
Department of Physics and Astronomy
University of Heidelberg

Bachelor Thesis in Physics
submitted by

David Korbany

born in Mühldorf am Inn (Germany)

2019

Symbolic Regression in Heavy-Ion Physics

This Bachelor Thesis has been carried out by David Korbany at the
Physikalisches Institut in Heidelberg

under the supervision of
Prof. Klaus Reygers

– ii –

This page is intentionally left blank

– iii –

Abstract

We introduce Symbolic Regression and implement it in Python featuring symbolic constants
and support for data with uncertainty. We apply our program to a selection of artificial prob-
lems and data from heavy-ion physics. In particular, we are able to find functions describing
pT spectra from Pb-Pb collisions which show similarities to the physically motivated Hagedorn
function.

Kurzzusammenfassung

Wir führen Symbolische Regression ein und implementieren dies in Python inklusive symbol-
ische Konstanten und Kompabilität für Daten mit Fehlerbalken. Wir wenden das Programm
auf eine Auswahl von künstlichen Problemen und Daten aus der Schwerionenphysik an. Wir
sind insbesondere in der Lage Funktionen zu finden, die pT Spektren aus Pb-Pb Kollisionen
beschreiben und Ähnlichkeiten zu der physikalisch motivierten Hagedorn Funktionen zeigen.

– iv –

Contents

1 Motivation 1

2 A short Introduction to Genetic Algorithms 3
2.1 The Imitation Game 3
2.2 Example: The Prisoner’s Dilemma 3

3 The next step: Genetic Programming and Symbolic Regression 6
3.1 Representation 6
3.2 Basis Functions 7
3.3 Genetic Operators 7

3.3.1 Mutation 7
3.3.2 Crossover 7

3.4 Evolution 8
3.5 Symbolic Constants 9
3.6 Fundamental Limitations: No free lunch 9

4 SR setup 10
4.1 Implementation 10

4.1.1 The primitive set 10
4.1.2 Initializing a population 11
4.1.3 Evaluation 11
4.1.4 Genetic Operations 12
4.1.5 Hall of Fame 12
4.1.6 Age-fitness Pareto optimization 13

4.2 Artificial Problems 14
4.2.1 Quartic Polynomial 15
4.2.2 Gaussian 15
4.2.3 Line with boundary conditions 15
4.2.4 Fermi Distribution 15

4.3 Further ideas 16

5 Applying SR to Heavy-Ion Physics 17
5.1 J/Ψ pT-spectrum 18
5.2 pT-spectra for p-p collisions 21
5.3 pT-spectra for Pb-Pb collisions 24
5.4 Charged-hadron RAA 31

6 Conclusion and Outlook 35

A SR and fitting results for J/Ψ pT spectra 39

– v –

B SR and fitting results for p-p pT spectra. 41
B.1 SR Results 41
B.2 Tsallis Model 42

C SR results for Pb-Pb pT spectra. 43

D SR results for charged hadron RAA 47

– vi –

Chapter 1

Motivation

Symbolic regression (SR) is broadly speaking a regression tool which makes no assumption
about the underlying model. Instead, it performs evolutionary-inspired search in the space of
mathematical expressions within a user-defined scope. Historically SR has been an application
of genetic programming [1], which can be seen as an approach to automated programming
and artificial intelligence, as depicted in figure 1.1.

There have been two papers sparking our interest. In [2] the authors use SR to find
Lagrangians and Hamiltonians for simple mechanical systems from motion-tracked data.1

More recently the authors in [4] use a deterministic SR technique to find governing differential
equations of given systems from time series measurements. They are able to find the Navier–
Stokes equation this way. These applications can be put in a category we dub “Towards
Data-Driven Discovery of Natural Laws”. Given these astonishing results, we decided to
investigate possible applications of SR to particle physics. We didn’t quite get to the point
of discovering natural laws from data, but we will show how SR can be used as a powerful
interpolation and modeling tool and in some cases is able to reverse engineer known physical
laws.

In section 2 we introduce genetic algorithms using an interesting example from game
theory, which shows the versatility of genetic algorithms and genetic programming techniques.
We then give a more detailed introduction to SR in section 3 and discuss our implementation
in section 4. In section 5 we present applications of SR to heavy-ion physics.

We will not give an overview of the many different approaches and ideas in SR. A recent
short summary of state-of-the-art methods, addressed to non-experts, can be found in [5].

1We shall mention that there seems to be some need for clarification about their approach as pointed out
in [3].

– 1 –

ML
GP

GA

SR

AI

Figure 1.1. Relation (not absolute) of genetic programming (GP), genetic algorithms (GA), machine
learning (ML) and SR to each other. They can all be seen as different approaches to artificial intel-
ligence (AI). Apart from genetic programming-based SR there are more recent SR approaches which
solely use machine learning techniques, e.g. ffx [6]. More sophisticated SR programs, like the commer-
cial product Eureqa, which was originally created by the authors of [2], use both genetic programming
and machine learning ideas.2

2https://www.nutonian.com/products/eureqa/

– 2 –

https://www.nutonian.com/products/eureqa/

Chapter 2

A short Introduction to Genetic
Algorithms

2.1 The Imitation Game

The idea of biologically inspired computing goes back to the very beginnings. To study
the question “Can machines think?” Alan Turing [7] proposed the “imitation game”: An
interrogator asks two persons, Alice and Bob, questions. One of them is a machine, say Bob.
The goal for the Interrogator is to determine who is the machine. Bob will pretend to be a
man and Alice will tell the truth. The question is, can one build a machine which will win
the game, i.e. fool the interrogator? Turing proposes:

“Instead of trying to produce a programme to simulate the adult mind, why not
rather try to produce one which simulates the child’s? If this were then subjected
to an appropriate course of education one would obtain the adult brain.”

The process of thus creating a computer program resembles evolution. Turing identifies:

• Structure of the child machine = Hereditary material

• Changes of the child machine = Mutation

• Natural selection = Judgment of the experimenter

The “Judgment of the experimenter” determines the fitness of the program. Furthermore, he
remarks:

“We cannot expect to find a good child-machine at the first attempt. One must
experiment with teaching one such machine and see how well it learns. One can
then try another and see if it is better or worse.”

Modern genetic algorithms (GAs) combine these ideas in a parallel way. Starting with an ini-
tial population of computer programs (child-machines) one evolves towards a new population
using natural selection (survival of the fittest) and biologically-inspired operators like muta-
tion and (chromosomal) crossover. The fitness, evaluated by the experimenter, determines
the success rate for reproduction. Through this evolutionary process one hopes to create a
better (adult-brain) program.

2.2 Example: The Prisoner’s Dilemma

We will explain in a bit more detailed way how GAs work using the example of how Axelrod
[8] used GAs to evolve strategies for the Prisoner’s Dilemma. Axelrod describes the games

– 3 –

as follows: “Two individuals [A and B], can either cooperate or defect. No matter what the
other does, the selfish choice of defection yields a higher payoff than cooperation. But if both
defect, both do worse than if both had cooperated.” This is summarized in table 2.1.

Table 2.1. Payoff matrix for the Prisoner’s Dilemma. Here (a,b) represents A getting payoff a and B
getting payoff b. Adapted from [8].

Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

There are 4 possible outcomes in a game:

• A and B cooperate: CC

• A cooperates and B defects: CD

• A defects and B cooperates: DC

• A and B defect: DD

A deterministic strategy, which determines the decision of a player depending on the result
of one previous game, is a map

S : {CC,CD,DC,DD} → {C,D}.

A strategy which depends on the outcome of n previous games is a map

S : {CC,CD,DC,DD}n → {C,D}.

This means that every possible outcome of the n previous games is mapped to an action:
cooperation or defection.

Thus, a strategy depending on one previous game can be encoded in a string of length
four. For example, “tit for tat” corresponds to CDCD: Given the outcome of a game one first
looks up the position in the canonical ordered list of possible outcomes.1 Then, one chooses
the letter at this position in the string. For example, let’s assume the outcome of the game
was DC. This corresponds to the third outcome in the list. Thus, we look up the letter at
position three in our strategy. In “tit for tat” (CDCD) this would be C.

In the iterated Prisoner’s Dilemma studied by Axelrod the programs remembered the
moves of three previous games. There are 43 = 64 possible outcomes and thus 264 different
strategies encoded in strings of length 64. Axelrod added six extra letters encoding three
hypothetical previous games. This determines the outcome of a strategy for the first three
games, where no data from previous games is available. A program is thus a string of length
70. Note that this is a the same time a set of instructions 2 giving a strategy for the game,
and a combination of genetic material subject to changes through an evolutionary process. A
simple GA works as follows:

(i) Create an inital population of candidate solutions.

These are usually randomly generated. In our example we simply produce random
strings of length 70 out of the letters C and D. The last six letters determine the first
three moves.

1If C is zero and D is one every strategy is, after removing the leading zeros, a unique binary number and
the canonical way to order is from the smallest number (CC=0) to the biggest (DD=3).

2Implemented in a computer a string could be compiled, so to say.

– 4 –

(ii) Calculate the fitness of each individual.

Axelrod let the programs play iterated games against eight human-designed strategies.
(Not including “tit for tat”.) The fitness was taken as the average score (using the
payoff matrix).

(iii) Evolution

Based on the fitness select individuals for crossover (sexual reproduction) and mutation.
Mutation is straightforward. Select a random position in the string and flip the letter at
this position. An example of crossover works as follows: Given two programs, i.e. strings
of length 70, choose a random position and exchange the sub strings up-to and after this
position. For example, CCCC and DDDD could be crossed over at the second letter to
produce the offspring DDCC and CCDD.

(iv) Replace the population with the offspring.

(v) With the new population go to step 2 or stop

Axelrod evolved 40 randomly generated populations of size 20 over 50 generations. He ob-
served that the strategies evolved similarities to “tit for tat”. In all runs the final population
scored on average better than the human-designed strategies. In eleven of the forty runs the
final population even scored on average better than “tit for tat”.3 This is a striking result,
given that each run roughly only tested 1000 out of 270 possible programs

3In this particular environment consisting of the eight human designed strategies.

– 5 –

Chapter 3

The next step: Genetic
Programming and Symbolic
Regression

Genetic programming (GP) generalizes GAs in a way such that the size, i.e. complexity, of
the programs can evolve as well [1]. It has been successfully applied to real world problems.
In [9, table 5.2] the authors list “Thirty-six instances of human-competitive results produced
by genetic programming”. One application of GP, on which we will focus in the following, is
Symbolic Regression (SR). In SR the programs are mathematical functions and the problem
is to find a function describing a set of data. The goal is to find a good expression w.r.t. a
fitness function, e.g. the χ2 sum.

3.1 Representation

We represent functions as trees. The leaves (non-internal nodes) of trees are called terminals.
They represent arguments of the basis functions, a.k.a. primitives, which are the internal
nodes in the tree.

Figure 3.1. Example of a tree representing a function in SR. The primitives are the internal nodes
Add and Pow. The terminals are the leaves (green) 2, x and 2. The nodes are ordered from left to
right. Thus, the tree evaluates to Add(2,Pow(x, 2)), which gives 2 + x2 with our convention for Pow.

– 6 –

The tree in figure 3.1 represents the function x2 +2, where we read the arguments from left to
right. The size of the trees is the number of nodes. Unlike in GAs the size of the individuals
is variable.1 The depth of a node is the number of edges that need to be traversed to reach
the node starting from the root [10]. The depth of a tree is the maximum depth of all nodes.
For example the tree in figure 3.1 has size five and depth two.

3.2 Basis Functions

Depending on the problem at hand, one has to choose a basis set of functions and terminals,
called the primitive set. These are the building blocks, i.e. genes, of individuals. The function
set can include anything from basic arithmetic operators like addition or multiplication to
special functions like the exponential or Gamma function. The terminals consist of the argu-
ments of primitives, i.e. variables and (numerical) constants. In a three dimensional problem,
there would be three variables and so on.

3.3 Genetic Operators

3.3.1 Mutation

We can mutate an individual by changing nodes or subtrees in its representing tree.

(a) x2 + 2 (b) 2x+ 2

Figure 3.2. Point mutation. Here we replaced the function Pow with Mul. This only works if the
functions have the same arity.

Two examples are visualized in the figures 3.2 and 3.3.

3.3.2 Crossover

The idea is to imitate biological sexual reproduction, whereby the offspring takes genetic
material from both parents. There is a huge variety of crossover operators in the GP literature,
see e.g [10]. In one-point crossover we select a common node of the parents and swap the
subtrees at this node, producing two children. This is illustrated in figure 3.4.

1Trees of fixed size can be written as strings of letters. Then, we have the same situation as in GAs.

– 7 –

(a) x2 + 2 (b) x+ 2

Figure 3.3. Shrinking mutation. We replaced the subtree Pow(x, 2) with x. This is an example in
which the size of the tree changes.

Figure 3.4. One-point crossover. Taken from [10].

3.4 Evolution

Equipped with crossover and mutation we can evolve a population. Given a data set we wish
to model we proceed as follows:

(i) Create an initial population.

We generate random trees, limiting the size and depth.

(ii) Determine the fitness of individuals.

Calculate the χ2 sum or some other measure chosen.

(iii) Evolution.

– 8 –

Based on the fitness, select parents for crossover and mutation and thus create new
offspring. This is a evolutionary inspired heuristic search in the landscape of all possible
functions one can build from the primitive set.

(iv) Repeat (ii) and (iii) for a specified number of generations or stop if the fittest individual
has the desired fitness.

3.5 Symbolic Constants

From the description of SR so far there is one obvious shortcoming. Say we have a primitive
set with operators add and mul and one terminal x. This is sufficient to build a polynomial
with integer coefficients

∑
i cix

i, ci ∈ Z. If we wish to express a polynomial with non-integer
coefficients, e.g. x2 + 3.14x, the coefficients need to be terminals.

There have been different approaches how to implement numerical constants. For an
overview see [11]. One approach which has emerged is what we will refer to as symbolic
constants, which basically behave like variables. Let’s go back to the polynomial mentioned
above: If we add a symbolic constant c to the terminal set, we could build the function
x2 + cx. Using ordinary regression we can determine the best value of c. Using SR with
symbolic constants thus adds an extra step to determine the optimal values for the symbolic
constants.

That is, the evolutionary approach described will produce candidate models f(xi, ci). One
might call this step global optimization. Then, we determine the best values ci to describe
the given set of data. This step one might call local optimization.

3.6 Fundamental Limitations: No free lunch

We should think of GP as a highly parallel search strategy in the set of all possible programs
one can build from the primitive set.2 Each program has a fitness determined by one or more
objectives. Thus, we refer to this set as the fitness landscape. See [12, Chapter 2] for examples
and a discussion. The no free lunch theorem [13] states that averaged over all problems any
two (search) algorithms perform equally well. It makes no assumption about the nature of
the algorithm and thus covers all general-purpose optimization techniques such as GP and
GAs. Thus, unless we put knowledge of the problem into the algorithm we cannot expect to
perform better than random search. In other words, it is important to match the problem
and algorithm. The parallel nature of GP and GAs may help avoiding getting stuck in a local
minima and may thus make these strategies better than random search for a large class of
problems, though it is not clear how to identify the “right” problems. One Ansatz is analysis
of the fitness landscape [14]. The problem here is the dependence of the topology of the fitness
landscape on the representation [12, section 2.7].3

2Parallel in the sense that every individual of a population is more or less independently searching for an
optimum.

3This issue has not been properly addressed to my knowledge.

– 9 –

Chapter 4

SR setup

The requirements for a SR program for applications in physics are:

(i) It needs to be able to handle data with uncertainty. This is crucial in physics but
surprisingly absent in the field of SR.

(ii) Symbolic constants: Physics is an exact science.

(iii) Open source.1

As we did not find a satisfying program fullfilling these requirements we decided to write our
own SR program in the end.2 In the rest of this section we describe the implementation and
show some examples. In addition the (unfinished) documentation may be helpful.

4.1 Implementation

All code is written in Python and uses only open source libraries. Some of the ideas are
inspired by DEAP [15], although the implementation is actually quite different. We heavily
use the computer algebra system sympy [16].

4.1.1 The primitive set

Recall that the primitive set contains the building blocks: functions, a.k.a. primitives, and
terminals.

• Terminal Set

The terminal set can contain numerical constants, variables and symbolic constants.
The variables can be functions of the ”pure” variables. For example, if we know that
the problem has a spherical symmetry we may use x2 as variable.

• Function set

Any function which is available in sympy, or user-defined functions build of sympy
functions, can be used. Unlike many other approaches we do not define discontinuities
as zero; solutions which are not well-defined are discarded in the end. Furthermore, the
functions can have fixed arguments which are either numerical constants or symbolic
constants. For example, one can use the function x 7→ xk, where k is a symbolic constant
subject to regression.

1Research should be “in principle” reproducible, thus open source is strictly speaking not a requirement
but certainly an advantage.

2Hopefully available on GitHub soon. For the moment feel free to ask the author for a copy. It’s roughly
1300 lines of code.

– 10 –

4.1.2 Initializing a population

We generate random trees to create an initial population. These are always limited in depth
and can also be limited in size. The depth of every leaf follows a binomial distribution: When
generating a random (sub) tree at some point the internal nodes, i.e. functions, are connected
to a number of new nodes which is equal to the arity of this particular function.3 For each
of these new nodes we pick, with equal probability, either a terminal or a function of the
primitive set. If we choose to pick a terminal the probability of picking a variable is always
50%, whereas when picking a function each function of the primitive set has equal probability,
although one could in principle use any probability distribution. There are three possible
modes for initializing a population of a specified maximum depth d:

• Random

The depth of all leafs of every tree follows a binomial distribution, as described above,
cut off at d.

• Full

The depth of all leafs of every tree is forced to equal d, i.e. all nodes are filled with
functions until we reach the depth d.

• Ramped half and half

Half of the trees are generated in the random mode, the other half in the full mode.
This method was introduced in [1].

If we choose to limit the size we randomly create trees in one of the modes above and pick
the ones which satisfy the size bound. The way we produce random trees always has a bias
towards certain shapes and thus functions. For example the probability of picking a function as
argument of a function scales with the arity. It is thus less likely to produce nested functions
of the form f1(f2(...), ...) if the outermost function has arity one than if it has arity two.
To counter this we can change the probability distribution for functions of arity one, such
that picking a function as argument is 75% and the probability of picking a terminal is 25%.
This is the same probability distribution as for a function of arity two. We use this feature
in the example in section 4.2.2.

4.1.3 Evaluation

An individual of a population is a model f(x, ci) with variable x ∈ Rn and parameters ci,
i.e. symbolic constants. In principle one can provide any method to calculate the fitness. We
use the χ2 sum. Given a candidate model f and a data set {xi, yi, y erri}, where xi ∈ Rn
are input data and yi ∈ R measured values with uncertainty y erri ∈ R, we first determine
the optimal values {c∗i} for the parameters using the Levenberg–Marquardt algorithm, see
e.g. [17]. This is done using the curve fit function in the python module scipy [18]. Then the
fitness 4 ‖f‖χ2 is given by

‖f‖χ2 = χ2({c∗i}) =
∑
i

(
f(xi, {c∗i})− yi

y erri

)2

.

3If we use functions with variable arity we randomly pick a number of arguments from a specified range.
For example the sympy function add can take any number of arguments greater than 2.

4Note that the actual goodness of the fit is given by the reduced χ2 sum which is given by χ2/ndf with
ndf = #datapoints− #parameters.

– 11 –

If ‖f‖χ2 turns out complex or NaN (not a number), e.g. because of poles, we discard the
solution. The fitness is used to select individuals for mutation and crossover as described in
the next section. One can still use another objective to choose the best solution.

Depending on the problem we can also do a validation step. Here the power of the computer
algebra system sympy is useful. For example, we can ensure that our solutions satisfy given
boundary conditions. An example is shown in section 4.2.3. There are two problems in this
step:

(i) Checking algebraic properties can be very slow. Thus, they should be carefully chosen.

(ii) It can happen that most of the individuals are invalidated which results in a smaller
gene pool available for later crossover. To counter this one can increase the mutation
rate.

4.1.4 Genetic Operations

Based on the fitness we select individuals for one-point crossover and mutation, as described
in section 3.3, to produce offspring. We use two methods:

(i) Tournaments

We randomly pick a number n of individuals of the population. The two best individuals
are then used for crossover or mutation with probability cross pb and 1 − cross pb,
respectively. In case of a mutation event only the best individual is mutated and added
to the offspring.

(ii) Roulette

First, we remap the fitness such that one is the best possible value and zero the worst.
Then, we use a probability distribution proportionate to the new fitness, simply by
dividing by the size of the population, to pick two individuals subject to mutation or
crossover as in the tournament.

Note that crossover and mutations can increase the number of symbolic constants. This can
be limited, e.g. when using one-point crossover we can try different common nodes until we
find offspring within the set bounds. If this is not possible, the offspring is discarded and
we keep the parents. Using only one-point crossover reduces the bloat problem, see e.g. [12,
11.2], as trees cannot increase in size. Before we describe the algorithm we use, let us first
introduce the concept of a hall of fame.

4.1.5 Hall of Fame

The evolutionary process will by means of natural selection return a final population with a
high mean fitness. The best individuals may, however, have lived in earlier populations. Thus
we use a hall of fame which keeps track of the best individuals throughout all generations.
One can use the fitness or any other objective chosen to decide which individuals are kept in
the hall of fame. It may be the case that there is more than one fitness objective. Say we use
the χ2 sum and the complexity or size, i.e. the number of nodes, as objectives. We can assign
a fitness to an individual f as

λ1‖f‖χ2 + λ2‖f‖size
for weights λ. Choosing useful weights is difficult and problem dependent. This Ansatz may
also discard non-linear trade offs. An effective way of handling multi-objective fitness is Pareto
efficiency. If we have several objectives, we say an individual dominates another one if it is

– 12 –

better w.r.t. all objectives. The Pareto front is the set of non-dominated functions. The
concept is visualized in figure 4.1.

Pareto

A

B

C

Figure 4.1. Visualization of Pareto front. The blue points are dominated by the red ones, e.g. A has
a smaller size and χ2-value than C and thus dominates C.The members of the Pareto front cannot be
compared. B has a worse χ2-value than A, but also a smaller size. We assume that both objectives are
better for smaller values. The concept also works in the obvious way for objectives which are subject
to maximization. In this case, the geometric picture is flipped.

For example one can keep track of a model which has a worse χ2 value than the current best
solution but has fewer parameters. Furthermore, it is possible to keep the hall of fame unique.
Given a candidate for the hall of fame we can test if we already found the same solution before.
This is done using the sympy module. This is, again, computationally expensive and it may
be easier to use the χ2 value to decide if two solutions are identical; the probability of having
different models with exactly the same χ2 value seems rather small.

It is of course also possible to collect many results from different runs with different initial
population. Then, we can choose the best solutions as the Pareto front w.r.t. to chosen
objectives or select results which satisfy given algebraic properties. If the fitness is already
restrictive, in the sense that mostly functions with e.g. the right asymptotics have a good
fitness, it is computationally more efficient to do these checks at this stage rather than during
the evolution.

4.1.6 Age-fitness Pareto optimization

We use the Age-fitness Pareto optimization algorithm as described in [19]. The algorithm
follows the general structure laid out in section 3.4.

Individuals have two fundamental properties: age and fitness. Each individual starts with
age one. If it is passed to the next generation the age increases by one. During crossover or
mutation events the offspring inherits the maximum age of its parents. The key idea is to
pass non-Pareto dominated individuals to next generations, i.e. we discard solutions which
are dominated w.r.t. age and fitness. This allows younger individuals to survive even if they
have a worse fitness compared to older ones. In the following we describe our implementation:

(i) Create an initial population

– 13 –

This is done as described in section 4.1.2.

(ii) Determine the fitness of individuals

We use the χ2 sum normalized by the number of data points.5 In general this includes
fitting parameters, i.e. symbolic constants, first. Depending on the problem we may,
as described in section 4.1.3, add a validation step. Furthermore, the hall of fame is
updated.

(iii) Evolution

There are two steps: First we add offspring to the population: breed rate×size(population)
times we use tournament or roulette to produce offspring by means of crossover or mu-
tation. By default we use tournaments with probability for crossover cross pb = 0.9
and set breed rate = 0.5. Additionaly, 0.05 × size(population) new random individu-
als are added. In the second step, we randomly choose 50 individuals and remove the
Pareto-dominated (w.r.t. age and fitness) individuals. This is repeated until the size of
the population is smaller or equal to the size of the initial population.

The second and third step are repeated a specified number (generations) of times.

4.2 Artificial Problems

In this section we show some simple artificial examples in which we know the original equa-
tion. This is not supposed to be a benchmark, rather it demonstrates simple usage of our
implementation. Knowing the equation, we pick our function sets accordingly, which of course
increases our success rate immensely compared to real problems, in which we don’t know the
answer. As SR is not deterministic, we restart the algorithm for each problem ten times to
demonstrate that the results are not just the product of pure luck, but are found with a very
high probability. A single run takes ∼ O(1min) on a quad-core notebook.6 Increasing the
population size and number of generations does often, but not always, improve the results, at
the price of a longer execution time.

Table 4.1. Python code used to produce data with 10% error.

import numpy as np
def f (x) :

return 3 .14∗x∗∗4 + 0.5∗ x∗∗3 + x∗∗2 + 2∗x
x = np . l i n s p a c e (−1 ,1 ,100)
y = f (x)
#Measurement
y i = [np . random . normal (y , np . abs (0 . 1∗ y)) for i in range (1 0)]
y = np . mean(y i , a x i s = 0)
y e r r = np . std (y i , a x i s = 0)

5We merely do this for convenience, as we would have to use the p-value to compare fitness when using
χ2/ndf . Using χ2 rather than χ2/ndf may result in over fitted models. Thus, for the final results one should
always calculate χ2/ndf .

6We do not use parallel computing, although this is supported in our implementation.

– 14 –

4.2.1 Quartic Polynomial

Very often the quartic polynomial

x4 + x3 + x2 + x

is used as demonstration for SR. Using symbolic constants we are able to find such polynomials
with arbitrary coefficients. We generate data for the polynomial

3.14x4 + 0.5x3 + x2 + 2x

using the code in table 4.1. We run the Age-fitness Pareto optimization ten times over ten
generations with an inital population of size 300 with the settings given in table 4.2.

Table 4.2. Parameters for SR runs.

Function Set: add, mul
Terminal Set: x0, c0

Initial Population: ramped half-and-half, depth = 4, sizelimit = 40
Algorithm: age fitness with default settings

Within small variation of the coefficients, we find the correct solution in every run.

4.2.2 Gaussian

A somewhat more complex and interesting problem is a Gaussian function. With the code as
in table 4.1 we produce data for

exp

(
−(x− 1)2

2

)
,

i.e. a non-normalized Gaussian with mean = sigma = 1. With the changed probability distri-
bution for the initial population as described in the end of section 4.1.2, we used the Age-fitness
Pareto optimization ten times over ten generations with an initial population of size 1000.
We used the same settings (table 4.2) as before, except we added the exponential function to
the function set. In nine out of the ten runs we found the exact solution.

4.2.3 Line with boundary conditions

We produce data for the linear function x 7→ x in the interval [−1, 1] and use SR to look for
solutions which do not diverge as x→∞. Using the function set add, mul, and x 7→ x−1 we
find in each run functions such as

x

0.01x2 + 1
,

which goes to zero as x→∞. Expanding this yields

x− 0.01x3 +O
(
x4
)
,

which shows that for small x the linear term is dominant.

4.2.4 Fermi Distribution

As a physical example we take the Fermi distribution

n(ε) =
1

exp((ε− µ)/T) + 1
,

– 15 –

where ε is the energy, µ the chemical potential and T the temperature (in natural units with
kB = 1). We set µ = 10−4eV and T = 3.44 × 10−4eV, which corresponds to 4K. The value
of µ is typical for He3 at low pressure as T → 0 [20][table 4.1]. We produce sample data as
before. Using the function set add, mul, exp and x 7→ x−1 and the same settings as in the
example in section 4.2.2 we find solutions of the form

1

exp(c0ε) + c1
,

in each of the ten runs. This is the Fermi distribution for µ = 0. To account for the non-
vanishing chemical potential the optimal value of c1 differs from one. The optimal value of
c0 is 0.27, which is close to 0.29K−1, the inverse temperature of our model. So even tough
we don’t find the exact equation with the stated settings, we are still able to extract the
temperature with a relatively high precision.

4.3 Further ideas

There is a plethora of ideas how to improve SR. Below we list some examples of different
difficulty (in terms of implementation).

• Simplification operator

It seems straightforward to use sympy to create a simplification operator.

• Multiple Regression GP

In [21] the authors introduce a systematic way of improving GP results by decoupling the
programs (functions in our case) into genes and determining the best linear combination
of sub-expressions (combination of genes).

• Use Machine Learning

It should be possible to implement something similar to “Estimation of Distribution
Algorithms” as described in [10]. We already use some specified probability distributions
to generate random trees. The idea now is to learn correlations of the building blocks
from the solutions produced in each generation. Then we use this knowledge to generate
the (in this case less-) random trees we inject in every generation.

– 16 –

Chapter 5

Applying SR to Heavy-Ion Physics

We analyzed several transverse-momentum (pT) spectra for p-p and Pb-Pb collisions and two
RAA-spectra. We use natural units throughout this section. The pT spectra describe the
distribution of produced particles as function of pT in nucleus-nucleus collisions. It is given
by the invariant yield1 defined as

E
d3N

d~p3
=

d2N

2πpTdydpT
,

where ~p is the momentum of the produced particles (with pT the momentum transverse to
the beam), E the energy, and y the rapidity co-linear to the collision. There are physical
models to fit pT-spectra in p-p collisions. For small pT < 1− 2 GeV the spectra are described
by an exponential with inverse slope giving an effective temperature [22, chapter 2]. The
QCD-inspired Hagedorn function describing the invariant yield is [23, eq. (B.15)]

A

(
p0

pT + p0

)n
=

 A(1− n
p0
pT) ≈ A exp

[
− n
p0
pT

]
for pT → 0

A
(
p0
pT

)n
for pT →∞

(5.1)

We will refer to these kind of power laws as Hagedorn-type functions. For Pb-Pb collisions,
however, no parametrizations are known. Interpolated pT distributions are e.g. used to deter-
mine the number of direct photons in cocktail simulations, see e.g. [24].

The RAA is the ratio of the pT spectra in A-A and p-p collisions scaled by 〈TAA〉 =
〈N coll 〉 /σNN

inel . For Pb-Pb it is observed to be smaller than one and this indicates a suppres-
sion of particle production in the Quark-Gluon Plasma, see e.g. [25, Lecture 8] and references
therein.

We filter the SR results for pT spectra for solutions which go to zero as pT → ∞, which
energy-momentum conservation demands. This is done using sympy. As computing limits
can be quite slow we generally only do this for the Pareto fronts, i.e. the best results. Most
results could be further simplified by introducing new constants, e.g. we could replace things

like
ec1

c2
with a new constant

ec1

c2
= c′1. Generally we do, however, write the functions as found

by the computer. The argument is generally always named x0.
2

1Sometimes the yield =
d3N

d~p3
is used. This is not Lorentz invariant.

2Sometimes the units would be wrong. Then, one should think of x0 as the physical variable divided by its
unit, i.e. pT/GeV most of the time.

– 17 –

5.1 J/Ψ pT-spectrum

The pT spectra of J/Ψ mesons are typically (e.g. in [26]) parameterized with a modified
Hagedorn function:

f(pT) = C0
pT

(1 + (pT/p0)2)n
, (5.2)

for parameters C0, p0, and n. Note that here we describe the yield and not the invariant yield.
We analyzed one J/ψ spectra from LHCb (pp, 8 TeV)[27]. The spectra fitted with eq. (5.2)
is plotted in figure 5.1. The optimal parameters found are listed in table A.1. The goodness
of the fit is χ2/ndf = 2.59.

0 2 4 6 8 10 12 14
pT (GeV)

101

102

103

yi
el

d

J/ spectra
Fit
Data

Figure 5.1. J/Ψ spectra. Data from [27].

Without knowing (5.2), we run the Age-fitness Pareto optimization 100 times over 40
generations with an initial population of size 1000 with the settings given in table 5.1. The
best results we found are plotted with χ2/ndf vs. size and with χ2/ndf vs. number of
parameters in figure 5.2.

Table 5.1. Parameters for SR run.

Function Set: add, mul, exp, x 7→ x−1, x 7→ xk

Terminal Set: x0, c0
Initial Population: ramped half-and-half, depth = random(3,4,5), sizelimit = 40

Algorithm: age fitness with default settings3

The best functions found are listed in the tables A.3 and A.4. We did not find exactly the
same expression as eq. (5.2) but several similar functions. The most similar function we found
is

c0
(
c1 + p2T

)k1 (1

pT

)k0
(5.3)

with optimal parameters listed in table A.2. Pulling out c1 we get

c0c
k1
1 p
−k0
T

(
1 +

p2T
c1

)k1
. (5.4)

3 breed rate = 0.5, cross Pb = 0.9, depth limit = 5, size limit = 40

– 18 –

This is almost the same as eq. (5.2). The parameters p0 and C0 correspond to c0 and c1
but in eq. (5.4) c0 and c1 are correlated. Furthermore, the linear factor pT in eq. (5.2) gets
replaced by p−k0T , for a new parameter k0. The optimal value is close to −1. Looking at eq.
(5.4) and knowing it was found by a computer one might argue that it is canonical to alter it
slightly to get

c0p
−k0
T

(
1 +

p2T
c1

)k1
. (5.5)

Notice that we did not use a square function in the function set. The term p2T was realized
as mul(pT, pT).

– 19 –

100 101

2/ndf

10

15

20

25

30

35

siz
e

Parametrizations of J/
SR Results
Pareto Front
 Pareto Front with lim

pT
= 0

Usual Parametrization

100 101

2/ndf

3

4

5

6

7

8

9

10

11

Nu
m

be
r o

f p
ar

am
et

er
s

Parametrizations of J/
SR Results
Pareto Front
Pareto Front with lim

pT
= 0

Usual Parametrization

Figure 5.2. Visualization of results of SR for J/Ψ pT-spectra. The size is the number of nodes in
the trees, which we use as a measure for the complexity of the functions. In the left figure it seems we
found many parametrizations better than eq. (5.2). But when looking at the number of parameters
per model, eq. (5.2) is part of the Pareto front.

– 20 –

5.2 pT-spectra for p-p collisions

We analyzed pion, kaon and proton pT spectra (pp, 2.76 TeV) with the data reported in [28].
They are plotted in figure 5.3. The goal was to find a function describing all three spectra, i.e. a

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
pT (GeV)

10 8

10 6

10 4

10 2

100

in
va

ria
nt

 y
ie

ld
, K, p spectra (pp, 2.76 TeV)

 Kaon
Proton

Figure 5.3. π, K, p spectra (pp, 2.76 TeV

function with different optimal values for the parameters for the different species.4 We run
the Age-fitness Pareto optimization 100 times over 30 generations with an initial population
of size 1000 with the settings given in table 5.2.

Table 5.2. Parameters for SR run.

Function Set: add, mul, exp, x 7→ x−1, x 7→ xk

Terminal Set: x0, c0
Initial Population: ramped half-and-half, depth = random(3,4), sizelimit = 40

Algorithm: age fitness with default settings.

The best function found by the computer is exp(exp(c0))
(

exp(c1) + pk0T

)k2
p−k1T . We can

simplify this to
c0p

k0
T (c1 + pk1T)k2 . (5.6)

This is a modified version of the Hagedorn function (eq. (5.1)).5 The equation is plotted in
figure 5.4 with the optimal values as listed in the tables B.1, B.2, and B.3. The fits were done
with the MINUIT algorithm[29] via the iminuit[30] Python interface. For high pT values the
fit is slightly off, especially for the pion and proton spectra.

One approach used in particle physics is the Tsallis model (TM) [31]:

d2N

2πpTdpTdy
∝
(

1 +
q − 1

T
mT

)−1/(q−1)
(5.7)

4It is of course possible to find better functions for the individual species, which we indeed did: There were
solutions for the kaon and proton spectra with χ2/ndf < 2 and χ2/ndf < 4 for pions.

5Note that with k0 = 1 eq. (5.6) would describe the yield rather then the invariant yield. So k0 = 1 would
be wrong. Indeed, the optimal value is not 1.

– 21 –

Here mT =
√
m2 + p2T, where m is the mass of the particle, is the transverse mass. The TM

fit was worse for kaons and protons, but performed better for the pion. Like eq. (5.6) high
pT values are not described well.6 The χ2/ndf -values are listed in table 5.2.

Table 5.3. Goodness of fits. For the kaon and proton spectra we can fix the parameters c1 = 2×mass
and k1 = 3/2.

SR TM

species χ2/ndf χ2/ndf with fixed para χ2/ndf

K 2.72 3.59 5.78
p 3.55 3.60 6.01
π 13.28 - 4.61

6The TM model assumes thermal equilibrium, which may not be given for high pT as pointed out in [31].
In practice it is still used for an arbitrary range. One approach is to use a two component fit; the spectra is
split into low (soft) and high (hard) pT components which are fitted separately.

– 22 –

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
pT (GeV)

10 8

10 6

10 4

10 2

100

in
va

ria
nt

 y
ie

ld

Kaon pT spectra
SR Fit
TM Fit

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
pT (GeV)

10 9

10 7

10 5

10 3

10 1

in
va

ria
nt

 y
ie

ld

Proton pT spectra
SR fit
TM fit

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
pT (GeV)

10 8

10 6

10 4

10 2

100

in
va

ria
nt

 y
ie

ld

Pion pT spectra
SR Fit
TM Fit

Figure 5.4. π, K, p spectra fitted with eq. (5.6) (SR) and the Tsallis Model (TM).

– 23 –

5.3 pT-spectra for Pb-Pb collisions

We took data for pion, kaon and proton pT spectra (Pb-Pb, 2.76 TeV, 0-5%) from [32]. They
are plotted in figure 5.5. We tried finding a solution describing all three spectra as before;

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
pT (GeV)

10 6

10 4

10 2

100

102

104
in

va
ria

nt
 y

ie
ld

, K, p spectra (Pb-Pb, 2.76 TeV, 0-5%)

 Kaon
Proton

Figure 5.5. π, K, p spectra (Pb-Pb, 2.76 TeV)

the ones we found were good for one species and off for high pT for the other two species.
Nevertheless, the search for each of the species produced results which turned out to describe
all spectra.

For each species we run the Age-fitness Pareto optimization 100 times over 100 generations
with an inital population of size 1000 with the settings given in table 5.4.

Table 5.4. Parameters for SR run.

Function Set: add, mul, exp, log, x 7→ x−1, x 7→ xk

Terminal Set: x0, c0
Initial Population: random if depth> 4, else ramped half-and-half,

depth = random(3,4,5,6,7), sizelimit = None
Algorithm: age fitness with

size limit = None, depth limit = 15, n const limit=None.

The solutions with limpT→∞ = 0 for the pions and kaons are listed in the tables C.1 and C.2.
The Pareto Fronts for the kaons and pions are visualized in figure 5.6 and for the protons in
figure 5.7, respectively. For the pion spectra the best model we found diverges for pT → 0.
The second best solution is(

pk2T +

(
1

pT

)k1)(
c0pT +

(
p3T
)k0)(1

c2 + c3pT + pk3T

)k4
e−c1 . (5.8)

with the optimal parameters, as in table C.1, eq. (5.8) goes to zero as pT → 0. Let us rewrite
it as 7

c1p
k2
T f

π(pT) + c1p
k1
T f

π(pT), (5.9)

7The regression actually fails when using c1 instead of e−c1 .

– 24 –

5.0 5.5 6.0 6.5 7.0
2/ndf

15

20

25

30

35

40

45

50

siz
e

Pions
SR Results
Pareto Front
 Pareto Front with lim

pT
= 0

7.0 7.5 8.0 8.5 9.0 9.5 10.0
2/ndf

20

25

30

35

40

siz
e

Kaons

SR Results
Pareto Front, all lim

pT
= 0

Figure 5.6. Best SR fits for pion and kaon pT spectra for Pb-Pb. There are less good solutions for
the kaon than for the pion.

– 25 –

2.0 2.5 3.0 3.5 4.0
2/ndf

15

20

25

30

35

40

45

siz
e

Protons
SR Results
Pareto Front, all wrong limits
Second Pareto Front
 Pareto Front with lim

pT
= 0

Figure 5.7. Best SR fits for proton pT spectra for Pb-Pb. The solutions in the first Pareto front all
diverge for pT → ∞. In the second Pareto front (i.e. the Pareto front of the set without the Pareto
front) there is one solution satisfying energy momentum conservation.

where k1 7→ −k1, e−c1 7→ c1, and

fπ(pT) =
(
c0pT +

(
p3T
)k0)(1

c2 + c3pT + pk3T

)k4
.

Eq. (5.9) could be described as a sum of two modified Hagedorn-type functions with a shared
amplitude c1.

Another interesting function we found is

(
c1 + (pT/c0)

k0
)(1

pT + pk1T

)k2
+ e−p

k3
T

k4

. (5.10)

The factor

(
1

pT+p
k1
T

)k2
is close to the Hagedorn function itself 8, and

(1

pT + pk1T

)k2
+ e−p

k3
T

k4

is then a kind of recursive, modified Hagedorn-type function. A similar exponential term in
a Hagedorn function was also used e.g. in [33, eq. (30)]. Both solutions can also be fitted to

8We also found one solution in which the linear factor pT was replaced by a constant. This resulted in a
slightly worse fit.

– 26 –

the kaon and pion spectra. All fits are plotted in figure 5.8. There is no visible offset, except
for the protons with eq. (5.8) fitted. The χ2/ndf values are given in table 5.5, the optimal
values for the parameters can be found in the tables C.3, C.4, and C.5.

Table 5.5. Goodness of fits.

SR Fit 1 eq. (5.8) SR Fit 2 eq. (5.10)

species χ2/ndf χ2/ndf

K 11.25 11.02
π 5.26 5.85
p 2.86 9.8

We also tried looking for solutions for the pions which take the transverse mass mT =√
p2T +m2 as argument.9 The best function we found is

(
c0 +m0.5k0

T

)(
c2m

0.5
T +m0.5k2

T

)k3 (
c1 +m0.5

T +m0.5k1
T

)
, (5.11)

with optimal values for the parameters given in table C.6. The χ2/ndf = 6.80. The fit is
plotted in figure 5.9. The best solutions for the kaon (table C.2) is plotted in figure 5.10.

The best solution for the proton is

log

(
c0 +

(
c1pT

(
pTp

k0
T + 1/c2

))k1)−k2
. (5.12)

The inner part (
c1pT

(
pTp

k0
T + 1/c2

))k1
is almost the same as the Hagedorn function (5.1) describing the yield, except the linear factor
has the exponent k1. It is plotted in figure 5.11. The fit is quite good with χ2/ndf = 2.76.
The optimal parameters are listed in table C.7.

9If this is optimal, SR should be able to find, given enough time, a functional form in terms of mT. As
mentioned in section 3.6, giving more information always improves the algorithm; by specifying the argument
we drastically shrink the search space.

– 27 –

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
pT (GeV)

10 5

10 3

10 1

101

103

in
va

ria
nt

 y
ie

ld

Pions
SR Fit 1
SR Fit 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
pT (GeV)

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

in
va

ria
nt

 y
ie

ld

Kaons
SR Fit 1
SR Fit 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
pT (GeV)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

in
va

ria
nt

 y
ie

ld

Protons
SR Fit 1
SR Fit 2

Figure 5.8. π, K, p pT spectra (Pb-Pb, 2.76 TeV) fitted with eq. (5.8) (SR Fit 1) and eq. (5.10) (SR
Fit 2).

– 28 –

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
pT (GeV)

10 5

10 3

10 1

101

103
in

va
ria

nt
 y

ie
ld

Pion pT spectra
SR Fit with mT scaling

Figure 5.9. Pion pT spectra (Pb-Pb, 2.76 TeV) fitted with eq. (5.11).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
pT (GeV)

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

in
va

ria
nt

 y
ie

ld

Kaon
SR Fit

Figure 5.10. Kaon pT spectra (Pb-Pb, 2.76 TeV) fitted with the first function in table C.2.

– 29 –

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
pT (GeV)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

in
va

ria
nt

 y
ie

ld

Proton
SR Fit

Figure 5.11. Proton pT spectra (Pb-Pb, 2.76 TeV) fitted with eq. (5.12).

– 30 –

5.4 Charged-hadron RAA

100 101 102

pT (GeV)

0.2

0.3

0.4

0.5

0.6
R A

A

Charged-hadron RAA

Figure 5.12. Charged-hadron RAA (Pb-Pb, 2.76 TeV, 0-5%, ATLAS).

We analyzed a charged-hadron RAA. (Pb-Pb, 2.76 TeV, 0-5%, ATLAS). The data was taken
from [34]. We run the Age-fitness Pareto optimization 100 times over 30 generations with an
initial population of size 1000 with the settings given in table 5.6.

Table 5.6. Parameters for SR run.

Function Set: add, mul, exp, log, sin, cos, x 7→ x−1, x 7→ xk

Terminal Set: x0, c0
Initial Population: random if depth> 4, else ramped half-and-half,

depth = random(3,4,5,6), sizelimit = 40
Algorithm: age fitness with default settings.

We found several good fits with quite different asymptotic behavior. The solutions are plotted
with χ2/ndf vs. size in figure 5.13.
Demanding finite limits invalidates most solutions as can be seen in figure 5.13. The best
functions in the Pareto front (w.r.t. χ2/ndf and size) of solutions with constant limits are
plotted in figure 5.14.
We also tried to fit another data set (Pb-Pb, 5.02 TeV, 0-5%, CMS) taken from [35]. The data
is plotted in figure 5.15. The search with the same settings as before was not successful. We
only found solutions which were completely wrong after the first peak. This may be because
of the last three data points which seem a bit disconnected to the ones before. On the other
hand the uncertainty is large for these points.

– 31 –

0 2 4 6 8 10
2/ndf

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

siz
e

SR results
Pareto front

2 4 6 8 10
2/ndf

12

14

16

18

20

22

siz
e

SR results with finite limits
 Pareto front

Figure 5.13. Best SR fits for charged-hadron RAA (Pb-Pb, 2.76 TeV, 0-5%, ATLAS). Demanding
finite limits invalidates most solutions.

– 32 –

100 101 102

pT (GeV)

0.2

0.3

0.4

0.5

0.6

R A
A

lim
pT

= 0.0
lim

pT 0 = 0.87

100 101 102

pT (GeV)

0.2

0.3

0.4

0.5

0.6

0.7

R A
A

lim
pT

= 1.0
lim

pT 0 = 0.0

100 101 102

pT (GeV)

0.2

0.3

0.4

0.5

0.6

R A
A

lim
pT

= 0.0
lim

pT 0 = 0.0

100 101 102

pT (GeV)

0.2

0.3

0.4

0.5

0.6

0.7

R A
A

lim
pT

= 0.82
lim

pT 0 = 0.0

Figure 5.14. SR Fits for charged-hadron RAA (Pb-Pb, 2.76 TeV, 0-5%, ATLAS) with constant limit
as pT 7→ 0,∞. They correspond to the four best functions listed in table D.1.

– 33 –

100 101 102

pT (GeV)

0.2

0.4

0.6

0.8

1.0

R A
A

Charged-hadron RAA

Figure 5.15. Charged-hadron RAA (Pb-Pb, 5.02 TeV, 0-5%, CMS).

– 34 –

Chapter 6

Conclusion and Outlook

We investigated SR and its applications to heavy-ion physics. We wrote a Python module to
perform SR supporting, in particular, symbolic constants and data with uncertainty. While
these are not novel ideas, there is a lack of SR programs combining these, or similar, features.
On one hand, there are general-purpose GP libraries with abstraction layers such as DEAP
[15], which allow for user-defined fitness. In particular, the χ2 sum can be easily implemented
as fitness. At the same time, however, the abstraction-layer makes it difficult to implement
symbolic constants and increases the effort for usage, which makes it less attractive for do-
main experts. On the other hand, there are ready-to-use SR programs like ffx [6] and the
FindForumala function in Mathematica.1 These can be easily integrated into the workflow
of domain experts. The simple API comes at the price of functionality and both programs,
unfortunately, do not support data with uncertainty. In this sense, we took a step towards
filling the gap and make SR principally usable for domain experts in physics. Our case studies
show that SR can be a useful tool: For eight out of nine data sets our SR approach found func-
tions describing the given data sets. We discovered generalizations of Hagedorn-type functions
which describe pT spectra for p-p and Pb-Pb collisions. The use of the exponential function
in the function set and the lack of solutions using the exponential suggest that Hagedorn-type
functions are indeed the simplest models describing pT spectra.2 Furthermore, in one case we
were able to model the RAA for charged hadrons.

It is common practice in particle physics to “guess” functions for interpolation. SR could
be a time-saving alternative. Given that there is much room for improvement it seems possible
that SR will become a standard tool for modeling data with specified asymptotics and other
algebraic properties, once a certain level of speed, quality, and user-friendliness is reached. The
white-box nature of SR solutions allows for deep insight. This may inspire phenomenological
models, provided the data is good enough to restrict the models to give unique and physical
results, e.g. when parameters can be interpreted physically.

“We can only see a short distance ahead, but we can see plenty there that needs
to be done.” Alan Turing [7]

1https://reference.wolfram.com/language/ref/FindFormula.html
2As SR is a heuristic technique one should be careful drawing strong conclusions.

– 35 –

https://reference.wolfram.com/language/ref/FindFormula.html

Bibliography

[1] John R. Koza. Genetic programming: on the programming of computers by means of
natural selection, volume 1. MIT press, 1992.

[2] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental
data. science, 324(5923):81–85, 2009.

[3] Christopher Hillar and Friedrich Sommer. Comment on the article” distilling free-form
natural laws from experimental data”. arXiv preprint arXiv:1210.7273, 2012.

[4] Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven
discovery of partial differential equations. Science Advances, 3(4):e1602614, 2017.

[5] Yiqun Wang, Nicholas Wagner, and James M Rondinelli. Symbolic regression in materials
science. arXiv preprint arXiv:1901.04136, 2019.

[6] Trent McConaghy. Ffx: Fast, scalable, deterministic symbolic regression technology. In
Genetic Programming Theory and Practice IX, pages 235–260. Springer, 2011.

[7] Alan Turing. Computing machinery and intelligence. Mind, 59(236):433, 1950.

[8] Robert Axelrod et al. The evolution of strategies in the iterated prisoner’s dilemma. The
dynamics of norms, pages 1–16, 1987.

[9] John R Koza and Riccardo Poli. Genetic programming. In Search Methodologies, pages
127–164. Springer, 2005.

[10] Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza. A field guide
to genetic programming. Lulu. com, 2008.

[11] Michael Kommenda. Local Optimization and Complexity Control for Symbolic Regression.
PhD thesis, Johannes Keppler Universität Linz, 2018.

[12] William B Langdon and Riccardo Poli. Foundations of Genetic Programming. Springer
Science & Business Media, 2002.

[13] David H Wolpert, William G Macready, et al. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[14] Erik Pitzer. Applied Fitness Landscape Analysis. PhD thesis, Johannes Keppler Univer-
sität Linz, 2013.

[15] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau,
and Christian Gagné. Deap: Evolutionary algorithms made easy. Journal of Machine
Learning Research, 13(Jul):2171–2175, 2012.

[16] Aaron Meurer et al. Sympy: symbolic computing in python. PeerJ Computer Science,
3:e103, January 2017.

– 36 –

[17] Jorge J Moré. The levenberg-marquardt algorithm: implementation and theory. In
Numerical analysis, pages 105–116. Springer, 1978.

[18] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools
for Python, 2001–. [Online; accessed 04.09.2019].

[19] Michael Schmidt and Hod Lipson. Age-fitness pareto optimization. In Genetic Program-
ming Theory and Practice VIII, pages 129–146. Springer, 2011.

[20] Franz Schwabl. Statistische Mechanik. 01 2006.

[21] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. Multiple regression genetic
programming. In Proceedings of the 2014 Annual Conference on Genetic and Evolution-
ary Computation, pages 879–886. ACM, 2014.

[22] Wojciech Florkowski. Phenomenology of ultra-relativistic heavy-ion collisions. World
Scientific Publishing Company, 2010.

[23] R. Hagedorn. Multiplicities,ptdistributions and the expected hadron quark-gluon phase
transition. La Rivista del Nuovo Cimento (1978-1999), 6(10):1–50, Oct 1983.

[24] Klaus Reygers. Direct Photon and High-pT Particle Productionwith ALICE,
2014. URL: https://www.physi.uni-heidelberg.de/~reygers/talks/2014/kruger/
reygers_kruger_2014.pdf. Last visited on 31.03.2019.

[25] Klaus Reygers and Johanna Stachel. Lecture on Quark-Gluon Plasma Physics ,
2015. URL: https://www.physi.uni-heidelberg.de/~reygers/lectures/2015/qgp/
qgp_lecture_ss2015.html. Last visited on 31.03.2019.

[26] Shreyasi Acharya et al. Energy dependence of forward-rapidity J/ψ and ψ(2S) production
in pp collisions at the LHC. Eur. Phys. J., C77(6):392, 2017.

[27] R Aaij et al. Production of J/psi and Upsilon mesons in pp collisions at sqrt(s) = 8 TeV.
JHEP, 06:064, 2013.

[28] Betty Bezverkhny Abelev et al. Production of charged pions, kaons and protons at
large transverse momenta in pp and Pb–Pb collisions at

√
sNN =2.76 TeV. Phys. Lett.,

B736:196–207, 2014.

[29] F. James and M. Roos. Minuit – a system for function minimization and analysis of
the parameter errors and correlations. Computer Physics Communications, 10:343–367,
December 1975.

[30] iminuit team. iminuit – a python interface to minuit. https://github.com/iminuit/

iminuit. Accessed: 09.04.2019.

[31] Zebo Tang, Yichun Xu, Lijuan Ruan, Gene van Buren, Fuqiang Wang, and Zhangbu
Xu. Spectra and radial flow at RHIC with Tsallis statistics in a Blast-Wave description.
Phys. Rev., C79:051901, 2009.

[32] Jaroslav Adam et al. Centrality dependence of the nuclear modification factor of charged
pions, kaons, and protons in Pb-Pb collisions at

√
sNN = 2.76 TeV. Phys. Rev.,

C93(3):034913, 2016.

[33] A. Adare et al. Detailed measurement of the e+e− pair continuum in p+ p and Au+Au
collisions at

√
sNN = 200 GeV and implications for direct photon production. Phys.

Rev., C81:034911, 2010.

– 37 –

https://www.physi.uni-heidelberg.de/~reygers/talks/2014/kruger/reygers_kruger_2014.pdf
https://www.physi.uni-heidelberg.de/~reygers/talks/2014/kruger/reygers_kruger_2014.pdf
https://www.physi.uni-heidelberg.de/~reygers/lectures/2015/qgp/qgp_lecture_ss2015.html
https://www.physi.uni-heidelberg.de/~reygers/lectures/2015/qgp/qgp_lecture_ss2015.html
https://github.com/iminuit/iminuit
https://github.com/iminuit/iminuit

[34] Georges Aad et al. Measurement of charged-particle spectra in Pb+Pb collisions at√
sNN = 2.76 TeV with the ATLAS detector at the LHC. JHEP, 09:050, 2015.

[35] Vardan Khachatryan et al. Charged-particle nuclear modification factors in PbPb and
pPb collisions at

√
sN N = 5.02 TeV. JHEP, 04:039, 2017.

– 38 –

Appendix A

SR and fitting results for J/Ψ pT
spectra

Table A.1. Optimal Parameters for J/Ψ spectra fitted with eq. (5.2).

Para popt

C0 1485.32 ± 15.81
p0 4.15 ± 0.03
n 3.52 ± 0.02

Table A.2. Optimal parameters for J/Ψ spectra fitted with eq. (5.4).

Para popt

c0 45515015.73
c1 18.44
k0 -0.93
k1 -3.55

Table A.3. Result with age fitness for J/Ψ spectra. Pareto Front w.r.t. χ2/ndf and size. Only
solutions with limx0→∞ = 0 andχ2/ndf >0.8.

Function χ2/ndf limx0→0(
c0x0 + xk00

)k1
e−c1e−x0 1.06 0

popt: c0 : 19546.39, k0 : 5.3, k1 : 1.57, c1 : 7.3

c1

(
c0x0 + xk00

)k1
e−x0 1.06 0

popt: k0 : 5.3, c0 : 19546.39, c1 : 0.0, k1 : 1.57

e−x0

c1

(
c0x0 + xk00

)k1
1.06 0

popt: c0 : 19546.38, c1 : 1476.05, k0 : 5.3, k1 : 1.57

c0
(
c1 + x20

)k1 (1
x0

)k0
1.89 0

popt: c1 : 18.44, k0 : −0.93, k1 : −3.55, c0 : 45515015.73(
c0x0+x

k0
0

)k1

c1x0
2.43 0

popt: c1 : 0.0, k0 : −0.32, c0 : 0.09, k1 : −7.73(
c0x0+x

k0
0

)k1

c1x0
2.43 0

– 39 –

Table A.3. (continued)

Function χ2/ndf limx0→0

popt: k0 : −0.32, c1 : 0.0, c0 : 0.09, k1 : −7.73

Table A.4. Result with age fitness for J/Ψ spectra. Best solution for each class of models with fixed
number of parameters. Only solutions with limx0→∞ = 0 andχ2/ndf >0.8.

Function χ2/ndf limx0→0

2x20 (c1 + x0)
k0
(

3x0 + 1
x0

)
ec0 1.52 0

popt: c1 : 6.25, k0 : −13.52, c0 : 31.84

x−k20

(
c0x0 + xk00 + 3ex0

)k1
e−x0 0.89 0

popt: c0 : 16982.23, k2 : −0.72, k0 : 5.58, k1 : 0.84

– 40 –

Appendix B

SR and fitting results for p-p pT
spectra.

B.1 SR Results

Table B.1. Result of fit with eq. (5.6) for Kaons.

Name Value Hesse Error Minos Error- Minos Error+ Fixed?

0 c0 0.710397 0.0580933 -0.0478419 0.054347 No

1 c1 1.05613 0.00903426 -0.0091 0.00907156 No

2 k0 0.0592364 0.0385329 -0.0333489 0.0351326 No

3 k1 1.51993 0.024017 -0.021151 0.0207659 No

4 k2 -4.35468 0.115589 -0.103882 0.0978785 No

Table B.2. Result of fit with eq. (5.6) for Protons.

Name Value Hesse Error Minos Error- Minos Error+ Fixed?

0 c0 13.8835 0.307369 -3.76357 0.307369 No

1 c1 1.89261 0.00920488 -0.00920488 0.0301729 No

2 k0 0.399425 0.0114989 -0.0788647 0.0862406 No

3 k1 1.44282 0.00328392 -0.0432317 0.0417626 No

4 k2 -6.25775 0.019888 -0.019888 0.019888 No

Table B.3. Result of fit with eq. (5.6) for Pions.

Name Value Hesse Error Minos Error- Minos Error+ Fixed?

0 c0 985.357 2.87082 -2.87082 2.87082 No

1 c1 0.885999 0.000271082 -0.000271082 0.000271082 No

2 k0 1.46942 0.00134736 -0.00134736 0.00134736 No

3 k1 0.696996 0.000206761 -0.000206761 0.000206761 No

4 k2 -14.3532 0.0048495 -0.0048495 0.0048495 No

– 41 –

B.2 Tsallis Model

Table B.4. Result of TM fit for Kaons.

Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed?

0 q 1.13812 0.000279213 -0.000280285 0.000276455 1.0 No

1 m0 0.497648 1 Yes

2 T 0.125992 0.000457937 -0.000453577 0.000459233 0.0 No

3 a 9.92505 0.0966614 -0.0962177 0.0964568 No

Table B.5. Result of TM fit for protons.

Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed?

0 q 1.11513 0.000489567 -0.000480458 0.000478438 1.0 No

1 m0 0.93827 1 Yes

2 T 0.108928 0.00097937 -0.000956075 0.00095892 0.0 No

3 a 43.9823 1.52207 -1.45742 1.52021 No

Table B.6. Result of TM fit for pions.

Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed?

0 q 1.14725 7.71739e-05 -7.71197e-05 7.71235e-05 1.0 No

1 m0 0.13957 1 Yes

2 T 0.103786 6.19246e-05 -6.18769e-05 6.18607e-05 0.0 No

3 a 43.9428 0.0506216 -0.0505365 0.0506201 No

– 42 –

Appendix C

SR results for Pb-Pb pT spectra.

Table C.1. Result with age fitness for Pion pT spectra for Pb-Pb. Pareto Front w.r.t. χ2/ndf and
number of size. Only solutions with limx0→∞ = 0.

Function χ2/ndf limx0→0

x0 (c1 + x0)
(
xk10 + xk20

)(
c0x0 +

(
x30
)k0)(1

c2+c3x0+x
k3
0

)k4
5.02 −∞

popt: k0 : 1.8, c3 : −0.66, k4 : 8.1, c1 : −0.05, k1 : −4.37, c0 : 1501.91, k2 :
−1.66, c2 : 1.25, k3 : 1.33(
xk20 + (1/x0)

k1
)(

c0x0 +
(
x30
)k0)(1

c2+c3x0+x
k3
0

)k4
e−c1 5.26 0

popt: k0 : 1.81, c3 : 2.35, k4 : 6.79, c1 : −4.4, k1 : −4.37, c0 : 1637.51, k2 :
6.96, c2 : 0.04, k3 : 2.69(
xk10 + xk20

)(
c0x0 +

(
x30
)k0)(1

c2+c3x0+x
k3
0

)k4
e−c1 5.26 0

popt: k0 : 1.81, c3 : 2.35, k4 : 6.79, c1 : −4.4, k1 : 4.37, c0 : 1637.51, k2 :
6.96, c2 : 0.04, k3 : 2.69

xk30

(
c0 +

(
x0 + xk00 + 1/x0

)k1)k2 (
c1 + c3x

2
0 (c2 + 2x0 + 1/x0) + x0

)
5.68 0

popt: c2 : −9.58, k0 : 2.26, k3 : −2.5, c1 : 27772.73, k1 : 1.05, c0 : 5.22, c3 :
139.85, k2 : −2.82(
x0 + xk10

)(
c0x0 +

(
x30
)k0)(1

c2+c3x0+x
k2
0

)k3
e−c1 5.72 0

popt: k0 : 1.82, c3 : 3.79, c1 : −4.29, k1 : −0.75, c0 : 1688.79, k2 : 2.78, c2 :
1.62, k3 : 4.42

xk30

(
x0

(
c0x

k0
0 + x0

)
(c1 + c2x0 + x0)

)−k1 (
c3 + x0 + xk20

)
5.77 0

popt: k2 : 4.38, c0 : 0.19, c1 : 0.43, k3 : 7.21, k1 : 3.4, c2 : 0.63, k0 : 3.09, c3 :
1405.8

xk30

((
c2 + xk10

)
(c3 + x0)

)−k2 (
c0 + 2x0 + xk00

)
/c1 5.77 0

popt: c1 : 0.02, c2 : 5.37, c3 : 0.26, k2 : 3.4, k0 : 4.38, k1 : 2.09, c0 :
1408.95, k3 : 0.4

c1x
k1
0

(
c0 +

(
x20
)k0)(1

c2+c3x0+x
k2
0

)k3
5.78 0

popt: k0 : 2.19, c3 : 4.94, c1 : 49.31, k1 : 0.39, c0 : 1396.59, k2 : 2.99, c2 :
1.35, k3 : 3.5

– 43 –

Table C.1. (continued)

Function χ2/ndf limx0→0(
c1 + (x0/c0)

k0
)((

1

x0+x
k1
0

)k2
+ e−x

k3
0

)k4
5.85 149.45

popt: c0 : 0.07, k0 : 2.11, k3 : 0.96, k2 : 1.49, c1 : 149.45, k1 : −0.01, k4 : 5.52(
c1x0 + (c0x0)

k0
)((

1

c2+x
k1
0

)k2
+ e−x0

)k3
5.99 0

popt: c0 : 6.63, k3 : 4.93, k0 : 2.33, k2 : 1.97, c1 : 3.36, c2 : 0.31, k1 : 0.83(
c1 +

(
c−k00 x0

)k1)((
1

c2+x
k2
0

)k3
+ e−x0

)k4
5.99 6217.59

popt: c0 : 1.99, k3 : 1.53, k0 : −3.66, k2 : 1.07, c1 : 89.34, c2 : 0.81, k1 :
1.98, k4 : 4.88

(c0x0 + x0)

((
1

c1+x
k0
0

)k1
+ e−x0

)k2
6.97 0

popt: c0 : 195.38, k2 : 4.11, c1 : 0.48, k1 : 2.34, k0 : 0.73

Table C.2. Result with age fitness for Kaon pT spectra for Pb-Pb. Pareto Front w.r.t. χ2/ndf and
number of size. Only solutions with limx0→∞ = 0.

Function χ2/ndf limx0→0(
c0+

(
(e1/x0)

−k0/c1x0
)k1

c2 log (2x0)+c3+x20+x0+
(
x0ec4(ec5+x0)

k2
)k3

)k4
6.78 0

popt: c3 : 2.94, c0 : 10.65, c4 : −0.41, k1 : 105.6, k0 : 2.7, c2 : −0.18, k3 :
5.19, c1 : 0.14, k4 : 3.88, c5 : 0.83, k2 : −0.11(

c0+
(
(e1/x0)

−k0/c1x0
)k1

c2+x20+x0+x
k2
0 +

(
x0ec3(ec4+x0)

k3
)k4

)k5
6.78 0

popt: c3 : −0.01, c0 : 10.81, c4 : 4.34, k1 : 104.59, k5 : 3.89, c2 : 1.91, k3 :
−0.11, c1 : 0.14, k4 : 5.14, k0 : 2.7, k2 : −0.15(

c0+
(
(e1/x0)

−k0/c1x0
)k1

c2+x20+x0+x
k2
0 +

(
c3x0(ec4+x0)

k3
)k4

)k5
6.78 0

popt: c3 : 0.88, c0 : 10.81, c4 : 3.26, k1 : 104.56, k5 : 3.89, c2 : 1.91, k3 :
−0.11, c1 : 0.14, k4 : 5.14, k0 : 2.7, k2 : −0.15

– 44 –

Table C.3. Optimal values for Pion fit Pb-Pb

SR Fit 1 eq. (5.8) SR Fit 2 eq. (5.10)

para popt popt

k 0 2.11 ± 0.02 1.81 ± 0.02
k 1 -0.01 ± 0.0 4.37 ± 0.21
k 2 1.49 ± 0.02 6.96 ± 0.18
k 3 0.96 ± 0.0 2.69 ± 0.03
k 4 5.52 ± 0.08 6.79 ± 0.19
c 0 0.07 ± 0.0 1637.52 ± 165.69
c 1 149.45 ± 4.51 -4.4 ± 0.22
c 2 - 0.04 ± 0.0
c 3 - 2.35 ± 0.05

Table C.4. Optimal values for Kaon fit Pb-Pb

SR Fit 1 eq. (5.8) SR Fit 2 eq. (5.10)

para popt popt

k 0 1.34 ± 0.14 2.33 ± 0.05
k 1 0.05 ± 0.04 6.73 ± 2.24
k 2 2.23 ± 0.06 7.08 ± 13.7
k 3 1.07 ± 0.01 2.58 ± 0.37
k 4 3.36 ± 0.15 7.99 ± 6.43
c 0 0.03 ± 0.01 27121.04 ± 6065.49
c 1 2.75 ± 2.37 -5.48 ± 8.95
c 2 - 0.04 ± 0.0
c 3 - 2.35 ± 0.05

Table C.5. Optimal values for Proton fit Pb-Pb

SR Fit 1 eq. (5.8) SR Fit 2 eq. (5.10)

para popt popt

k 0 6.25 ± 0.31 2.27 ± 0.05
k 1 0.68 ± 0.03 4.14 ± 5286.44
k 2 1.97 ± 0.06 4.14 ± 5289.93
k 3 0.92 ± 0.01 3.48 ± 0.33
k 4 5.8 ± 0.28 5.23 ± 1.96
c 0 0.48 ± 0.02 47743.91 ± 13174.19
c 1 -0.01 ± 0.0 -4.68 ± 4.61
c 2 - 0.04 ± 0.0
c 3 - 2.35 ± 0.05

– 45 –

Table C.6. Optimal values for eq. (5.11).

para popt

c 0 0.00
k 1 2.67
k 3 -9.05
k 2 -0.48
k 0 -4.92
c 1 371.39
c 2 0.21

Table C.7. Optimal values for eq. (5.12).

para popt

c1 0.0
c2 0.01
k0 1.86
k2 5.94
k1 2.45
c0 1.99

– 46 –

Appendix D

SR results for charged hadron RAA

Table D.1. Pareto front w.r.t. χ2/ndf and size for SR results of RAA with finite limits. The limits
were computed with sympy.

function χ2/ndf limits
x →
∞, 0

(c2 + c3 + x0)
−k2

(
c1 + x20x

k1
0 + x0 + xk00 e

c0
)

0.67 0,0.87

popt: c1 : 932.69, c2 : −29.51, c3 : 31.81, k1 : 6.25, k0 : 3.58, c0 : 8.89, k2 :
8.35

x0
c0+c1+x0

+ 1

c2x0+c4+x
k0
0 +log (x0)+

1
c3

1.25 1,0.0

popt: k0 : 2.02, c1 : 26.06, c3 : 0.26, c0 : 26.06, c4 : 2.44, c2 : −4.4

x−k00

(
xk10 + ec0 + 1

x0

)(
1

c1+x0

)k2
1.42 0,0.0

popt: k2 : 6.53, k0 : −2.09, c1 : 3.2, k1 : 4.36, c0 : 8.47(
c0 + 1

x0

)k0 ((
1
x0

)k1
+ ec1

)
4.23 0.82,0.0

popt: k1 : 3.91, c1 : −8.09, c0 : 0.21, k0 : −5.08(
c0 + 1

x0

)k0 ((
1
x0

)k1
+ cos (c1)

)
4.23 0.82,0.0

popt: k1 : 3.91, c1 : 4.71, c0 : 0.21, k0 : −5.08(
c0 + xk00

)(
c1 + x0 + 1

x0

)k1
9.59 0,0.0

popt: c0 : 1033.55, c1 : 7.69, k1 : −3.46, k0 : 3.41

– 47 –

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 17.April 2019,

– 48 –

	Motivation
	A short Introduction to Genetic Algorithms
	The Imitation Game
	Example: The Prisoner's Dilemma

	The next step: Genetic Programming and Symbolic Regression
	Representation
	Basis Functions
	Genetic Operators
	Mutation
	Crossover

	Evolution
	Symbolic Constants
	Fundamental Limitations: No free lunch

	SR setup
	Implementation
	The primitive set
	Initializing a population
	Evaluation
	Genetic Operations
	Hall of Fame
	Age-fitness Pareto optimization

	Artificial Problems
	Quartic Polynomial
	Gaussian
	Line with boundary conditions
	Fermi Distribution

	Further ideas

	Applying SR to Heavy-Ion Physics
	J/ pT-spectrum
	pT-spectra for p-p collisions
	pT-spectra for Pb-Pb collisions
	Charged-hadron RAA

	Conclusion and Outlook
	SR and fitting results for J/ pT spectra
	SR and fitting results for p-p pT spectra.
	SR Results
	Tsallis Model

	SR results for Pb-Pb pT spectra.
	SR results for charged hadron RAA

