius parameters obtained by
pion interferometry as it has been done in the WA98 experiment is a justified assumption
and can be adopted to direct photons.

In order to account for the huge background due to decay photons, photons originated
from neutral π0 → γγ decays were added to the simulation. The one-dimensional
correlation function C2(qinv) was determined for both the transverse momentum windows
0.1 < kT <0.2 GeV/c and 0.2 < kT <0.3 GeV/c within a total number of 2× 107 events.
Step by step various effects like a non-constant multiplicity of π0 decay photons and
the photon reconstruction efficiency have been implemented into the simulation. After
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adding the π0 decay photons the obtained correlation strength decreases dramatically
to values of the order of ∼= 5 × 10−3. Under the assumption of a fully chaotic source
the fraction of direct photons Nγ

direct/N
γ
total can be estimated by calculating

√
2λ. This

relation even holds after we additionally account for a non-constant γ multiplicity and
the photon reconstruction efficiency for the direct photons.

However, no significant HBT signal is observable when we account for the photon recon-
struction efficiency both for the decay photons and the direct photons. The correlation
strengths were determined to λ = (2.4 ± 1.1)× 10−3 for an average transverse momen-
tum window kT ∈ (0.1, 0.2) GeV/c and λ = (3.1± 3.1)× 10−3 for kT ∈ (0.2, 0.3) GeV/c,
respectively.
Since the direct photons are generated by randomizing out of a pT distribution which is
composed of the product of the photon reconstruction efficiency and a thermal pT spec-
trum, photons with pT >0.5 GeV/c are getting more likely. These higher pT photons do
not contribute in the qinv spectrum of the investigated kT bins. Therefore the statistical
errors of the qinv distribution increase and the performed fits of C2(qinv) do not describe
the correlation functions to a reasonable accuracy.

Additionally it has to be noted that the combination of so-called fake tracks also are able
to give rise to low invariant masses (mγγ < 0.05 GeV/c2) in the π0 spectrum [41]. Fake
tracks occur due to faulty track reconstructions of the used reconstruction algorithms.
A large number of fake tracks is expected to appear in regions where the track density
is high, when the algorithm suffers bugs or the distance between the single track digits
gets large. Before preparing an explicit measurement of photon-photon correlations this
impact should be controlled.

5.2. Outlook

There are a few considerations which may lead to a more significant HBT signal. While
the implemented thermal photon generator makes use of a temperature of T =0.266 GeV/c,
latest results of the ALICE Photon Conversion Group rather assume a temperature
of around T =0.300 GeV/c. Since T is the (inverse) slope of the thermal spectrum
dN/dpTpT ∝ exp(−pT/T ), a higher value of T increases the probability of picking pho-
tons with small pT out of the distribution. Thus it is suitable to perform the simulation
with this up-to-date number.
Moreover, the simulation only considers a special case that exactly two direct photons are
emitted per event, while the fraction Nγ

direct/N
γ
total
∼= 10%. Assuming a higher number of

this fraction, one way to achieve a more significant HBT signal would be to increase the
number of thermal photons per event. Indeed, only two photons per event are correlated
and the input correlation strength (i.e. the correlation strength when no decay photons
are added) would decrease. But on the other hand a higher number of direct photons
pairs with an average transverse momentum kT <0.3 GeV/c would be generated. Thus,
the statistical errors of the fits of C2(qinv) would decrease and more precise parameters
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could be extracted.
When the simulation is performed with smaller decay photon multiplicities, the back-
ground due to decay photons would also lose influence on the qinv spectrum. Thus,
considering less central events (e.g. 20 − 40% centrality class instead) are a worthwile
measurement as well.
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Appendix A.

Relativistic kinematic variables

Ultrarelativistic reactions are characterized by different kinematic variables.
In high energy physics particles are described by introducing the four momentum

pµ = (E, ~p) = (E, px, py, pz) (A.1)

Here, E is the energy of the particle while ~p denotes its three momentum in cartesian
coordinates. In this notation, natural units are used, i.e c ≡ ~ ≡ 1. Free particles with
a rest mass m0 follow the relativistic energy momentum relation

E2 = m2
0 + ~p2 (A.2)

The Lorentz invariant norm of the four momentum pµ is called the invariant mass

m2
inv = pµp

µ = E2 − ~p · ~p (A.3)

Since the z-axis of the coordinate system in accelerator physics is determined by the
beam axis, the three momentum of a particle can be decomposed into a longitudinal
momentum pL and a transverse momentum pT :

| ~pL| = |~p| · cos θ = pz (A.4)

| ~pT | = |~p| · sin θ =
√
p2
x + p2

y (A.5)

Here, θ denotes the angle of the propagation direction of the particle towards the beam
axis, while |~p| is the norm of the three momentum. Contrary to pT , the longitudinal
momentum component pL is not Lorentz invariant. Hence, the longitudinal velocity
βL = pL/E of particles is typically described by the so called rapidity y of the boost
along the beam axis which takes an observer from the lab frame to a frame in which
particle moves only perpendicular to the beam:

y = atanh(βL) =
1

2
ln
E + | ~pL|
E − | ~pL|

(A.6)

For massless particles and highly relativistic particles, where E � m0, the rapidity y
can be approximated by the pseudorapidity η:

η = − ln

[
tan

(
θ

2

)]
(A.7)

where θ is the angle between the particle three momentum ~p and the beam axis.
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