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Quantum Mechanics and Gravitation

In summer 1999 an experiment at ILL, Grenoble was conducted. So-called ultra-cold neutrons (UCN)

were trapped in the vertical direction between the Fermi-potential of a smooth mirror below and the

gravitational potential of the earth above [Ne00, Ru00]. If quantum mechanics turns out to be a suffi-

ciently correct description of the phenomena in the regime of classical, weak gravitation, one should

observe the forming of quantized bound states in the vertical direction above a mirror. Already in a

simplified view, the data of the experiment provides strong evidence for the existence of such gravita-

tionally bound quantized states.

A successful quantum-mechanical description would then provide a convincing argument, that the so-

called first quantization can be used for gravitation as an interaction potential, as this is widely ex-

pected. Furthermore, looking at the characteristic length scales of about 10 µm of such bound states

formed by UCN, one sees, that a complete quantum mechanical description of this experiment addi-

tionally would enable one to check for possible modifications of Newtonian gravitation on distance

scales being one order of magnitude below currently available tests [Ad00]. The work presented here

deals mainly with the development of a quantum mechanical description of the experiment.

Quantenmechanik im Gravitationsfeld

Im Sommer 1999 wurde am ILL in Grenoble, Frankreich, ein Experiment durchgeführt, in dessen

Verlauf sogenannte ultrakalte Neutronen (UCN) zwischen dem Schwerefeld der Erde und einem hoch-

polierten Planspiegel aus Glas eingefangen wurden. Wenn nun die Quantenmechanik eine hinreichend

präzise Beschreibung der mikroskopischen Phänomene im Bereich der klassischen, nicht-

relativistischen Gravitation darstellt, so erwartet man die Ausbildung quantisierter Zustände der verti-

kalen Bewegung von massiven Teilchen in einer solchen gravitativen Kavität. Bereits eine einfache,

rein phänomenologische Analyse der experimentellen Daten erbrachte starke Hinweise darauf, daß

hier zum ersten Mal gravitativ quantisierte Zustände von Teilchen „gesehen” worden sind.

Gelänge hier nun eine vollständig quantenmechanische Beschreibung, so würde dies ein entscheiden-

des Argument für die Anwendbarkeit der ersten Quantisierung auf die Gravitation als klassische,

nicht-relativistische Kontinuumswechselwirkung darstellen. Ganz generell wird hier der  Einfluß der

Gravitation auf die Bewegung von Teilchen bei einer Abstandsskala von mehreren zehn µm gemessen,

was erstmal den Test des Gravitationsgesetzes überhaupt auf einer Skala von unter einhundert µm

erlaubt und damit gegenwärtige Resultate [Ad00] um knapp eine Größenordnung unterbietet. Die vor-

liegende Arbeit wird sich hauptsächlich mit der Suche nach einer geschlossenen quantenmechanischen

Beschreibung dieses Experiments befassen.









Introduction

Gravitation is the interaction, that is perhaps the most basically one in daily life. Besides the

artificial phenomena and technologies, the facts, that we are bound to the earth, and that most

of the wanted or unwanted motions of objects are caused more or less directly by gravitational

forces represent the very first experiences of our lives.

Furthermore, the large-scale structure of the celestial motions as well as of the entire universe

itself is controlled (nearly) entirely by gravitation. Einstein gravity dictates the dynamics of

the world as a whole.

This situation arises from three facts. First there is the match of charge quantization of protons

and electrons which are the constituents of ordinary matter (besides neutrons). This results in

exact cancellation of the immense electromagnetic forces inside all-day’s matter, leaving me-

chanical, chemical and electromagnetic properties of matter as the only macroscopic phenom-

ena to be generated by electromagnetism . Next, one has to notice the short-ranged nature of

the strong and weak interaction limiting their effective coupling distance to 10-15 m and 10-18

m, which reduces their effective macroscopic actions to generating the atomic structure of

matter and its radioactive properties. And last but not least there is the cumulative nature of

gravitation – there is only one type of “gravitational charge” known, usually called heavy

mass. This situation is the only reason for gravitation dominating the macroscopic phenomena

on earth despite the fact, that it is more than 38 orders of magnitude weaker at the elementary

particle level than all of the other interactions known today.

Considering this predominance of gravitation at the macroscopic scales and its apparent abil-

ity to govern the development of planetary systems, galactic structures and even the whole

universe, one has to realize a fundamental inconsistency in describing the interactions. De-

spite having one of the most beautiful classical field theories to describe gravitation on mac-

roscopic scales at hand with “General Relativity”, which is capable to totally reduce the

gravitational force into geometry of space and time, we are not yet able to reformulate this

theory within the framework of quantum field theory, which is tremendously successful in

explaining the structure of the non-gravitational interactions.



Only within the past ten years we have developed the so-called string theories as a way, which

perhaps points out a possibility to both geometrize and quantize all interactions in a consistent

unification. This way consists of relaxing the hypotheses of point-like elementary objects and

four-dimensionality of space-time at all scales. Recent developments on this field suggest,

that the well-known non-relativistic law of gravitation first derived by Newton might only be

an approximation sufficiently close to reality only at distances above 0.1 mm. Since experi-

mental tracking of the law of gravitation has so far succeeded down to 0.2 mm distance of two

test masses, there is a submillimeter regime where something completely new could be found

out concerning the nature of gravitation [Ar98, Di96].

Looking closer at the state of experimental tractation of gravitation, one realizes, that in con-

trast to the other interactions there are attempts to quantize gravitation together with all the

other interactions without having even proved completely the validity of quantum mechanics

under influence of the classical non-relativistic gravitational field. Though the existence of

interference patterns caused by the earth’s gravitation has been shown using neutrons in a

crystal interferometer [Co75], there the necessity to show the existence of quantum mechani-

cal binding and discretization in a gravitational field remains.

In summer 1999 an experiment at ILL, Grenoble was conducted. So-called ultra-cold neutrons

(UCN) were trapped in the vertical direction between the Fermi-potential of a smooth mirror

below and the gravitational potential of the earth above [Ne00, Ru00]. If quantum mechanics

turns out to be a sufficiently correct description of the phenomena in the regime of classical,

weak gravitation, one should observe the forming of quantized bound states in the vertical

direction above a mirror. Already in a simplified view, the data of the experiment provides

strong evidence for the existence of such gravitationally bound quantized states.

A successful quantum-mechanical description would then provide a convincing argument,

tbat the so-called first quantization can be used for gravitation as an interaction potential, as

this is widely expected. Furthermore, looking at the characteristic length scales of about 10

µm of such bound states formed by UCN, one sees, that a complete quantum mechanical de-

scription of this experiment additionally would enable one to check for possible modifications

of Newtonian gravitation on distance scales being one order of magnitude below currently

available tests [Ad00]. The work presented here deals mainly with the development of a

quantum mechanical description of the experiment.

From here one can see the outline of the diploma thesis presented here – to search for a

quantum mechanical description of this experiment [Ne00, Ru00] and then eventually to use

its results to track the law of gravitation in a distance range between 10 µm and 100 µm.
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Chapter 1 
 

“Search for quantum states in the gravitational field” 
 

 

As already mentioned in the introduction the main purpose of this thesis is the description of 

an experiment we did at the Institute Max von Laue – Paul Langevin for Neutron Physics 

(ILL) in Grenoble, France. This thesis demonstrates, that quantized bound states of so-called 

ultracold neutrons (UCN) in a gravitational cavity have been observed. 

UCN are neutrons with kinetical energies below about 100 

neV, which due to such small energies are reflected totally 

from smooth surfaces of solid state matter under all angles of 

incidence. The phenomenological origin of this behaviour is 

the effective and most often repulsive so-called Fermi pseu-

dopotential of 100 neV of order of magnitude (Fig. 1.1), that 

neutrons are exposed to. 

The basic properties of neutrons leading to this “ultra cold” behaviour will be explained later. 

Here it is important to see that for such UCN a smooth matter surface acts as a mirror. To-

gether with the earth’s gravitational potential it forms a gravi-

tational potential well (Fig. 1.2). The basic properties of the 

corresponding Schrödinger equation then require the forma-

tion of eigenstates of the Hamiltonian of such a system with 

discretized eigenvalues of energy. For the idealized situation 

shown in Fig. 1.2 the corresponding Schrödinger equation can 

be solved analytically by means of a special linear combina-

tion of Bessel function of order 2/3 , so called Airy functions of first type Ai(ξ). As one can 

easily derive by using the mass of the neutron and the earth’s gravitational acceleration con-

stant, the height scale shown in Fig. 1.3 corresponds to energies on the scale of a few 10-3 

neV. This shows clearly that even UCN energies are orders of magnitude beyond a situation, 

where only the few lowest bound state would exist. However, there are quantized energies 

z  

U(z) 

linear potential: 

( ) zgmzU ⋅⋅=  
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only in the vertical direction. In the horizontal directions there are no boundaries or potentials. 

That provides free propagation of neutrons in those directions. 

Suppose one is able to provide UCN entering 

the region above the mirror along classical 

parabolic trajectories, which have their turn-

ing points close to the front edge of the mir-

ror. Such UCN would have inital vertical en-

ergies orders of magnitude below the mean 

energy of UCN of about 100 neV. The vertical 

velocity component of the UCN at the front 

edge of the mirror then is nearly zero. Such 

vertical velocities in the order of cm/s correspond to vertical energies comparable to the en-

ergy eigenvalues of the first few bound states expected to be formed above the mirror. Then 

only the few lowest states would be populated by UCN, which are prepared this way. 

z / µmh

states that are absorbed,
before they can pass the
wave guide

n = 2, 2.46 peV

n = 1, 1.41 peV

n = 3, 3.32 peV

n = 4, 4.08 peV

n = 5, 4.78 peV

absorber
gravitational potential

states that pass the wave
guide

energy

glass mirror

 

Looking at Fig. 1.4 one could suggest that a neutron absorbing medium would start cutting 

away neutrons whose states have a sufficiently large probability of being inside the absorbing 
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Fig. 1.4: Idea of the so-called “online” measurement. 
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medium. The average spatial extension of the states increases with the state number (see Figs. 

1.3 and 1.5). One would expect therefore the ability of the states to carry neutrons raising suc-

cessively for each state one after another with the height of the absorbing medium, if this is 

lifted from the mirror. The result is, that the system’s ability to carry neutrons in its bound 

states should show a more or less step-like dependence on the height of the absorbing me-

dium. 

 
 

 

glass substrate
fermi potential V = 100 neV

absorbing layer: thickness 0.2 µm

glass substrate
fermi potential V = 100 neV

bound states:
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The heights, where the distinct increase in the system’s ability to carry neutrons occur, would 

be associated with the mean spatial extensions of the states and therefore with their energy 

eigenvalues. Measuring the transmitted neutron flux of horizontal motion above a mirror and 

below such an absorbing medium would show the ability of a given state to carry neutrons 

along a certain horizontal distance. A horizontal one-dimensional wave guide of variable 

width made up by a mirror at bottom and an absorbing medium at top and filled by UCN with 

very small vertical energies as mentioned above therefore could show the existence of gravita-

tionally bound states by the more or less step-like structure of its transmittivity as a function 

of wave guide width.The measurement of the transmitted flux of such a wave guide indeed 

shows signs of such a behaviour: 

Fig. 1.5: Simplified view of the setup of the “online” measurement 
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The strongest evidence for such bound states would be expected from the situation where the 

width of the wave guide is smaller than the spatial extension of even the lowest bound state 

expected to exist. There should be no transmission at all then at a wave guide width of below 

about 15 µm as seen from Figs. 1.4 and 1.5. This effect would be the most significant sign of 

the existence of gravitationally bound states in such a wave guide. 

 

Fig. 1.6 indeed shows an apparent region of non-penetration of the correct order of magni-

tude. The green curve shows the behaviour, that one would expect from classical particles 

moving in the gravitational field. The deviation of the data from this prediction is obvious.  

 

Later in the thesis a full quantum mechanical description of this measurement will be devel-

oped, that is able to describe the data with a fit of only two free parameters. 

 

Fig. 1.6: Results of the measurement of transmitted neutron flux, classical prediction of the 

flux-width-dependency, and background determination. 
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The basic setup of the apparatus, that obtained the result displayed in Fig. 1.6, can be seen in 

Fig. 1.7: 
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Fig. 1.7: The experimental setup – overview 

 

In Fig. 1.7 one sees (Fig. 1.7 / 6) the setup of the horizontal one-dimensional wave guide de-

scribed above. The condition of UCN entering the entrance of this wave guide classically 

spoken close to the turning points of their parabolic trajectories is to be fulfilled by a colli-

mation system (Fig. 1.7 / 9). One has to use an anti-magnetic shielding (Fig. 1.7 / 8) to pre-

vent neutrons from being immersed into potentials arising from the coupling of their spin to 

artificial magnetic or geomagnetic fields. Neutron detection (Fig. 1.7 / 7) is performed using a 
3He gaseous detector to catch the total flux of neutrons though the wave guide (Fig. 1.7 / 6). 

This detector provides a quantum efficiency of 50 % if used at the peak of the detection reac-

tion’s energy release: 

MeVQptHen 764.0,3 =∆+→+  

and of about 60 % if the full counted energy spectrum window is used. The other devices 

shown are used to provide horizontal leveling of the waveguide to an accuracy better then 

10µrad and to provide decoupling from mechanical vibrations. 
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The bottom mirror (Fig. 1.7 / 6) is made from a glass plate, which has been polished to be 

smooth within a range of a few Å (see chapt. 2). The absorber (Fig. 1.7 / 6) uses the same type 

of polished glass plate as a substrate. However its surface then has been treated with an acid 

to yield a large microscopic roughness of the surface while maintaining its long scale flatness. 

Finally this rough surface has been coated by means of magnetron evaporation with a layer of 

2000 Å made from an alloy consisting of 54 % Ti, 35 % Gd and 11 % Zr.  

Gadolinium with a neutron absorption cross section of 48000 barn even for neutrons of ther-

mal energy is the most pronounced candidate for a neutron absorbing material. As it will be 

shown later in chapter 3, its absorption cross section even increases by three orders of magni-

tude if one uses it in combination with UCN. The detailed influence of both the absorbing and 

the reflecting properties of such a coating and the roughness applied to it will be described 

later. This is one of the major tasks of chapters 2 and 3. Here it is sufficient to mention that the 

coating’s alloy structure significantly reduces the repulsive character of the coating’s Fermi 

pseudopotential, thus enabling the neutron’s wave function to enter more easily the coating. 

Further the coating’s roughness causes significant amounts of upscattering of neutrons carried 

by lowest bound states by means of strong non specular scattering at the rough surface of the 

coating. Both effects are enhancing the coating’s effective absorbtivity. The second effect 

originates mainly because non-specularly upscattered neutrons would correspond to highly 

excited bound states. Due to their large spatial extension these neutrons would be excellently 

absorbed by the coating even if its position above the mirror, that is, the width of the wave 

guide was quite large. For simplification  this coated glass substrate will be called “absorber” 

from now on. 

The position of the absorber is set by means of three active piezo element leveling devices 

and controlled by three precise inclinometers. Zero position is obtained from touchdown onto 

the mirror surface. Then the absorber is shifted leg by leg to its targeted position obtaining its 

actual position by means of triangulation from inclinometer values. At each position of the 

absorber the total flux of the neutrons through the wave guide is then integrated over a certain 

time with the 3He-detector. The positioning system allows to place the absorber with an accu-

racy of about 1 µm [Ru00]. 

At the end of summer 1999 there were conducted three runs of described kind with identical 

setup conditions. Data acquisition points were distributed with 2 µm spacing in the range of 0 

µm to 50 µm wave guide width, whereas 10 µm spacing was chosen for larger wave guide 

widths up to 160 µm. The bottom mirror of the setup was formed by two identical glass mir-

rors as described above of 6 cm length each and 10 cm width each. These two plates were 
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shifted against each other in their vertical position by about ( ) µm15 ⋅± . The absorber was a 

coated rough glass plate (see above) of 13 cm length and 10 cm width that covered the first 9 

cm of the two bottom mirrors: 

absorber wave guide width h
is variied

mirrors

detector
neutrons

 

Because the three data acquisition runs were taken with identical setup and nearly identical 

acquisition steps, the data can be combined into one result describing the transmitted neutron 

flux of the wave guide shown in Fig. 1.6 as a function of its width. This result is given in Fig. 

1.6 (see [Ru00]). 

It is clearly visible that the neutron count rate vanishes to the background level for wave 

guides narrower than 15 µm. This regions size of about 15 µm has been checked independ-

ently of the piezo positioning system using foils placed between absorber and mirror, which 

provide constant distances. The background level of 13103.4 −− ⋅⋅ s  has been established sev-

eral times by independent measurements. 

Thus, as a very first result one can report a measurement of background directly from the plot 

shown in Fig. 1.4 averaging the first four data points, which is completely independent on the 

rest of the data: 

( ) 13104.028.4 −− ⋅⋅±= sratecountbackground  . 

 

The existence of about 15 µm of non-transmission already indicates strongly – as shown in a 

mostly qualitative argument on pp. 2/3 – the formation of at least the gravitationally bound 

ground state of the system.  
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A second measurement was then performed, which aimed to record the neutron flux density 

distribution of the neutrons, which leave the wave guide and travel across the free far end of 

the bottom mirror. Therefore one needs an efficient position resolving neutron detector with � 

2 µm spatial resolution in vertical direction to record the neutrons, which leave the far end of 

the bottom mirror. Such a device was placed at the far end of the bottom mirror. The density 

distribution of tracks in the detector caused by neutrons corresponds to the neutron flux den-

sity distribution (see [Ru00]).  

The neutrons arriving at the end of the absorber-free part of the bottom mirrors should be ei-

ther in a coherent or in an incoherent superposition of vertical eigenstates formed by the 

gravitational potential of the earth and the Fermi-pseudopotential of the bottom mirror. Thus 

the vertical distribution of probability density and therefore the neutron flux density should 

show a more or less oscillating structure. 

The setup of the wave guide, the absorber-free far end of the bottom mirrors and the detector 

was chosen as follows: 

absorber

wave guide width h
is fixed, h = 80 µm

mirrors

neutrons

detector

 

The position resolving detector was a so-called “CR 39 position sensitive track recording neu-

tron detector”. It consists of a plastic body coated with 235U. Neutrons with a surface-

perpendicular velocity component above a critical value of about 4.5 m/s are able to overcome 

uraniums Fermi-pseudopotential. They will enter the enter the coating, which is about 1 µm in 

thickness. There, neutrons will cause fission of 235U-nuclei with an overall quantum efficiency 

of about 10 %. Because there usually are emitted two high energetic fission fragments, one 

will leave the detector to the front while the other one causes a track inside the plastics. This 

plastics body will be chemically developed after irradiation of the detector. The tracks them-

selves are read out using automatic optical scanning microscopes in several layers of depth 

[Ru00]. This data has to be corrected,because eventually deformation of the plastics takes 

place during development. Finally one has to reconstruct the tracks in 3 dimensions from pho-

tos of sheets of different depths in order to localize the original point of neutron-caused fis-

sion. This position is within the thickness (1 µm) of the uranium coating identical with origi-
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nal position of a neutron entering the detector [Ru00]. Reconstruction process then itself 

eventually leaves a certain smearing of the initial position of neutrons entering the detector. 

Fig. 1.8 shows the result of a measurement after 6 days of detector irradiation at a wave guide 

width h = 80 µm. About 5000 tracks were recorded, to which the reconstruction process given 

in [Ru00] has been applied: 
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Again one sees an obvious disagreement between the behaviour of classical particles moving 

in the gravitational field, that is given by the green curve, and the data. 

For this measurement, too, a two-parametric quantum mechanical description will be pre-

sented later in the thesis. 

Fig. 1.8: Measurement of the vertical neutron flux density distribution after the wave guide,

and classical prediction of this measurement. 
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Chapter 2 
 

Properties of the setup 
 

 

 

From chapter one we know now that two glass mirrors and an alloy-coated rough glass sub-

strate, working as a neutron absorber, are essential parts of the wave guide system. As it will 

be shown in chapter three, section three, these surface properties will enter directly the calcu-

lation of the transmission of the wave guide. In particular, the roughness of the surfaces would 

be a free parameter, that one would have to adjust by fitting routines, if it was not measured. 

Therefore one should determine the surface properties of the wave guide system to avoid ad-

ditional varying parameters. 

Another critical part of the apparatus is the collimator system, that is placed in front of the 

wave guide entrance. This device allows significantly for a shaping of the arriving neutron 

velocity spectrum. This spectrum, however, has influence on the details of the coupling of the 

arriving neutron beam to the interior of the wave guide. Therefore, a discussion of the colli-

mator is needed. 

 

 

2.1) The surfaces of the mirrors and the absorber 

 

From chapter one we know now that two glass mirrors and an alloy-coated rough glass sub-

strate, working as a neutron absorber, are the essential parts of the wave guide system. Lets 

have a simple look at a formerly mirror-like reflecting metal surface, which has been grinded 

with a device, that generates an unevenness of the surface within one order of magnitude 

compared to the wavelength of visible light. We then observe that there is no longer any pro-

nounced mirror-like or so-called “specular” reflection. We observe diffuse “non-specular” 

scattering of light from such a rough surface with a more or less pronounced peak of reflectiv-

ity in specular directions, depending on the details of the roughness. 
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It was already mentioned in chapter one that neutrons entering matter “feel it” in terms of a 

so-called Fermi pseudopotential, which is most often repulsive and more or less absorptive. 

The situation is a close analogon to the complex refractive index n with 1,1)( <<−=ℜ εεn  

x-rays see inside matter compared to a purely real refractive index of unity for pure vacuum. 

The matter’s refractive index causes absorption of x-rays and for very small angles of inci-

dence from the vacuum the phenomenon of total external reflection. Indeed the refractive in-

dex of matter seen by x-rays can be properly described by a so-called quasi-optical potential – 

a precise analogon of the Fermi pseudopotential seen by neutrons if they enter matter. 

Now since the structure of scattering seems to depend on the roughness of the surface in com-

parison to the wavelength of scattered radiation, one could suggest that detailed information 

about the scattering of radiation with known properties from a given surface would enable one 

to extract characteristics of the roughness from data. 

With this motivation in mind we will now start to develop a description of the scattering of 

plane waves with a given wavelength from a rough surface to the necessary degree of accu-

racy. We will use plane waves, since any arbitrary pulse structure can be generated from a 

superposition of plane waves due to Fourier’s theorem. 

The first question that needs to be answered is how to describe the roughness of a surface in 

mathematical terms. Therefore let us first find out what the term roughness means. Generally, 

“roughness” is assigned to the phenomenon that the surface of any arbitrary piece of matter 

deviates somehow from the properties of the idealized mathematical term of a perfectly flat 

and smooth plane surface.  

Looking at the interatomic distance scale this phenomenon has a fundamental cause, for the 

structure of matter is a discrete one. Since this is in contrast to the continuum description 

forming the basis of the description of a perfectly flat and smooth surface, on this scale we 

have roughness at the very beginning. Beyond interatomic scales roughness is the phenome-

non of mechanical imperfections disturbing the smoothness of a surface viewed at a given 

distance scale. These imperfections give rise to the fact, that the “landscape” of a surface 

viewed at a certain length scale or spatial resolution is more or less hill-dominated. 

Imperfections can be generated directly in a mechanical way by means of grinding, or they 

can originate from purely statistical processes like treatment of a surface with an acid. It is 

clear that the same surface might look either rough or smooth depending on the resolution of 

view. Thus roughness is a scaling phenomenon. One will not be able to determine the com-

plete structure of roughness at all length scales from just looking at the surface at one given 

resolution. Yet, such a look will provide information about roughness approximately within 
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the same order of magnitude as the length scale, which is used to examine the surface. Com-

mon characteristic of roughness at all length scales is a cut-off behaviour. Due to the finite-

ness of all real surfaces there is at least one hill being the highest of the whole surface viewed 

at each length scale. 

Since the roughness applied to the surfaces in question (mirrors, absorber) is generated in one 

case by polishment with very fine-grained devices and in the other case by etching, we will 

restrict the discussion to the case of roughness generated by processes of “white” random na-

ture possessing complete isotropy in space. The application of a thermalized acid consisting 

of molecules with Maxwell-Boltzmann and therefore in each direction independently gaussian 

distributed velocities is probably the closest case to such an idealization. Because both, acids 

and very fine-grained polishment devices, produce very smooth and homogenous interaction 

regions at scales being large compared with their own sub-micron structure, surfaces treated 

these ways will look very flat and smooth at scales comparable to their extension as a whole. 

Howeve, they will show a more or less developed roughness at scales between interatomic 

and macroscopic distances. Such a roughness is usually called “micro-roughness”. Micro-

roughness caused by such stochastic processes can be described – as the stochastic origin of 

such roughness itself – by means of a random variable. 

If one has already confirmed the macroscopic flatness of such a surface, one can define an 

average plane of zero height by averaging over the heights of all points of the surface viewed 

at a given resolution window. Then the height of the surface points as a function of the aver-

age lateral coordinates defined by the average zero plane can be described by a random vari-

able: 

height z

average lateral coordinate ρ

average plane of zero height

)(function    surface ρ�z

Fig.  2.1
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According to [Si88] it is possible for a wide range of rough surfaces to characterize the sur-

face’s height as a function of the lateral coordinates by means of a gaussian random variable. 

This is evident as the application of a thermalized acid of finite temperature to a surface leads 

to a stochastic origin of a surface’s roughness with gaussian statistics. The main statistical 

information of a gaussian distributed surface is provided by the so-called “two-point correla-

tion function” of the randomly distributed variable. The assumption, that the height of a rough 

surface is a gaussian random variable, then means, that it is governed by a height-height cor-

relation function G(x-x’,y-y’): 

[ ] ),(,12),(),(),()1.1.2( 22 yyxxeyxzyxzyyxxG ′−′−=
�
�

�

�

�
�

�

�
−⋅⋅=′′−=′−′−

−
ρσ ξ

ρ

 . 

Here σ  and ξ denote respectively the root mean square roughness and the lateral correlation 

length of the roughness.  

The height z then is distributed gaussian with a probability density w: 
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From (2.1.2) it is visible, that points being very close together compared to ξ have virtually no 

probability to be at different heights, while points with a separation much larger than ξ are 

gaussian distributed in their probability to have different heights with a variance σ2. There-

fore, the correlation length ξ describes a quantity best referred to as the “mean hill to hill next 

neighbour distance along the average zero plane” and σ2 is a measure of the mean squared 

height variance, which is most often simply called the “roughness” of the surface. 

Since we now have a formalism to describe a surface with its roughness, we will proceed to 

the next step, where we will have to describe the scattering of plane waves from a rough sur-

face modelled as shown above. 

 

Plane waves are infinitely extended in space. Therefore they average over all the surface 

height variations. If one, for instance, describes the interaction of the surface with a plane 

wave by means of a repulsive step potential with constant height at each surface point, the 

wave will see a smeared averaged potential which will have the structure of a gaussian error 

function as a function of the relative position vertical to the average zero plane of the surface. 

This can easily be derived from eq. (2.1.2) by integrating it for different semi-infinite z 

ranges. That leads to an interaction length of the surface on a plane wave of about σ⋅2 . If we 
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now consider a weak potential, which is equivalent to wavelengths ⊥λ  far greater than its 

interaction length σ⋅2  or: 

ϑ
λ
π

σ

sin4plane zero surface average  thelar toperpendicuansfer  vector trwave

1)3.1.2(

⋅==

<<⋅

⊥
⊥

⊥

q

q
 

there fortunately exists a quantum mechanical approach to plane wave scattering within the 

framework of perturbation theory. Within validity of eq. (2.1.3) scattering can be described by 

means of the first order Born approximation (BA). The detailed formalism is given in [Si88] 

and others and will show us the basic properties of scattering from rough surface as well as it 

will provide tools to extract the main roughness parameters σ and ξ from the data of a scatter-

ing experiment. 

The part of this formalism, that is relevant for the description of scattering from a rough sur-

face of a solid state material, is resumed in a summarized way in Appendix C. It is shown 

there, that the plane wave approach of BA has to be replaced by so-called “Fresnel eigen-

states”, which respect the fact, that solid state materials show the phenomenon of total exter-

nal reflection of x-rays below a certain critical angle of incidence. The use of these Fresnel 

eigenstates modify the BA towards the so-called “distorted wave Born approximation” 

(DWBA), which to first order finally yields the expression (C.14) for the specular reflectivity 

of a rough surface 

.  1,1,)14.( 2
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The first factor describes the Fresnel reflectivity with respect to the average zero plane of the 

surface of a material with a refractive index n. The second one is a modified form of eq. 

(C.12) called “Nevot-Croce factor” after Nevot and Croce [Né76]. The emergence of qz
+ in 

the Nevot-Croce factor compared to (C.12) leads to a constant reflectivity of unity for angles 

of incidence below a certain value given by δ if ∈∧> δδ 0  �. In the case of complex δ, the 

Nevot-Croce factor shows a small suppression of the reflectivity below unity even inside the 

region of total external reflection. This is due to the fact, that a complex δ corresponds to ab-

sorptive media. 
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Such a small-angle-scattering measurement has been performed with one of the glass mirrors 

used in the wave guide experiment in summer 1999 at the small-angle-x-ray-scattering-

laboratory (XSAS) of Ben K. Saidane, ILL Grenoble under his supervision [We99]. 

The setup of the specular scan is given in Fig. 2.3 below: 

glass mirror

x-ray-source

crystal monochromator

collimators

beam

sample’s angle θ

detector angle 2θ

Fig.  2.3
specular scan

detector

 

In this measurement both the sample and the detector were rotated counter-clock-wise in in-

crements of ∆θ and 2∆θ, respectively, because of the reflection condition samplecounter θθ ⋅= 2  . 

In the actual measurement °=∆ 005.0θ  was chosen and there 500 data points in the range of 

θ = 0° ... 2.14° were reorded with a counting time of 100 s for each data point. According to 

the long-term statistics of the XSAS-apparatus as a standard surface examination technique, 

systematical errors and drifts of the x-ray-source as well as the angle incrementing system are 

far below 1 %. The collimated x-ray-beam has a rectangular cross section of 100 µm by 10 

mm in dimensions with a more or less gaussian intensity profile. The x-ray wavelength λ was 

selected with a crystal monochromator and was λ = (2.144 ± 0.01) Å. 

We will now rewrite eq. (C.14), which describes the specular scan (Fig. 2.3), in terms of the 

angles shown there. The solution of the Fresnel eigenstates obeyes Snellius’ law. Using Snel-

lius’ law, which determines the angles of refraction for the part of x-rays entering the glass 

mirror: 

 

 

 

δθθ −=⋅= 1,)cos()cos()4.1.2( nn trans , 

 
θtrans

θ θvaccuum

glass

Fig.  2.5
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we can rewrite the wave vectors in eq. (C.14). Therefore, we can give now eq. (C.14) in terms 

of the measured quantities, where the scattering cross section is replaced by the x-ray-photon 

flux measured in counts, which is proportional to the cross section: 

 

[Å] [Å], [counts],Φ unts],scaling[co [counts],background θ[rad], :where          

)(sin)sin(

)(sin)sin(
)5.1.2(

reflected

)(sin)sin(16
2

2

2 2
2

2
2

σλ

δθθ

δθθ δθθ
λ
σπ −⋅⋅⋅⋅−

⋅
−+

−−
⋅+=Φ escalingbackgroundreflected

 . 

 

The proportionality constant is mainly a result of integration over solid angles. This is the fit 

function, which depends on four free parameters: background, scaling, the deviation of the 

glass’ refractive index from unity, δ , and the mean height roughness σ. The result of this 

measurement is shown in Fig. 2.6, where the data was normalized to unity for θ = 0: 

0,000 0,005 0,010 0,015 0,020 0,025
10-6

1x10-5

1x10-4

10-3

10-2

10-1

100

Fig. 2.6
θ-2θ -x-ray-scan of mirror

Data: 
         First 20 points not taken into account
Model: Fresnel with roughness (ζNevot-Croce*RFresnel)
χ2

red. = 18.6
"normalization parameter"
scaling 1.05
"dielectric parameter of glass"
δ (1.770 ± 0.004 + i (0.19 ± 0.005)) 10-5

"rms roughness in height"
σ (2.20 ± 0.01) 10-9 m
"x-ray wavelength"
λ 1.54 10-10 m
"background noise"
background 3 10-6

for  δ:
ε

mirror
 = 1 - δ

 data of θ-2θ-scan of mirror
 fit
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rm
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ed
 in

te
ns

ity

θ/rad

 
From this analysis we find the mean height roughness of the glass mirrors to be σ = (22.0 ± 

0.1) Å. 
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Next a diffuse scan according to Fig. 2.4 was performed. The fixed angle between detector 

and the line of incidence was set to °=′+ 52.0θθ , which is equivalent to 

rad0045.026.0 =°=θ  in Fig. 2.6.  

glass mirror

x-ray-source

crystal monochromator

collimators

beam

sample’s angle θ

total angle  θ + θ’
is fixed to 0.26 °

Fig.  2.4
diffuse scan

detector angle θ’

detector is fixed

 
This angle was chosen to avoid the region of total reflection. This choice also guarantees 

enough intensity in the specular reflex to gain enough statistics in the non-specular combina-

tions of θ and θ’ (see Fig. 2.6 at θ = 0.0045 rad). The sample’s angle was then incremented in 

steps of ∆θ = 0.005° from θ = 0° to θ = 0.52°. The sampling time was chosen to be 100 s for 

positions, where reasonable fluxes where detected. However, for positions far away from the 

specular point the data accumulation time adapted in order to get at least a minimum of 20 

counts for each data point. After the measurement data was renormalized to the normalized 

flux at rad0045.026.0 =°=θ in Fig. 2.6. The fit function which is to be used here one gets 

from (C.12) by rewriting it with the measured angles and adding to it a narrow gaussian de-

scribing the intensity profile of the beam which smears out the flux as function of angle devia-

tion from specular condition close to the specular point. Thus we get here from (C.13): 
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It has been used, that the cos can be expanded due to θ and θ’ being small: 

( ) 22
2

222 )()(
2

)cos()cos()7.1.2( θθθθθθρ ′−⋅′+⋅≈′−= kkq  . 

Thus the fit function for a measurement of type Fig. 2.4 contains 5 free parameters: the back-

ground N0 [counts], the scaling N [counts], the full width half height of the Lorentzian de-

scribing the diffuse scattering according to eq. (2.1.6), FWHH [rad], a small offset of the posi-

tion of the point of specular scattering, θoffset [rad], and the width of the gaussian beam 

intensity profile w [rad]. FWHH depends on both the mean height roughness σ as well as the 

lateral height-height correlation length ξ. Because σ is known from the specular scan (Fig. 

2.3), one can determine ξ according to eq. (2.1.6) if FWHH is known from a diffuse (Fig. 2.4). 

Now results of such a diffuse scan are given in Fig. 2.7: 

-0.010 -0.005 0.000 0.005 0.010

1x10-5

1x10-4

10-3

10-2

10-1

100

Fig. 2.7
θ + θ' = 2 θ

max
 = const.

diffuse scan 

Data: θ+θ' = 0.56° = const. scan
         for specular and nonspecular
         reflection 
Model: gaussian(beam divergence)
          +Lorentz(nonspec.)
χ2 = 2.7
N

0
(6 ± 8.6) 10-6 counts

FWHH (0.00018 ± 0.00003) rad
A (2.0 ± 0.4) 10-5 counts
N (0.124 ± 0.005) counts
θ

offset
(0.0005± 0.00001) rad

w (0.00057 ± 0.00001) rad

θmax = 0.26° = 0.0045 rad

 I
norm.

(θ - θ')
 fit
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θ - θ' / rad

 
For convenience, the data is plotted as a function of an angle variable, which places the point 

of specular scattering at zero position. An analysis of the data with eq. (2.1.6) gives the fit 

shown above, and from FWHH one can, according to eq. (2.1.6), with σ already known, cal-

culate the correlation length to ξ = (10 ± 2) µm. 

Thus, a detailed analysis of the data collected in the two basic types of scattering schemes 

conducted with XSAS, which is based on the DWBA approach [Si88, Bo94] presented above, 

provides information about the characteristical quantities describing the micro-roughness of 
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the glass mirrors with an accuracy of about 10 %, as it was initially desired. It should be em-

phasized here, that a much more detailed and thorough analysis of scattering theory would 

have to be developed to determine these quantities to a higher degree of accuracy. 

 

Exactly the same kind of measurement and subsequent analysis can be applied to the ab-

sorber, consisting of a rough glass plate coated with an Gd-Ti-Zr alloy,which is 2000 Å thick. 

However, without any detailed analysis there are some things one already is able to estimate 

concerning the results of such measurements. 

 

First, as a reminder one should think about the scaling properties of roughness. With x-rays of 

a few Å wavelength it is not possible to determine parameters of roughness if its characteristi-

cal scale differs by more than one to two orders of magnitude from the wavelength used. The 

mean height roughness as well as the correlation length of the absorber is expected to be 

around a few µm due to process of generating roughness by means of etching the glass sur-

face. From these facts it can already be concluded, that XSAS will not be able to determine 

even the correct order of magnitude of the absorber’s roughness parameters. 

On the contrary, one may deduce from the magnitude of angles of incidence suitable for rea-

sonable statistics – being at maximum one order of magnitude larger than the critical angle of 

total reflection, which is usually between 0.005 rad and 0.01 rad – and the magnitude of the 

roughness, which is around a µm, that due to pure geometrical shadowing of the surface, x-

rays of a few Å wavelength will see an effective mean height roughness of around 100 Å in a 

specular scan. 

 

Second one has to take into account the presence of the coating, which can be represented by 

two rough surfaces separated by 2000 Å. This should lead to the existence of some phase gen-

erated interference patterns, i.e. oscillations in the cross section. Yet, the separation of 2000 Å 

expressed in terms of x-ray wavelengths of a few Å is so large, that the interference would 

only be visible at angles of incidence, which are so large, that the suppression of the scattered 

intensity due to the roughness makes it impossible to measure such effects. 
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Nevertheless there have been to short runs of the types Fig.s 2.3 and 2.4 with the absorber as 

the sample to establish at least the qualitative estimations made above in their orders of mag-

nitude. The results of a specular and a diffuse scan are shown in Figs. 2.8 and 2.9: 

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
0.1

1

10

100

1000

10000

Fig. 2.8
specular scan

 

 data of θ - 2θ - scan
 fit with Fresnel-Nevot-Croce-Model

Data: data of θ - 2θ - scan
Model: Fresnel-Nevot-Croce-Reflectivity
χ2

red.
 =  33.6

background (0.19 ± 0.03) s-1

scaling (2.06 ± 0.03) 104 s-1

σ (9.23 ± 0.04) 10-9 m
δ (0.29 ± 5.61) 10-4

λ
X-ray

1.54 10-10 m

θ / rad

co
un

ts
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Fig. 2.9
diffuse scan

θ + θ' = 0.0035 rad

θ - θ' / rad
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The specular scan indeed provides an effective roughness of 92 Å, as it was expected from the 

qualitative argumentation given above. 

Therefore we have to search for an alternative to determine the roughness of the absorber. In 

principle, there are two different ways: 

First, it is possible to use the scaling properties of the roughness and to repeat the scans of the 

types shown in Fig.s 2.3 and 2.4 with light of suitable wavelength, i.e. to perform XSAS with 

wavelength in the 100 nm regime of UV light. 

Second ,one should think of a way of directly mapping the roughness. 

 

Fortunately, there emerged an opportunity to solve the problems of small-angle-scattering at 

highly rough surfaces by directly imaging the surface with a resolution of around 100 nm by 

means of an atomic force microscope (AFM) at the ESRF in Grenoble, France [Dc01], in Feb-

ruary of 2001. Its micro-imaging laboratory can perform surface images of given samples up 

to atomic resolution, routineously. The striking property of the AFM there is, that it is able to 

perform scans over quadratic fields with edges up to 90 µm in length. 

 

This feature enables one to map certain parts of the surface in dimensions of around ten times 

the correlation length. If several sample fields are mapped this way, one gets the surface func-

tion z(x,y) directly for an area which is large enough, compared to the expected range of the 

roughness parameters, so that these parameters can be determined by a statistical analysis of 

the surface function. 
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Thus, five scans were performed with the AFM, mapping the surface of the absorber in five 

squares of 80 µm by 80 µm each. The positioning of the mapping squares on the surface is 

given in Fig. 2.10: 

mapped squares
dimension: 80 µm by 80 µm

absorber

Fig.  2.10
AFM-scan-geometry

 
Each scan was performed by determining the vertical z-position of the AFM-needle at the 

points of a 256 by 256 grid, which covered the square to be mapped, thus producing a 256 by 

256 matrix with integers as the result. The integer values of these matrices then have to be 

symmetrized with regard to the position of the average zero plane of the square, and renor-

malized with a scale factor to give the heights of the measured grid points relative to the aver-

age zero plane. The data acquisition software of the apparatus [Dc01] allows one to perform 

an addition of the absolute values of all properly scaled heights. That gives the two dimen-

sional integral of the surface function z(x,y), given by the elements of the matrices for each 

square independently, which we will call RMS: 
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This can directly be linked to the mean height roughness σ of a gaussian rough surface. The 

probability distribution of the surface function z(x,y) is then gaussian, so eq. (2.1.8) becomes: 
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The RMS-value, directly calculated with the microscope’s software, thus provides us with the 

mean height roughness σ. Fig.s 2.11 and 2.12 show two screen-shots of the results of the 

scanning of one square: 
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Fig. 2.11 

 
 

 

 

 

 

Fig. 2.12 

 
 

 

 

Fig. 2.11: In the upper left there is an image of the surface. The grey-scaling 
is proportional to the relative heights of the sampled points. The middle of
this shot displays a histogram of the points’ heights of the sampled square,
showing directly and strikingly the gaussian nature of the surface’s rough-
ness, while the right of the shot shows, why a rough surface has an “interac-
tion length” perpendicular to the average zero plane. The part of the surface
seen by something approaching from above is increasing with a gaussian
error function as seen in the right part of this screen-shot. 

Fig. 2.12: The same scan is shown together with a section of the surface,
which is shown graphically above the grey-scale surface picture. The sto-
chastically fluctuating structure of the surface is clearly visible as well as a 
roughness of about 1.5 µm in vertical direction and several µm along the
surface. 
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One can calculate the mean height roughness range 2σ, using eq. (2.1.9) and the RMS-values 

calculated from the scanned squares: 

 

 square 1 square 2 square 3 square 4 square 5 

m][ 2 µσ⋅  1.5683 1.5659 1.5455 1.4367 1.4139 

 

This leads to: ( ) mµσ ⋅±=⋅ 03.051.12 . 

 

Next, one has to look for a method to extract the lateral height-height correlation length from 

the surface function z(x,y) given in the matrices. The simplest way is to determine the height 

autocorrelation function. If this function is peaked around zero and has fast vanishing values 

for all nonzero arguments, then the full width half height FWHH is two times the correlation 

length ξ. 

Now the determination of the autocorrelation function from the surface function z(x,y) is pos-

sible due to an already known formalism based on the so-called “Wiener theorem”, which 

links the Fourier transform of z(x,y) and its autocorrelation function. 

Let us first consider the one-dimensional case. The autocorrelation function C(∆x) of a more 

or less random valued function z(x) is formally defined as a convolution of z(x) with itself but 

with shifted argument, where the shift ∆x gives the correlation interval: 
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Next, the spectral intensity of the Fourier transform of z(x) is to be found. The average power 

of the statistically fluctuating function z(x) is defined as: 
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is the bounded Fourier transform of z(x). It is then natural to define the spectral intensity (or 

power density) ρP(k) of z(x) as: 
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Now consider the Fourier transform of (2.1.13): 
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This last equation is called the Wiener theorem. Its meaning is that by generating a Fourier 

transform (by FFT for instance) from the surface function z(x,y) we get its autocorrelation 

function by using eq.s (2.1.13) and (2.1.14). This procedure can be generalized to two dimen-

sions respecting the two-dimensional nature of the scanned area.  

However the process of roughening made by etching the surface leads to a thermal phenome-

non, which is controlled by the Maxwell-Boltzmann statistics. It provides very high degrees 

of uniformity and isotropy of the surface’s roughnes. Therefore the two-dimensional analysis 

can be reduced to a one-dimensional one by applying eq.s (2.1.13) and (2.1.14) e.g. to each 

row of a surface scan matrix. Each row autocorrelation function found this way gives a corre-

lation length ξj =1/2 FWHHj . These values will then be averaged. Fig. 2.13 shows one such 

row autocorrelation function: 

There seems to be some indication for short range order at scales of around 20 µm. However 

this might be smeared out by summing up all rows of a given matrix. Determining all FWHHj 

as mentioned above and averaging them, one gets the value for the lateral height-height 

correlation length of the absorber surface mµξ ⋅±= )2.07.4( . 
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2.2) The collimator system 

 

This section deals with the details of the collimation system, that is placed in front of the 

wave guide’s entrance. 

Fig. 2.14 gives a more detailed view of the collimation system (Fig. 1.4 / 9). Together with the 

information, that characteristical UCN energies of about 100 neV correspond to mean veloci-

ties of 5 – 10 m/s , one can derive from Fig. 2.14 the ability of the collimation system to pro-

vide a very small vertical velocity component and therefore a very small vertical energy of 

UCN entering the wave guide at the right part of Fig. 2.14. Furthermore it selects certain parts 

of the spectrum of the horizontal velocity component. 

 

Fig. 2.14: The collimation system and the wave guide 
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As one can see in Fig. 2.14, a combination of two titanium plates (Fig. 2.14 / 3) and several 

collimating slits (Fig. 2.14 / 5) block all neutrons, which are not approaching the wave guide 

formed by the absorber (Fig. 2.14 / 6) and the bottom mirror (Fig. 2.14 / 7) along classical 

parabolical trajectories. These trajectories are defined by the ends of the titanium plates (Fig. 

2.14 / 3) and the entrance opening of the wave guide. It is clearly visible, too, that a direct 

view from the wave guide entrance towards the window (Fig. 2.14 / 1), which couples in the 

UCN from the feeding UCN guide, is blocked by the upper titanium blend (Fig. 2.14 / 3). The 

distances shown are not to be taken as properly scaled. The distance d between the titanium 

d ≈ 10 cm 

≈ 5 cm 
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slit (Fig. 2.14 / 3) and the wave guide entrance is about 10 cm, the last collimating slit of (Fig. 

2.14 / 5) at the right is about 5 cm before the wave guide entrance. 

The collimating properties of the system shown in Fig. 2.14 can be derived as follows. Sup-

pose, one places the lower end of the upper titanium plate (Fig. 2.14 / 3) at ∆z = 220 µm be-

low the line of direct view and the upper end of the lower titanium plate (Fig. 2.14 / 3) ∆z = 

2000 µm below the line of direct view. Only neutrons having parabolic trajectories with turn-

ing points close to the wave guide’s (Fig. 2.14 / 6 + 7) entrance will enter it. The limiting tra-

jectories are those corresponding to the slit formed by the titanium plates (Fig. 2.14 / 3). Be-

cause the wave guide’s bottom mirror is aligned with the direct line of view, neutrons moving 

along these two limiting trajectories do have initial vertical velocities of: 

( )

�
�
�

��
�

�

⋅≈∆⋅≈∆⋅⋅=

⋅≈∆⋅≈∆⋅⋅=
�

∆=∆⋅⋅=⋅=

mz
s
mzg

mz
s
mzg

EzgmmE

platelowerplatelowerplatelower
z
initial

plateupperplateupperplateupper
z
initial

grav
z
initial

z
initialkin

µ

µ

2000,2.02v

220,06.02v
)1.2.2(

v
2

2
,

 

From the distance d of about 10 cm and the time ∆tz the neutrons on those limiting trajectories 

need to reach their turning points at the wave guide’s, which one derives from: 

z
z
initial tg ∆⋅=v)2.2.2(    , 

one get the limiting values of the selected part of the spectrum of horizontal velocity compo-

nent as follows: 
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From (2.2.1) and (2.2.3) as well as from Fig. 2.14 one easily sees, that by varying the posi-

tions of the titanium plates (Fig. 2.14 / 3) one can control the selected part of the spectrum of 

the horizontal and vertical velocity components simultaneously. Furthermore one sees that the 

collimation system provides a spectrum of vertical velocity component which range is at least 

one order of magnitude below the range of horizontal velocity component, which is compara-

ble to UCN mean velocities. 
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Chapter 3 
 

Theoretical treatment of the experiment 
 

 

 

 

It is now time to start a discussion of how an experimental setup presented in chapter one with 

the properties presented and analyzed in the first two chapters should behave from theoretical 

points of view. In chapter 1 it has been argued qualitatively, that effects of the quantization of 

the canonical observables of motion should show up if neutrons are trapped between a mirror 

at the bottom and a linearly increasing gravitational potential above – a system called “gravi-

tational wave guide”. 

Before entering a quantum theoretical treatment of the setup, one should consider the expecta-

tions deriving from a purely classical description of the measurements described in chapter 

one. Yet, whatever picture is used, there is always one irreducible part at the basics of the 

whole experiment’s idea – besides the presence of the earth’s gravitational field. And that is 

the existence of UCN reflecting mirrors. The surface properties of such mirrors and their scat-

tering properties have been analyzed thoroughly in the last chapter. However, the argument 

given in the first chapter, why UCN are reflected from ordinary solid state matter, was only a 

qualitative one. Therefore, we should start with establishing the effects of ordinary matter of a 

homogenous solid state type on neutrons in general – that is, where the Fermi pseudopotential 

comes from. 

These considerations then aim to derive the magnitude of the Fermi potential of a metallic 

alloy of Gadolinium. Since Gd is highly efficient neutron absorber, one expects its Fermi po-

tential to have a high imaginary part. However, calculation of this Fermi potential for a highly 

neutron absorbing material is non-trivial, since its imaginary part seems to decrease propor-

tional to the wave number k of neutrons for very small neutron energies. This phenomenon 

now corresponds to a saturation of the absorption cross section of Gd at very small k . 



 30 

The saturation can be understood from an intuitive argument, which is nevertheless only a  

plausibility consideration: 

The effective absorption cross section ceases to rise proportional to 1−k  if the diameter of the 

circular disk, that corresponds to the cross section, equals the interatomic distance of the me-

dium. For then the disks would start to overlap, and the cross section must remain constant, if 

multiple scattering is omitted. 

The section finishes therefore with a dicussion of the quantum mechanical derivation of the 

Fermi pseudopotential of highly absorptive materials. These theoretical considerations are yet 

not completely fortified. Furthermore, the best measurements available [Ra99] demonstrate 

absorption cross sections of Gd only above neutron velocities of about 3 m/s, which is two 

orders of magnitude above the vertical velocity components present in the wave guide. 
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3.1) The Fermi pseudopotential 

 

The neutron is a massive particle of about 938 MeV, that is formed by two d-quarks and one 

u-quark. Their electrical charge add up to a total zero charge of a neutron, which has been 

proved to a limit of −−⋅±−≤ eqneutron
2110)1.14.0(  according to [Gae89], where e- denotes the 

electron’s charge. 

The half-integer spins of the three constituent quarks of a neutron cause it to be a fermion of 

spin ½ . Thus, the neutron, while not being able to interact directly with the electrical charge, 

can couple to magnetic fields. Therefore, efficient magnetic shielding is necessary for experi-

ments at extremely low energies. 

However, the main interaction neutrons will experience if they encounter matter, is the strong 

force, which couples to the nuclei of matter, if neutrons collide more or less directly with 

them. A “collision” is needed due to the short-ranged nature of the strong force and the very 

small extension of nuclei (of about 1 fm compared to atomic diameters of about 1 Å). The 

result is, that neutrons feel the presence of matter either via strong interactions if they hit the 

nuclei, or eventually via magnetic coupling to the nuclei’s magnetic moment. 

Here we deal with so called “ultracold neutrons (UCN)” of energies in the range of 100 neV, 

which correspond to de Broglie wave lengths of about 500 Å. That is several hundred times of 

an averaged interatomic distance and several million times of a nucleus’ diameter. Thus the 

internal structure of the matter’s nuclei can be omitted without any loss of accuracy in the 

description. Having the numbers given above in mind, we can easily describe the nucleus by 

means of an attractive spherical box potential with a depth of about –50 MeV: 

mR
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RrMeV
rUrU nucleusnucleus ⋅≈
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≈= −1410,
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,50
)()()1.1.3( �   . 

R here is the averaged radius of a nucleus. 

What one has to do now is to calculate the scattering of a neutron, described by an incident 

wave packet, at a single nucleus and to derive its scattering amplitude. The incident wave 

packet can be written quite generally: 
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One then rewrites eq. (3.1.2) in terms of the stationary eigenfunctions k
�ψ  of the Hamiltonian 

constructed from the potential (3.1.1) which posesses energy eigenvalues kE � : 
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The k
�ψ  can be found in their general form using the Green’s function of the free Schrödinger 

equation to be: 
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One can now treat eq. (3.1.4) with the usual formalism of a partial wave expansion combined 

with the limites of small neutron energy and distances, which are large compared to the scat-

tering region, as this is shown e.g. in [Schw]. Then one arrives at the s-wave scattering limit, 

that connects the scattering cross section with the s-wave scattering phase δ0 . 

Because for small k – low neutron energies – only s-wave scattering is dominant, the relations 

between the cross section and scattering phase read as (see [Schw]): 
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In the regime of UCN energies even k∝0δ  will be small. In this case one can use the so-

called (first order) Born approximation, which provides the scattering phase δl to become: 

[ ]� ⋅⋅⋅⋅⋅−≈ 22
2 )()(2)6.1.3( rkjrUrdrkm

lnucleusl
�

δ  . 

Additionally, the fact, that for UCN s-wave scattering is dominant and even δ0 is small due to 

k∝0δ , allows one to replace the spherical Bessel function jl(kr) by simple plane waves, thus 

rewriting eq. (3.1.6) as: 
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For our case of very small k, the potential eq. (3.1.1) can be approximated with a delta func-

tion with complex norm factor, containing a negative real part. This describes the potential of 

the nucleus, which is complex in general: 

 

( ) complexArArU nucleus ,)()8.1.3( �δ⋅=   . 
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This approximated nuclear potential is called the Fermi pseudopotential. Using this in eq. 

(3.1.7), one gets in the limit of vanishing energies: 

π
δ

4
2)9.1.3( 20

Akm ⋅⋅−≈
�

 . 

The coupling A has to be chosen to represent the coupling strength of the potential eq. (3.1.1), 

and it must be complex to account for inelastic phenomena such as neutron capture by the 

nucleus. In general, A will depend on the neutron energy. In the case, however, where neutron 

energy is negligible compared to the 50 MeV magnitude of the nuclei’s potential, it is a con-

stant. With this information and eq. (3.1.9) one derives from δ0 small, i.e. 
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which are the known velocity dependencies of elastic and inelastic neutron scattering cross 

sections observed in matter. Furthermore, one can combine eq.s (3.1.5) and (3.1.9) to yield 

direct relations between the cross section and the amplitude of the one-nucleus Fermi pseudo-

potential eq. (3.1.8): 
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Since the potentials of several nuclei are additive, all nuclei together form a potential, which 

is the average of eq. (3.1.8) over a volume M, thus giving: 
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where )(rn �  is the volume density of the nuclei as a function of the location inside the consid-

ered material. For materials, which are homogeneously distributed, heterogenic mixtures of 

pure elements, the nuclei density can be written as: 

)()()13.1.3( )(
0 rMnrn j �� ∂⋅=  , 
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where )(rM �∂  is the boundary of the piece of volume M filled by matter, and n0
(j) is the ho-

mogenous nuclei density of the element j present in the material. )(rM �∂  is defined as: 
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One can now rewrite the Fermi pseudopotential, eq. (3.1.12), for such materials as: 
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In general, 0k  must be replaced by the component, which is locally normal to the surface, 

since the scattering phases of the nuclei add up to destructive, and therefore repulsive interfer-

ence in the direction normal to the surface. 

This now establishes the existence of an effective potential, to which the neutron is exposed 

to, which allows one to develop the formalism of an effective single-particle problem inside 

this potential of the medium. 

It can now be shown, that even for vanishing k0 of the incident plane wave the absorption 

cross section of the medium stays to be finite. This can be seen from the following argument: 

 

A plane wave with a wave vector k0 entering a medium from outside perpendicularly to the 

surface will have complex wave number )()( i
med

r
medmed kikk ⋅+=  inside the medium. Thus, the 

plane wave inside can be written as: 
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The wave vector k inside the medium is given by: 
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2
0

2 2
�

−=    . 

Comparison of this expression with eq.s (3.1.15), (3.1.16), and (3.1.17), as well as with 
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where 
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For .inelσ  the relation 

0
.)18.1.3(

k
aa inel =σ  

holds according to eq. (3.1.11). The proportionality constant a can be extracted from tabulated 

inelastic cross section values at thermal neutron energies. Thus, it is: 
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One sees, that α depends not on 0k  , and can be calculated the same way as the quantity a. 

Eq. (3.1.18a) can now be inserted into the expression for )(r
medk  , which gives for the case, 

where .000 inelnkk σα ⋅<<∧<<  holds: 
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Since α depends not on 0k  , this expression denotes the existence of an absolute minimum of 

the possible values of )(r
medk   
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– even for the case, where k0 = 0 is approached! It is clear from eq. (3.1.18a), that a global 

minimum of )(r
medk  corresponds to the fact, that the absorption cross section .inelσ  will saturate 

at a finite value for a vanishing incident wave vector k0 , since then the incident wave vector 
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k0 has to be replaced with the effective wave vector )(r
medk  inside the medium to calculate the 

effective absorption cross section, that is formed by both the potential of one individual scat-

tering nucleus and the effective potential of the surrounding nuclei. 

As argued in [Gu62], this finite saturation value of the absorption cross section evaluates to: 
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The analysis presented since eq. (3.1.12) is largely a modification of the calculations dis-

played in [Gu62]. They arrive at the same result eq. (3.1.19). However, their expression for 

the averaged Fermi potential eq. (3.1.17) uses )(r
medk  instead of k0 . I question this, since the 

averaged potential is derived from scattering at single nuclei surrounded by empty space, and 
)(r

medk  can only be stated after the averaged potential has been established. 

Therefore, it should be emphasized here, that the saturation effect takes solely place for the 

absorption cross section, since the effective medial wave number enters here. The expression 

eq. (3.1.17) does not explicitly depend on )(r
medk  but on k0 instead, because this effective Fermi 

potential is derived from the spatial average of single nuclei scattering events solely! Yet, 

[Gu62] introduce )(r
medk  already in eq. (3.1.17), although they derive it the same way from sin-

gle nucleus scattering. However, this overestimates the effects of the bulge of matter sur-

rounding a nucleus such, that the effective medial wave number )(r
medk  enters twice into eq. 

(3.1.17) for the potential and (3.1.19) for the saturation cross section. The potential, however, 

must not use )(r
medk  , since )(r

medk  is derived only after the potential has been formulated before. 

The values of the imaginary part of the Fermi pseudopotential by [Gu62] and the modified 

method shown here disagree by about one order of magnitude, if they are calculated for the 

complete alloy that is used as the absorber. It should be mentioned here again, however, that 

today no direct measurement of the absorption cross section of Gd at neutron velocities of 

about 1 cm/s exists [Ra99]. Furthermore, if one uses the imaginary part of the alloy’s Fermi 

pseudopotential as a varying parameter, that has to be fitted to the experimental data with the 

models presented in the sections 3.3.1 and 3.3.2, then these fits result in values for the imagi-

nary part of the alloy’s Fermi pseudopotential, that are close to the one that is obtained by the 

method given above. 
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Since we know from chapter one, that the energies corresponding to the wave vector compo-

nent perpendicular to the mirror and absorber surface are around 10-11 eV, in the experiment 

the Gadolinium absorption cross section in particular will saturate. Natural Gd then has a con-

stant absorption cross section for slow neutrons with velocities in the order of cm per s of: 

 

Mbarn
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abs
Gd ⋅≈ 55)20.1.3( σ  , 

where eq.s (3.1.19) and (3.1.18b) have been used. 

One has therefore the result, that the imaginary part of the bound coherent scattering length, 

)(bℑ , which is given by the optical theorem as 

π
σ

4
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=ℑ , 

decreases for very small k0 . This loweres the imaginary part of the Fermi pseudopotential eq. 

(3.1.17) compared to the value it takes for thermal neutrons. 

 

As mentioned at the begin of this chapter, the saturation of the absorption cross section also 

can be understood from a very intuitive argument – the cross section ceases to rise propor-

tional to 1
0
−k  if the diameter of the circular disk, that corresponds to the cross section, equals 

the interatomic distance of the medium. 

 

Eq. (3.1.16) has to be calculated from eq. (3.1.17) for the alloy used in the experiment. For Gd 

the value of eq. (3.1.20) is used in eq. (3.1.17). k0 corresponds to a vertical velocity of about 5 

cm/s for energies, that correspond to heights of several ten µm.Eq. (3.1.16) then is calculated 

by adding up the potentials of the three components given by eq. (3.1.17). 

In eq. (3.1.17) one encounters the problem of calculating the fractional nuclei densities of the 

components in the alloy. According to [Ne01] the alloy is described by the fractions of mass 

each component carries in one mass unit of alloy. Since the mass fractions of the components 

are known, one has to know the mass density of the alloy to obtain the fractional nuclei densi-

ties n0
(j) . Unfortunately, there is no method known, according to which one can calculate the 

mass density of an alloy, if the mass fractions of the alloy’s components are known. Since the 

atomic radii and weights, as well as the mass densities of the three components in question are 

sufficiently close together in this case, the alloy’s density is approximated by the weighted 

arithmetic mean of the components’ densities. The weights are given by the mass fraction 

percentages of the components. 
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Then the potential of eq. (3.1.16) for an alloy consisting of 54 % Ti, 35 % Gd, and 11 % Zr in 

mass proportions is: 

peViU alloy
Fermi ⋅⋅⋅−= 310)44.07.7(   . 

 

It is clear, that the imaginary part of this potential only depends stronly on the mass fraction of 

Gd. The absorption cross sections of Ti and Zr are negligible compared to Gd. However, the 

real part of eq. (3.1.21) is a mixture of the real parts of the Fermi pseudopotential of all three 

components. Its value is already one order of magnitude below values calculated for usual 

solid state matter, because Ti has a negative real part in its Fermi pseudopotential. Thus, rela-

tively small changes in the proportion values can cause the real part of eq. (3.1.21) to vary by 

one order of magnitude. Now it should be remembered, that the absorbing layer was attached 

to the surface of the glass substrate by means of magnetron evaporation (see [Ne00]). Fur-

thermore, one finds, that Zr has a boiling point temperature of about 4200 K, which is several 

hundred Kelvin beyond the boiling point temperature of the other components of the alloy. 

These facts together point out, that the proportion of Zr inside the actual alloy on the glass 

surface should probably somewhat smaller than the value given for the bulge composition in 

[Ne00]. The precision of bulge composition fractions allow for deviations of about 1 % from 

the values given in [Ne00]. Therefore a composition of about 55 % Ti, 34.5 % Gd and 10.5 % 

Zr, for example, should be considered as a better approximation to the true composition of the 

actual alloy, which is coated onto the glass. With these numbers the Fermi potential eq. 

(3.1.16) of the absorbing alloy is: 

 

peViU alloy
Fermi ⋅⋅⋅−= 310)44.00.6()21.1.3(  

 

Next, the “form factor” of the absorbing alloy layer )(rM �∂  in eq. (3.1.16) has to be deter-

mined. On a microscopic scale this factor is simply given by the rough surface profile func-

tion determined with AFM scans as shown in chapter two. Yet, only classical particles or neu-

trons with wave lengths small enough would see the full rough surface profile. From chapter 

one we know, that the vertical velocity spectrum has a width of about 10 – 20 cm/s . This corre-

sponds to de Broglie wave lengths of several µm, which is large compared to the mean height 

roughness of 0.75 µm. Therefore, it is suitable to view neutrons as plane waves, having uni-

form probability density in space. This uniformity leads to the fact, that the neutron wave 

function will more or less average over the absorber’s surface with respect to the directions 

parallel to this plane. The probability of locally passing the surface is then distributed as a 
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simple gaussian with σ = 0.75 µm, as shown in chapter two. )(rM �∂  of a single rough surface 

will thus be a gaussian error function with limiting values of zero and one, respectively. Since 

the absorber is made of an alloy with 0.2 µm in thickness, that is coated onto a rough glass 

surface, there will be two error functions separated by 0.2 µm, describing the front and the 

back surface of the alloy. 

 

)(rM �∂  of the alloy coating is therefore: 
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Here, h is the position of the average zero plane of the back of the alloy coating, which is 

identical with the average zero plane of the glass substrate. Erf(z) denotes the standard gaus-

sian error function. d = 0.2 µm is the thickness of the coating and σ = 0.75 µm the mean 

height roughness. 

The Fermi pseudopotential of the absorber is therefore: 

 

alloy
alloy
Fermi

absorber
Fermi zMUzU )()()23.1.3( ∂⋅=  , 

 

where alloyzM )(∂   and alloy
FermiU  are given by eq.s (3.1.21) and (3.1.22). 
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3.2) Classical description of the wave guide 

 

This section will deal with the experimental results, which would be obtained if the setup be-

haved completely classically. The analysis of the collimator system presented in chapter one 

will therefore be taken as a beginning.  

From this analysis we know, that the vertical velocity component of all neutrons entering the 

wave guide is below about 10 cm/s , thus giving entirely total reflection from the mirrors for all 

those neutrons. Compare the horizontal motion, corresponding to de Broglie wave lengths of 

about 100 nm, and the vertical motion corresponding to wave lengths of about 1 ... 10 µm, 

with the parameters of the mirror’s roughness from chapter two – mean height roughness σ = 

22 Å and correlation length ξ = 10 µm. This leads to the conclusion, that the mirrors reflect all 

those neutrons, which enter the wave guide, in a fairly specular way. That suppresses any mix-

ing of wave vector components by several orders of magnitude compared to the specular re-

flection probability. 

With this information, one is 

now able to derive a classical 

picture of the wave guide’s trans-

mission. Fig. 3.1, [Kl00], 

contains to major regions of neu-

tron behaviour. Neutrons below 

about 10 m/s are governed by a T 

= 40 K Maxwell-Boltzmann dis-

tribution. Since kT corresponds 

to about 500 m/s and 

sm⋅<< 500v  everywhere, neu-

trons should be described by the low-energetic part of this distribution. The three dimensional 

Maxwell-Boltzmann distribution is quadratic in velocity in its low-energetic part, and this 

behaviour one sees for sm⋅< 10v  in Fig. 3.1. Neutrons above 13 m/s cut off exponentially, 

since these are lost in the neutron guides, and the losses increase exponentially with the neu-

tron velocity. Since the spectrum is measured for the beam, that leaves the neutron guide, it is 

weighted once more with the velocity v . Therefore, the rising part of the spectrum has (ap-

proximately) a v3-dependency. 
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Fig. 3.1

deconvoluted : v0 = 11.6 m/s, half.-width = 6.2 m/s

 deconvoluted white UCN-spectrum

dn
 / 

dv

neutron velocity v [nm]
Fig. 3.1: UCN velocity spectrum dn / dv = f(v)
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Yet, the vertical velocities of the neutrons entering the wave guide are far below 1 m/s . There-

fore, Maxwellian distribution for this velocity component for T = 40 K predicts, that all verti-

cal velocities are equally populated with neutrons. 

 

This originates from the fact, that the one dimensional Maxwellian is a gaussian: 
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and that Tkm Bj ⋅⋅<<⋅ 2v2  for 
s
m

j ⋅<< 500v , which is true for the whole UCN spectrum (kB 

is the Boltzmann constant). Therefore it can be concluded, that neutrons with a uniform verti-

cal velocity distribution form the initial conditions in the classical picture. 

 

The last notion needed for the classical approach is the assumption, that the absorber is a very 

good one, which is formulated in the statement, that every neutron touching the absorber at a 

certain time is lost. This means that neutrons, which are moving on parabolic trajectories in-

side the wave guide with repeatedly bouncing off the mirrors, will only pass it if their parab-

ola’s turning point lies below the absorber. With this idealization, the transmission of the wave 

guide as a function of its width – i.e. the height of the absorber – can be calculated analyti-

cally in the classical view: 

The rate of neutrons passing the absorber-mirror-system is proportional to the phase space 

volume allowed by the absorber, as it is known from classical mechanics. Consider all the 

neutrons, which enter the wave guide at a given height h’ < h = habsorber within an infinitesi-

mal range dh’, and with vertical velocities small enough not to touch the absorber: 
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This expression controls the phase space volume available for the neutrons. The total counting 

rate in the classical picture is therefore the integral of eq. (3.2.2) over all possible heights h’ < 

h: 
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Eq. (3.2.2’) now is essentially the relevant classical phase space volume of the wave guide 

system. 

 

Eq. (3.2.2) can be expressed in terms of the potential, which governs motion of the particle 

inside the wave guide: 
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This gives: 
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This expectation can be checked by means of a Monte Carlo simulation, which will consist of 

classical mass-points moving inside a one-dimensional hollow wave guide with a perfect bot-

tom mirror and a perfect absorber above in a homogenous vertical gravitational field. “Per-

fect” is assigned to the fact, that the absorber is considered to be an ideal one, absorbing every 

neutron that touches it. The simulation is performed two dimensionally, taking into account 

the vertical direction and one horizontal dimension in direction of optical axis of the wave 

guide. The horizontal transverse direction is omitted, since it is not spatially limited and will 

only contribute with a constant factor to the total transmitted neutron flux. Total count rate of 

neutrons passing the wave guide is then “measured” as a function of the wave guide width h. 
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The results of such a Monte Carlo simulation are: 

0 10 20 30 40 50 60

100

1000

Data: Montecarlo simulation for perfect absorber
Model: counts = a + b (slit height)c 
  
χ2

red. =  1.14
  
a (59 ± 6)  counts
b (16.0 ± 0.5)  counts µm-1.5

c 1.502 ± 0.01

co
un

ts

slit height / µ

 Montecarlo simulation for perfect absorber
          counts chosen equal to statistics of online
          data measurement

 
If one turns of gravitation inside the wave guide then Monte Carlo simulation will yield the 

following behaviour: 
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 Montecarlo simulation for perfect absorber

          and gravitation-free setup
          counts chosen equal to statistics of online
          data measurement

Data: Monte Carlo simulation of wave guide with
         no gravity - classical view
Model: counts = a +b * hc 
  
χ2

red.
=  1.06

  
a (-0.2 ± 1) counts
b (0.014 ± 0.002) counts * µm-c

c 2.02 ± 0.02

co
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ts

wave guide width h / µm
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Comparing the results clearly shows, that one has to expect a behaviour given by eq. (3.2.3) 

for the quasi-classical regime. 

 

In contrast, the case without gravitation shows an unfamiliar situation. Simple intuition would 

expect a linear dependency on the wave guide width h. Yet, the transmission of a one dimen-

sional wave guide consisting of one mirror and one absorber shows a quadratical dependency 

on h, if gravitation is absent. 

 

Here a look at the phase space volume of the system is useful. First, one realizes, that the 

range of the vertical velocity, that a neutron of a given horizontal velocity, that enters the 

wave guide at the position z, must not exceed to avoid touching the absorber directly or via 

reflecting once at the bottom mirror, is given by: 
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Now one can apply eq. (3.2.2’): 
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The Monte Carlo simulations shows the correct behaviour! However, one should note, that the 

exponent of the power law depends on the fact, that at all heights h in question the available 

range of the vertical velocity is large enough to ensure the validity of the cutoff condition 

given above. If the wave guide becomes so wide, that nearly all of the vertical velocities, that 

are present in the beam, can pass the wave guide, the power law will become linear, since the 

wave guide width alone decides about the number the neutrons, that enter the guide. This is 

satisfied the better, the larger the distance of the neutrons to the absorber is, where they enter 

the guide. 
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The next plot shows a Monte Carlo simulation, that elucidates this behaviour: 
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Data  : Monte Carlo: -8 cm/s < vvert. < 8 cm/s
points: 1...40
Model: Power law 
  
χ2

red.
=  0.83

  
a -2 ± 2
b 0.1058 ± 0.004
c 2.0012 ± 0.006

Data  : Monte Carlo: -4 cm/s < vvert. < 4 cm/s
points: 1...20
Model: Power law  
  
χ2

red. =  2.6
  
a 4 ± 7
b 0.123 ± 0.02
c 2.053 ± 0.03

Data  : Monte Carlo: -4 cm/s < vvert. < 4 cm/s
points: 21...40
Model: Power law 
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red. =  1.04
  
a -3747 ± 650
b 4.4 ± 2
c 1.458 ± 0.06
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One clearly sees, that the power law, that is obeyed by the classical transmission of the wave 

guide without a gravitational field, depends on the range of the vertical velocity as well as on 

the range of the wave guide widths h. 

Figure: Monte Carlo simulation of classical neutrons transmitted by the wave guide, if
there is no gravitational field. Different regions of the simulated data have been fitted
by a power law chbacounts ⋅+= . The range of the vertical velocity was scm4±
and scm8± , respectively. 
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3.3) Quantum mechanical approach 

 

 

3.3.1) The general formalism 

 

Now that we have gathered enough information about the setup of the system, we can try to 

develop a quantum mechanical description of the measurements. The setup can be described 

within quantum mechanics, if it is possible to reduce the problem of a neutron moving inside 

the setup to an effective one-particle problem. In that case, a Schrödinger equation can be 

formulated in general, which then has to be solved. 

The neutron interacts with the setup in two different ways. First there is the weak, but long-

range interaction with the earth as a whole due to the earth’s gravitational field. Second, we 

have interaction with matter due to the strong force coupling to the nucleons. 

The gravitational interaction causes the neutron to feel a resulting gravitational potential gen-

erated from the earth, the mirrors at the bottom and the absorber above. The vertical positions 

of the neutron are less than 200 µm inside the wave guide. Since the glass substrates of the 

mirrors and the absorbers have thicknesses of about 1 cm, the neutrons will be about z = 0.5 

cm from the center of mass of the glass mirror. Thus, we can determine the relative strength of 

the gravitational contributions, which arise from the mirror and the earth itself, respectivley. 

The gravitational potential of the earth is essentially: 

.     

1
1

11111)1.1.3.3(

2
zgz

R
MG

R
zR

MG
RzR

MG
rr

MGearth
grav

⋅=⋅⋅≈

�
�
�
�

�

�

�
�
�
�

�

�

−
+

⋅⋅−=�
�

�
�
�

� −
+

⋅⋅−=�
�

�
�
�

�

′
−⋅⋅−=φ

 

 

The order of magnitude of the gravitational potential caused by the mirrors and the absorber 

is: 
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This number gives the ratio of the strengths of the earth’s and the mirror’s gravitational poten-

tial felt by a neutron inside the wave guide. 

Thus neutrons inside the wave guide move in a gravitational potential given by: 

2
81.9    :where,)()4.1.3.3(

s
mgzgzgrav ⋅≈⋅=φ  , 

since the contribution of the gravitational potential, that arises from the mirror (as well as 

from the absorber due to the same argument), is neglibible. 

 

It was shown in section 3.1), that the interaction of low energetic neutrons with matter can be 

reduced to an effective one-particle interaction potential, the Fermi pseudopotential. Thus, the 

absorber will be represented by a potential given by eqs. (3.1.21), (3.1.22) and (3.1.23). The 

same way the glass substrate of the absorber and the mirrors are then represented by Fermi 

pseudopotentials. They are essentially real, corresponding to the very small absorption of neu-

trons by glass. The Magnitude of the glass’ Fermi potential is about 100 neV. The form factor, 

eq. (3.1.22), for the glass mirrors is a gaussian error function with the mirrors’ roughness am-

plitude of 22 Å as its width. From chapter two we know, that reflection of neutrons with wave 

lengths of about 500 Å from such mirrors will be fairly specular. Therefore, the roughness of 

the mirrors can be omitted without any loss of information and the mirrors’ Fermi pseudopo-

tential is: 

neVUUzzU glass
Fermi

glass
Fermi

mirrors
Fermi ⋅≈⋅−= 100,)()()5.1.3.3( θ  . 

The Fermi potential of the absorber’s glass substrate has the same magnitude. Yet, it would be 

smeared out by an error function of 0.75 µm width due to the roughness, as it is the case for 

the absorber’s Fermi potential itself. However, the absorbing layer has a real part of the Fermi 

potential of about 6 neV. Furthermore, the gravitational potential energy of 10 µm height cor-

responds to ony about 1 peV, and the vertical velocity spectrum of 10 cm/s range corresponds 

to about 20 peV in energy. The neutrons will therefore virtually not feel the roughness of the 

glass substrate. The tiny fraction of a neutron’s wave function, which arrives at the backward 

average plane of the coating, will just feel a steep potential rising towards 100 neV. This will 

suppress the wave function’s tail inside the glass by some further orders of magnitude. 

 

The argument shows, that it makes sense to approximate the absorber’s glass substrate by a 

Fermi potential like eq. (3.3.1.5): 

 

neVUUhzzU glass
Fermi

glass
Fermi

absorbersubstrateglass
Fermi ⋅≈⋅−= 100,)()()6.1.3.3( θ . 
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Putting all pieces together, we can formulate an interaction potential seen by a neutron propa-

gating inside the wave guide: 
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The smearing of the absorber’s Fermi pseudopotential with an error function form factor 

)(zM alloy∂ , that averages over the local scattering events in the absorbing layer, is an appro-

priate way to account for the roughness of the absorber, since only specular scattering is 

viewed. Specular scattering does only depend on the wave vector component orthogonal to 

the average zero plane, as it is shown in chapter two and Appendix C. In the limit of: 
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the Born approximation describes the scattering amplitude as the Fourier transform of the 

horizontally averaged surface potential, which is essentially an error function for a gaussian 

roughness. Since σλ >>≈⊥ µm 15 for the ground state and 1vvsin . <<= ⊥ horϑ , it is justi-

fied here to incorporate the roughness of the absorber simply by using a form factor 

)(zM alloy∂ . 
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This is the potential that essentially describes the setup of Fig. 3.2: 

 

13 cm

6 cm
6 cm

ca. 1 cm

ca. 1 cm

h = 0 ...200 µm

0 ... 5 µm

glass mirrors

glass substrate

absorbing layer: thickness 0.2 µm
54% Ti, 35% Gd, 11% Zr

vacuum

ca. 1 µm

3He-detector

Fig.  3.2
Setup of Measurement

 
 

The large scale structure of the potential eq. (3.3.1.7) for the region between the absorber and 

the bottom mirror is seen in Fig. 3.3: 

 

z / µm

U(z)

             vacuum
(with gravitational field)

glass mirror

glass substrate

absorbing layer

100 neV

Fermi-potential of absorbing layer
for smooth surface, magnified

Fig. 3.3
distribution of potentials  in experimental setup  
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The form factor of the absorber’s Fermi potential is shown in more detail in Fig. 3.4: 
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Form factor of absorber Fermi potential

 
The potential of eq. (3.3.1.7) describes an effective single-particle problem. The Schrödinger 

equation is: 
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The wave guide has a geometry which suggests the use of rectangular coordinates. The wave 

function can be written quite generally as 
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Inserting this into (3.3.1.8) will lead to separation of the Schrödinger equation into: 
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Since we have chosen x to be oriented along the optical axis of the wave guide, and z to be the 

vertical direction, y represents one free laterally transverse dimension, which we will omit in 

the further calculations. Eq.s (3.3.1.8) and (3.3.1.9b) are then written in terms of x and z thus 

splitting (3.3.1.8) into (3.3.1.10a) and (3.3.1.10c). 

Now eigenfunctions of eq. (3.3.1.10c) have to be found. A look at the potential of eq. (3.3.1.7) 

shows, that the eigenfunctions of eq. (3.3.1.10c) will decline exponentially inside the glass 

substrate of the absorber and the mirrors, if the energy eigenvalues Ez are smaller than the 

magnitude of the Fermi potentials. This means, that 
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are proper boundary conditions for the solutions of eq. (3.3.1.10c) in the Ez-range given in eq. 

(3.3.1.11). The eigenfunctions will therefore be restricted at both sides, if their eigenvalues are 

small enough. As the problem of eq. (3.3.1.10c) is additionally one-dimensional, eq. 

(3.3.1.10c) will have a finite set of eigenfunctions with discrete eigenvalues En
(z). Discreteness 

of the eigenvalues arises from the boundary conditions eq. (3.3.1.11). Furthermore, the set of 

eigenfunctions and eigenvalues En
(z) fulfilling eq. (3.3.1.11) will be finite, because the poten-

tial eq. (3.3.1.7) does not show a behaviour like az −  with a ≥ 1, while it has a constant magni-

tude of about 100 neV. Therefore, eq. (3.3.1.10) will change to: 
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Lets now have one more look at the Fermi potential of the glass. If the total energy E of a so-

lution eq. (3.3.1.10’) is below 100 neV, then the wave function inside the glass will essentially 

be 
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If furthermore En
(z) << UFermi(glass) = 100 neV, then κ will corresponds to an attenuation 

length of: 

Å140)12.1.3.3( 1 ⋅≈= −κlengthnattenuatio . 
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This means, that the neutron enters the glass substrates with only a very tiny fraction of its 

wave function over a very small range. This justifies to define the glass’ Fermi potential as 

being infinitely high, since the boundary conditions at the glass’ surface then simplify to: 
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As argued above, the potential eq. (3.3.1.7) is here modified to: 
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Now the potential of eq. (3.3.1.7) as well as the setup of Fig. 3.2 can be split into several re-

gions, where the potential does not have discontinuities. This is most clearly seen in Fig. 3.5: 
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 Fig. 3.5: The boundary conditions of the wave guide setup used for the “online” measurement 
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From this plot, we immediately obtain, that in the regions I, Ia and Ib the Schrödinger equa-

tion simplifies to: 
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The same equation holds for region III. Additionally, there is a boundary condition in this re-

gion: 
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The solution of (3.3.1.14) can be obtained analytically: 

After separation we have 
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One can define ER and R as characteristical energy and length scale, respectively, of 

(3.3.1.14’): 
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Then eq. (3.3.14’c) can be written as: 
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This can now be solved analytically. Plane waves are the solutions of eq. (3.3.14’a). The solu-

tion of eq. (3.3.1.14) and thus of eq. (3.3.14’c) is given by: 
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φA and φB are the so-called Airy functions of type AiryAi and AiryBi. They are defined as a 

linear combination of Bessel functions (see Appendix A (A.2)): 
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For the behaviour of the two types of Airy functions with real arguments see Appendix A. In 

region I, Ia and Ib there is either no or at most one boundary condition for the movement in 

the vertical direction. This can be seen from Fig. 3.2. Therefore, the energy eigenvalues E(z) of 

eq. (3.3.1.15) will have a continuous spectrum in these regions. 

The situation in region III is different. The solution eq. (3.3.1.17) is restricted from below by 

eq. (3.3.1.14b), and it must vanish for ∞→z , since the potential eq. (3.3.1.13’) rises to infin-

ity in this limit. Thus, only the first type Airy function φA can be used to form the eigenstates 

eq. (3.3.1.17), i.e. CB = 0. The boundary condition eq. (3.3.1.14b) then forces the energy ei-

genvalues Ε(z) to take the values of the zeros of φA , that is: ∈= nEE IIIz
n

z
III ,)()(  �  – the spec-

trum of Εn
(z) is discrete! The energy eigenvalues of the vertical motion in region III are there-

fore given by: 

( ) nwhereEE z
nAR

z
n

z
n ∀=−⋅= 0,)19.1.3.3( )()()( εφε   . 

 

Here is a list of the first four energy eigenvalues En
(z) III of the vertical motion in region III: 

 

 

    n  En
(z) III / 10-12 eV classical turning point / µm expectation value of z / µm 

 

1 1.407  13.722  9.150 

  

2 2.460  23.992  16.00 

 

3 3.322   32.400  21.60 

 

4 4.083  39.831  26.56 
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The two columns at the right give the turning point height, that a classical particle with initial 

kinetical energy En
(z) III would have, and the expectation value zexpect. of the corresponding ei-

genstate φn(η), which is defined as: 

 

� ⋅⋅⋅⋅= )()()20.1.3.3( *
. ηϕηηϕη nnexpect dRz . 

Determination of the eigenfunctions and the energy eigenvalues of the vertical motion in re-

gion II (IIa and IIb) is more complicated. Yet, we know something general from the fact, that 

only the vertical motion is bound and quantized in energy: 

  

The energy eigenvalues of a one-dimensional motion form a non-degenerate set. The non-

degeneracy corresponds to the fact, that the eigenstates of motion form a so-called “or-

thonormal system of functions”. That means, that the normalized bound states of the vertical 

motion in the regions II and III generally fulfill the following relation: 

 

IIIandIIregionina mnnm δηϕηϕ =)()()21.1.3.3( . 

 

For the continuous spectrum of the region I a similar relation holds: 
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Using these relations will enable one to directly work out the conclusions of applying the 

boundary conditions. This will be done next, since until now we only used the “quantizing” 

boundary conditions, formed by the wave guide. 

 

First, the situation in region I can be simplified once more. Since the energy spectrum of all 

directions of motion is continuous in this region, the error will be small if we also use plane 

waves for the vertical motion. Thus, we will use a three dimensional plane wave of a given 

total energy E(k) as the initial state of a neutron sufficiently far away from the wave guide 

entrance: 
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The coefficient R has been introduced to account for possible reflections from the wave guide 

system. The y-direction will again be omitted (see above). We already know from chapter one, 

that kz is limited to < 10 cm/s , whereas kx is in the range of 10 m/s . Thus E(k) = E(kx) . 

The glass substrates of the mirrors and the absorber form infinitely high potential discontinui-

ties. Therefore, the initial state eq. (3.3.1.22) must be continued into the wave guide such, that 

the vertically bound states inside maintain the conditions of continuous differentiability. Fur-

thermore, there is direct total reflection from the glass substrates in regions Ia and Ib. 

Let’s first have a look at these regions. The wave field, that is reflected from two planes sepa-

rated by a gap, can be deduced from Babinet’s principle. This theorem states, that the re-

flected wave field is equivalent to the wave field, which passes a small reflecting piece of 

matter with the same shape as the gap between our glass surfaces: 

ψin

ψtransmittedψreflected
Babinet’s principle:
ψreflected  =   ψtransmitted

 
If we look at the complementary situation of a small reflecting rectangle, we can tell from the 

comparison of the neutron’s wave length of about 50 Å and the wave guide’s width of 10 to 

200 µm, that the relative contribution of the diffracted wave field will be small even at about 

1 mm behind the rectangle. According to [Somm], the diffracted wave field behind a semi-

infinite plane can be written as the difference between two line integrals, F(w) and F(∞) along 

the so-called Cornu spiral in the complex plane: 
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where ∆ρ is the distance perpendicular to the semi-infinite plane, x the position parallel to the 

plane and perpendicular to its edge (x = 0 denotes the boundary of the geometrical shadow), λ 

the wave length, and F(w) a so-called Fresnel integral: 

�
⋅⋅=

w
iedwF

0

22

)( τπτ . 

If absorberh⋅≈∆ 10ρ  is chosen, then one finds less than 10 % of the incident intensity being 

diffracted forth about 4 µm into the region of geometrical shadow even about 0.8 mm behind 

the rectangle for an absorber height habsorber = 80 µm. 4 µm, however, is small compared to 

most values of the absorber height. 

For the experimental situation, this means, that there will only be small perturbations from the 

wave field, reflected from the glass substrates in region Ia and Ib, at distances closer than 

about 1 mm before the wave guide entrance. Using Babinet’s theorem, it therefore is possible 

to omit these regions and to consider only the pure initial state eq. (3.3.1.22) in region I. The 

error made by this simplification will be small, as argued above. 

 

For the moment we will omit the step between the two bottom mirrors. That leaves us with 

the problem of continuing eq. (3.3.1.22) from region I into region II and further into region 

III.  

 

Since we have chosen the total energy of the states with (3.3.1.22), we have to write a general 

wave function in the regions II and III as a superposition of the vertical motion’s eigenstates. 

Every eigenstate of the vertical motion is multiplied by a plane wave mode in x-direction in 

the regions II and III such, that the resulting x-z-state has the same total energy E as the initial 

state eq. (3.3.1.22). The superposition of these x-z-states mentioned above is then one of 

modes of the same total energy E. Thus, the energy conservation of the neutrons, which fly 

through the apparatus, is preserved. 

 

Following this argument, we write the general wave function in region II and III as follows: 
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Continuing the initial state eq. (3.3.1.22) from I into II and III then requires: 
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This is a system of four equations for the four unknowns R, Aj , Bj and Tn . The situation, that 

A, B and T are sets with indices running over the modes of region II and III, can be reduced to 

the problem of determining the quadruple (R, Aj ,Bj ,Tn) for each continuation 

IIIIIin
nj →→ψ  along the single modes 

II
j  in region II and 

III
n  in region III. This is 

possible, using the orthonormality relations of eq (3.3.1.21a) to break up the sums in eq. 

(3.3.1.23). Then one can use (3.3.1.21a) to express Aj and Bj in terms of R as well as Tn in 

terms of Aj and Bj . Using these results – two equations in R and Tn – together it is possible to 

determine Tn . The result is: 
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Now we shall look at the detector:  

The 3He-proportional-counter counts neutrons with an overall efficiency of 60%. Detection of 

a total transmission of the wave guide structure with a beam operating in the continuous mode 

means, that the counter will measure the neutron flux, as long as the detection is independent 

of the energy. We have already seen in section 3.2), that for thermal neutrons the neutron ab-

sorption cross sections are generally velocity-dependent with a 1−v -characteristics. However, 

it was shown there, too, that in the regime of UCN energies this dependency ceases to hold. 

There is a saturation of the absorption cross sections at these energies. Therefore, the 3He-

detector will directly measure the area-integral of the neutron flux density, which is the flux. 
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Therefore, the total probability current density of all modes in region III populated according 

to eq. (3.3.1.25) has to be calculated. Since the neutrons are moving essentially in the x-

direction, and the detector averages over the y-direction, we will determine the component jx 

of current density, which is: 
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Inserting eq. (3.3.1.23), we get for the total current density of region III in x-direction: 
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The total flux through the y-z-plane is then given by: 

 

( )�� � ⋅⋅⋅=⋅=Φ
n

I
z

I
xn

IIIx
n

b z
III
x

I
z

I
x

III
x kkTk

m
bzjdzdykk

window 2)(

0 0

,)(),()28.1.3.3( �  . 

 

Here, zwindow gives the vertical width of the detector’s entrance window and b is the horizon-

tally transverse width of the wave guide as well as of the mirrors in the y-direction. The di-

mension of (3.3.1.28) is [s-1]. Yet, this flux is only correct, if neutrons described by a mono-

chromatic initial state eq. (3.3.1.22) enter the apparatus. But in reality, a neutron spectrum 

enters the guide. Therefore, the question arises, whether the total flux over the whole spec-

trum must be calculated by coherently superposing all initial states eq. (3.3.1.22) or whether 

an incoherent average of eq. (3.3.1.28) over the kx-kz-spectrum is adequate: 

 

Let’s look at the entrance collimator of the setup again. It is fuelled by a UCN “gas” from the 

neutron guide. Therefore, it is a vastly incoherent neutron source, concerning the horizontal 

velocity component. The vertical direction is governed by the collimator width of about 2 mm 

(see chapter one). A broadening of the neutron beam in the vertical direction due to diffraction 

at the collimator, therefore gives a measure for the vertical coherence length, Lz , of the neu-

tron “radiation”: 
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The longitudinal coherence length Lx is more difficult to determine. Yet, the neutron spectrum 

is very wide in kx. Therefore, we will derive an estimate for Lx the same way, as the coherence 

length of a vastly incoherent “white” light source is determined. The spectral width will pro-

vide us with the order of magnitude of Lx . Thus we have:  
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Both the eq.s (3.3.1.29) and (3.3.1.30) show, that it is well justified to describe the entering 

UCN as an incoherent mixture of plane wave states eq. (3.3.1.22). Therefore, the total flux of 

neutrons averaged over the arriving spectrum via eq.(3.3.1.28) is given by: 
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where )(1
I
zkf  and )(2

I
zkf  are the form factors of the spectrum, which arrives at the wave 

guide’s entrance. 

The form factors: According to [Kl00] the deconvoluted velocity spectrum, that arrives at the 

collimator, can be described by the following empirical function: 
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where v denotes the neutron velocity, s the length of the time-of-flight line, t1 , t2 , a1 , a2 , and 

n are fitted parameters, and k the time scale of the multi channel analyzer. It looks like: 

 

2 4 6 8 10 12 14

5

10

15

20
dN/dv

v [m/s]
 

From chapter two, section two, one knows, that the collimator cuts velocities above 15 m/s in 

order to be able to sufficiently block the direct line of view. According to [Ne01] the meas-

urements of the neutron transmission of the wave guide have been performed with an average 

horizontal velocity of about 8 m/s. Integrating the expression given above, one therefore 

finds, that the spectrum of the horizontal velocity provided by the collimator ranges from 7 

m/s to 15 m/s. The spectral expression given above together with this velocity range given by 

the collimator thus provides the spectral form factor of the neutron beam, that arrives at the 

wave guide’s entrance. 

 

One should now consider the 5 µm vertical shift between the two bottom mirrors. What effect 

does this have? A look at eq. (3.3.1.24) and Fig. 3.5 shows, that the step introduces a third 

boundary. Two additional equations of the type of eq. (3.3.1.24) would emerge, introducing 

two new sets of constants, Cl and Dl . Thus the expression replacing eq. (3.3.1.25) contains a 

double summation over j and l. Its exponentials split into two partial lengths of l1 = 6 cm and 

l2 = 3 cm, whereas a third matrix of overlap integrals between the IIa- and the IIb-states mul-

tiplies the expression. 

The overlap integrals usually have to be performed numerically. The double summation over 

)2020( ×  – matrices depends on the k-vector component of the arriving initial state eq. 

(3.3.1.22). Thus, the spectral average eq. (3.3.1.31) of the flux will be performed on sums, 

containing several ten thousand terms, which depend on the k-vector. Numerical integration of 

eq. (3.3.1.31) will therefore take impracticable large times. However, the numerical task re-
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mains managable, if we work with eq. (3.3.1.25) and try to incorporate the step without per-

forming the whole formal apparatus shown above. 

As mentioned above, the main effect of the step will be an additional summation over overlap 

integrals between states of region IIa and IIb. Therefore we should calculate the overlap inte-

gral matrix: 
IIa
j

IIb
l

step
ljc ϕϕ=)32.1.3.3(  . 

The states l in region IIb will get populations, which are approximately given by a sum over j, 

which corresponds to the state j arriving from the region IIa, of the element lj of this transition 

matrix, which has first to be multiplied by the damping factor of this state j. The damping 

factor is an exponential, arising from the first 6 cm of the absorber length. Then the popula-

tion of the state l in the region IIb just after the step will be approximately: 
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Once these quantities are calculated for all relevant wave guide widths, they can be inserted 

into eq. (3.3.1.25) modifying it to: 
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Thus, the presence of the step can be included in an approximate way with a reasonable 

amount of calculation. 

The last thing, that can be done now without specific knowledge of the vertically bound states 

in region II, is an approximate determination of the coefficients cj
II(kz

I) . These overlap inte-

grals describe the coupling of the arriving initial states to the vertically bound states inside the 

wave guide. Since the initial population of the wave guide modes will have strong effects on 

the total transmitted flux, the discussion of these coefficients is somehow crucial. Yet, we see 

from eq. (3.3.1.31), that the measurement depends on the incoherent spectral average over the 

squared absolute values of Tn . 
2

nT  represents a double sum. In Tn the cj
II(kz

I), fortunately, 

depend only on kz
I . Therefore, the spectral average over kz

I of eq. (3.3.1.31) reduces to: 
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A measurement of the total transmitted flux does not directly depend on the cj
II(kz

I) but on the 

averaged quantities eq. (3.3.1.34). These quantities depend on the specific form )(1
I
zkf  of the 

vertical velocity spectrum. However, we know from chapter one, that this spectrum, with a 
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range of 20 cm/s corresponding to about 50 peV in energy units, is far wider than the energy 

eigenvalues of the lowest bound states of region III, for example. Thus, it makes sense to look 

at eq. (3.3.1.34) in the limit of an infinite wide and uniform spectrum of vertical velocities. 

Then, eq. (3.3.1.34) becomes: 
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In the case of such an infinitely wide uniform vertical velocity spectrum, the coupling of the 

initial plane waves to the wave guide modes lead therefore to a completely uniform initial 

population of the wave guide modes, regardless of their specific form. 

As argued above, the real spectrum of the experiment is not infinitely. Yet, it is considerably 

wide compared to the bound state energy eigenvalues. Therefore, we should expect a nearly 

uniform initial population of the wave guide modes, which may additionally show some de-

pendence on the wave guide width h. 

Some overlap integrals in eq.s (3.3.1.25’) and (3.3.1.33) remain to be calculated. Then, with 

eq. (3.3.1.31), a prediction for the measurement of the total transmitted neutron flux as a func-

tion of the wave guide width h can be made. 

 

Thus, it is now necessary to determine the precise form of the eigenstates and the energy ei-

genvalues of the vertical motion in region II. We see from the potential eq. (3.3.1.13’), that in 

this region the potential between the mirror and the glass substrate of the absorber is a sum of 

a linear term and two complex-valued gaussian error functions . Unfortunately, there is no 

analytic solution to the corresponding ordinary differential equation. Therefore the eigenstates 

can only be determined to some approximation. 

One possibility to deal with this problem, is the basic behaviour of the solutions in region III. 

They vanish exponentially for large z. If the absorber is higher than the main spatial extension 

of a certain state of region III, this state will only feel a tiny fraction of the absorber. There-

fore, for sufficiently large absorber heights, the lowest states in region II should be virtually 

unchanged compared to region III. In this case, the effects of the absorber’s Fermi potential 

are exponentially suppressed due to the general shape of the states themselves. 
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This suppression can be used to argue as follows: 

Calculate the states in region II, which are valid for an absent absorber, but still two glass mir-

rors below and above. The eigenstates of such a gravitational Fabry-Pérot interferometer are 

given analytically as linear combinations of the two types of Airy functions. The energy ei-

genvalues arise from the boundary conditions at the mirror surfaces. Determine for each such 

state the height of the upper mirror, from where the state’s wave function is decreasing expo-

nentially towards the upper mirror. Then, the exponentially suppressed Fermi potential of an 

absorptive coating of the upper glass allows the calculation of its effects on the eigenvalues, 

using stationary perturbation theory. 

 

The first step of this procedure determines so-called “two-mirror eigenstates” (one mirror 

above, one below). The boundary conditions of such a structure are: 
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Inserting the general solution eq. (3.3.1.17) of region II into eq. (3.3.1.36) gives two equa-

tions. The combination of these determines the multiplicative constants of eq. (3.3.1.17) and 

provides an equation to calculate the energy eigenvalues by numerically searching its zeros: 
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The solutions give the energy eigenvalues εn
(z) free,II of the wave guide problem with no ab-

sorber. For each width h there exists an infinite but countable set of positive, real energy ei-

genvalues, thus, the nth eigenvalue εn is a function of the width h, εn
(z)(h). This clearly shows, 

that solutions are valid only as long as εn << 100 neV, because the glass’ Fermi-potential is 

finite in reality. Therefore, the number of bound states is large, but finite. The combination of 

eq.s (3.3.1.37) and (3.3.1.36) allows one to determine the solutions eq. (3.3.1.17) for the two-

mirror wave guide once the energy eigenvalues are known: 
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The following plots show the variation of the free energy eigenvalues with the height h. 

 

First 7 energy eigenvalues: 

 

20 30 40 50 60 70 80
h � � m

2

5

10

20

50

� � peV

 
 

The term “free energy eigenvalues” we will assign to the set of eigenvalues, εn
(z) free,II , of ver-

tical motion between two mirrors in absence of any absorber. 

 

It is clearly visible, that for small widths, the energies are increasing nearly quadratically with 

the state number – which is the characteristic of a field free box – and that for large widths, 

the gravitational potential dominates, generating fixed energy eigenvalues independent of the 

width h. This behaviour would be expected as an overall systematics of the bound states. 

 

The second step deals with the absorbing layer through perturbation theory. The absorber’s 

Fermi potential corresponds to the gaussian error functions in eq. (3.3.1.13’). Fig. 3.4 clearly 

shows, that the layer’s potential is essentially small compared to the glass’ potential. Further-

more, the bound states are predominated by the linearly increasing gravitational potential for 

increasing wave guide width h. For sufficiently large widths, the states do not feel the upper 

substrate any longer. This happens for the ground state above h ~ 15 µm first, and then subse-

quently for all higher states at greater widths h. Because the absorbing layer’s potential has a 
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spatial extension, that is small compared to 15 µm, the former statement made for the even 

stronger glass substrate’s potential is also true for the layer. Thus, the layer’s potential is small 

compared to the gravitational potential, if the wave guide width h is sufficiently large (which 

means larger than ~ 15 µm for the ground state and higher values for higher states). The usage 

of perturbation theory is therefore justified for wave guide widths, which are not too small. 

The perturbation Hamiltonian HI is given by: 
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If the normalized unperturbed bound states are given according to eq. (3.3.1.38) 
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then the first order correction on the energy eigenvalues is: 
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the second order correction is: 
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and the third order correction is: 

 

( ) ( ) ( )

( ) .     1

1)43.1.3.3(

2,)(,)(

2)0()0(

)1(
3

 ,)(,)(
 ,)(,)(

)0()0()0()0()0()0(

3

)3(
)(

�

�

≠

≠
≠

−
⋅⋅−

−⋅−
⋅=

nm
IIfreez

m
IIfreez

n

I
n

R

nj
nm

IIfreez
j

IIfreez
n

IIfreez
m

IIfreez
n

III

R

IIz
n

nHm

E

mHnjHmnHj

E

εε
ε

εεεε
ε

 



 68 

As long as the condition of perturbation theory are fulfilled – i.e. the absorber is high enough 

for a given state – the first order contribution of eq. (3.3.1.41) will be dominate. It is propor-

tional to HI , which itself is of the order of UFermi
alloy. Therefore, it holds for the energy eigen-

values in the presence of the absorber, that obey: 
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This result of the perturbation theory is quite general, because it connects the deviation of the 

energy eigenvalues from the absorber-free case with the complex amplitude of the absorber’s 

Fermi pseudopotential. It can be used to check other methods of determining the eigenstates 

in the presence of the absorber qualitatively. 

 

However, the numerical results from the perturbation theory in first order overestimates the 

corrections on the eigenvalues. Furthermore, the convergence of the perturbation series be-

comes slow, if the transmission of a certain state is considerably reduced, since the absorber’s 

influence on the state is then no longer weak,  which invalidates the use of perturbation the-

ory. 

 

Yet, with the eigenstates eq. (3.3.1.38) it is now possible to determine the quantities of eq. 

(3.3.1.33) as functions of the step height, which enables one to calculate eq. (3.3.1.25’) and 

therefore finally, the total transmitted flux eq. (3.3.1.31) as a function of the wave guide width 

h. The reason for that is, that for wave guide widths h larger than 10 µm the true eigenstates 

will only deviate slightly from the states eq. (3.3.1.38), since then the absorber regions covers 

less than 10 % of the whole wave guide width.  To illuminate the behaviour of eq. (3.3.1.33), 

the quantities eq. (3.3.1.33) were evaluated for the second and the first bound state in region II 

as function of the wave guide width h. The step was chosen to be 5 µm [Ru00, p. 50]. 
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The next plot shows the ratio of these quantities evaluated for the first state to the same quan-

tities evaluated for the second state: 
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We see, that above a wave guide width of about 20 µm, where both the first and the second 

state arrive virtually undamped by the absorber at the step, the population of the ground state 

is suppressed compared to the second state, since the ratio, which is shown in the plot, is 

below one. The mean value of the ground state’s population for h > 25 µm is around 15% to 

25% of the population of the second state. This can be understood, since the overlap integrals 

between the first two states before and after the step have significantly large zero parts due to 

the step. The effect is particulary strong for wave guide widths h of below 25 µm, which is 

comparable to the step height. If the wave guide width is large compared to the step, then it 

will work more like a small perturbation. Therefore, it will be necessary to include eq. 

(3.3.1.33) in eq. (3.3.1.25’), at least by assigning a population P1step = 0.2 Pj
step for all j > 1 to 

the ground state – the step leads to an effective suppression of the ground state! 
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3.3.2) Eigenvalues 

 

It is now the time to search for a method, that is capable to calculate the energy eigenvalues of 

the vertical motion inside the wave guide with a certain reliability. I will develop here two 

approaches, that can be used to derive approximations to the true eigenvalues of the vertical 

motion. 

 

The first one is the well-known WKB method. WKB quantization of the motion leads to the 

Bohr-Sommerfeld quantization rules for the energy eigenvalues. It is known, that, in general, 

WKB quantization usually gives the energy eigenvalues of the lowest bound states only to an 

accuracy of about 20 %, whereas the quality increases for higher levels. Therefore, most often 

WKB  quantization is applied to the semi-classical behaviour of system. 

However, one should first take a look at WKB quantization of the eigenvalue problem given 

by eq.s (3.3.1.14b) and (3.3.1.16), which form the basic structure of the problem of the 

gravitationally bound states. There, however, is a problem. The WKB method demands, that 

the wave function can penetrate into all regions of evanescent wave propagation. Yet, the 

bottom mirror forms an infinitely high and sharp potential step. The WKB method cannot deal 

with such potential steps. Fortunately, one can avoid this problem by modifying the potential 
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Then there are no potential steps, and the classical motion of a particle in this potential has 

symmetrical turning points. However, the condition eq. (3.3.1.14b), which must be satisfied 

from the WKB solution as well, tells one, that only solutions with odd parity, that have a zero 

at z = 0, can be used to construct the eigenvalues, since these solutions are automatically 

solutions to the boundary value problem eq. (3.3.1.14b). 
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The WKB quantization rule for a one-dimensional motion is derived from the condition, that 

the phase shift ∆φ along a closed integration contour aba →→  must be equal to 

( )212 +⋅ nπ . Therefore one has: 
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The WKB states are given by: 
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Thus, one has to satisfy eq. (3.3.1.14b) at z = 0: 
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This gives the energy eigenvalues of the boundary value problem eq.s (3.3.1.16) and 

(3.3.1.14b) in WKB quantization: 
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where s has been renamed to n. 
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Now one can calculate these eigenvalues and compare them with the exact values found from 

the exact solution of eq.s (3.3.1.16) and (3.3.1.14b), which is given by Airy functions. 

 

 

     n  En
(z) exact / 10-12 eV     En

(z) WKB / 10-12 eV 

 

1 1.407  1.396 

  

2 2.460  2.456 

 

3 3.322   3.319 

 

4 4.083  4.082 

 

 

The agreement is better than 1 % even for the ground state! Therefore, this is the reason, why 

WKB quantization of the vertical motion inside the waveguide is an appropiate way to calcu-

late the energy eigenvalues of the motion to an acceptable accuracy: 

For all wave guide widths h larger than 10 µm the absorber covers less than 10 % of the 

whole wave guide width. WKB quantization of the motion inside an error function potential, 

that describes the absorber, certainly does not yield the lowest states of the motion there with 

an accuracy of 1 % or better. 

Yet, if the linear gravitational potential covers more than 90 % of the whole wave guide 

width, where the motion is given by the WKB method to an accuracy better than 1 %, the 

presence of the absorber will cause an relative error of the WKB eigenvalues compared to the 

true eigenvalues, that is smaller than 10 %. 

 

 

Thus, it makes sense to approximate the eigenvalues of the vertical motion inside the wave 

guide in presence of the absorber with WKB quantitzation of the motion, if one bears in mind, 

that these approximation resembles the true eigenvalues with a relative accuracy of about 10 

% only for wave guide widths larger than 10 µm. 
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For this purpose one has to take the potential of region II inside the wave guide from eq. 

(3.3.1.7), and to symmetrize it as this was done in the simple case shown above. 
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Then one has to apply to the WKB quantization rule and to select out all states of odd parity 

to ensure a wave function, that vanishes (nearly) at z = 0, where the bottom mirror is. How-

ever, one has to obey, that only the real part of the line integral 
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condition, since the imaginary part describes the decline of the state, and therefore must not 

contribute to the phase matching. 

Using these eigenvalues, it is now possible to calculate the total flux eq. (3.3.1.31), using eq. 

(3.3.1.25’). The result indeed shows the existence of a range of wave guide widths, where no 

neutron can pass the guide. This “range of non-penetration” should depend on both the 

magnitude of the absorber’s Fermi potential, particularly its real part, and the roughness σ of 

the absorber. 

 

Therefore, the next four figures show the systematic dependency of the range of non-

penetration on these quantities: 
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Figures: It is shown the dependency of the “range of non-penetration” in µm on the magnitude of 
the roughness of the absorber, σ , in µm. 
The left figure shows this dependency in a linear plot, whereas the right one displays the same in a
linear-log view. The green lines indicate the prediction for the measured roughness. 
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One can now use the actual values of all quantities in the model: 
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and try to derive a prediction of the total neutron transmission of the actual wave guide as a 

function of its width h from eq.s (3.3.1.31) and (3.3.1.25’). Such a prediction looks like: 

Figures: It is shown the dependency of the “range of non-penetration” in µm on the magnitude 
of the real part of the absorber’s Fermi pseudopoential in 10-9 eV. 
The left figure shows this dependency in a linear plot, whereas the right one displays the same in
a linear-log view. The green lines indicate the prediction from the potential of eq. (3.1.21). 

Figures: It is shown the dependency of the “range of non-penetration” in µm on the magnitude 
of the imaginary part of the absorber’s Fermi pseudopoential in 10-9 eV. 
The left figure shows this dependency in a linear plot, whereas the right one displays the same in 
a linear-log view. The green lines indicate the prediction from the potential of eq. (3.1.21). 
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This theoretical prediction has to be treated for the finite spatial resolution of the actual meas-

urement, which is reported to be 1 µm in [Ru00]. One can account for this fact by a convolu-

tion of the theoretical prediction with an area-normalized gaussian of σ  = 1 µm. The final 

prediction then, after convolution, looks like: 
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As one can see, the convolution smears out to some amount the “knees” of the curve. 
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This final prediction can now be fitted to the experimental data. There, one can test two ways 

of fitting: 

 

 

 

 

a) One can use the background flux measured independently from the data in question here. 

This leads to a fixed offset parameter, and leaves two unknown quantities, that have to be ob-

tained from the fit: 

 

 - the scaling of the total transmitted neutron flux, denoted as K, 

 

  and 

 

 - an offset of the z-position, offsetz , which is constrained to about mµ1± , 

  since the spatial error of 1 µm (see above) also smears the zero position. 

 

 

b) The background flux can vary in certain constraints. This leads to three unknown quanti-

ties, that have to be obtained from the fit: 

 

 - the scaling of the total transmitted neutron flux, denoted as K, 

 

 - an offset of the z-position, offsetz , which is constrained to about mµ1± , 

  since the spatial error of 1 µm (see above) also smears the zero position, 

 

  and 

 

 - the background neutron flux, denoted as y0 . 
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The results of these fits are shown in Fig.s 3.6a and 3.6b: 

Fig. 3.6a 
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z

offset
 is constrained parameter: [-1 µ, 1 µ]

K (1.081 ± 0.02) counts / s-1

zoffset (1.10 ± 0.3) µm

result from background fit is used:

y0 (0.00428 ± 0.0004) counts / s-1

 
 

 

Fig. 3.6b 
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Fig. 3.6a: The theoretical prediction derived from eq.s (3.3.1.31) and 
(3.3.1.25’), where the eigenvalues of WKB quantization have been used,
after convolution with the experimental spatial error of 1 µm is fitted to the
data. Total scaling K and position offset zoffset are the two parameters of the 
fit. 

Fig. 3.6b: The theoretical prediction derived from eq.s (3.3.1.31) and
(3.3.1.25’), where the eigenvalues of WKB quantization have been used, 
after convolution with the experimental spatial error of 1 µm is fitted to the
data. Total scaling K , position offset zoffset , and background y0 are the three 
parameters of the fit. 
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As one can see, the prediction fits to the data. All important features of the data, which in-

clude the smooth semi-classical behaviour for h > 50 µm, the range of non-penetration for 

mh µ14< , and the “knee” at about h = 24 µm, are resembled by the theory. If one bears in 

mind the low statistics of the data especially at h < 20 µm, a 2
.redχ  below 1.6 is satisfactory. 

 

 

 

Now one may remember, that despite the fact, that WKB quantization fits extremely well to a 

linear potential (for an approximative method), its errors are the largest for the lowest states. 

Therefore, it may be useful to search for a method of constructing exact eigenstates of the 

vertical motion inside the wave guide for the lowest two states at least, since these states con-

trol the emergence of the “knee” at h = 24 µm. 

Since the error function shaped potential of the absorber cannot be solved analytically, one 

may neglect roughness for the moment, and describe the absorber potential as a rectangular 

one, with a complex magnitude and d = 200 nm thickness. This is a potential, that behaves 

exactly, as it is seen in Fig. 3.3. 

In this case, the eigenfunctions of the Schrödinger equation eq. (3.3.1.10’c) of the vertical 

motion inside the wave guide can be given analytically for each region of the vertical poten-

tial U(z) . 

Inside the glass substrates there the eigenfunction can be described by: 
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In the vacuum and inside the absorber the eigenfunctions are given by a linear combination of 

Airy functions, since there the potential is linear. 

Yet, inside the absorber, the eigenfunctions will acquire an additional energy shift, which is 

equal to the absorber’s Fermi pseudopotential magnitude. Therefore, one has to look carefully, 

whether the typical Airy functions Ai(z) and Bi(z) form a numerically stable set of linearly 

independent functions inside the absorber with its strongly imaginary potential. 

A look into the Appendix A shows the problem. The typical Airy functions used as the func-

tion base only behave non-pathologically on the real axis. 

Since the imaginary parts of the energy eigenvalues, which enter the Airy functions’ argu-

ment, are usually small compared to the imaginary part of the absorber’s Fermi potential, and 
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compared to one (in units of ER) except for very small wave guide widths, one can use the 

typical linear combination in the vacuum. 

However, inside the absorber Bi(z) must be replaced by a complex rotated version of Ai(z) 

given in the Appendix A in eq. (A.3). Thus, the eigenfunctions here must be written as: 
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The quantization condition here is then derived from the continuity, that the logarithmic deri-

vation of each eigenstate must have at each boundary between two adiacent regions of the 

vertical potential. That means, that at the three locations: 
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 - z = h – d 

 - z = h 
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must be satisfied. 

Applying these conditions to the eigenfunctions given above, and respecting the fact, that the 

states must vanish inside the glass for ±∞→z , respectively, one gets three equations 
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for the three unknowns C1 , C2 , and ε . Eliminating C1 and C2 from these equations leads to 

one remaining equation in ε, which forms the quantization condition. 
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This equation can be solved for different values of the wave guide width h for the lowest two 

states, thus producing their energy eigenvalues as a function of h. The higher states one may 

again derive via WKB quantization. 

This way, one derives a theoretical prediction for the total transmission of the wave guide, 

which should be nearly correct for the lowest two states, since their eigenstates have been 

obtained analytically, whereas WKB quantization naturally forms a good approximation for 

the higher states. 

There remains one question. The roughness must be incorporated into the exact solution of the 

two lowest states somehow afterwards. Yet, there is a way to achieve this. One may remem-

ber, that the neutrons, which enter the wave guide, have very small coherence lengths, espe-

cially in the forward direction along the optical axis of the guide. 

 

Therefore, it makes sense to adopt the point of view, that the main effects of the roughness 

can be incorporated into the analytical results of the two lowest states by a convolution of the 

resulting transmission coefficients with an area-normalized gaussian, which σ equals the 

roughness of the absorber. 

Since this procedure has already to be done to account for the position error of the measure-

ment, this argument leads to the fact, that a prediction, that is made according to eq.s 

(3.3.1.31) and (3.3.1.25’), and using the exact eigenvalues of the two lowest states and WKB 

result for the higher states, must be convoluted with a gaussian, that has a σ of about 2 µm. 

That is combined value resulting from the position error and the roughness amplitude. 

 

If one bears these facts in mind, one can recalculate the predictions made above for a pure 

WKB approach. However, the determination of the eigenvalues for the two lowest states with 

the exact method given above still is numerical delicate and time consuming. 

 

Therefore, two successful fits of this combined “exact-and-WKB”-prediction to the data are 

shown, where the absorber’s Fermi potential was eViU Fermi
abs

9
. 10)44.00.2( −⋅⋅−= , which is at 

least of the same order of magnitude as the actual value. Thus, these results are close to the 

ones valid for the actual value of the absorber’s potential. 
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The fits again have been performed in the ways a) and b), that are described above. Their re-

sults are seen in Fig.s 3.7a and 3.7b: 

 

 

 

 

 

Fig. 3.7a 
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          absorptive Gd: all levels equally populated;
          ground state is suppressed to 20 % ;
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Data: total counting rate 0.5 .. 80 µm
Model:  Airy fucntion approach for the
             first 2 levels, levels 3...13
             from WKB method:  
             all levels equally populated;
             absorber is rough, 2 σ = 1.5 µm;
             first 2 levels calculated exactly for
             step absorber with 2 neV real part of 
             its Fermi pseudopotential;
             ground state is suppressed to 20 % 
             according to 2nd mirror shifted
             downwards by ca. 5 ± 0.5 µm;
             theory is convoluted with a gaussian
             of σ = 2 µm; σ comes from the
             roughness and the position error of 1 µm;

χ2
red.

=  1.75  (35 DOF) 1 parameters
 
K (1.052 ± 0.02) counts / s-1

result from background fit is used:

y
0

(0.00428 ± 0.0004) counts / s-1

 

 

 

Fig. 3.7a: The theoretical prediction derived from eq.s (3.3.1.31) and (3.3.1.25’), where
the eigenvalues of the first two states are derived exactly, whereas the higher states are
given by WKB quantization, after convolution with the combined smearing of 2 µm is
fitted to the data. Total scaling K is the one parameter of the fit. A position offset is not 
needed. 
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Fig. 3.7b 
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Data: total counting rate 0.5 .. 80 µm
Model:  Airy fucntion approach for the
             first 2 levels, levels 3...13
             from WKB method:  
             all levels equally populated;
             absorber is rough, 2 σ = 1.5 µm;
             first 2 levels calculated exactly for
             step absorber with 2 neV real part of 
             its Fermi pseudopotential;
             ground state is suppressed to 20 % 
             according to 2nd mirror shifted
             downwards by ca. 5 ± 0.5 µm;
             theory is convoluted with a gaussian
             of σ = 2 µm; σ comes from the
             roughness and the position error of 1 µm;

χ2
red. =  1.69  (33 DOF) 3 parameters

 
K (1.044 ± 0.02) counts / s-1

z
offset

(0.44 ± 0.3) µm
y0 (0.00345 ± 0.0005) counts / s-1

 

 

 

 

 

One sees, that these calculations confirm the results of the (numerically much more stable) 

WKB quantization model. 

If Fig.s 3.6a and 3.6b as well as Fig.s 3.7a and 3.7b are viewed together, then it is justified to 

say, that this quantum mechanical model is able to describe the experimental results. 

Fig. 3.7b: The theoretical prediction derived from eq.s (3.3.1.31) and (3.3.1.25’), where
the eigenvalues of the first two states are derived exactly, whereas the higher states are
given by WKB quantization, after convolution with the combined smearing of 2 µm is
fitted to the data. Total scaling K , position offset zoffset , and background y0 are the three 
parameters of the fit. 
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3.3.3) Behaviour of the wave guide, when there is no gravitation 

 and a synopsis of all views 

 

 

In section 3.2) the classical behaviour of the wave guide was discussed for the case, where no 

gravitation is present. It was shown, that the transmission of a classical waveguide is 

governed by a (counterintuitive) quadratic dependency on the wave guide width h. 

Furthermore, the exponent of h shifts gradually from two towards one, if the range of the ratio 

of the vertical velocity to the horizontal velocity becomes comparable to the range of the 

ratio, that the wave guide width forms with its length: 

l
h

v
v

hor

vert ≈
.

.   . 

Now one should deal with the field-free wave guide in the quantum mechanical model for two 

reasons: 

First, it is noteworthy to check, whether such a quantum mechanical description of a field-free 

wave guide, that contains one absorbing wall, shows a semi-classical limit, that fits to the 

classical results. 

Second, it would underline the results of section 3.3.2), if the quantum mechanical 

transmission of the field-free wave guide showed a “range of non-penetration”, that differed 

from the case with a gravitational field. 

 

The formalism for a treatment of this task is already at hand. One can use the eigenvalue 

formalism, that has been developed for the case with gravitation in terms of Airy function in 

the last section. Here now, however, the Airy functions have to be replaced by linear 

combinations of plane waves. The absorber is described in rectangular terms. Again, 

roughness can then be applied afterwards by a convolution with the roughness’ gaussian. 

The three equations, that ensure the continuity of the logarithmic derivation at the three 

boundaries of adiacent regions of the vertical potential, are now given by: 
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where one has: 
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Combination of these equations again yields one equation, that forms the quantization condi-

tion. 

The resulting eigenvalues can now be used in eq.s (3.3.1.31) and (3.3.1.25’) to obtain a pre-

diction of the transmission of the field-free wave guide. 

This prediction, obtained for the actual value of the absorber’s Fermi potential, has been plot-

ted to the data in Fig. 3.8: 
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Fig. 3.8: The theoretical prediction derived from eq.s (3.3.1.31) and (3.3.1.25’) for a
wave guide, that contains no gravitational field. The background has been adjusted. 
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One clearly sees, that this prediction behaves different compared to the data. In particular, the 

range of non-penetration is completely different. 

 

The next two Fig.s 3.9a and 3.9b display the same prediction for three different values of the 

horizontal velocity component: 

 

 

Fig. 3.9a 
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Fig. 3.9a: The theoretical prediction derived from eq.s (3.3.1.31) and (3.3.1.25’) for a
wave guide, that contains no gravitational field. The horizonzal velocity was

smvhor 1. = . Different regions of the prediction have been fitted by with a model:
chbaflux ⋅+=  . The points of the prediction have been given errors, respectively,

that were chosen that way,  that the fitted model gave a reduced 2χ  of one for each fit 
region, respectively. This way, one can get an estimate of the accuracy to which a
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Fig. 3.9b 
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These results show clearly, that the quantum mechanical treatment of the field-free wave 

guide reproduces the semi-classical limits of the power law behaviour of the transmission, 

that is expected from the classical calculation in section 3.2). 

Fig. 3.9b: The theoretical prediction derived from eq.s (3.3.1.31) and (3.3.1.25’) for a
wave guide, that contains no gravitational field. The horizonzal velocity was

smvhor 1.0. = . Different regions of the prediction have been fitted by with a model:
chbaflux ⋅+=  . The points of the prediction have been given errors, respectively,

that were chosen that way,  that the fitted model gave a reduced 2χ of one for each fit 
region, respectively. This way, one can get an estimate of the accuracy to which a power 
model can describe the prediction. 
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Therefore, it is now the time to present a synopsis of all views, which one can use to describe 

the transmission of the wave guide. There are: 

 

 - the classical view without a gravitational field (section 3.2)), 
 - the classical view with a gravitational field (section 3.2)), 
 - the quantum mechanical prediction for the case without a 
  gravitational field (shown above), 
  and 
 - two quantum mechanical predictions with a gravitational field 
  (section 3.3.2)). 
 

All these results are shown together in Fig. 3.10: 
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If one looks at this synopsis, then it is justified to say, that the present experiment was able to 

prove the existence of quantum mechanically bound states of massive particles in a 

gravitational field. Therefore, it is now possible to state, that the formalism of so-called “first 

quantization” has been established for the classical, non-relativistic gravitational field in its 

full consequences including the existence of bound states. 

Fig. 3.10: All results of the different views of the wave guide system are plotted together.
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3.3.4) The spatial distribution of the neutrons after the wave guide 

 

For the moment, these calculations exhaust the quantum mechanical model, that has been pre-

sent here as a description of a measurement, that is shown in Fig. 3.2. However, a second 

measurement has been performed. Instead of determining the variation of the transmittivity of 

the apparatus with the wave guide width h, one can try to detect the spatial density distribu-

tion of the neutrons, which leave the wave guide. According to Fig. 3.11, a measurement of 

the neutron density distribution after the wave guide may also show up signs of the gravita-

tionally bound states: 

13 cm
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h = 80 µm

18 µm

glass mirrors

glass substrate

absorbing layer: thickness 0.2 µm
54% Ti, 35% Gd, 11% Zr

vacuum

ca. 1 µm

position sensitive
CR39-detector:

track-recording plastic (green)
235U coating

gap = 50 µm

Fig.  3.11

 
With the formalism developed above, it is now possible to try a description of this other kind 

of measurement (see chapter one). There the absorber is placed at a constant height h and a 

position-sensitive uranium-coated CR39 track detector records the z- (and y-) dependency of 

jx
III , given by eq. (3.3.1.27). The setup for this measurement is shown in Fig. 3.11 in chapter 

one.  

A look at eq. (3.3.1.27) shows, that the current density contains off-diagonal interference 

terms nn’ with n ≠ n’, of course. The question is, whether these interferences will be seen 

from the CR39-detector or not. The measurement of the total flux (see above) does not de-

pend on this detail, since the spatial integration of the current density eq. (3.3.1.27) removes 

the interference terms due to the orthonormality of the function base. The interference terms 

of eq.(3.3.1.27) will only show up in the detector, if the whole system can be prepared into a 
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coherent superposition of pure base states. Since we know, that the collimator is a highly in-

coherent and more or less thermal neutron source (see eq.s (3.3.1.29) and (3.3.1.30) for esti-

mates of the coherence lengths), this coherence condition is not satisfied. Therefore, the 

probably best knowledge about the system is provided by the density matrix ρ of the final 

states. Consider a case, where the states φn(η) of our system are forming an incoherent mix-

ture with a population pn for each state. Then ρ is given by: 
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n

III
n

III
nnp ϕϕρ)1.4.3.3( . 

 

Then, a position-sensitive detection means, that the detection process projects ρ onto the spa-

tial eigenstates δ(z-z0). The trace of these projections of eq. (3.3.4.1) is the analogon to eq. 

(3.3.1.27). The result for this trace of the projection of ρ onto the spatial eigenstates is: 

 

[ ] ( ) � ⋅==
n

III
nnz pzzSpPSp

2
)()()2.4.3.3( ηϕρρ . 

 

Comparison with eq. (3.3.1.27) then shows, that the position-sensitive measurement with the 

CR39-detector will only show the first interference-free diagonal term of jx
III . The prediction 

for the position-sensitive measurement of Fig. 3.11 must therefore be obtained from: 
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Yet we should realize, that eq.s (3.3.1.27) and (3.3.4.3) describe the two extremes of either a 

totally lost or a completely preserved phase. Therefore from a phenomenological point of 

view, it is wise to introduce one parameter, which merges eq.s (3.3.1.27) and (3.3.4.3). We 

will call that number the “coherence strength” γ of the system. γ is one for total coherence and 

zero for the case of a completely incoherent mixture like eq. (3.3.4.2). Therefore, eq.s 

(3.3.1.27) and (3.3.4.3) merge to: 
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γ can be obtained by fitting eq. (3.3.4.3’) to the data. To elucidate the effects of γ, one may 

calculate two graphs of eq. (3.3.4.3’) for γ = 0 and γ = 1, respectively. These behaviours of the 

cases of total coherence and total incoherence look like: 
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Looking at Fig. 3.11, we realize, that region III is split into two parts IIIa and IIIb. The mir-

rors are shifted relatively against each other by about ∆z = 18 µm. Therefore, eq. (3.3.1.25), 

describing the transmission coefficients Tn , will have to be extended to three boundaries I/II, 

II/IIIa and IIIa/IIIb. This will lead to an additional summation over an additional matrix of the 

overlap integrals between states of IIIa and IIIb, as it has been argued for the case of a mirror 

step below the absorber (see above). Fortunately, the Tn have only to be calculated for one 

fixed absorber height. Furthermore, the eigenstates of the regions IIIa and IIIb, which form 

the corresponding overlap integral matrix, are given analytically by the first type of the Airy 

functions, since both regions are after the absorber. Therefore, the step can be included di-

rectly this time by calculating the expression eq. (3.3.1.25) for the Tn once more, including the 

third boundary IIIa/IIIb. The result is: 
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where: 
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As Tn is known, eq. (3.3.4.3’) can be calculated and fitted to the data of Fig. 1.6. This fit con-

sists of 5 parameters. 

Four of them emerge naturally if one looks at Fig. 1.6. Normally, one would need back-

ground, z-position offset, vertical scaling of the data, and the coherence γ to adjust (3.3.4.3’).  

Such a result is seen in Fig. 3.12a: 
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          γ = 0.4 chosen

z / µm
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This curve does not resemble the data at all. However, a closer look shows, that the prediction 

shows a certain homothety to the data – it is just to small. One could of possibly stretching the 

predicted curve along the z-axis, until it resembles the width of the data. 

 

Thus, one may introduce a fifth parameter. It expands (or shrinks) the width of eq. (3.3.4.3’) 

in the z-direction and is therefore called “z-scale”. It seems, that the measured curve is some-

Fig. 3.12a: The prediction of eq. (3.3.4.3’) for the actual measure-
ment.Coherence γ is set to 0.4 . 
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how scaled differently compared to the prediction eq. (3.3.4.3’), as it can be seen in the fitting 

result in Fig. 3.12b: 

-150 -100 -50 0 50 100

0

50

100

150

200

250

Fig. 3.12b
 data of position sensitive

          detector at h = 80 µm
          according to ref. [Ru00]

 fit with theoret. curve from
          online data of up to 80 µm
          with qm populated
          levels, convoluted with 
          tracking uncertaincy of 2 µm,
          2nd mirror shifted downwards
          18 µm relative to 1st one,
          fit function is scaled in z by 1.5

          γ = 0.4 chosen

          χ2
red. = 2.8

          105 points ranging 
          from -88 µm ... 120 µm used
          (101 DOF)

z / µm

co
un
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Yet, the scaled eq. (3.3.4.3’) shows variations around z = -15 µm, which are not seen in the 

data. On the contrary, if one looks at the error bars, the data appears to be readily smooth be-

sides the two 1.5 sigma and 2 sigma variations around z =  -80 µm and z =  -60  µm. 

Therefore, we should ask for possible causes of a vertical enlargement of the distribution eq. 

(3.3.4.3’). The most apparent effect producing such a widening is the possibility of diffraction 

at the exit edge of the absorber and at the 18 µm step between the two bottom mirrors. As we 

have vertically bound states, we should normally try to calculate the diffraction in terms of the 

bound states. However, a plane wave diffraction is much easier to calculate and it should pro-

vide us with the approximately results as long as we do not look at high orders in the diffrac-

tion expansion. The exit edge of the absorber as well as the edge of the step between the mir-

rors can be approximately regarded as a semi-infinite plane, which then diffracts the incident 

waves. The distribution of the wave field strength after these edges therefore will be described 

by properly attached functions of the type of eq. (Fresnel). After both the absorber’s exit and 

the mirror step, there will be the product of two such contributions. One then detects a convo-

Fig. 3.12b: The prediction of eq. (3.3.4.3’) for the actual measure-
ment.Coherence γ is set to 0.4 . Here the width of the prediction is scaled 
with the parameter z-axis = 1.5. 
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lution of eq. (3.3.4.3’) and the two diffraction patterns of the type of eq. (Fresnel) in the de-

tector plane: 
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where ∗  denotes the convolution with respect to z.  

 

Yet, if the diffraction is the dominating part in the convolution eq. (3.3.4.5),then one should 

directly fit the pure diffraction pattern to the data. The result, that is seen in Fig. 3.13, justifies 

this assumption: 
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250 Fig. 3.13
 data of position sensitive

          detector at h = 80 µm
          according to ref. [Ru00]

 fit diffraction at absorber
          exit edge and mirror step calculated
          for account via continuum approximation,
          convoluted with tracking
          uncertaincy of 2 µm, 2nd mirror
          shifted downwards 18 µm relative
          to 1st one

          χ2
red. = 1.5

          104 points ranging 
          from -86 µm ... 120 µm used
          (101 DOF)

z / µm

co
un

ts

 
 

 

χ2 is quite better and additionally, this provides us with a well working explanation for both 

the tail in the data, which extends more than twice as wide as the central region of the curve, 

and the variations in the peak of the data at about z = -50 µm. 

Fig. 3.13: The prediction of the diffraction pattern in eq. (3.3.4.5) for the 
actual measurement. The total scaling, a position offset, and the tracking
uncertainty are the three fit parameters. 



 97

Therefore, I regard the main structure and form of the vertical neutron distribution to be gen-

erated from a large impact of diffraction onto the final pure distribution eq. (3.3.4.3’). 

 

As an extension, we should now discuss the significance of possible variations in the data in 

the light of the fact, that even at the most pronounced peaks the error takes about 7% of the 

data value itself. As it was already done for the case of the measurement of the total flux as a 

function of the wave guide width, one can perform Monte Carlo simulations to obtain the ver-

tical density distribution, which classical neutrons would show in the CR39-detector. If one 

again assumes, that the mirrors and the absorber (if it is not successfully absorbing the neu-

tron) reflect specularly, then it is easy to incorporate both the facts, that the absorber has a 

classical absorption probability per collision of below one, and the presence of a step between 

the bottom mirrors. Fig. 3.14 shows a simulation’s result conducted with about 9102 ⋅  neu-

trons arriving at the wave guide’s entrance. The resulting approximation to the classical den-

sity distribution is therefore very smooth: 
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Fig. 3.14

 data of position sensitive
          detector at h = 80 µm
          according to ref. [Ru00]

 Montecarlo simulated data
          classical distribution calculated
          with 2 1010 neutrons input for each
          assembled point;
          absorber efficiency chosen to be
          94 % per 2.5 collisions averaged;
          2nd mirror shifted downwards
          by 12 µm;

          χ2
red. = 6.8

          53 points ranging 
          from -88 µm ... 16 µm used

z / µm

co
un

ts

 
 

This simulation shows an additional decrease in the intensity at z < - 70 µm, which is due to 

the mirror step. But there is small agreement between this result and the data over the remain-

Fig. 3.14: Classical Monte Carlo simulation of the neutron distribution after
the wave guide. A very high statistics of about 10102 ⋅  has been used to pro-
duce a smooth prediction. 
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ing range of z. In particular, the tails of the data cannot be reproduced by giving the absorber 

an absorption-probability per collision of below one.  

 

However, more insight can be gained, if we perform the Monte Carlo simulation with the 

same final statistics as achieved in the measurement. This result is visible in Fig. 3.15: 
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 data of position sensitive

          detector at h = 80 µm
          according to ref. [Ru00]

Montecarlo simulated data of
classical neutron distribution
generated of following experimen-
tal setup: 2nd mirror lowered 12
µm relative to 1st one; 50 µm
gap separating 2nd mirror from
detector; absorber is imperfect,
94% absorption assumed for 2.5
collisions averaged;

z / µm

co
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Here it is clearly visible, that the classical “real-time statistics” simulation shows exactly the 

same kind of intensity variations as are seen in the data. A probability estimate showed, that 

such fluctuations emerge in about 10% of all results. Therefore, here again is a need to per-

form measurements with an average (not minimal!) relative error of about 1%. 

 

 

The theoretical analysis of the two type of measurements described in [Ru00], and shown in 

Fig. 3.2 and Fig. 3.11, respectively, here now comes to an end. 

Fig. 3.15: Classical Monte Carlo simulation of the neutron distribution after the wave
guide. The actual statistics of the measurement, called “real-time-statistics” has been 
used to check for the magnitude of statistical fluctuations in the measured data. 
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Chapter 4 
 

How strange gravitation can be 
 

 

What is gravitation? – I do not know the answer. Yet, this chapter will deal with some recent 

theoretical developments, that could show up new aspects of the fourth and weakest of all 

fundamental forces – provided one of them proves to be correct. These theories predict devia-

tions from the Newtonian law of gravitation at distances below 1 mm. Since our experiment 

deals with quantized states bound by earth’s gravitational field on energy scales of 1 peV cor-

responding to 10 µm length scale, deviations in the law of gravitation on a scale of 10 µm to 

100 µm could lead to predictions like eq.s (3.3.1.31) and (3.3.4.3’), which differs from the 

case discussed in chapter three. The quantum mechanical model presented there assumed va-

lidity of Newtonian gravitation for the whole range of wave guide widths of about 5 µm to 

160 µm. 

 

The best description of the “general attraction of the masses” known today is given by Ein-

stein’s General Theory of Relativity. Since the energies and gravitational field strengths dis-

cussed here are very tiny fractions of the speed of light, Einstein gravity reduces to Newtonian 

gravity, its non-relativistic weak field limit. Newtonian gravitation is, in the language of local 

field theory, governed by a Poisson equation, which can be derived from Einstein’s field equa-

tions for µ=ν=0 in the limit of weak fields: 
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where φ denotes the gravitational potential field and ρ the mass density distribution. The gen-

eral solution of this equation can be written using the Green’s function of eq. (4.1) in the inte-

gral form: 
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For a spherically symmetric mass distribution on a compact carrier this reduces to the known 

form of Newton’s law of gravitation: 

r
MGrsphere ⋅−=′ 4)()2.4( φ   , 

where M denotes the total mass of the mass distribution, r the radial distance from its center 

of mass, and G4 the three-dimensional constant of Newtonian gravity. 

The most attractive modifications of eq. (4.2) now arise from two possibilites: 

 

1) Dimensionality of space-time. This changes, for example, the power of distance r in the 

gravitational law depending on how much spatial dimension a given manifold consists of. 

 

2) There could be an additional “fifth” force coupling to the mass. This force could depend 

on the chemical composition of matter, thus violating the equivalence principle. 

 

Both cases have been examined theoretically in recent research papers for the following rea-

sons. 

For more than sixty years theoreticians have been searching for a completely unified descrip-

tion of all four fundamental forces as well as all elementary particles within one consistent 

mathematical framework – a so-called “theory of everything”. The first promising candidate 

for such a theory arose only within the last fifteen years.  There the fundamental particles and 

field quanta are replaced by tiny, one-dimensional objects called “strings”. They generate their 

own manifolds, that is space-time, on which their motion takes place. The quantization of 

their dynamics, which is somehow analogous to the quantized vibrational modes of a me-

chanical fiber or string, then gives the spectrum of the known particles, their masses and their 

four-dimensional couplings by means of an effective low-energy field theory. String theory 

possesses internal mathematical structures, that require a formulation of this theory on a 

background manifold of either exactly 10 or 26 spatial dimensions. All other values will lead 

to internal inconsistencies of the theory. Therefore, this is one reason to expect possible addi-

tional spatial dimensions in space-time, which is in principle point 1). 

Furthermore, since Kaluza and Klein worked on modifications of Einstein gravity, it is 

known, that formulating the Einstein field equations in a (4+1)-dimensional space-time, and 

back-projection of these five-dimensional equations onto an effective four-dimensional mani-
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fold by means of compactification of the fourth spatial dimension onto small compact mani-

folds, like tori, leads to a system of two effective field equations: Four-dimensional Einstein 

gravity and Maxwell’s equations! Therefore, the presence of additional dimensions seems to 

provide a (rather old) way to unify forces. 

Since about 1997, however, the extra dimensions of modern string theories were thought to be 

compactified on manifolds with extensions in the order of the Planck length of about 10-35 m. 

This was assumed for a long time, since it is known, that the strength of classical Einstein 

gravity bcomes equal to the other three forces at this scale. Furthermore, if all interactions can 

use all spatial dimensions to propagate, then much larger compactification scales would have 

lead to discrepancies in present collider data and other experimental results. Colliders have 

proved the effective four-dimensionality of the three non-gravitational interactions to a very 

high precision down to a scale of 10-18 m. 

Yet, recent progress on this subject has been made, since it was realized in [Ar98], that one 

can possibly localize the three non-gravitational interactions on (3+1)-dimensional sheets, so-

called “branes”, even in the case, that the compactification scale of the extra dimensions of 

the string theory is much larger than the Planck length. If the compactification scale of some 

of the extra dimensions is of order of µm or mm, then the non-gravitational interactions will 

behave quite normally due to this confinement to (3+1)-dimensional branes, while at dis-

tances below about 1 mm, gravitation shows up new behaviour, since it can use all the extra 

dimensions and is not thought to be tied to a brane. Such frameworks represent detailed reali-

zations of point 1). 

During the last ten years, there was an increasing number of circumstantial evidence, that the 

standard model of elementary particle theory has to be extended towards a theory called “su-

persymmetry”. Furthermore, string theories predict the existence of scalar bosons coupling to 

the mass of ordinary particles via Higgs scalars. These so-called “moduli fields” then gather 

mass by breaking of the supersymmetry. If the supersymmetry breaking is not mediated by 

ordinary gravitation itself at the Planck scale but by gauge couplings, it can take place at en-

ergies close to the electro-weak scale. The forces originating from such massive moduli fields 

(in the case of gauge-mediated supersymmetry breaking) would have macroscopic interaction 

ranges of up to 1 mm. They provide the most thoroughly studied realization of possibility 2) 

(see [Di96]). 
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The first task now is to derive the modifications of eq. (4.2), which will arise from the scenar-

ios described above. Therefore, I will give two short overviews over the realizations of the 

possibilities 1) and 2), which have been worked out by [Ar98] and [Di96]: 

 

The framework of possibility 1), which I will use here, has been developed by [Ar98], 

whereas detailed calculations of the non-relativistic force laws within this framework can be 

studied in [Ke99], for example. 

 

Now consider the case, that space-time is described by an ((n+p)+1)-dimensional manifold, 

where n = 3 and p is the number of additional spatial dimensions of this manifold. On such a 

manifold, non-relativistic gravitation would be governed by an (n+p)-dimensional Poisson 

equation: 

( )ppp xxrxxGxB ,...,,,)(4)()1.( 143
�=⋅=∆ ++ ρπφ  . 

Here, G4+p is the (3+p)-dimensional gravitational coupling on a ((3+p)+1)-dimensional mani-

fold. The general solution is again obtained via the (3+p)-dimensional Green’s function. 

Now one can impose compactification on this solution. In general this means, that the p addi-

tional dimensions are transformed into p subspaces, which curve back into themselves. There-

fore, attached to each point (r1, r2, r3) of our normal configuration space there is a p-

dimensional closed curved internal space. Because of the compactness of these curled up 

space coordinates, the p additional dimensions will be periodic after compactification. 

This compactified solution can be calculated for extremal cases of very small and very large 

distances as well as for intermediate distances, where the solution must be formulated in terms 

of the harmonical functions of eq. (B.1). 

These expressions then show indeed, that the hierarchy problem of the interactions can be 

solved, if two of the p compactified extra dimensions habe radii of several ten µm, whereas 

the lasting p – 2 extra dimension are compactified to the Planck scale. In this case, the (4+p)-

dimensional strength of gravitation becomes unified with the other interactions at the weak 

scale – the extra dimensions scale the effective four-dimensional strength of gravitation. 

Furthermore, the 1−r -dependency of Newtonian gravitation is modified by the extra dimen-

sions, since the two large of them cause an additional Yukawa-like potential term, that has a 

range, which is equal to the compactification radius of the two large extra dimensions. 

These results, that have been first obtained by [Ar98], as well as a summary of the detailed 

calculations, that can be found in [Ke99], one may resume in Appendix B. It is shown there, 
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that the experimentally relevant result of this extra dimensions framework is given by a modi-

fied non-relativistic gravitational law eq. (B.12): 
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Here we see the emergence of an additional Yukawa-interaction generated by macroscopically 

compactified extra dimensions.  

In the Appendix B, eq. (B.12) together with the values from eq. (B.7) show, that even present 

experimental data (see [Ad00]) cannot exclude the existence of even two macroscopically 

compactified additional dimensions in space-time, if the 6-dimensional unification scale is 

larger than 5 TeV, since this experiment excludes α > 1 only for distances > 218 µm. 

 

Regarding possibility 2), it should be noted here, that the moduli fields, which realize point 2) 

(the fifth force), and emerge in string theory, generate additional gravitation-like forces after 

the supersymmetry is broken, that have exactly the same form of eq. (B.12), as it is the case 

for additional dimensions. Such results have been obtained by [Di96] and are there discussed 

in detail. In particular, moduli forces can violate the equivalence principle, since they gener-

ally depend on the kind of matter they interact with. However, the moduli predict values of α 

in the range of 102 to 104 [Di96], where experimental constraints [Ad00] are more severe. 
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4.1) “Online” measurement and the law of gravitation 

 

The experimental data discussed here obviously shows the formation of quantum mechani-

cally bound states of ultacold neutrons in the earth’s gravitational field. As these states form 

between the gravitational potential and the Fermi pseudopotential of a mirror and have spatial 

extension of 15 µm to 150 µm, they should react sensitively to the presence of modifications 

in the gravitational law like eq. (B.12). 

The mirror contributes to the total gravitational potential felt by neutrons. Whereas the earth’s 

potential is dominated by distances, which are orders of magnitude above the critical distance 

R < 1 mm, and is therefore genuinely Newtonian, the gravitational potential generated by the 

mirror glass plate will be felt by neutrons in distances as close as 15 µm to the glass’ surface. 

If then λ of eq. (B.12) is in the range of 15 µm to 150 µm, and α is strong enough, dynamics 

of neutrons above the mirror should change, since they feel the non-Newtonian part of the 

gravitational potential generated by the mirror itself. 

Therefore, a very precise performance of the two types of measurements discussed in the first 

three chapters might be able to check the bound states formed above the glass mirror for pos-

sible deviations of the total gravitational potential seen by neutrons from the Newtonian form. 

 

The statistics of present measurements are weak. This is particularly true for the regime of 

wave guide widths smaller than 50 µm, where the behaviour of the transmitted flux as a func-

tion of that width shows the strongest “quantum” behaviour. 

However, according to [ILL01] the phase space density of UCN will be increased by five 

times due to use of enhanced neutron guides at the high flux research facility of the ILL, Gre-

noble. Together with a successor version of the apparatus, which is partially re-developed to 

provide much better long-term stability and determinability of parameters such as the wave 

guide width, this will provide a near-future prospect to repeat themeasurements with about 

100 times the present statistics. 

Furthermore, there are proposals [ILL01], which promise to give a new generation of UCN 

sources providing a UCN phase space density of more than 103 times of the presently achiev-

able densities. Once such sources are available, measurements can be performed with about 

104 times the present statistics. 
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Bearing this in mind, one should do the following: 

 

First, the calculations of chapter three for a gravitational potential eq. (B.12) should be re-

peated as a function of the modification’s strength α and its range λ. 

 

Next, a Monte Carlo simulation from the quantum mechanical prediction eq. (3.3.1.31) for the 

total flux as a function of the wave guide width calculated for Newtonian gravity should be 

generated for the increased level of statistics discussed above. 

 

Third, the results of eq. (3.3.1.31) for a gravitation eq. (B.12) will then be fitted to this Monte 

Carlo simulation. 

 

The obtained χ2 – values form a function of α and λ, since the results of eq. (3.3.1.31) using 

eq. (B.12) are obtained for pairs (α, λ). These χ2 – dependency will then give predictions of 

confidence interval regions in an α-λ-plane, that can be reached by future measurements with 

increased statistics – provided, these measurements will not find deviations from Newtonian 

gravity. 

 

Therefore, let us first compute the gravitational potential of a homogenous glass plate of 

thickness D. Since the considered distances above the surface are very small (<150 µm) com-

pared to the extensions of the plate ( 10cm in length, D  1 cm), the rectangular form of the 

plate will not contribute to the result as long as we are not close to the boundaries of the glass 

plate. Therefore, it is convenient to represent the plate by a circular disk of radius R, thickness 

D and mass density ρ0. 

 

The gravitational potential of a general mass distribution eq. (4.2) becomes, according to eq. 

(B.12): 
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We Now calculate φ for positions z along the rotational symmetry axis of the circular disk, 

which is chosen to be the z-axis. Then it is convenient to use cylindrical coordinates (ξ,φ,z) , 

where ξ and φ denote the radial distance and the angle in the plane of the disk, respectively. 
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Thus eq. (4.3) becomes: 
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This integral can be split into the Newtonian and the non-Newtonian part and transformed 

further to give: 
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This potential contains two parts. The first one is linear in z – reminiscence of the Newtonian 

part of eq. (B.12). The second one is an exponential, which describes the Yukawa interaction. 

If we now combine two parallel glass plates of the same thickness D, extension R and density 

ρ0 , then the linear Newtonian parts of the plates cancel each other. Thus, the earth’s dominat-

ing linear potential, and the two Yukawa terms of the plates survive in the potential of two 

identical and parallel glass plates. Therefore, we have: 
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The classical prediction of the total flux as a function of the wave guide width h, which corre-

sponds to eq. (4.6), is proportional to the available phase space volume of the system. This is 

given according to eq.s (3.2.3) and (3.2.2’’) as: 

( )� ′−⋅⋅′⋅∝
h

o
tot hhghdN )()(2)7.4( φφ�  

as long as the potential eq. (4.6) is a monotonically increasing function of z. This is guaran-

teed, if: 

0420)( ρλαπφ ⋅⋅⋅⋅≥⇔∀≥′ Ggzztot  . 

Since glass has a density of about 3 3cm
g  and we are interested in ranges of the Yukawa 

terms of λ  50 µm, this condition corresponds to α < 1011. Present experimental limits (see 

[Ad00]) for λ < 50 µm, however, are below α  107, therefore this constraint on α will be no 

problem. A look at both the eq.s (4.7) and (4.6) together now shows, that eq. (4.7) will essen-

tially be proportional to h1.5 , the known classical behaviour, if h � 3 λ . 

Therefore, it will be possible to predict confidence levels on α and λ from the classical formu-

las fitted to Monte Carlo Simulations for h > 50 µm, since the measured curves will only 

show semi-classical behaviour in this regime. 

 

Monte Carlo simulations of the classical Newtonian behaviour, which is h1.5, can be per-

formed the same way, as described in section two of chapter three. The result of such simula-

tions for  a statistics 100 times and 104 times the present measurement’s statistics is given in 

the two plots of Fig.s 4.1a and 4.1b : 
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Fig. 4.1a

wave guide width h / µm

Monte Carlo simulation of the classical
Newtonian prediction (86) for total

transmitted flux [counts] as a function of
wave guide width h [µm];

statistics is 100 times the statistics of the
present measurement
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 wave guide width h / µm
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Newtonian prediction (86) for total

transmitted flux [counts] as a function of
wave guide width h [µm];

statistics is 104 times the statistics of the
present measurement

Fig. 4.1b
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This simulated data was fitted with the eq.s (4.7) and (4.6) for h > 50 µm, while a certain 

“grid” of values of α and λ was used subsequently in eq. (4.6). Since the χ2 of the Newtonian 

prediction for α = 0 is close to unity, the other values of α and λ will usually lead to worse χ2. 

This allows one to derive confidence limits on both α and λ. Such confidence limits have 

been calculated for both kinds of simulated statistics using ∆χ2 for two independent parame-

ters at a confidence level (C.L.) of 90 % and 67 %, respectively, as an exclusion criterion for 

the simulation with 104 times the present statistics, and one parameter at a confidence level of 

67 % as an exclusion criterion for the simulation with 100 times the present statistics. 

The limits are seen in Fig.s 4.2a and 4.2b: 
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Fig. 4.2a: Prediction of confidence limits (C.L.)
on α and λ for 100 times the present statistics 

Fig. 4.2b: Prediction of confidence limits (C.L.) 
on α and λ for 104 times the present statistics 
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The same procedure can now be applied to the quantum mechanical prediction as well. The 

prediction for the dependency of the fuls on the wave guide width, eq. (3.3.1.31), for Newto-

nian gravity is used to generate a Monte Carlo simulation for 100 times and 104 times the pre-

sent statistics. 

Then the prediction eq. (3.3.1.31) must be calculated for the Yukawa terms in eq. (4.6) as a 

modification to the Newtonian potential. The eigenvalues have to be calculated independently 

for each single pair ( )λα ,  for this purpose. Here one can again use the WKB approach pre-

sented in section 3.3.2 to treat eq. (4.6) as long as this potential is monotonically increasing 

over the whole range of z-values. Since this is the case for 1110<α , even if λ is chosen as 

large as 50 µm, the Yukawa terms of eq. (4.6) can be treated with the WKB method. α-values 

of about 1010 are exluded for all λ > 20 µm by present experiment in [Ad00]. 

Fig. 4.3 now displays the resulting confidence limits on that follow from the fits of eq. 

(3.3.1.31) using the potential eq. (4.6) as a function of α and λ to data, that has been Monte 

Carlo simulated from the Newtonian prediction eq. (3.3.1.31) with 104 times the present ex-

perimental statistics. 
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Fig. 4.3: Prediction of confidence limits (C.L.) on α and λ for 
104 times the present statistics derived from the quantum me-
chanical theory given by eq.s (3.3.1.31) and (4.6) 
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The fits of the Yukawa dependent predictions eq. (3.3.1.31) to the Monte Carlo simulated 

quantum mechanical curves, which are valid for Newtonian gravity, have been performed 

nearly the same way as done for the Newtonian prediction in section 3.3.2). 

However, there was one difference: There is no offset parameter for the z-position any more. 

The offset has been determined for the Newtonian prediction in section 3.3.2), and it has been 

used as a constant offset for the non-Newtonian fits. This was done, because eventually aris-

ing additional offsets in z will be due to the effects of the Yukawa potential terms in eq. (4.6) 

and should therefore not be fitted “away”. On the contrary, they will contribute to possible 

increases of the χ2-values of the non-Newtonian fits. 

 

 

Finally, we have to face the possibility, that this indirect measurement of gravitationally 

bound quantum states (it accesses the vertical motion by determining the transmission factors 

of the horizontal motion) may be not sensitive enough to detect deviations from Newtonian 

gravity within the interesting ranges of parameters. Despite the fascinating primary energy 

resolution of this measurement of around 10-12 eV, determining the eigenvalues of vertically 

bound motions by connecting their imaginary parts to the transmission factors of horizontal 

motion using an absorber might “smeare“ out more precise information, since we do not di-

rectly measure the canonical observables of the Hamiltonian of quantized vertical motion. 
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Summary 
 

 
 

In the summer of 1999 an experiment was carried out at the Institute of Max Laue and Paul 

Langevin, Grenoble, that for the first time tried to prove the existence of quantized bound 

states of massive particles in a gravitational field ([Ru00], [Ne01], [Ne00]). If quantum me-

chanics and gravitation work together in the regime of the non-relativistic, classical Newto-

nian law, one does expect the formation of bound states of particles, that move within a gravi-

tational cavity. Such a device can be formed by a bottom mirror of glass and the earth’s 

gravitational field, if neutrons of very low velocities, so-called “ultracold neutrons” (UCN) 

move above the glass mirror. UCN reflect from ordinary solid state materials under all angles 

of incidence. 

If an absorber is added and placed several ten µm above the bottom mirror, then this system 

can be regarded as a one-dimensional wave guide filled by a homogenous gravitational field. 

Inside such a wave guide bound states should form in the vertical motion of the neutrons. If 

the neutrons flow through wave guide, then neutrons in different bound states of the vertical 

motion will be differently absorbed by the absorber. Thus, the transmittivity of this device 

could show up a quantized “stepwise” behaviour as a function of the width of the wave guide. 

 

This transmittivity was measured in the experiment. In this work now, a description of this 

kind of measurement was derived from the first principles of quantum mechanics and the 

Newtonian law of gravitation. The joint application of these principles give rise to a strict 

formalism, that finally leads to a prediction for the transmittivity of the wave guide as a func-

tion of its width. 

Whereas classical estimates of the transmittivity as well as descriptions that neglect the gravi-

tational field fail to describe the measured data, the prediction, that is derived from both quan-

tum mechanics and gravitation, is able to reproduce the result of the transmittivity measure-

ment in all its important features with a three-parametric non-linear least squares fit, that 

yields 6.12 =DOFχ  . 
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This result, that has been checked by using two different methods to obtain the energy eigen-

values of the quantized vertical motion, finally allows one to fully establish the formalism of 

“first quantization” for non-relativistic classical gravitation. The formation of quantum states 

of massive particles in a gravitational was indeed shown by the experiment in question. 

The experiment performed a second measurement, that recorded the vertical spatial distribu-

tion of the neutrons, that left the wave guide. It is shown within the model, that is developed 

here, that this distribution can be properly described by the effects of diffraction, that takes 

place at the backward egdes of the absorber and the mirrors. A fit to the data of the neutron 

distribution with this diffraction approach yields a complete description with a 

5.12 =DOFχ . Three parameters have been adjusted here. 

 

Finally it should be realized, that this experiment detects the influence of gravitation on the 

motion of massive particles on a distance scale of 10 µm to 100 µm. Since recent theoretical 

developments within the framework of string theory suggest the existence of macroscopically 

compactified additional dimensions of spacetime ([Ar98]), there is some (new) motivation to 

search for deviations from the Newtonian law of gravitation on distance scales between 1 µm 

and 1 mm. Therefore, the analysis of the transmittivity of the “gravitational” wave is refined 

in this work to yield predictions as a function of the parameter space (α , λ), that controls the 

non-Newtonian modifications of the gravitational law, that arise from the extra dimensions. 

These results are then used to search for confidence limits on the parameter space of the 

modifications. 

It comes out, that the present experimental data is statistically too weak to allow for the decla-

ration of reasonable confidence limits on α and λ . Therefore, predictions are carried out on 

confidence limits, that could be reached on (near) future measurements with increased statis-

tics. 



 113

 

 

 

Appendix A 
 

Airy functions 
 

 

 

 

(A.1) Defining differential equation: 

 

( ) ( ) 0=⋅−′′ ηϕηηϕ   . 

 

(A.2) Airy functions can be expressed via Bessel functions: 
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 The basic types of Airy functions are: 

 

Ai(η) = φA(η)   , 

Bi(η) = φB(η)   . 

 

(A.3) There exist three pairs of linearly independent solutions of eq. (A.1), which are 

called “Airy functions”. These are: 
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(A.4) The relations between Bi(η) and the complex rotated Ai(η) of (A.3) are given by: 
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(A.5) Behaviour of the linearly indepent solutions (A.3): 
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 We see, that Ai and Bi behave non-pathologically only on the real axis, whereas the 

complex rotated Ai show controllable behaviour in certain quadrants of the com-

plex plane. The behaviour outside the argument regions, for which (A.3) is plotted 

here, is marked by exponential explosion. 

 

 

(A.6) Generalization of eq. (A.1): 
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Appendix B 
 

Additional dimensions of space-time – the “fifth” force 
 

 

The framework presented here has been developed by [Ar98], whereas detailed calculations 

of the non-relativistic force laws within this framework can be studied in [Ke99], for example. 

 

Now consider the case, that space-time is described by an ((n+p)+1)-dimensional manifold, 

where n = 3 and p is the number of additional spatial dimensions of this manifold. On such a 

manifold, non-relativistic gravitation would be governed by an (n+p)-dimensional Poisson 

equation: 

( )ppp xxrxxGxB ,...,,,)(4)()1.( 143
�=⋅=∆ ++ ρπφ  . 

Here, G4+p is the (3+p)-dimensional gravitational coupling on a ((3+p)+1)-dimensional mani-

fold. The general solution is again obtained via the (3+p)-dimensional Green’s function, re-

sulting in: 
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Now we will impose compactification on this solution. In general this means, that the p addi-

tional dimensions are transformed into p subspaces, which curve back into themselves. There-

fore, attached to each point (r1, r2, r3) of our normal configuration space there is a p-

dimensional closed curved internal space. Because of the compactness of these curled up 

space coordinates, the p additional dimensions will be periodic after compactification. 

 

Consider now the special case where all p additional dimension are compactified on tori with 

radii Rj . Then the coordinates xj will be (2π Rj)-periodic. We will now calculate from eq. 

(B.2) the gravitational potential of a spherically symmetric and compact mass distribution of 

total mass M for the case of toroidal compactified p additional dimensions. In transforming 

eq. (B.2) to this case, the appropiate boundary conditions have to be applied. 
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φ must vanish for transfinite three-dimensional distances r and it must be periodic in the p 

additional coordinates on the p tori: 
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With these boundary conditions, the analogon to eq. (4.2’) can be written as: 
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As denoted, m�  is a p-dimensional vector of the p-dimensional integer lattice �p . This is the 

general solution for a spherically symmetric body living in the (3+1)-dimensional space-time, 

where the p additional spatial dimensions are compactified on tori with radii Rj . 

 

 

 

 

 

 

 

Two limiting cases can be constructed now: 

 

 

a) We are deep inside the p additional curved spaces, that is, r << Rj for all j. Then the domi-

nating term in the sum over m�  in eq. (B.4) is the one with m�  = 0. All other terms just give 

tiny contributions due to Rj >> r for all j. Then we have: 
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This is a result already expected from Gauß’s law in (3+p) flat and infinite spatial dimensions. 
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b) Far away from the gravitating mass, i.e. r >> Rj for all j, the sum over m�  can be replaced 

by an integral over the p tori. Then eq. (B.4) becomes: 
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Therefore, far outside the compactification we recover Newtonian gravity. However, we real-

ize, that in this limit the original ((3+p)+1)-dimensional gravitational coupling G4+p has been 

replaced by an effective four-dimensional coupling G4, which is given by: 

p
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From these extremes one can proceed to the intermediate case. There we have Rj >> r for 

nj ≤≤0  and Rj << r for pjn ≤< . s of the p additional dimensions shall now have radii 

much larger than those of the other p-s additional dimensions. Then the result is a mixture of 

eq.s (B.4a) and (B.4b) resulting in: 
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where the effective gravitational coupling G4+s is now defined as: 
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As shown in [Ar98], this expression now provides a unique solution to the hierarchy problem. 

Consider the case of string theories like the 88 EE ×  heterotic superstring or like eleven-

dimensional supergravity. Then p = 7. Now consider further a situation where the 7-s small 

additional dimensions are compactified to the Planck length, whereas the s larger additional 

dimensions shall have a radius R. A solution of the hierarchy problem, the problem of the 

enormous discrepancy between the four-dimensional gravitational coupling strength and the 

gauge couplings of the standard model, would exist, if the gravitational coupling for a particle 

at the electro-weak scale of about 1-2 TeV at distances of the corresponding Compton wave 

length, which is about 10-19 m, would be of the same order of magnitude. From this condition 

the hypothetical value of G4+s can be determined by use of eq. (B.4c), if it is further assumed 

that C
ewR �>>  where C

ew�  is the electro-weak Compton wave length. Let us here express all 

quantities in Planck units. Then we have, using (B.4c): 
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Since G4 equals unity in Planck units, we can achieve G4 = 1 by eq. (B.6) if we choose the 

radius R of the s large additional dimensions to be: 
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For s = 1, 2, 3 and Mew = 2 TeV, this leads to the following values fo R: 
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These values change for Mew = 10 TeV to: 
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Therefore we see, that the case s = 1 is excluded by the data of the planetary motions. Yet, 

already the case s = 2 might escape present experimental data [Ad00], if the (4+s)-

dimensional gravitational scale is at 5 – 10 TeV and the strength of gravitation at distances of 

about ten times R is already close to the Newtonian limit. Therefore, these higher dimensional 

superstring theories show together with the presence of s = 2 or s = 3 rather macroscopically 

compactified additional dimension (the remaining (7-s) dimensions are compactified at the 

four-dimensional Planck scale) a possibility to resolve the hierarchy problem, as this is pre-

sented in [Ar98]! 

 

To evaluate the strength of the gravitation at intermediate ranges between infinity and R, one 

has to solve the Poisson equation eq. (B.1) in terms of harmonical functions, resuming eq.s 

(B.4) and (B.4a). We then have: 
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As shown in [Ke99], this integral can be transformed into: 
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R
mm ++= �  can be interpreted as the masses of Kaluza-Klein modes (KK-

modes), the quantized eigenmode vibrations of strings in the directions of the compactified 

dimensions. Since we look at the non-relativistic limit, concerning distances r being large 

compared to the electro-weak scale, it is possible to omit the detailed structure of the p-

dimensional internal space thus setting x~  = 0 in eq. (B.9). Then we get: 
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To obtain the more precise behaviour of eq. (B.10) in the case, that is given by the intermedi-

ate case discussed above, except, that the distance r shall be larger than all of the compactifi-
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cation radii, we note, that only terms up to first order have to be taken into account in eq. 

(B.10), since higher orders will be less dominant due to the exponential. 

Zeroth order is given for 0~ =m : 

r
MGrB ⋅−= 4)0( )()11.( φ  . 

This is Newtonian gravity. The next order arise from all terms, where one mj is 1 or -1. s of p 

compactified dimensions have equal radii R, where R is much larger than the radii of the (n-s) 

remaining dimensions, which are at the Planck scale. The Planck scale compactified p-s di-

mensions will therefore contribute very massive KK-modes even for mj = 1 or mj = -1. Their 

fraction in eq. (B.10) is thus negligible. Therefore only the KK-modes of the macroscopically 

compactified dimensions survive in the sum of eq. (B.10). Since there are s macroscopically 

compactified dimensions with a radius R, eq. (B.10) in first order of m~ , if one takes only the 

dominant contributions elaborated above, becomes: 
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Here we see the emergence of an additional Yukawa-interaction generated by macroscopically 

compactified extra dimensions. Further we see, that α < 14 for all eleven-dimensional theo-

ries, which will be compactified on tori. 

In [Ke99] it is further shown, that for the cases, where n-spheres or Calabi-Yau manifolds are 

used as manifolds to compactify on, it can be shown, too, that α < 20. 



 123

 

 

 

Appendix C 
 

Scattering from rough surfaces 
 

 

According to [Si88], the Born approximation for elastic scattering of a plane wave from a 

rough surface with perfect local reflectivity independent of the wavelength can be formulated 

as given by the following differential scattering cross section: 
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where C is a proportionality constant. Introducing the spatial displacement rr �� ′− , this can be 

rewritten as: 
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The integral (C.2) now can be reformulated in terms of surface integrals using Gauß’ theorem. 

Suppose we have two vector fields vv �� ′, , chosen to be: 
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Here A
�

 is an arbitrary unit vector. Then applying Gauß’s theorem: 
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yields together with eq.s (C.3) and (C.4) the following expression for eq. (C.2): 
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Now let A
�

 be the unit vector in z-direction, where the z-direction is the direction perpendicu-

lar to the average zero plane of the surface. Then eq. (C.6) simplifies to: 
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The next step is to use the notion that the height variation z of the surface is described by a 

gaussian random variable. That means that the functional dependence of z(x,y) in eq. (C.7) 

can be rewritten as an integral over the z variation directly, but weighted with a gaussian dis-

tribution eq. (2.2): 
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for a given rough surface of extensions Lx and Ly. The latter integral can be rewritten in terms 

of bessel functions using polar coordinates: 

�

� �

⋅⋅⋅⋅⋅⋅⋅=
Ω

�

⋅⋅⋅⋅⋅=
Ω

�

⋅⋅−

⋅⋅⋅⋅⋅−

)(2)9.(

)8.(

)(
2
1

2

2

0

)cos()(
2
1

2

2

2

ρρρπσ

ϕρρσ

ρ

ρ

π
ϕρρ

ρ

qJedLL
q
C

d
dC

ededLL
q
C

d
dC

o

Gq

yx
z

qiGq

yx
z

z

z

   . 

To proceed further, one now has to enter the specific form of the height-height correlation 

function, which is for our case the gaussian roughness given by eq. (2.1). It is convenient to 

split eq. (2.1) into the main height variance and the height autocorrelation function C(X,Y) as 

follows: 
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Entering this result into eq. (C.9) and considering the case of scattering dominated by the spa-

tial extension of the hills on the surface, that is ξρ ≤ , one gets with the expansion of C(X,Y) 

to first order in ξρ / : 
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This integral can be evaluated analytically for the two limiting cases of arbitrary lateral k-

vector transfer qρ and of vanishing lateral k-vector transfer qρ = 0 : 
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The limiting case eq. (C.12) describes specular scattering from a rough surface, whereas eq. 

(C.13) accounts for the diffuse, i.e. non-specular scattering. Because there is no momentum 

vector transfer in specular scattering, eq. (C.12) depends solely on the mean height roughness 

σ. This way the results eq.s (C.12) and (C.13) already suggest a kind of measurement to de-

termine the roughness parameters σ and ξ. 

First, one needs to choose a kind of radiation with a wavelength within one order of magni-

tude of the length scale, to which the roughness shall be known. Then, one has to perform a 

scan of the specularly scattered intensity as a function of the angle of incidence. The analysis 

of such a scan will then provide information about σ according to (C.12). Second, one has to 

scan the diffusely scattered intensity. With σ known from the analysis of the specular scan, 

non-specular scans will provide information about the height-height correlation length ξ as 

shown in eq. (C.13). 

For an analysis of the mirrors’ roughness a suitable wavelength has to be chosen. These mir-

rors are polished to give reflections as purely specular as possible for UCN, which have wave-

lengths of about 50 Å. Mirrors appearing to be flat in this range of wavelengths are expected 

to have mean height roughnesses of about 10 Å or even less. Additionally, their correlation 

lengths should be orders of magnitude above the mean height roughness to provide sufficient 

flatness at this scale. Thus x-rays with wavelengths of 1 Å ... 10 Å should provide an efficient 

tool to determine the roughness by scattering at length scales, where roughness should show 

up. 
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Before one proceeds now towards such measurements, one should take another look at the 

result eq. (C.12). It is clearly visible, that the cross section diverges for a vanishing vertical 

wave vector transfer qz . Furthermore, eq. (C.12) does not describe the phenomenon of total 

external reflection, which one observes for grazing incidence using for instance x-rays. Yet, 

total reflection usually occurs at very small qz , which often leads to a situation of 1≤⋅σzq  in 

the regime, where total reflection occurs. There, however, the validity of first order BA ap-

proach presented above for very small angles of incidence is questionable at least. 

Since the scattering will be done with x-rays with wavelengths 1 Å ... 10 Å under very small 

angles of incidence, scattering will naturally approach the regime of total external reflection. 

If the mean height roughness σ shall be extracted from data correctly, one therefore will have 

to account for total external reflection. 

According to ref. [Si88,Bo94] one may solve this problem, that first order BA does not re-

semble Fresnel reflectivity for very small angles of incidence, by replacing the plane waves as 

initial wave functions with the so-called Fresnel eigenstates, which provide exact solutions for 

the reflectivity and the transmittivity of matter with perfectly flat surfaces. This method is 

therefore called “distorted wave BA (DWBA)”. To take into account, that both BA and 

DWBA of first order are likely to be in a 1≤⋅σzq  - regime if applied to the range of total 

reflection, one has systematically to proceed beyond first order DWBA to include at least sec-

ond order DWBA, as it has been done in [Si88]. 

It is shown in these references that first order DWBA changes the expression of the specular 

reflectivity eq. (C.12) to: 
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The first factor describes the Fresnel reflectivity with respect to the average zero plane of the 

surface of a material with a refractive index n. The second one is a modified form of eq. 

(C.12) called “Nevot-Croce factor” after Nevot and Croce [Né76]. The emergence of qz
+ in 

the Nevot-Croce factor compared to (C.12) leads to a constant reflectivity of unity for angles 

of incidence below a certain value given by δ if ∈∧> δδ 0  �. In the case of complex δ, the 

Nevot-Croce factor shows a small suppression of the reflectivity below unity even inside the 

region of total external reflection. This is due to the fact, that a complex δ corresponds to ab-

sorptive media. A typical plot of eq. (C.14) for a mean height roughness of σ = 20 Å and an x-

ray wavelength of λ = 1.5 Å is shown in Fig. 2.2: 
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