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Abstract

It was a great challenge to produce a position sensitive neutron detector
with a spatial resolution below 3µm, since ordinary position sensitive neu-
tron detectors have resolutions of 100µm, at best. The goal was met and
the new detector was put to test this summer during an experiment inves-
tigating the behaviour of ultra-cold neutrons in the earths gravitational
field. The detector was used to measure the density distribution of these
neutrons above a horizontal mirror. The resolution of the detector was de-
termined from a quantum mechanical fit of the data and has turned out to
be 1.4µm!

Additionally, a number of systematical checks were performed on data
obtained from the gravitational levels experiment of 2002. The relative
accuracy of the determination of the earths gravitational acceleration was
determined to be 2% and the effect of additional, gravity-like forces was
investigated.

Zusammenfassung

Es war eine große Herausforderung einen ortsauflösenden Neutronen
Detektor mit einer Auflösung unter 3µm zu entwickeln, da solche Detek-
toren normalerweise nur eine Auflösung von maximal 100µm erreichen.
Dieses Ziel wurde erreicht und der Detektor wurde in diesem Sommer
bei einem Experiment zur Untersuchung gebundener Quantenzustände
von Neutronen im Gravitationsfeld der Erde getestet. Mit dem Detektor
wurde die Dichteverteilung der Neutronen über einem horizontalen Spie-
gel gemessen und seine Auflösung dann mit Hilfe eines quantenmechani-
schen fits an die Daten zu 1.4µm bestimmt!

Desweiteren wurden im Rahmen dieser Arbeit einige systematische
Untersuchungen zu Daten des Gravitationsexperiments von 2002 durch-
geführt. Die relative Genauigkeit bei der Bestimmung der Erdbeschleuni-
gung wurde untersucht und beträgt 2%. Einige Tests zu den Auswirkun-
gen zusätzlicher, gravitationsähnlicher Kräfte wurden unternommen.
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Chapter 1

Introduction

Gravity is one of the four fundamental forces that govern the structure of
the universe as we know it and, by now, it is probably the most exotic one.
While the other three interactions can be described by a single quantum
theory gravity has stubbornly resisted unification attempts for decades.
Its formulation by the theory of general relativity is, albeit a gauge theory,
distinctly different from the description of all other interactions and here
we can see gravity as a property of space and time themselves and not as
something that simply exists in there. Yet, gravity is also, together with
electromagnetism, a phenomenon that is accessible to the direct investi-
gation by human beings. Every child will at one point in his or her life
start to let things drop intentionally, presumably to find out whether or
not really everything will end up on the floor.

At very large scales gravity has been investigated very thoroughly by
many specialists. General relativity is now part of our everyday lives in
the form of GPS systems, its predictions have been tested by the investi-
gation of pulsars and neutron stars and, recently, astronomers have found
strong indications that there is indeed a black hole at the center of our
galaxy. Newtonian gravity is, of course, also well tested. The strength of
the gravitational force, the equivalence of heavy and inert mass and the
inverse square law of the gravitational force have been probed over and
over again with ever greater accuracy.

The one aspect of gravity that is comparatively unexplored is its be-
haviour over very short distances and the interaction of very small masses,
i.e. the quantum mechanical regime. Conducting experiments in this area
is quite challenging because gravity is so weak compared to the other in-
teractions which have to be shielded off very effectively. This can be a
difficult task to achieve in practice. The general interest in this field of
experimentation, however, is great because modern, string-inspired theo-

1



ries aiming to achieve a unified description of all fundamental interactions
predict deviations from the Newtonian inverse square force law for dis-
tances below 1mm, see for example [Ark98], [Ant98], [Ark99] or [Flor99].
These phenomena are generally summed up under the term "fifth force"
and some of the corresponding theories predict effects that could be falsi-
fied by this experiment which is designed to measure the shape of bound
state wave functions of neutrons in the earths gravitational field.

Neutrons are ideally suited to investigate gravity on a micrometer scale
because over this range they only interact with their environment through
their magnetic moment and their mass. If the experimental installation is
shielded from magnetic fields it is then possible to investigate the grav-
itational interaction isolated from all others. This is a unique possibility
since atoms and rigid bodys would also be affected by Casimir and van-
der-Waals forces which are many times stronger then the gravity. Devia-
tions from these Casimir and van-der-Waals forces due to newly predicted
effects can also be measured and experiments doing this have already ex-
cluded a great range of models for possible new interactions. These exper-
iments are discussed in [Fis01] and [Fis03], for example. In theory, a mea-
surement of the gravitational interaction of neutrons could also be very ef-
fective, again due to the weakness of the gravitational force which would
make it possible to detect even small deviations. This will be discussed in
detail in chapter 5.

1.1 Early observation of gravitational quantum
effects

The very first experiment to measure gravitationally induced quantum ef-
fects was conducted in 1975 by Colella, Overhauser and Werner, [COW75].
In this remarkable experiment the phase shift of thermal neutrons due to
their interaction with the gravitational field was measured with a neutron
interferometer. A schematic drawing of the setup taken from the origi-
nal publication can be seen in figure 1.1. A nearly monoenergetic beam
of neutrons was split in two by an interferometer at point A and rejoined
at point D where the two beams would interfere. The phase difference
between the two beams could be changed by turning the interferometer
around the AB axis by angle δ, thereby altering the potential along CD by
a constant factor mngl1 sin δ, where mn is the neutron mass, g the gravita-
tional acceleration and l1 the distance between points C and D. The phase
difference between the neutrons travelling along the two different paths is

2



ΦACD − ΦABD = −−im
2
ngl1l2λ sin δ

2π~2
, (1.1)

where l2 is the distance between A and C and λ the de Broglie wave-
length of the neutrons. This phase shift had been verified even then well
within 1%! Nowadays atom and neutron interferometry are used in high-
precision gravimetric experiments and have achieved relative accuracies
of less than 10−9g. With our experimet we have gone one step further,
still, and we have directly observed gravitationally bound quantum states
of ultra cold neutrons (UCN). This was the first time that the shape of these
wavefunctions had been measured.

Figure 1.1: Schematic drawing of the COW experiment to detect gravita-
tionally induced quantum interference taken from [COW75]

1.2 Free fall in quantum mechanics

To discuss our experiment in detail it is necessary to briefly review the the-
ory of the quantum mechanical free fall, which is discussed, for example,
in [Flü99]. The floor, in this problem, is a high potential barrier for z ≤ 0
and there is a linear potential mgz for z ≥ 0. The potential is shown in
figure 1.2. The Schroedinger equation then looks like[

− ~2

2m

∂2

∂z2
+mgz

]
φn(z) = Enφn(z), (1.2)
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Figure 1.2: Potential of the free fall problem

with the boundary conditions

φn(0) = 0

φn(z) = 0, z →∞

for all states n. It is convenient to rescale the equation with a scaling factor
R defined as

R =

(
~2

2m2g

) 1
3

(1.3)

so that z → ζ = z
R

. R is the characteristical length of the system and for
neutrons R ≈ 6µm. Inserting this into 1.2 one obtains

− ∂2

∂ζ2
φn(ζ) + ζφn(ζ) = εnφn(ζ), (1.4)

where εn = En

mgR
. The solutions to these equation are the Airy functions:

φn(ζ) = Ai (ζ − εn) , (1.5)

which are shown in figure 1.3. They have to fulfill the boundary condi-
tions Ai (−εn) = 0 and Ai(ζ − εn) = 0, ζ →∞. A very good approximation
for the εn can be obtained from the asymptotic behaviour of the Airy func-
tions and yields

εn =

(
3π

2

(
n− 1

4

)) 2
3

. (1.6)

Now the energy eigenvalues of the system are also determined:

4



Figure 1.3: The first three bound states of the linear potential

En = mgRεn = mgzn, (1.7)

where the zn = Rεn are the classical turning points of the particles trajecto-
ries. For the first few states the energy eigenvalues, the expectation values
of z and the turning points of the corresponding classical trajectories are
collected in table 1.1.

state number En in peV 〈z〉 in µm classical turning point in µm
1 1.407 9.2 13.7
2 2.460 16.0 24.0
3 3.322 21.6 32.4
4 4.1 39.8 26.6

Table 1.1: Energies, expectation value of z and classical turning points of
neutrons in gravitationally bound states

1.3 Our experiment

In our experiment, performed for the first time in 1999 at the Institute
Laue Langevin (ILL) in Grenoble, we have observed gravitationally bound
quantum states with ultra cold neutrons, see [Ne02] and [Ne03]. This is
not trivial since, normally, even the energies of UCNs of about 100neV
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are much higher than the eigenenergies of the gravitational bound states
which are of the order of peV. It is therefore necessary to select neutrons
with small vertical energy components using a collimator. This device en-
sures that, classically speaking, the neutrons can only travel on parabolic
trajectories of a certain curvature and that their direct view of the detector
at the end of the installation is blocked. A sketch of our experimental setup
is shown in figure 1.4 whereas a detailed drawing can be seen in figure 1.5.

Figure 1.4: Schematic drawing of the experimental setup

Figure 1.5: Overview of the experimental installation taken from [We01].
The "absorber" will be called scatterer for the greater part of this thesis.

The main components of the installation are one or two very flat glass
mirrors topped by a scatterer and a neutron detector at the end of the mir-
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rors. The neutrons interact with the mirror(s) and the scatterer via the so
called Fermi potential. This is an effective potential approximated from
the interaction of the neutrons with the nuclei of the surface material. Al-
though the actual interaction of the hadrons is attractive the Fermi poten-
tial is repulsive for most materials with a magnitude of around 100neV,
see appendix B for a short review of the derivation of the Fermi poten-
tial. Neutrons with energies in the same range will be reflected from these
surfaces at all angles of incidence.

The mirrors we use have a roughness in the order of 0.1nm and are
quite plane so that we expect neutrons to be only specularly reflected from
them.

The scatterer has a roughness of several µm and is used to remove neu-
trons with high vertical energy components from the system. Those neu-
trons will occupy the higher bound states and have a greater probability
to be found at higher positions, see figure 1.3. If their wave functions sig-
nificantly overlap with the roughness of the scatterer they will be removed
from the system. How this process works is not entirely clear. At first it
was assumed that the scatterer would have to be coated with an absorb-
ing material with low Fermi potential. Therefore the scatterer used in the
first experimental run of 1999 was coated with a layer consisting mainly of
Gadolinium and Titanium with a Fermi potential matched to zero, at least
two orders of magnitudes below that of ordinary matter. At this point
the efficiency of the scatterer was calculated using the WKB approxima-
tion for the Schroedinger equation with the Fermi potential of the absorb-
ing layer ([We01]). The transmission through the slit between mirror and
scatterer could be described by this model with only one free parameter
for the overall amplitude. It was then discovered that not the material
but the surface roughness was the decisive factor for the efficiency of the
absorber/scatterer, which takes away the physical basis for the WKB ap-
proximation. It might also be the case that a thin layer of water molecules
or some pollution of a different kind will act as an absorbing or scattering
layer, making an artificial coating of the scatterer obsolete.

Our model for the interaction of UCNs with a rough surface coated
with an absorbing layer is the following, [We01]: Because of their large
wavelengths the neutrons passing through our installation can not resolve
the microscopic roughness of the scatterer and will only see the average
over the scatterers surface. The rough surface can then be described by a
Gaussian error function with a width equal to the roughness of the scat-
terer. For a scatterer coated with an absorbing material the Fermi potential
of the absorbing layer will be smeared by two such error functions, one
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for the outer surface of the layer and one for the inner surface, directed
towards the glass. The potential will then be proportional to a form factor

∂F (z) ∝ Erf(
z − h

σ
√

2
)− Erf(

z − (h− d)

σ
√

2
), (1.8)

where h is the height of the scatterer above the mirror, σ its roughness
and d is the thickness of the absorbing layer. The neutrons would see a
potential of the form shown in figure 1.6 that they could penetrate leading
to their absorption.

Figure 1.6: Shape of the Fermi potential of an absorbing layer applied to a
rough surface

A full theoretical description of the scatterer is not yet available. It is
difficult to obtain due to incoherent scattering induced by the large surface
roughness. In the model used for calculations in this thesis the overlap of
the wave functions with the scatterer is calculated and the efficiency of the
scatterer is a free parameter. This is slightly discontenting since this pa-
rameter basically defines the shape of the function for the neutron trans-
mission through the installation and this has greatly limited our possibil-
ity to exclude different parameters of the fifth force, see chapter 5. Some
progress has been made, however, in finding an analytical expression for
the scattering parameter using scattering at hard spheres as an approxi-
mation of the true process, [We04]. The resulting parameter could not be
used in our calculations, yet, because it deviated from the fitted value by
60% and could not describe the data.
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1.3.1 Two approaches to the bound states measurement

The transmission measurement

There are two methods of measuring the shape of the bound state wave
functions. One is to move the scatterer upwards in small steps and mea-
sure the transmission through the scatterer-mirror-system for every step.
For low scatterer heights there should be no transmission through the
waveguide since all bound state wave functions have a large overlap with
the scatterer and the neutrons will be absorbed or scattered out of the sys-
tem. Once the scatterer has reached a height of roughly 13µm where the
ground state wave function has no significant overlap with the scatterer
anymore, there is a sudden increase in the transmission. The transmission
will then remain constant until the first excited state is clear of the scat-
terer and so forth. The classical expectation for this type of system would
be a steady increase in transmission for all scatterer heights until the scat-
terer is so far out of reach that no more neutrons would be absorbed and
the transmission would remain constant. The result of this measurement
performed in 2002 is shown in figure 1.7 together with the quantum me-
chanical and classical expectations. This measurement can be considered
as the first direct proof of the existence of bound quantum states in a grav-
itational field, see [Ne02].

The resolution here is limited by the quality of the calibration of the
height h of the scatterer above the mirror which was as good as 1µm in
2002 and has been further improved for the experimental run of 2004 so
that we now know h with an accuracy of about 0.1µm, [Schrau04]!

The method is an integral one which means that we are measuring
the integral over the distribution of the neutrons from the mirror up to
the scatterer. To draw conclusions as to the shape and population of the
individual states we have to differentiate. That means that we have to
subtract data points from one another and that again will increase the error
of the final result.

The measurement of the density distribution

The second way measure the shape of the bound state wavefunctions is
a direct measurement of the neutron distribution above the mirror with
a position sensitive detector. We developed a new position sensitive de-
tector for this measurement within the framework of this thesis (see chap-
ter 3) and conducted the measurement during the last experimental cycle,
summer 2004. The results of the measurement are discussed in detail in
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Figure 1.7: Result of the 2002 transmission measurement taken from
[Abe03]. The data points give values for the neutron transmission for a
certain height of the scatterer above the mirror. The solid line represents
the quantum mechanical prediction for this type of measurement, the dot-
ted line the classical prediction.

chapter 2.
The direct method is, in principle, preferable since the density matrix

of the system is directly measured and all information on the shape of the
bound states can be directly extracted from the data. Another advantage is
that the scatterer does not play a crucial part with this method. It is used to
filter out neutrons from the higher states but there is no need for the scat-
terer to cover all of the mirror. After the unwanted neutrons have been re-
moved the probability distribution can be measured without the scatterer
even being present. This is very fortunate since a theoretical model of the
scatterer does not have a great impact on the interpretation of the data
and a theoretical model of the scatterer is difficult to obtain. One problem
with the interpretation of the data is that classical Monte-Carlo simula-
tions and the quantum mechanical prediction for this measurement can
be quite similar so that we could, so far, not exclude the case that we are
dealing with a classical phenomenon. However, the results obtained from
this measurement during the experimental run 2004 at the ILL, Grenoble
are already indicative of the quantum mechanical behaviour of the neu-
trons.

An inconvenience concerning the direct method is that we do not have
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an "online" position sensitive detector with sufficient accuracy, yet. In-
stead we are using nuclear trace detectors with reactive coatings that will
undergo a nuclear reaction together with an incoming neutron. These de-
tectors have to be irradiated for a certain amount of time, depending on
their efficiency. Afterwards they have to be treated with some chemicals
to be read out under a microscope. For a detailed description and analysis
of the detectors we used see chapter 3.
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Chapter 2

Measurement of the density
distribution of the neutrons

In this chapter the measurement of the density distribution of the neutrons
above a horizontal mirror is discussed. For this task it is essential to have
a position sensitive neutron detector with a resolution below 3µm. A new
kind of such a detector was prepared and tested during the last year which
will be discussed in chapter 3. The measurements of the density distribu-
tion were performed in summer 2004 and can be considered a significant
step towards the direct observation of the quantum mechanical density
distribution of neutrons above a mirror.

2.1 The setup and the derivation of the fitting
function

For our measurement of the neutron distribution above the mirror the ex-
perimental configuration can be seen in figure 2.1. The gap between the
scatterer and the first of the two mirrors was 30µm. The step between the
two mirrors was 21µm. A position sensitive detector was installed directly
at the edge of the second mirror. The step between the two mirrors was
introduced to suppress the relative population of the ground state of the
system. The reason for this is that it enhances "wavieness" of the density
distribution which makes it easier to distinguish between the quantum
mechanical and classical predictions.

From the knowledge of the setup we can predict the population of the
bound states: The neutrons coming out of the collimator system can be
approximately described by plane waves since they occupy only high ex-
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Figure 2.1: Experimental setup for the position measurement performed
with a slit of 30µm between the scatterer and the first mirror and a 21µm
step between the two mirrors.

cited states of the gravitational potential above the floor of the experimen-
tal hall. When they reach the mirror they couple into lower gravitationally
bound states according to the overlaps between these states and the wave
functions describing the "free" neutrons. The time required for this process
can be approximated using the energy-time uncertainty relation:

∆t ≈ ~
∆E

, (2.1)

where ∆E is the energy of the bound states of the system. For the first
few bound states the eigenenergies, classical turning points of the neutron
trajectories and the expectation value of z are given in table 1.1. Thus, the
time interval for the formation of the ground state is ∆t ≈ 0.5ms. The neu-
trons have a maximum horizontal velocity of about 20m/s so it will take
them at least 1ms to cross the 20mm distance between the edge of the first
mirror and the scatterer. We conclude that there is enough time for the
bound states above the mirror to be populated before the neutrons reach
the scatterer. At this point all states are expected to be evenly populated.
This is only an approximation since the neutrons would be diffracted at
the edge of the mirror so that the population of the ground state would ac-
tually be less than that of the other states. The neutrons will be diffracted
again at the edge of the scatterer which would again favour the popula-
tion of the higher states. Unfortunately, the diffraction phenomena inside
our mirror-scatterer installation have not been fully explored, yet, but an
outline is given in [We01].

Once the neutrons have been transmitted into the space between the
scatterer and the mirror, neutrons in the higher states will eventually be
removed from the system and only those neutrons in the first three bound
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states will be transmitted through the 30µm slit.
To find out, how the states will be populated after the step between the

two mirrors it is necessary to calculate the transition amplitudes from the
states above the first mirror to the states above the second mirror, see e.g.
[Schw98]. Ignoring the scatterer for a while we can assume the horizontal
and vertical states of the neutrons to be independent of each other and
consider the eigenstates of the vertical motion only. If we choose z = 0 at
the top of the second mirror we can see from equation 1.5 that the bound
states are:

φI
n (ζ) = AnAi (ζ − εn − σs) (2.2)

φII
m (ζ) = BmAi (ζ − εn) , (2.3)

(2.4)

above the first and second mirror, respectively. Here σs is the size of the
step (= 21µm) divided by R given in equation 1.3, which is the length
scaling factor of the setup. To obtain the transition amplitudes from states
above the first mirror onto states above the second one we need to calcu-
late the overlap between these states:

Tnm ∝
∫ ∞

0

dζ
(
φI

n (ζ)
)∗
φII

m (ζ) . (2.5)

We are assuming that only the first three states above the first mirror
and the first five states above the second mirror will be populated. This
is due to the approximation that all neutrons with expectation values of z
inside the scatterer will be removed from the system whereas all neutrons
with expectations values z below the height of the scatterer will be unaf-
fected by it. The population pn of the nth state above the second mirror will
be the sum of the absolute square of the transition amplitudes between this
state and the three states above the first mirror:

pn =
3∑

m=1

|Tmn|2 . (2.6)

The expected relative populations of the states above the second mirror
are summarized in table 2.1.

We are assuming that the system is prepared in an incoherent super-
position of the eigenstates because the collimator is a highly incoherent
neutron source, which has been investigated in [We01]. In this case the
density matrix ρ of the system should look like
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state number relative population
1 0.02
2 1.20
3 4.95
4 4.67
5 5.54

Table 2.1: Population of the bound states above the second mirror

ρ =
∑

n

pn

∣∣φII
n

〉 〈
φII

n

∣∣ . (2.7)

Now, a measurement of the vertical position z of the neutrons corre-
sponds to a projection of ρ onto the space spanned by the eigenstates of
the position operator, δ(z − z0), and the probability ω of measuring a cer-
tain value z is given by the trace of this projection:

ω(z) = Tr(ρ |z〉 〈z|) = 〈z| ρ |z〉 =
∑

n

pn

∣∣φII
n (z)

∣∣2 . (2.8)

This is the fitting function we used in the interpretation of the data
with an overall amplitude, the z zero position and the background level as
free parameters. To account for the finite resolution of the coated detectors
the fitting function has to be convoluted with a Gaussian of half width σ
equal to the resolution of the detector. In our calculations we used σ as a
free parameter to determine the resolution of the detectors.

The route taken above is the most straightforward way of deriving a
prediction for our measurement of the neutron density and is by no means
a complete discussion of the phenomena involved. Diffraction, for exam-
ple, has been ignored completely. Also, the action of the scatterer has not
been truly accounted for. We have simply assumed those states with z ex-
pectation values below the height of the scatterer to be unaffected by it,
whereas all states with higher z expectation values have supposedly been
removed completely. It is probably also an oversimplification to assume
that at the site of the step, directly beneath the scatterer, the vertical and
horizontal motion of the neutrons can be viewed independently of each
other. Another tricky aspect of this derivation is the assumption that we
are observing an incoherent mixture of states. Yet, we shall see that even
with this simplified picture we have arrived at a prediction for our mea-
surement that describes the results quite well.
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2.2 Treatment of the data from the position sen-
sitive detector

In summer 2004 two different detectors were used to measure the density
distribution of the neutrons. Both of them were nuclear trace detectors
made of a special plastic called CR39 ([IC00]) but with different reactive
coatings, one was coated with Uranium-235 the other with Boron-10. In
this thesis we will deal mostly with the treatment and results from the
Boron coated detector (or Boron detector for short) which has been tested
during the experimental run of this year. We will only refer to the results
of the measurement with the Uranium detector, which has also been used
during the experiments performed in 1999 and 2002, for comparison rea-
sons. Detailed information on the preparation, treatment and readout of
the Boron detector will be presented in chapter 3.

The Boron detector was installed in the setup discussed in the last sec-
tion and irradiated for 28 hours. After the irradiation was complete the
coating was removed from the trace detector and the plastic was etched
in 20% NaOH solution at 45◦C for 5 hours to enlarge the nuclear traces.
According to our calibration, table 3.4, this corresponds to (0.45± 0.04)µm
of the bulk of the detector having been etched off, which is roughly the
minimum etch that is necessary to clearly see the traces with a magnifica-
tion factor of 20. Technically it would also be possible to use lenses with
a magnification factor of 50 or 100 which would make the identification
of the traces easier aswell as allow us to etch away even less of the detec-
tor bulk. However, since the automation of the readout procedure is still
under developement and many things had to be done manually this was
not practical. As it was we had to take about 300 pictures of the detector
under the microscope which took several hours. With twice the magnifi-
cation we would have had to take four times as many pictures which can
barely be achieved in a day.

The detector is 12cm long, 1.5cm high with a thickness of roughly 1.4mm.
Under a microscope a line of photographs was taken of the detector along
its long axis at roughly half height. A movable stage was used to move the
detector under the microscope. The traces of the α-particles and Li-nuclei
produced in the nuclear reaction of neutrons with the Boron nuclei appear
as small black circles or disks in the photographs. The coordinates of these
circles can be mapped which was done by hand for our detector since our
computer programs to identify the traces did not work well enough, yet.
Once the data (i.e. the coordinates of the traces) has been read out it has to
be corrected for the inclination of the detector under the microscope and
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the curvature the detector obtains during the chemical development. This
was done in two different ways: Once a marker line of traces was used
to fit curvature and inclination (see subsection 2.2.1) and once the width
of the signal was minimized, varying the correction parameters by hand.
figures 2.2 and 2.3 show the raw data from the Boron detector and a his-
togram of the z-coordinates of the counted traces.

Figure 2.2: Raw data from the Boron detector

2.2.1 Correction of the data using the "edge"

The marker line of traces was produced in the following way: Once the
detector had been irradiated in front of the experimental setup, discussed
at the beginning of this chapter, it was shifted down by 1mm. Then the
slit between the mirrors and the scatterer was increased to 200µm and the
detector was, again, irradiated for several hours. After the chemical devel-
opment of the detector the traces from the second irradiation are densely
packed in a certain area with a sharp lower edge, where the mirror was.
A section of the edge can be seen in figure 2.4. The coordinates of traces
from the edge are mapped in the same way as the those of the other traces
but we only used part of the information from the edge signature since the
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Figure 2.3: Histogram of the raw data

amount of data was simply overwhelming for a standard PC. A picture of
the data from the "edge" can be seen in figure 2.5.

The original idea was to do linear and polynomial fits of the edge data
and use the obtained values for inclination and curvature to correct the
data for the density distribution. This procedure was followed but unfor-
tunately the detector had been shifted under the microscope when it was
being photographed. This is also visible in figure 2.2. We can see that the
detector has been shifted under the microscope at an x coordinate of about
30mm. This happened because we used a prototype of a movable stage for
our microscope which had not been fully developed, yet, and was a little
error-prone. Unfortunately, the pictures of the edge had been taken after
the shift of the detector so that the inclination of the edge was not compa-
rable to the inclination of the line of data that we are actually interested
in.

Figure 2.6 shows the corrected data displayed together with our predic-
tion. The fit function was convoluted with a Gaussian σ = 5.8µm which
has been fitted to the data and corresponds to the resolution. In figure
2.7 χ2

R is shown as a function of σ. The fitted resolution is much worse
than what we expected from equation 3.7 which is, of course, due to the
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Figure 2.4: Edge of traces for the determination of curvature and inclina-
tion of the detector

Figure 2.5: A picture of traces from the "edge", the size is approximately
130x90µm
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inadequacy of the measured inclination.

Figure 2.6: Fit of our prediction to the Boron detector data corrected with
"edge"-information

2.2.2 Correction of the data by minimizing the width of the
distribution

Since we could not use the information from the edge as a means of cor-
rection for the inclination and curvature of the detector the correction was
performed by minimizing the width of the z-distribution of the data, [Ne04].
The corrected coordinates of the traces are shown in figure 2.8 and the cor-
responding distribution in figure 2.9. Figures 2.10 and 2.11 show the data
together with our theoretical prediction and the determination of the res-
olution of the Boron detector. The resolution of 1.4µm is not quite as good
as our prediction from equation 3.7 but the predicted value still lies within
the 70% confidence region. There are a number of possible reasons for the
loss of resolution: firstly, there is quite a high uncertainty in the value of
the depth of the etch and, secondly, we did not make a great effort to iden-
tify the center of mass of the traces. The quality of the fit, howevere, is very
good and the experimentally determined resolution is also acceptable.

21



Figure 2.7: Best fit resolution and standard deviation for the Boron detec-
tor data corrected with information from the "edge"

The only disadvantage is that we have added two more parameters to
our model since curvature and inclination are no longer measured quanti-
ties. Therefore it is still be desirable to improve the method of measuring
these properties of the data.
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Figure 2.8: Corrected data from the Boron detector

Figure 2.9: Histogram of the corrected data
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Figure 2.10: Fit of our prediction to the Boron detector data corrected by
minimization for the spread of the distribution

Figure 2.11: Best fit resolution and standard deviation for the Boron detec-
tor data corrected by minimizing the spread of the distribution
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2.3 Comparison of the Uranium and Boron coated
detector

Uranium coated, position sensitive detectors have been used in this ex-
periment before, [Rue00]. The Uranium coating yields an excellent sig-
nal/background ratio because there is almost no natural background radi-
ation of the heavy fission products whose traces are to be detected. How-
ever, the great disadvantage of this coating is its low efficiency in the de-
tection of neutrons. For this reason, the Boron coated position sensitive
detector was put to the test during the experimental cycle of 2004.

Figures 2.12 and 2.13 show χ2
R as a function of the resolution of the

Uranium detector and our best fit of the Uranium data. These have to
be compared with figures 2.11 and 2.10 which show the same curves for
the Boron detector. Apparently, we have achieved a better resolution with
the Boron detector than with the Uranium detector. This is an unexpected
result. It was assumed that the resolution of the Uranium detector would
be better, since here the plastic does not have to be etched as far in order
to make the traces of the fission products visible. A possible reason for the
superior resolution of the Boron detector is that the traces of the Uranium
fission products produced in the neutron reaction are up to 20µm long
and appear as thin lines under the microscope. The α- and Li-traces, on
the other hand, can hardly be longer than 6µm and appear as small dots
or crates. This makes it much easier to identify the tip of the trace and
may counter the effect of the required larger etching process. Additionally,
the maximum angle under which the traces of the fission products can be
detected may be higher for the Uranium detector. This would also result
in a loss of resolution (see section 3.5). Unfortunately, the critical detection
angle has, at this point, only been calculated for the Boron detector.

A comparison of the data to our predicted distribution function also
yields a better fit for the Boron detector, due to better statistics. However,
the two datasets from the two different detectors show the same, quantum
mechanical, tendency: a first peak in the distribution and afterwards a
significant minimum followed by a second, much broader maximum. This
tendency is also a clear feature of our quantum mechanical prediction.

A combination of the data from the Boron and Uranium detectors is
displayed in figure 2.14. The resolution of the final data can be deduced
from 2.15. Although statistics are much better for this dataset the fit is not
as good as that of the Boron detector data alone.
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Figure 2.12: Best fit resolution and standard deviation from the Uranium
detector data

Figure 2.13: The theoretical prediction for transmission together with the
data from the Uranium coated detector
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Figure 2.14: Fit to the combined data from Boron and Uranium detector

Figure 2.15: Resolution of the combined data

27



2.4 Classical versus quantum mechanical inter-
pretation of the measurement

The most significant and far reaching question concerning the measure-
ment of the neutron density distribution above the mirror is whether or
not we have identified a quantum mechanical phenomenon. Unfortu-
nately, the answer is only "maybe", for now.

The classical prediction for the density distribution of the neutrons can
not be calculated analytically because of the large step between the two
mirrors. We therefore used Monte Carlo simulations to gain an insight
into the classical behaviour of the system, [We01]. In this simulation the
trajectories of classical particles through the scatterer-mirror system are
calculated. The initial velocities of the particles follow a Boltzman distri-
bution. If we look at the classical prediction for the density distribution
shown in figure 2.16, which was computed using a Monte Carlo simula-
tion with 109 iterations, we can see that the qualitative behaviour of the
function is different from our quantum mechanical description.

Figure 2.16: Result of a Monte Carlo simulation for the classical prediction
of the neutron density

Due to the bad statistics of the data the Monte Carlo prediction still
yields an acceptable fit to both the data obtained from the Uranium and
Boron detectors which can be seen from figures 2.17 and 2.18. The fit of
the Monte Carlo prediction to the combined data from both detectors is
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even better than the fit of the quantum mechanical expectation, which can
be seen from figure 2.19.

Figure 2.17: Fit of the Monte Carlo prediction to the data from the Uranium
detector

If we use Monte Carlo simulations which yield statistics similar to
those of the actual measurements we observe effects of classical statistics
which can be very similar to the quantum mechanical expectation. This
is shown in figures 2.20 and 2.21. The two fitting functions were obtained
from two different runs of our Monte Carlo simulation and fitted to the
data with the same free parameters as the quantum mechanical function.
The classical curve in figure 2.20 describes the Boron detector data very
well and it even shows the same qualitative behaviour. The classical curve
in figure 2.21, on the other hand, is qualitatively quite different from the
data but also yields an acceptable fit due to the bad statistics of the mea-
surement.

Figure 2.22 shows a fit of the sum of the two Monte Carlo simulations
to the combined data. This function requires a rather unrealistic value
for the half-width of the convolution Gaussian which is smaller than our
theoretical prediction (see equation 3.7). This was also the case for the fit
of the high-statistics Monte-Carlo simulation to the combined datasets.

Although the quantum mechanical prediction yields better results for
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Figure 2.18: Fit of the Monte Carlo prediction to the data from the Boron
detector

Figure 2.19: Fit of the Monte Carlo prediction to the combined data of the
Boron and Uranium detectors
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Figure 2.20: Fit of a classical Monte Carlo simulation to data obtained from
the Boron detector

Figure 2.21: Fit of a classical Monte Carlo simulation to data obtained from
the Uranium detector
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Figure 2.22: The sum of the Monte Carlo distributions shown in figures
2.20 and 2.21 are fitted to the combined data of the Boron and Uranium
detector

both the Boron and Uranium detector data, we can not exclude the classi-
cal case, not even with a probability of 50%. For the combined data of the
two detectors the classical prediction even yields the better result although
the value for the resolution in this fit is not realistic. To clearly distinguish
between the two models it is necessary to greatly improve the statistics of
the measurement which will be done during the next experimental cycle,
Feburary 2005.
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Chapter 3

The Boron coated, position
sensitive detector

To perform a measurement of the distribution of the neutrons once they
have passed the waveguide it is essential to have a neutron detector with
a high spatial resolution below. It is possible to achieve such a high resolu-
tion of 1− 2µm with a nuclear trace detector coated with a target material
that will undergo a nuclear reaction with an incoming neutron. The fission
products of this reaction then leave traces in the trace detector that can be
reconstructed under a microscope after some chemical treatment.

In this chapter the preparation and function of position sensitive neu-
tron detectors with a 10B coating is described. The nuclei in the Boron
layer undergo a nuclear reaction with an incoming neutron producing a
Li-nucleus and an alpha-particle. One of the two will be transmitted into
the plastic and leave a trace there. During the experimental run of 2004
such detectors were tested and the results are discussed in chapter 2. The
idea of using a Boron-10 coating for this task came from the CASCADE de-
tector group, [Klei01].

For a short "‘recipe"’ for the preparation, coating, development, read-
out and general treatment of the detectors see appendix A.

3.1 The uncoated CR39 trace detectors

There are many materials, e.g. plain glass or many of the readily available
solid polymers, that could potentially be used as nuclear trace detectors.
The plastic we use is called CR39 and is manufactured especially for use
as nuclear trace detectors (and sunglass lenses) by Intercast Europe S.p.A.
[IC00]. This plastic has superior chemical and physical properties and it
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also has the advantage that all of these properties have been thoroughly
tested by many different research groups (e.g. [Cec01]).

The CR39 plastic is made from dietilenglycolbisallylcarbonate (ADC)
by polymerization. This monomer has two of its allyl functional groups
and because of the this it is cross-linked as well as polymerized which re-
sults in a thermosetting plastic that is hard and insoluble in most solvents.
A summary of some of its properties is shown in table 3.1, [IC00].

Specific Weight at 25◦C 1.32g/cm3

Rockwell Hardness M95-M100
Maximum Temperature Recommended
continuous service 100◦C
one time, one hour duration 130◦C

Table 3.1: Properties of CR39

These properties are important for the use of the CR39 plastic in our ex-
periment. During the application of the Boron-/Uranium-layer and dur-
ing the chemical treatment after irradiation the plastic can get quite hot
and it is, of course, crucial that it will not start to melt away or signif-
icantly change its shape. The CR39 is mostly only elastically deformed
during these processes and will come back to its original shape after slow
cooling. Sometimes the detectors are bend a little after the final chemi-
cal treatment but this curvature can be measured and corrected for in the
analysis of the data, as was discussed in chapter 2.

The hardness of the plastic is also very fortunate for us. Small defects
and scratches in the surface can sometimes either be very similar to the
nuclear traces we are looking for or they could block the view of the traces
because a trace will not be visible on top of another, bigger defect in the
plastic. If the plastic is handled carefully its surface will normally not show
too many defects and scratches due to the hardness of the polymer.

The CR39 trace detectors work in the following way: When a charged
particle, an α-particle or Li-nucleus for the Boron coated detector, passes
through the plastic it will damage some of the bonds of the polymers. This
damage can be increased by chemical etching so that it eventually becomes
visible under a standard optical microscope. After the treatment the parti-
cle traces can look like small holes, cones or even long, thin lines as is the
case for the traces from the Uranium coated detectors. Figure 3.1 shows
some typical α-traces. The way the traces appear depends, of course, on
the extent of the chemical etching but also on the energy and charge of the
particle that left the trace.
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Figure 3.1: α-traces in CR39

Ageing and fading effects of the plastic are small ([Cec01]), i.e. the
response of the plastic does not change greatly over time and is only influ-
enced very little by the time passing between the exposure and the chem-
ical treatment of the plastic. There are also some variations in the reduced
etch ratio from one production batch to another and we have indications
that the density of the plastic is not completely uniform so that p may
even vary for different regions of the same detector, [Luk041]. All these
effects are smaller or have the same order of magnitude as the uncertainty
of the bulk etch velocity vb. They therefore do not limit our experimental
accuracy at the moment.

3.2 Identification of the traces in the CR39 detec-
tor

The response of the detector to particles of different charge and energy is
measured by the so-called reduced etch ratio p,

p = vt/vb, (3.1)

where vt is the track etch velocity and vb the bulk etch velocity. p is a
function of the restricted energy loss of the particles. The restricted en-
ergy loss of a charged particle in a certain material is calculated using the
Bethe-Bloch formula with an energy cutoff of several hundred eV and it is
proportional to (Z/β)2, [Flei75]. Figure 3.2 shows a calibration curve of the
reduced etch ratio p as a function of the restricted energy loss for several
different production batches of the CR39, copied from [Cec01].
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Figure 3.2: Calibration of p vs. restricted energy loss for several CR39
production batches, [Cec01]

The diameter D of the base of a trace after a certain etching time t de-
pends on p and therefore also on the restricted energy loss. The relation
between D and p for normally incident particles is ([Flei75])

p =
1 +

(
D

2vbt

)2

1−
(

D
2vbt

)2 . (3.2)

It is therefore possible to identify a particle by the size of its etch pit
base. This fact can be used to reduce the background since only traces of
a certain diameter have to be taken into account. The α-particles and Li-
ions produced in the Boron layer have an initial energy of 1.47MeV and
0.83MeV , respectively, see table 3.5. For these initial energies the energy
loss dE/dx and maximum range Rmax of the particles in solid Boron was
calculated. The result is shown in table 3.2. From the maximum range and
the energy loss the minimum energy of particles reaching th CR39 layer
can be calculated. The maximum energy is equal to the initial energy for
particles being produced directly at the edge of the CR39. The range of
α-particles and Li-ions of these energies in the CR39 layer are shown in
figures 3.3 and 3.4 and their energy loss in the CR39 is shown in figures
3.5 and 3.6. These curves were calculated using SRIM [SRIM]

For the detector we used in the measurement of the density distri-
bution of the neutrons discussed in chapter 2 the depth of the etch was

36



Figure 3.3: Range in CR39 of α-particles produced in the Boron layer

Figure 3.4: Range in CR39 of Li-ions produced in the Boron layer

Figure 3.5: Energy loss dE/dx in CR39 of α-particles produced in the
Boron layer
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particle dE/dx in MeV cm2/mg Rmax in µm
α 1.638 3.53
Li 3.159 1.82

Table 3.2: Energy loss and maximum range of the produced Li-ions and
α-particles in Boron

Figure 3.6: Energy loss dE/dx in CR39 of Li-ions produced in the Boron
layer

roughly 0.5µm and the average trace diameter was 1.5µm. These values
correspond well to what we would expect for particles with that energy
loss from figure 3.2.

3.3 The application of the 10B coating

The 10B coatings were applied in an evaporation device where an elec-
tron beam is used to evaporate the Boron and the substrate could not be
heated. The detectors are attached to a slowly circling substrate holder,
50 cm above the source. Because the substrate holder is circling above
the Boron source the atoms will seem to spread as a spherical wave. The
detectors are fastened to the holder tangential to the Boron cloud to get
maximum uniform coating, [Rue00]

Usually, Aluminium holders were used to fasten the detectors to the
substrate holder. We have now started to use plastic ’clips’ for two rea-
sons: Firstly, the plastic is comparatively softer than the metal and will
not scratch the surface of the detectors. Secondly, the plastic ’clips’ are
thermal insulators so that there won’t be a great heat transfer from the de-
tectors to the substrate holder, thus the surface temperature of the plastic
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will be higher during the coating process. This is supposed to improve the
quality of the Boron layer since the atoms will not cool down as quickly
but move around on the surface more, therefore arranging themselves in
a more uniform lattice with better cohesion to the plastic surface.

Boron is a ceramic material and not very flexible. When it is coated
onto an elastic material such as our CR39 the layer will get cracks very
easily. It is therefore important to let the detectors cool down very slowly
after the coating process so as to ensure that there are no rapid changes in
the shape of the CR39. Afterwards the detectors have to be handled with
great care.

Applying thin films to a surface often seems to be more art than sci-
ence, or possibly alchemy. Everybody has their own, secret recipe of how
to achieve the best results, but in any case it seems to be very important
how the substrate is treated before the coating is applied. We used a series
of ultrasonic baths of Benzinum (a non polar solvent), followed by Iso-
propanol (a polar solvent) and demineralised water, sometimes aided by
cotton-wool-rubbing, see appendix A for details. This was done to ensure
that all kinds of pollutants, both non polar and polar, would be removed.
If the surface is not cleaned thoroughly the coating will usually have many
defects where water can get in between the Boron layer and the plastic.
Since Boron is slightly soluble in water this will eventually cause the coat-
ing to peel off.

Our success rate with the coating of our detectors was devastating. Out
of 62 coated detectors only 7 ended up having a nice, even, scratch-free
coating. There were a number of problems: Firstly, the detectors were
polluted with some kind of grease which could not be washed away with
alcohol or acetone which is what we had been using to clean up to then.
When the plastic is not cleaned properly the coatings are very unstable
and can easily get scratches into them. Another problem was that we had
overestimated the vacuum inside the evaporation device. This meant that
the Boron could react with Nitrogen inside the device forming a layer of
Boron Nitride instead of pure Boron chrystals.

Some of the coatings looked quite well at first but started to deteriorate
after very quickly after the detectors were taken out of the evaporation de-
vice. In these cases the coatings probably at small defects at the beginning
and were then dissolved by atmospheric water. Even if the coatings are
homogeneouse and scratch-free at first it is always advisable to store the
coated detectors in a very dry environment.
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3.4 The treatment of the irradiated detectors

The chemical treatment needed to enable a readout of the detectors un-
der a standard optical microscope consist of, firstly, removing the reactive
coating from the trace detector and, secondly, etching the detector to in-
crease the size of the traces. This etching which is in our case performed
with 20% NaOH solution is one of the crucial steps in the treatment of
these high-resolution detectors because it ultimately limits the spatial res-
olution: When the traces are etched out the bulk of the detector is also
being etched away which means that the point of impact of the trace, seen
later under a microscope, is not the real point of impact of a fission prod-
uct on the plastic surface (let alone the point of impact of the neutron on
the coating) but some point along the trace of the particle through the
plastic, see figure 3.7. However, if the traces are not sufficiently enlarged
they become difficult to distinguish from defects in the plastic and the sig-
nal/background relation gets worse. It is therefore essential to optimize
the visibility and potential spatial resolution when etching the detectors.

Since Boron is slightly soluble in water it usually suffices to emerge
the coated detector into a water bath and heat it up slowly to remove the
coating. If this doesn’t work the detector can be washed with hydrochloric
acid which will react with the Boron but leave the plastic intact. In any
case, the Boron will also react with the Sodium ions in the NaOH solution
to form Borax salt which would remove any remaining Boron atoms from
the plastic surface without measurably influencing the etching process.

The bulk etch velocity vb depends on the density of the plastic, the con-
centration of the etchant and, most importantly (i.e. exponentially), on
the temperature of the etching solution, see table 3.3 copied from [IC01].
Normally, a fast etching process would seem desirable since the etching
conditions can be controlled more easily over a short period of time. On
the other hand, small variations in temperature at low temperatures will
only have a small effect on vb whereas, at high temperatures, there would
be a drastic changes in the etch rate even for small variations in temper-
ature. Additionally, the higher the temperature of the etching solution,
the greater is the risk of nonelastic deformation of the plastic leading to
a curvature of the detector surface which has to be corrected for during
the analysis of the data and will worsen the resolution of the detector. We
therefore settled on etching our detectors at 45◦C where vb ≈ 0.1µm/h. To
decrease nonelastic deformation further the detectors were first put into a
water bath at room temperature and slowly warmed up to 45◦C.

Since no production batch of CR39 is exactly the same as another it
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Temperature (◦C) bulk etch velocity (µm/h)
40 0.100±0.002
70 1.20±0.02
80 4.20±0.21

Table 3.3: Reference etch rates given by Intercast Europe, [IC01]

is necessary to recalibrate the bulk etching velocity for every new set of
detectors. For our detectors this was done by measuring the decrease in
weight of a detector after it had been emerged in the etching solution for
nearly two days, see 3.4. The result is that vb = 0.09 ± 0.02µm/h at an
average temperature of 45◦C.

Temperature (◦C) bulk etch velocity (µm/h)
45 0.09±0.02
60 0.4±0.14

Table 3.4: Etch rates we measured for our detectors

The change in weight has to be measured very carefully because the
weight of a given piece of the polymer changes with atmospheric condi-
tions. This is due to the deposition of water on the plastic surface. There-
fore, all weights have to be measured in equilibrium with constant atmo-
spheric conditions (i.e. in a closed box). The reason that the quality of
our measurement was not as good as that of the Intercast calibrations was
our unsophisticated equipment at the time which made it impossible to
properly control the temperature of the etchant. Controlling the etch rates
is vital for obtaining the best possible resolution with the detectors and
every unnecessarily removed nm of the bulk is an inconvenience.

3.5 The resolution of the detector

The amount of the bulk of the detector that is etched away will ultimately
limit the spatial resolution of the detector, as is illustrated in figure 3.7.
The resolution is given by,

σ = r · tan θ, (3.3)

where r = dB + de with dB, the distance in Boron that the fission particle
has to overcome for θ = 0 (this distance is maximally equal to 0.2µm if the
neutron reaction takes place directly at the outward surface of the Boron
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coating) and de, the depth of the etch of 0.45µm. The maximum angle θc

under which the traces will be visible is about 81◦ (see section 3.6).

Figure 3.7: Illustration of the limited resolution of the detector

To calculate the resolution of the detector it is necessary to account for
the possible angles of the traces in the plastic and for the different reaction
sites inside the Boron layer. The differential probability pa(θ) of finding a
trace with an impact angle θ is simply

pa(θ) =
1

sin θ
. (3.4)

The propability pabs(x) of a neutron reaction taking place at a depth x in-
side the Boron layer is

pabs(x) =
NAρ

A
σ exp(−NAρ

A
σx), (3.5)

where NA is Avogadro’s constant, ρ is the density of the target material
and σ its absorption cross section. For 10B ρ = 2.16g/cm3 and for thermal
neutrons , v = 2224m/s, the absorption cross section σ of 10B is 4.01 ·
103barn. σ depends inversely on the velocity of the neutrons:

σ (v) = σ0 (v)
v0

v
. (3.6)

The neutrons passing through our experimental installation have an aver-
age velocity of 5m/s . Thus, for these neutrons, σ = 1.78 · 106barn.
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It is now possible to integrate over all possible angles and reaction co-
ordinates inside the Boron layer to calculate the total resolution σtot of the
detector:

σtot =

∫ xmax

x=0

dx · pabs(x)r(x)

∫ θc

θ=0

dθ · pa(θ) tan θ = 1.2µm, (3.7)

where xmax is the thickness of the Boron layer and, in our case, equal
to 200nm. The value predicted for the resolution corresponds very well
to the resolution we measuered (see subsection2.2.2 and especially figure
2.10). The actual resolution of 1.4µm is a little worse than the predicted
one which is most probably an effect of the manual readout-procedure.

3.6 Detection principle and efficiency

In former runs of this experiments the CR39 trace detectors were coated
with Uranium Tetrafluoride UF4. The Uranium nuclei undergo nuclear
reactions with the neutrons producing two heavy fission products one of
which will go into the plastic and leave a trace there. In the experimental
run summer 2004 we also used a Boron-10 coating for the CR39 detectors.
The 10B nuclei undergo a nuclear reaction with the incoming neutrons
producing Li nuclei and α-particles which leave traces in the plastic, see
Figure 3.8.

There are two possible channels for this reaction which are listed in
table 3.5.

probability reaction energy particle energy
93% n (10B,α)

7
Li +2.3MeV + γ(0.48MeV ) α 1.47MeV

7Li 0.83MeV

7% n (10B,α)
7
Li +2.79MeV α 1.77MeV

7Li 1.01MeV

Table 3.5: Nuclear reaction of 10B with neutrons

This coating has the main advantage that 10B has a much higher ab-
sorption cross section for neutrons than Uranium so that a layer of the
same thickness will be much more efficient. This helps to increase the
overall efficiency of the detector since it is not possible to achieve stable
UF4 coatings of arbitrary thickness.

The efficiency of the detector is determined by the probability of a neu-
tron reaction within the coating and the detection efficiency of the trace
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Figure 3.8: Schematic drawing of the boron coated detector

detector. The efficiency of the coating depends on the absorption cross
section of the material and the thickness in the following way:

P = 1− e−
NAρ

A
σd, (3.8)

where P is the probability of a neutron reaction, NA is Avogadro’s con-
stant, ρ is the density of the target material, d its thickness and σ its ab-
sorption cross section. For 10B ρ = 2.16g/cm3 and for thermal neutrons
, v = 2224m/s, the absorption cross section σ of 10B is 4.01 · 103barn. σ
depends inversely on the velocity of the neutrons:

σ (v) = σ0 (v)
v0

v
(3.9)

The neutrons passing through our experimental installation have an
average velocity of 5m/s . Thus, for these neutrons, σ = 1.78 · 106barn and
for a coating of d = 200nm thickness, which was used in the experiment,
we have a probability of 99% for a neutron reaction in the Boron layer.

The main factor limiting the efficiency of the nuclear trace detector is
the existence of a critical detection angle which is illustrated in figures 3.9
and 3.10. The trace shown in figure 3.9 can not be etched because the bulk
of the plastic is being removed at a faster rate than the normal component
of the trace etch velocity vt. The trace shown in figure 3.10 has been left by
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a particle entering the detector exactly at the critical angle Θc above which
traces can be registered ([Flei75]).

Figure 3.9: Unetchable trace with entrance angle below the critical angle
of detection

Figure 3.10: Trace of a particle entering the plastic at the critical angle

The critical angle is given by the formula,

Θc = arcsin(
vb

vt

), (3.10)

where vb and vt are the bulk and trace etch velocity as before. In the last
section we have seen that the reduced etch ration p = vt/vb ≈ 3 for our
detectors. The critical angle of entrance for the α-particles and Li-ions
produced in the Boron layer is therefore θC ≈ 19◦. The efficiency ε of the
trace detector is then given by

ε = 1− sin(θC) ≈ 67%, (3.11)

which is just the detectable part of the surface of the half sphere described
by the traces. The overall efficiency of the Boron detector is the product
of the efficiency of the coating and the detection efficiency of the trace
detector. For the neutrons in our installation this efficiency is 66%.
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We tested the efficiency of our Boron detectors at the UCN test beam
at ILL. First, the flux was measured using a Helium detector, then several
detectors were irradiated for a certain period of time. The efficiency we
measured was 50% for the test beam neutrons. The velocity spectrum of
these neutrons is shown in figure 3.11, [Schmi04]. From equations 3.8 and
3.9 the efficiency P of the Boron coating can be calculated and P = 80%.
Together with the efficiency of the trace detector this yields an overall de-
tection efficiency of 54%, comparable to the result of the efficiency mea-
surement.

Figure 3.11: Velocity spectrum of the test beam at ILL

The prediction can even be improved if the surface roughness of the
plastic detector is taken into account: If the surface is assumed to be totally
flat neutrons that cross the Boron layer without being absorbed would be
reflected from the plastic surface back into the Boron layer where they
would then finally be absorbed. If the surface is assumed to have a rough-
ness of, say, 100nm the neutrons would see the potential of the surface
smeared by an error function of half width σ = 100nm (this is the same ar-
gument that we used for the model of the scatterer in chapter 1). Some of
the neutrons would then not be reflected back into the Boron layer. Instead
they would be absorbed by the plastic detector itself. If this effect is cal-
culated for a roughness of 100nm the efficiency of the Boron layer for the
test beam neutron spectrum is 75% so that the overall detection efficiency
is then 50%, exactly as measured.
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3.7 Background

The main disadvantage of the Boron coated detectors compared to those
with a Uranium coating is that the background on the Boron detectors
is much higher. The traces we are looking for are traces of α-particles
and Li-nuclei, which are very similar. The problem here is the natural α-
radiation which the detectors cannot be shielded from completely during
all stages of their processing. We tested detectors of different production
batches, storage times and treatments as to their background level, see 3.6.
Detectors 1 to 6 are all from a production from 2003 and have been stored
in an aluminium bag for approximately one year before they were read
out. All of them have been irradiated or left at the ILL at the same time.
Detector 7 was produced in 2004 and only stored for about one month.

Detector Irradiation status Background traces per mm2

1 Partially irradiated with UCN 3
2 Partially irradiated with UCN 4
3 Partially irradiated with UCN 11
4 Partially irradiated with UCN 5
5 Partially irradiated with UCN 4
6 24h above the reactor at ILL 1
7 Partially Irradiated with UCN 5

Table 3.6: Background measurements of various detectors

The aluminium shielding is quite effective and the natural α-radiation
does not pose a difficulty. High background values seem to be developing
during the irradiation process itself, probably caused by scattered neu-
trons. This background, under normal circumstances, is similar on all de-
tectors and therefore easy to correct for. The extremely high background
on detector 3, on the other hand, may have been caused by some kind
of pollution with Actininium 228, a source of α-radiation, which was de-
tected in a spectrometric analysis of the detectors at the ILL. Where this
could have come from, we have no idea.

3.8 Reading out the detectors

Once the detectors have been etched the α-traces are visible under a mi-
croscope. The necessary magnification depends on the magnitude of the
etching process. If a high resolution is considered imperative it is best to
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etch away as little as possible. If the signal/background relation is more
important it can be useful to etch away more of the bulk of the detector to
make it easier to distinguish the real traces from defects in the material.

We used two standard optical microscopes each fitted with a CCD cam-
era and an electronically steered stage to take photographs of the interest-
ing areas of the detectors. One of the systems was developed within our
group ([Luk042]) the other by MedXP, Gelsenkirchen. We then tried to de-
velope computer programs to automatically identify and map the traces
but this has not been successful yet. The problem is that under normal
circumstances there are many small dust particles and water drops on the
surface of the detectors. These irregularities are easy to distinguish from
the traces by eye because of their shape and intensity but so far we were
not able to teach a computer how to do this with sufficient accuracy.

Once the coordinates of the traces have been obtained there are correc-
tions to make. Firstly, the detector could have been inclined with respect
to the axis of motion of the microscope stage and secondly, during the
etching process, the detector can become a little curved. These effects will
worsen the resolution of the detector and have to be compensated for. A
discussion of the correction methods is given in chapter 2.
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Chapter 4

A quantum mechanical
determination of the earths
gravitational acceleration

The shape of the wave functions and the energy of the bound states in
the gravitational potential are naturally influenced by the strength of the
gravitational force. It is therefore possible to determine g from our experi-
mental data.

4.1 Fitting g

The strength of the gravitational force is critical for the transmission of
neutrons through our waveguide, because it defines the shape of the wave
functions (for more detail see section 1.2):

φ (z, n, g) = Ai (ζ − εn) , where ζ =
z

R
with R =

(
~2

2m2g

) 1
3

, (4.1)

This is straightforward to understand: A stronger force will "compress"
the wave functions, i.e. the airy functions would become steeper and the
neutrons would have a lower probability to be found at greater heights
and inside the scatterer, see figure 4.1. This means that neutrons in each
state could pass the waveguide earlier than they could have done with
a comparatively weaker force. Classically this is no problem at all: the
neutrons would just loose more energy travelling upward and because of
energy conservation they could then only reach smaller heights. On the
other hand, if the gravitational force was smaller less neutrons could pass
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the waveguide because they would have a higher probability to be found
at greater heights, in contact with the absorber. Then, for a bigger gravita-
tional attraction the transmission through the waveguide would set in at a
lower height, for lesser attraction at a greater height. For a stronger grav-
itational force this is illustrated in figure 4.2 where the theoretical curves
are plotted together with data obtained from a transmission measurement
in 2002.

Figure 4.1: Normalized absolute square of ground state wave functions for
different g

To determine g from our experimental data, we now varied its value in
our quantum mechanical model for the transmission of neutrons through
the waveguide, thereby changing the shape of the wave functions. We
compared the predictions (with the gravitational constant g and the over-
all amplitude as free parameters) to the experimental data from 2002 and
extrapolated the best fit g and its error to be (g = 9.8± 0.2) m

s2 , see figure
4.3.

This result is very pleasing since it is one of the few quantum mechan-
ical determinations of g and one of the very few that were performed by
basically measuring the shape of the bound state wave functions. Other
quantum mechanical measurements have achieved relative accuracies of
10−9g, [McGu02]!! These experiments employ interferometry of atoms or
neutrons and are designed to have a high sensitivity. Our experiment, on
the other hand, was not designed to determine the magnitude of the grav-
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Figure 4.2: Predicted transmission through the waveguide for different g
together with data from an experiment of 2002

Figure 4.3: χ2
R for the transmission prediction as a function of g, where

the scattering parameter αloss was fitted for g = 9.81m/s2 and then kept
constant
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itational potential with a high accuracy since our priority has always been
to prove the existence of bound quantum states in this potential no matter
whether g is equal to 9 or 10m/s2. Therefore, we would have been pleased
with a relative accuracy of 10%, too and to achieve a relative accuracy of
2% is very encouraging, indeed!

The measurement can not be considered an absolute determination of
g since it was not clear how the efficiency of the scatterer, αloss, could be
determined. From the first, approximate analytical calculation of this pa-
rameter we obtained a value that had to be multiplied by a factor of 1.6 to
fit the data, [We04].

If the value of αloss is treated as a free parameter we obtain (g = 5.4± 4.4)m/s2,
see figure 4.4. However, treating αloss as a free parameter goes against
the physical reality of the scattering process since its value is determined
uniquely by the surface properties of the scatterer, independently of g. So
the reason for this rather disappointing result is not a lack of experimen-
tal accuracy but the lack of a full theoretical description of the scatterer
involved in the measurement, see chapter 1.

Figure 4.4: Fitting curve for g with 90% confidence interval

The value of αloss has a great impact on the transmission curve and can
partially compensate for the change in the overlap due to a compression
of the wave function. Figure 4.5 shows the same data and transmission
prediction for g = 15m/s2 as figure 4.2 together with the theoretical trans-
mission prediction for g = 15m/s2 where αloss has been fitted to the data.
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This clearly shows the large effect that the scattering parameter has on the
prediction: A sufficient adjustment of this parameter can alter the trans-
mission function so that it correctly describes the data points for larger
slit-widths. This is possible even though g = 15m/s2 has been excluded
by our result (g = 5.3± 3.7)m/s2 presented in figure 4.4.

Figure 4.5: Predicted transmission for g = 15m/s2 with and without the
scattering parameter fitted to the data
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Chapter 5

Testing for deviations from
Newtonian gravity

With this experiment we are measuring gravity at very small distances. We
could therefore, potentially, detect effects from gravity-like forces acting
on very small length scales. Forces like this have been predicted by several
theories that understand themselves as extensions of the standard model
of particle physics, usually the with ultimate goal of finding a quantized
theory of gravitation. Limits for the strength and range of these new forces
have been predicted by our experiment and are published in [Abe03] and
[Pro04]. Here we present further systematic checks of the different be-
haviour of attractive and repulsive forces. We also explore the effect of a
systematic error in the calibration of the scatterer height by investigating
the change in the derived limits for datasets that have been shifted by 1µm
up or down in the vertical direction.

5.1 Introduction

Gravity is certainly a very well investigated physical concept and aspects
like the equivalence principle and the inverse square law appear to be
so close to solid facts as makes no difference. But actually, for distances
smaller than 10−4m not much is known. There has been a renewed in-
terest in gravity because, in this range, extensions of the standard model
predict new forces or deviations from the inverse square law due to extra
dimensions, [Ark99].

There are many different models like this with different physical con-
cepts behind them. Luckily, there are two main categories in which these
models can be grouped according to their properties in the non-relativistic
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limit. There is a large class that can be investigated starting from the
addition of a Yukawa-potential to the Newtonian gravitational potential.
These extra forces can be generated in theories with compactified extra-
dimensions or by the exchange of light bosons such as for example scalar
axions,[Fis99]. The gravitational potential then looks like

φ(r) = −G4

∫
d3r

ρ(~r)

|~r − ~r′|

(
1 + αe−

|~r−~r′|
λ

)
(5.1)

In this formula α would be the strength of the so called "fifth force" com-
pared to the strength of Newtonian gravity. λ is the range of the force.

Another class of theories predicts power-law corrections to the Newto-
nian potential. These can also be generated in extra-dimensional theories
where the extra dimensions are not compactified but warped. Another
possibility for power-law corrections to arise would be the simultaneous
exchange of two massless scalars.

Personally, we are especially interested in forces with a range compa-
rable to the dimensions of the bound states of our neutrons, i.e. in the µm
range. This simplifies matters since the neutrons would only "feel" the ex-
tra force from the mirror and the scatterer but not from the rest of the setup
and the planet. This situation is interesting because effects like this have
been predicted recently by theories involving so-called large extra dimen-
sions, [Ark99]. Additionally, there are comparatively few experiments like
ours from which limits for additional forces with ranges between 1 and 3
µm can be deduced.

It has been known for a long time that using an additional, 5th dimen-
sion is one way to describe general relativity and electromagnetism by
a single theory, [Kal21]. At roughly the same time it was also discovered
that the same method can be used to unify electromagnetism and quantum
theory, [Kle26]. Since then extra dimensions have been used extensively,
either as a direct method to unify fundamental interactions or as the out-
come of other theories with the same goal which can only be renormalized
including higher dimensions.

Until quite recently it was believed that these extra dimensions would
have to be compactified with radii corresponding roughly to the Planck
lengths

LP =

√
G~
c3

= 1.6 · 10−35m, (5.2)

and that only at this scale from the Inverse Square Law due to quantum
effects would appear. It has then been realized that there is a theoretical
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possibility to have extra dimensions with compactification radii even in
the mm range. In these models gravity is the only fundamental force that
has access to the large extra dimensions. All the other forces are localized
on a four dimensional brane together with the particles of the Standard
Model. This is done to explain why the Standard Model particles cannot
feel these large extra dimensions.

In theories like this the strength of the additional Yukawa force is nor-
mally comparable to that of Newtonian gravity. There is the possibil-
ity, however, to have additional gauge fields which generate forces much
stronger than gravity at distances the size of the large extra dimensions.
This can work if the corresponding gauge bosons can penetrate all of the
extra dimensions whereas the matter charged under this gauge group is
stuck on the 4d brane together with the Standard Model. The ratio of the
repulsive force mediated by the new gauge field to the gravitational at-
traction is, [Ark99],

FGauge

FN

≈ 106
( g4

10−16

)2

, (5.3)

where g4 is the four dimensional coupling of the new interaction. The
gauge boson must get a mass mg which can be small enough to predict a
Yukawa-addition to the gravitational force exactly in the interesting range
of our experiment where α = g4 and λ = m−1

g ≈ 1mm.
To falsify this and other theories it is vital to investigate gravity across

distances smaller than 10−3m which is exactly what we have been doing.
The limits set by other groups measuring deviations in Casimir and

Van-der-Waals forces, [Fis03], or changes in the frequencies of mechani-
cal oscillators, [Hoy04], [Long03], can be seen from figure 5.1 which was
taken out of [Hoy04]. For values of λ above 3µm these limits are orders
of magnitudes below what we can observe with our experiment. How-
ever, below this value there is a gap which we might be able to fill. This is
discussed in section 5.4.

5.2 The Yukawa potential for our setup

As indicated in the introduction to this chapter we are interested in short
range forces that the neutrons will only "feel" to be coming from the mir-
ror and the scatterer of the waveguide instead of the whole setup. The po-
tential for our setup must therefore include the Newtonian gravitational
potential and two Yukawa terms, one from the mirror and one from the
scatterer at height h:
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Figure 5.1: Current limits on the fifth force

φtot(z) = g · z − 2π · α · λ2 ·G4 · ρ0 ·
(
e−

z
λ + e

z−h
λ

)
. (5.4)

For a detailed calculation see [We01].

If the Yukawa potential is attractive there would be small potential
"pockets" directly at the mirror and the scatterer in which the neutrons
could be "pulled in". For smallish pockets the wave functions will be
stretched a little and the energies of the bound states will be shifted down.
If the pockets got big enough they could change the entire behaviour of
the system. The ground state would then have a much lower energy and
would appear only inside the pocket. For a repulsive Yukawa potential the
neutrons would be pushed into the center of the waveguide away from the
mirror and the scatterer. The wave functions would be compressed and
the eigenenenergies shifted up. This is shown in 5.2. In this figure only
the effect of the Yukawa potential of the mirror is visible.

These changes in the shape of the neutrons wave functions would, of
course, also influence the transmission through the apparatus. The deci-
sive factor here is the fifth force coming from the scatterer because it will
significantly change the overlap of the neutrons wave functions with the
scatterer. For an attractive force the transmission would then be lower
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Figure 5.2: Comparison of the wave functions with and without an addi-
tional Yukawa potential
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than the Newtonian expectation, for a repulsive force it would be higher,
see 5.3

Figure 5.3: Comparison of the Transmission of neutrons through the
waveguide with and without an additional Yukawa potential

5.3 An Estimation of possible limits for the pa-
rameters of the Yukawa potential

The first thing that was done within the frame of this thesis to actually
establish whether or not it would make sense to try and set limits for po-
tential extra forces was to look again at our determination of g, discussed
in chapter 4. Presuming that there are extra, Yukawa-type forces around
would be the same as to say that the effective g should differ from 9.81...
This effective g should look like this:

geff = gN + gY uk(z, α, λ), (5.5)

where

gY uk(z, α, λ) = 2π · α · λ2 ·G4 · ρ0 ·
1

z

(
e−

z
λ + e

z−h
λ

)
. (5.6)

It is biggest at the mirror and at the scatterer where the fifth force is
strongest. Since we are only interested in a crude estimation of the ef-
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fects, at the moment, we can ignore the force coming from the mirror and
concentrate on the potential of the scatterer, which has the dominant in-
fluence on the transmission. To make the estimate even cruder we will use
the value of the potential at the scatterer as gY uk and assume that λ has the
same order of magnitude as the width of the waveguide. This leaves us
with:

˜gY uk(α, λ) = 2π · α · λ ·G4 · ρ0. (5.7)

Our measured g was: g = 9.8± 0.2 (for constant fit parameters), i.e. we
have achieved a relative accuracy of roughly 2%! If we now assume that
we measured an effective g including a Yukawa force we can immediately
deduce what kind of limits we might be able to set on the parameters
of the Yukawa potential. It is clear that we could, at best, measure an
extra acceleration with 2% the magnitude of gN . The classical gravitational
acceleration is given by

gN =
GME

R2
E

=
4

3
πGρRE, (5.8)

and we are interested in ˜gY uk divided by gN :

˜gY uk

gN

=
3

2
α · λ

RE

. (5.9)

We could theoretically detect a 2% effect which means that for the earths
radius being approximately 107m and a λ of 10−6m we could exclude fifth
forces with a strenght α of 1011 or more.

This method is nowhere near perfect, of course, and the actual effect of
gY uk would be less than we estimated here. To really set limits for possible
α and λ values it will be necessary to explicitly calculate the change of the
wave functions and energy eigenvalues due to the additional force. This
was done and will be presented in the next section.

5.4 An investigation of systematic effects on our
limits for α and λ

The change in the wave functions and energy eigenvalues under the in-
fluence of various Yukawa potentials with different parameters was cal-
culated numerically. Predictions for the transmission of neutrons through
the waveguide were made for all pairs of "fifth force" parameters and fit-
ted to the data from the 2002 experimental run. χ2 values were calculated
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for each fit. For each value of λ a function χ2 of α was interpolated. Finally
the 90% confidence interval of α for a certain value of λ was determined
and the α(λ) curve for the boundary of possible values of α and λ was
interpolated from these values.

In this chapter we will discuss the different effects of attractive and re-
pulsive Yukawa potentials, the effect of a systematic error in the data as
well as the impact of the parameter αloss used to describe the quality of
the scatterer used in the experiment. The scatterer can be modeled by a
WKB calculation without a fit parameter starting from the Fermi poten-
tial of an absorbing layer on the surface of the scatterer, [We01]. When it
was experimentally determined that the presence of an absorbent coating
does not influence the efficiency of the scatterer the WKB model was not
explored further. The model that was used for calculations within this the-
sis uses s-wave scattering at the rough scatterers surface as the dominant
loss mechanism. This model requires a parameter, αloss to account for the
efficiency of the scatterer, [We01]. An attempt to calculate αloss from first
principles ([We04]) deviates from the fitted value by 60%.

Here, we investigate systematic effects of the hypothetical existence of
so called "fifth forces" on the experiment and data. For the most part the
fits presented were obtained with αloss kept constant at the value obtained
from a fit of the "Newtonian" prediction (without Yukawa forces) to the
2002 data. As we are investigating systematic effects and we know that
the true value of αloss is independent of Yukawa forces (it is defined by the
geometry and material of the scatterer) this procedure is legitimate.

5.4.1 Observation of different effects for attractive and re-
pulsive Yukawa potentials

In the process of this thesis we concentrated mostly on a repulsive Yukawa
potential, i.e. positive α, since we assumed that the effects of an attractive
and a repulsive potential of the same magnitude should be symmetrical in
the range where no extra states can be formed inside the attractive Yukawa
pocket. This is not quite the case as can be seen from figure 5.4

For a specified range of the potential the gradient of χ2 (α) is greater
for negative α than for positive α. This is an effect of the scatterer which
we used in the experiment to filter out neutrons with high vertical veloci-
ties. The Airy functions of the bound states decrease exponentially with z.
The attractive Yukawa potential at the scatterer will decrease the slope of
the bound state wave functions and therefore increase the overlap of the
absolute square of these wave functions with the scatterer. The repulsive

62



Figure 5.4: χ2 for λ = 2µm as a function of α

potential will increase the slope and decrease the overlap. Because of the
exponential decrease of the wave functions the overall change in the over-
lap will be greater for an attractive potential. Thus, the limits on negative
α for a certain value of λ are smaller than for positive α, see figure 5.5. The
tooth in both curves at a λ value of roughly 3µm are due to interpolation
instabilities.

5.4.2 Effects of a systematic error of the data

This position uncertainty leads to systematic effects which are demon-
strated in figures 5.6, 5.8 and 5.7. In these figures the data has been system-
atically changed, once all data points have been moved up one micron and
once down. The scattering parameter αloss for each data set has been de-
termined by fitting the Newtonian prediction with no Yukawa potentials
present to each of the three data sets. When the data points are moved
up this corresponds to the transmission setting in at greater heights which
would also be the case if the wave functions were broader. This situation
would favour an attractive Yukawa potential since this potential would
lead to a "stretching" of the wave functions. When the data points are
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Figure 5.5: Comparison of the limits for positive and negative α

moved down this would accordingly favour a repulsive Yukawa force, be-
cause it would imply wave functions that are somewhat more narrow than
those calculated from the Newtonian potential.

From figure 5.6 and the small section of figure 5.6 that is shown in
figure 5.7 we can see that the limits set for the Yukawa parameters are
tightest for the dataset where all data points have been moved up by one
micron. This makes sense because we have calculated the curve for the
parameters of a repulsive Yukawa potential which has an effect contrary
to this particular displacement of the data.

From the qualitative argument given above for the correlation of the
displacement of the data and the shape of the wave functions we would
expect the limits for the dataset where all data points have been moved
down by one micron to be higher than those derived from the original
data, since the situation would favour an attractive Yukawa potential.
This is not the case as we can see from figures 5.6 and 5.7 and we do
not,yet,understand why not.

Figure 5.8 shows the same curves as figure 5.6 forλ ≈ 1µm. We can see
that the curves for the different data sets are not parallel for λ ≤ 1.2µm.
This effect can also not be understood from our hand-waving argument
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Figure 5.6: Change of the limits due to systematic errors in the measure-
ment of the height of the absorber

Figure 5.7: Change of the limits due to systematic errors in the measure-
ment of the height of the absorber for λ around 10µm
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Figure 5.8: Change of the limits due to systematic errors in the measure-
ment of the height of the absorber for λ around 1µm

for the correlation of the Yukawa parameters and the displacements of
the data. We assume that it is caused by instabilities of our model for
the calculation of the eigenfunctions of the Schroedinger equation with
an additional Yukawa potential, since for high values of α the numerical
calculations converge very slowly.
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Chapter 6

Summary

In the progress of this thesis a position sensitive neutron detector was de-
veloped. It has a very good spatial resolution of 1.4µm which is much
higher than that of ordinary position sensitive neutron detectors, where
the resolution usually lies between 100µm and 1mm.

The new detector was tested this summer at the Institute Laue Langevin,
Grenoble in an experiment to detect gravitationally bound quantum states
of ultra-cold neutrons. It will be used regularly for this experiment from
now on.

In this experiment ultra-cold neutrons with vertical energy compo-
nents of the order of peV are stored above a horizontal mirror where they
form bound quantum states in the gravitational field. A scatterer is placed
some distance (≈ 50µm) above the mirror in order to remove neutrons
with comparatively high energies. There are two methods of measuring
the shape of the bound state wave functions: One is to move the scat-
terer upwards in small steps and to measure the transmission of neutrons
through the slit between mirror and scatterer for each height of the scat-
terer. With this method it was possible to prove, for the first time, the
existence of such states, [Ne02]. The other method is to leave the scatterer
at a constant height and to directly measure the density distribution of the
neutrons above the mirror. The position sensitive detector was used in
such a measurement during the experimental cycle of this summer.

The quantum mechanical prediction for the outcome of the measure-
ment describes the data very well and the measurement can be considered
to be a significant indication for the quantum behaviour of neutrons in
our installation. The statistics of the measurement, however, were not yet
good enough to exclude the classical case with a high probability.

During the next experimental run in February 2005 the measurement
of the density distribution will be repeated with better statistics. It could
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then be possible to finally exclude the classical case for the motion of the
neutrons.

Furthermore, within the framework of this thesis, the gravitational ac-
celeration of the earth g was determined from data of the first kind of mea-
surement (the transmission measurement) obtained in 2002. We have de-
termined g with a relative error of 2% from a fit to the quantum states
which is a highly satisfactory result.

Another aspect of this work was the investigation of possible extra
forces and their effect on our measurement. The possibility of the exis-
tence of gravity-like forces acting on ranges below 1mm is the outcome
of many string-inspired theories using so-called large extra dimensions.
Some of these theories predict effects that could be detected with our ex-
periment, and limits for the strength and range of these new forces have
already been deduced from our data.

During the last year several systematic effects of these new, hypotheti-
cal forces in our experiment were studied using data from the 2002 trans-
mission experiment. Attractive forces would be more easily detectable by
our experiment than repulsive ones due to the geometry of the setup.

The calibration of the absorber height has been improved for the ex-
periments performed this summer and there has been some progress in
calculating the efficiency of the scatterer analytically. This makes us cer-
tain that we will be able to obtain much stronger limits for the range and
strength of possible extra forces once the new data has been evaluated.
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Appendix A

A recipe for handling the
detectors

When dealing with the detectors it is important to always wear plastic
gloves, clean clothing and a hair net!

A.1 Cleaning

Ultrasonic Baths 20 min Benzinum 20 min Isopropanol 20 min demineralized water

Greater stains can be removed using e.g. cotton wool dipped into Ben-
zinum. It is best to let the detectors air-dry.

A.2 Coating

The pressure inside the evaporation device should be no more than 10−6bar
when the evaporation process is begun. Usually it will take about 14 hours
until this pressure is reached.

The quality of the coatings is better if the evaporation rate is quite low.
1− 2nm per minute are advisable.

After the application of the coating the detectors should be allowed to
cool down slowly for about four hours.
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A.3 Storage

Once they are taken out of the evaporation device the detectors should be
stored in a dry place, possibly a box with silica gel or something similar in
it.

They should be shielded against neutrons and α-particles as well as
possible. This can be done by keeping the box with the detectors inside in
an aluminium bag with BF4-mats around the inside.

A.4 Removing the coating

The coating normally peels off in a ultrasonic bath with water after a few
minutes. Sometimes 20% HCl solution was used in addition. It is no prob-
lem if some Boron is left on the detector when it is immerged in the NaOH
solution: Boron reacts very strongly with the Na ions to form Borax salt
which will dissolve very quickly.

A.5 Etching

All detectors were etched in 20% NaOH solution. The bulk etch velocity
depends on the temperature very strongly, see 3.3 and 3.4. For the best
resolution as little as possible should be etched off the bulk - if the detec-
tors are being read out under a microscope with a magnification factor of
20 this means about 0.2µm.

The etching was done using a laboratory hotplate with a magnetic stir-
rer. However, a water bath with automatic temperature control and some
kind of stirring mechanism would be preferable.

A.6 Readout

The traces can be read out with a standard optical microscope. Both sys-
tems we used had a movable stage under the lens and were fitted with a
CCD camera. In this way photographs of the detector can be taken and
mapped later on. It is important to have the microscope and the detector
as clean as possible.
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Appendix B

Ultra-Cold Neutrons

Here, we are following the argument of [Go91]. UCNs are defined as neu-
trons with a mean energy below 100neV. This is the energy where, for most
materials, neutrons will undergo total reflection from a surface under all
angles of incidence because their energy is lower than the effective poten-
tial of the surface. The actual interaction of the neutrons with the nuclei
of the material can be approximated by the interaction with the so called
Fermi potential. This approach relies on the assumption that, outside the
range of the interaction between a neutron and a nucleus, the wave func-
tion of the neutron will not be changed dramatically. Therefore, a new
potential can be introduced to calculate the long-range effects of the inter-
action within the boundaries of perturbation theory, despite the fact that
the neutron-nucleus potential is very strong. For the calculation of long-
range effects the Fermi potential is equivalent to the actual potential of the
interaction.

As a first approximation a nucleus as seen by a neutron forms a spher-
ical potential well with radius R, the range of the interaction. For slow
neutrons with λ >> R the scattered wave function outside the potential
has the form of a spherical wave. The total wave function outside the well
can then be written as the sum of the incoming, plane wave and the scat-
tered, spherical one:

ψ(r) ∝ eikr + f(θ)
eikr

r
. (B.1)

Inside the well the neutron wave function is proportional to sin (KR)

with K =
√

2m(E+V )
~2 . Since the boundary of the well forms a θ-function

singularity the transition at the boundary has to be continuous in the wave
functions and their first derivatives. This condition can be used to de-
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termine f(θ). Because of the small range of the strong interaction and
the large wavelengths of the incoming neutrons, the scattering is mostly s
wave and the angular dependence of f(θ) can be ignored. f(θ) = −α is
the usual convention for the sign of the scattering constant. In this case the
wave function outside the potential will approximately have the form of a
straight line for r < 1

k
:

ψ(r) ∝ 1− α

r
. (B.2)

Then, α can be interpreted as the radius of a hard sphere which would
produce the same wave function as the scattering potential for r >> R.
With f(θ) = −α positive values of α correspond to spheres with a repul-
sive potential. The boundary conditions for the wave functions now yields

α = R(1− tanKR

KR
), (B.3)

so that we can see that α will actually be positive for most values of
KR, corresponding to an effectively repulsive potential although the actual
interaction is attractive.

The differential cross section of the problem is

dσ

dΩ
= |f(θ)|2 = α2, (B.4)

which defines the physical meaning of f(θ) and α. f(θ) is called the
scattering amplitude and α the scattering length.

It is still necessary to find an expression for the potential U so that a
perturbative solution of the Schroedinger equation will yield B.1 far away
from the region of the interaction. The Schroedinger equation for the rela-
tive motions of the neutron and the nucleus should look like

− ~2

2µ
∆2

ηψ(η) + (E − U(η))ψ(η) = 0, (B.5)

with the relative coordinate η = r − rn and the reduces mass µ, where

U(η) =

{
−U0 η < ρ
0 η > ρ

, (B.6)

with some distance ρ chosen so that ρ << λn, ρ >> a and ρ >> R.

The potential U can be calculated from f(θ) using the Born approxima-
tion for f(θ):

72



f (θ) = − µ

2π~2
〈kf |U | ki〉 = − µ

2π~2

∫
d3ηU (η) ei(~ki−~kf)~η. (B.7)

Since the range of the potential U is supposed to be much smaller than
the wavelength of the neutron (which coincides with the demand that
f(θ) = −α, a constant) this equation is reduced to

α = − 2µ

3~2
U0ρ

3. (B.8)

For the validity of the Born approximation it is required that the mag-
nitude of the potential U0 is much smaller than the energy of the neutron.
Together with the above expression for α this yields the critical condition
that −kα << 1 which is usually satisfied. Now we know that it must be
possible to find such a potential U to give the correct scattering amplitude
f.

If U0 is now expressed in terms of α and the relation∫
U(η)d3η = −U0

4π

3
ρ3 (B.9)

is used the Fermi potential in first order Born approximation can finally
be obtained:

UF (η) =
2π~2α

µ
delta3(η). (B.10)

This is, of course, only the Fermi potential of a single nucleus. If we
want to look at the interaction of UCN with a whole surface of a certain
material, we have to consider the combined Fermi potential of all present
nuclei. In this case it is no longer appropriate to consider the relative co-
ordinate and the reduced mass since the interacting nuclei are bound in
some kind of lattice structure. The scattering length of a single, free nu-
cleus that we used so far also has to be replaced by the bound scattering
length αB = m

µ
αwhich will be referred to as α from now on. The combined

Fermi potential of the nuclei of the surface then looks like

UF (~r) =
2π~2

µ

∑
i

αiδ
3 (~r − ~ri) . (B.11)

If the material is now considered to consist of identical isotopes which
are homogeneously distributed with a sharp edge the surface can be con-
sidered to form a potential step of height
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V =
2π~2

m
Nα, (B.12)

where N is the number density of the material. For typical materials
this potential lies in the range of 100neV.

Finally, the problem has now been condensed down to the quantum
mechanical potential step and it is straightforward to see that neutrons
with total energies below the size of the potential step will be reflected for
all angles of incidence. This is the reason why UCNs can be used in so
many interesting experiments. Their storage time is almost only limited
by the neutron β-decay lifetime which makes them ideally suited to mea-
sure exactly this value. UCNs are also used in the experimental search
for the neutron electric dipole moment, the electric charge of the neutron
and precision measurements of the neutron magnetic dipole moment, as
well as many other experiments testing fundamental physical concepts.
And, of course, they are also used in the search for gravitationally bound
quantum states.
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