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Precise Determination of the cc̄ Cross Section in

proton-proton Collisions at
√
s = 7 TeV

Abstract

The cross sections of the charmed hadrons D0, D+, D∗+, D+
s and Λ+

c have been ex-

trapolated over the full phase space using measurements of ALICE and LHCb at LHC

covering a large region of the phase, namely |y| < 0.5 for ALICE and 2.0 < y < 4.5 for

LHCb, by using theoretical predictions obtained from the FONLL calculation framework

and the PYTHIA 8.175 event generator. The FONLL and PYTHIA predictions have

been compared to the experimental data. We observed that the shape of the measured

pT-distributions is well described by these predictions. We determined the total charm

pair cross section in proton-proton collisions at
√
s = 7 TeV as

σtot(cc̄) = 7.13± 0.14 (stat)+0.33
−0.43 (syst)± 0.13 (lum)± 0.24 (BR)+0.35

−0.12 (extr) mb ,

σtot(cc̄) = 7.13+0.57
−0.54 (total) mb .

This is the most precise determination of the charm pair cross section at the LHC to

date.

Kurzdarstellung

Die Wirkungsquerschnitte der Charm-Hadronen D0, D+, D∗+, D+
s und Λ+

c wurden an-

hand von Messungen von ALICE und LHCb am LHC extrapoliert. Zu diesem Zweck

wurden perturbative QCD Rechnungen mit FONLL und Ergebnisse vom Ereignisgene-

rator PYTHIA 8.175 verwendet. Die FONLL und PYTHIA Rechnungen wurden mit

experimentellen Daten verglichen. Wir konnten feststellen, dass die Vorhersagen den

Verlauf der gemessenen pT-Distributionen korrekt beschreiben. Wir haben den totalen

Charm-Paar Wirkungsquerschnitt in Proton-Proton Kollisionen für
√
s = 7 TeV ermit-

telt. Unser Ergebnis lautet

σtot(cc̄) = 7.13± 0.14 (stat)+0.33
−0.43 (syst)± 0.13 (lum)± 0.24 (BR)+0.35

−0.12 (extr) mb ,

σtot(cc̄) = 7.13+0.57
−0.54 (total) mb .

Dies ist die bislang genaueste Bestimmung des Charm-Paar Wirkungsquerschnittes am

LHC.
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1 Introduction

Measurements of charm production in proton-proton collisions test predictions of per-

turbative Quantum Chromodynamics (QCD). Further, the charm pair cross section is an

important parameter in statistical calculations of charmed hadron production in high-

energy nucleus-nucleus collisions [1], [2]. The ATLAS, ALICE and LHCb collaborations

at the Large Hadron Collider (LHC) have measured charm production in proton-proton

collisions at
√
s = 7 TeV by measuring charmed hadron cross sections, since charm

quarks hadronize soon after their production and thus cannot be detected directly. The

measurements are provided in ref. [3], [4], [5] and [6]. However, due to experimental li-

mitations, these cross sections could only be measured in a restricted range of transverse

momentum pT and rapidity y. Recently, LHCb published cross sections for D mesons

D0, D+, D∗+, D+
s and for the charmed baryon Λ+

c measured in the forward rapidity

range 2.0 < y < 4.5 [6]. ALICE already measured cross sections for the D mesons at

mid-rapidity |y| < 0.5. Both experiments extrapolated the total charm cross section

from their own measurements. However, these extrapolated cross sections had large un-

certainties mainly originating from the extrapolation. An important observation is, that

ALICE and LHCb already cover a large domain of the (pT, y) phase space. Since most

charm quarks are produced at low rapidities, combining the measurements of ALICE

and LHCb and performing an extrapolation using this combination should reduce un-

certainties related to the extrapolation since the measurements cover a large region of

the phase space.

The aim of this thesis is to extrapolate the charm pair cross section using the combined

results of ALICE and LHCb. This thesis is organized as follows: In section 2 we will give

a general explanation of the theory behind heavy quark production in hadron-hadron

collisions. In section 3 we will introduce the FONLL calculation framework, which we will

use to obtain theoretical predictions for the D meson cross sections. This is followed by

section 4 where we will discuss the combination of the ALICE and LHCb measurements

and explain how the cross sections of charmed hadrons and of charm pairs have been

extrapolated. Finally, in the last section 5 we will summarize our results.

Note that within this thesis we used natural units, i.e. ~ = c = 1. Plots shown in this

thesis have been produced mainly with Matplotlib [7].
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2 Heavy Quark Production in Hadron-Hadron Collisions

Charm, bottom and top quarks are considered to be heavy quarks due to their large

masses. The heavy quark production in the collision of two hadrons H1 and H2 is given

by the reaction

H1 +H2 −→ Q+ Q̄+X , (2.1)

where Q denotes the heavy quark and Q̄ the corresponding anti-quark. Due to confine-

ment, quarks cannot be observed freely. They are bound in color-neutral hadrons. There-

fore, soon after their production, the heavy quark pairs hadronize and form hadrons. In

this section we will explain the theoretical basis of this process step by step.

2.1 Renormalization and asymptotic freedom

In calculations of probability amplitudes in the context of quantum field theories, it is

possible that the involved integrals are divergent and therefore ill-defined. One possibility

for a process involving divergent terms is illustrated in figure 2.1. Loops like in this figure

Figure 2.1: An example for a Feynman diagram with a loop. Such loops are related to

effects on a very short time scale.

give rise to so-called ultraviolet divergences which are related to very short time or very

high energy scales respectively. In order to account for these ultraviolet divergences in

our calculations, we have to redefine free parameters of the theory like the mass or the

coupling constant absorbing divergent terms. This procedure is called renormalization

and the quantities we obtain are renormalized ones. The dependence of the renormalized

quantities on the so-called renormalization scale µR is then given by the renormalization
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group equations (RGE) of the underlying quantum field theory. For instance, the scale

dependence of the strong coupling constant αS is determined by the RGE

µ2
R

dαS(µ2
R)

d(µ2
R)

= β(αS(µ2
R)) , (2.2)

with the beta-function β(αS(µ2
R)). Equation 2.2 is an ordinary differential equation of

first order, which can be integrated for a given boundary condition αS(µ2
0) at some scale

µ0. The leading order approximation of the differential equation 2.2 is given by

µ2
R

dαS(µ2
R)

d(µ2
R)

= − β0

12π
α2

S(µ2
R) , (2.3)

where β0 = 33− 2Nf and Nf denotes the number of active quark flavours. This leading

order approximation has the solution

αS(µ2
R) =

αS(µ2
0)

1 + β0
12παS(µ2

0) log(µ2
R/µ

2
0)

(2.4)

for a given value αS(µ2
0). So, one can measure the strong coupling at some initial scale

µ0 and then determine the scale dependence using the renormalization group equations.

Typically, one choses the strong coupling constant at µ0 = MZ as boundary condition,

where MZ = 91.1876± 0.0021 GeV [8] denotes the mass of the Z-boson. Then, we have

αS(M2
Z) = 0.1184 ± 0.0007 as the world average cited by [8]. We can write the strong

coupling constant as a function of the scale in the more convenient form

αS(µ2
R) =

12π

β0 log(µ2
R/Λ

2)
, (2.5)

where Λ = µ2
0 exp(−12π/(β0αS(µ2

0))) ≈ 0.2 GeV is defining the scale at which the strong

coupling αS(µ2
R) diverges. Considering equation 2.5, we observe that the strong coupling

decreases as the renormalization scale µR increases. This means that the interaction is

strong at low but weak at high energy scales. This important property of the strong coup-

ling αS is called asymptotic freedom and has a central role in perturbative calculations.

For energy scales smaller than Λ the strong coupling αS is large and therefore perturba-

tive calculations are not amenable. However, for energy scales much higher than Λ, αS

is small and therefore perturbative calculations are possible. Since Λ defines the border

between perturbative and non-perturbative scales, it is called the non-perturbative scale

of QCD.
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Recall that the dependency of the strong coupling constant on the renormalization scale

had been introduced to take care of ultraviolet divergences and has no physical justifi-

cation. Therefore, a physical observable A has to be independent of the renormalization

scale. That is, the observable A satisfies

µ2
R

dA(µ2
R)

d(µ2
R)

= 0 . (2.6)

In practice, one considers the perturbative expansion of A up to some finite order. Thus,

there is still a residual dependence on the renormalization scale since full calculations of

the expansion are often not possible. In order to estimate the dependence on the renor-

malization scale, the scale is varied in a certain range and the corresponding variation

of the observable A is taken as an uncertainty due to scale dependence.

2.2 Factorization

Since we have hadrons in the initial state of the collision process, low energy scales due

to the confinement of color-charge are inevitable. Thus, the strong coupling constant is

large and a perturbative approach is not possible. However, we can use the factorization

theorem of QCD [9] to separate soft processes, which are of non-perturbative nature,

from hard processes, which are amenable to perturbation theory.

Another problem is that higher order Feynman diagrams include so-called infrared and

collinear singularities. Infrared singularities are caused by the radiation and the exchange

of gluons with low momentum. Collinear singularities originate from the emission of

gluons collinear with the emitting particle. Whereas ultraviolet singularities are related

to very short time scales, infrared and collinear singularities are related to very long

time scales and thus small energy scales.

To attack these two problems, we depict a hadron in the initial state as a composition of

pointlike constituents called partons. We can view the term parton as an umbrella term

for quarks and gluons. The notion of factorization is then illustrated in figure 2.2.

The differential cross section for heavy quark production in hadron-hadron collisions is

given by

dσQQ̄XH1H2
=
∑
i,j

∫
dx1

∫
dx2 F

i
H1

(x1, µ
2
F )F jH2

(x2, µ
2
F ) dσ̂QQ̄Xij (p1, p2, µ

2
R, µ

2
F ) . (2.7)
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F i
H1

F j
H2

dσ̂QQ̄X
ij

H1(P1)

H2(P2)

Q

Q̄

X

i(p1)

j(p2)

Figure 2.2: The factorized picture of heavy quark production in hadron-hadron colli-

sions. H1 and H2 denote the colliding hadrons with four-momenta P1 and

P2 respectively. F iH1
and F jH2

are the parton distribution functions, i and j

are the interacting partons with four-momenta p1 and p2. The hard scatte-

ring cross section dσ̂QQ̄Xij describes the probability to produce a heavy quark

pair QQ̄ in the interaction of the partons i and j.

5



If P1 and P2 are the (four-)momenta of the incoming hadrons H1 and H2 respectively,

then x1 and x2 denote the momentum fractions of the hadrons momentum carried by

the interacting partons i and j. That is, for the momenta of the interacting partons p1

and p2 we have p1 = x1P1 and p2 = x2P2. The functions F iH1
(x1, µ

2
F ) and F jH2

(x2, µ
2
F )

are the parton distribution functions of the colliding hadrons H1 and H2. For example,

F iH1
(x1, µ

2
F ) describes the probability density for finding a parton i, which carries the

momentum fraction x1 of the hadron, inside the hadron H1. Besides the dependence on

the momentum fraction of the parton, the parton distribution functions also depend on

the so-called factorization scale µF . As in the renormalization procedure, this scale de-

pendence is introduced to conceal divergences due to very low energy scales, as described

above, in the parton distribution function. The evolution of the distribution functions

as a function of the scale is then determined by the DGLAP1 equation. That is, once

you measured the parton distribution function for a given momentum fraction and fac-

torization scale, you can evolve it to any scale using the DGLAP equation. However,

the renormalization and factorization scales µR and µF are artificial parameters to avoid

divergences. Physical quantities, like the differential cross section dσQQ̄XH1H2
, have to be

independent of both µR and µF . Finally, dσ̂QQ̄Xij (p1, p2, µ
2
R, µ

2
F ) describes the hard in-

teraction of the partons i and j producing a heavy quark pair QQ̄. The interaction scale

in this process is of the order of the heavy quark mass m. Since m � Λ, the strong

coupling is small and the interaction is amenable to perturbation theory.

2.3 Leading and Next-to-leading order calculations

The hard scattering cross section dσ̂QQ̄Xij may be calculated using a perturbative expan-

sion in the strong coupling αS. The differential cross section for heavy quark production

in hadron-hadron collisions is then given by equation 2.7. A complete calculation of this

differential cross section would be independent of the choice of the renormalization scale

µR and the factorization scale µF . However, such full calculations are not possible and

therefore the expansion is only calculated up to a finite order. In order to account for

the dependence of the result on µR and µF , these scales are varied around a central

1DGLAP stands for Dokshitzer-Gribov-Lipatov-Altarelli-Parisi. These are the physicists who derived

the evolution equation first.
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value. The resulting variation in the differential cross section is then considered to be

an uncertainty due to scale dependence.

The leading order contributions, that is terms with α2
S, to the production cross section

of heavy quarks are given by the processes

qq̄ −→ QQ̄ and gg −→ QQ̄ .

Some typical Feynman diagrams corresponding to these processes are illustrated in fig-

ure 2.3. For high partonic center of mass enegies, the contributions from qq̄ vanish and

Figure 2.3: Leading order Feynman diagrams contributing to the cross section.

the remaining contributions from gg processes dominate. For the virtuality q2 in the

s-channel we have ŝ ≥ 4m2 and in the t-channel we have t̂ ≥ m2. Therefore, there are

no poles in the propagators and the minimum transverse momentum transferred in the

t-channel sets the scale for the renormalization. Since this is of the order of the heavy

quark mass m and since m is much larger than Λ, the strong coupling αS is small and

perturbative calculations are possible.

Next-to-Leading order (NLO) calculations including terms of order α3
S are provided in

[10] and [11] among others. From these calculations we expect that the uncertainties

related to the renormalization scale µR and factorization scale µF should be reduced.

However, these results still have a considerable dependence on the scales especially for

large transverse momenta pT of the heavy quark. Furthermore, large logarithms of the

ratio pT/m arise for pT � m. They can be classified as leading logarithmic (LL) terms

α2
S(αS log(pT/m))k and next-to-leading logarithmic (NLL) terms α3

S(αS log(pT/m))k.

These large logarithms are mainly caused by gluon-splitting and flavour-excitation di-

agrams, which are depicted in figure 2.4. Therefore, the NLO calculation only appro-

priately describes the heavy quark production for pT of the order of the heavy quark

mass m.
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Figure 2.4: The left diagram illustrates the gluon-splitting and the right diagram depicts

the flavour-excitation processes. Both are NLO contibutions causing large

logarithms of the ratio pT/m.

2.4 Resummation

The large logarithms arising in the NLO calculation for pT � m can be resummed

using the fragmentation function formalism. These calculations are described in detail

in [12]. The idea of the formalism is depicted in figure 2.5. The heavy quark production

differential cross section is then given by

dσQQ̄X
H1H2

=
∑
i,j,k

∫
dx1

∫
dx2

∫
dx3 F

i
H1

(x1, µ
2
F )F j

H2
(x2, µ

2
F ) dσ̂kX

ij (p1, p2, µ
2
R, µ

2
F )DQ

k (x3, µ
2
F ) .

(2.8)

We can observe that this formula is very similar to the one given in equation 2.7. As

there, F iH1
(x1, µ

2
F ) and F jH2

(x2, µ
2
F ) are the parton distribution functions of the colliding

hadrons H1 and H2. The differences are as follows.

1. If a quark is produced at very high transverse momentum pT with respect to the

quark mass m (i.e. pT � m), then the mass has only a minor effect on the scattering

process. Therefore, dσ̂kXij (p1, p2, µ
2
R, µ

2
F ) describes the differential cross section for

the production of a massless parton k with a four-momentum p3 in the interaction of

two parton i and j, originating from the colliding hadrons.

2. The heavy quark Q is produced trough the fragmentation of the massless parton k.

The function DQ
k (x3, µ

2
F ) is the perturbative fragmentation function. It describes the

probability for a massless parton k to fragment into a heavy quark Q, which carries

a (four-)momentum fraction x3 of the parton k. The dependence on the factorization

scale is determined by the DGLAP equations. A key property of this heavy quark
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F i
H1

F j
H2

dσ̂kX
ij

H1(P1)

H2(P2)

Q

X

i(p1)

j(p2)

DQ
k

k(p3)

Figure 2.5: Diagram corresponding to the fragmentation function formalism. The dia-

gram is very similar to figure 2.2. However here, k is a massless parton with

four-momentum p3 produced in the hard interaction of the partons i and j.

The parton k fragments into a heavy quark Q. The fragmentaion is described

by the fragmentation function DQ
k .

fragmentation function is that its initial states conditions can be derived from first

principles in QCD.

In this way, the large logarithms appearing in the NLO calculation are resummed through

the scale dependence of the heavy quark fragmentation function DQ
k (x3, µ

2
F ). This

means, that they are accounted for in the very same way as the ultraviolet divergences

are in the renormalization and the infrared and collinear divergences are in the factori-

zation procedure. This kind of resummation has been performed to NLL accuracy and

is provided in [12]. For pT � m we have now a smaller dependence on the scales than

in the NLO calculations. It is however difficult to recover the NLO results for pT being

of the order of m since for such transverse momenta the effects due to the heavy quark

mass cannot be neglected. This has been resolved by combining NLO and the resummed

results to describe the heavy quark production. In the next section we will introduce

such an approach called Fixed-order next-to-leading logarithm (FONLL).
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3 The FONLL Framework

Perturbative calculations to NLO accuracy describe the heavy quark production only

for transverse momenta pT of the heavy quark of the order of the heavy quark mass

m and fail for pT � m since then, large logarithms of the ratio pT/m arise spoiling

the convergence of the perturbative expansion. However, these large logarithms can be

resummed to all orders using the fragmentation function approach as performed in [12]

to NLL accuracy. This approach is appropriate for pT � m, but fails for pT of the order

of m since it is a massless formalism.

The acronym FONLL stands for fixed order plus next-to-leading logarithms and is a

state-of-the-art calculation framework devised by M. Cacciari, M. Greco and P. Nason

in [13]. In this framework, fixed order calculations to NLO accuracy are merged with

NLL resummed results giving a suitable description of the heavy quark production.

The differential cross section for heavy quark production in the FONLL framework is

given by

dσFONLL = dσFO +G(m, pT)(dσRS − dσFOM0) . (3.1)

In this equation, dσFO denotes the fixed next-to-leading order and dσRS the resummed

result. In order to merge the FO and RS calculations, terms already present in the

FO calculations have to be subtracted from the RS result to avoid double counting.

However, the RS calculations are given in the massless approximation. Therefore, the

massless limit dσFOM0 of the FO result has to be taken into account. Then, one expects

the difference dσRS−dσFOM0 being of the order α4
S. In [13] though, it has been observed

that this difference is in fact much larger than expected, especially for pT ≤ 5m. For

this reason, a function

G(m, pT) =
p2

T

p2
T + k2m2

(3.2)

with k = 5 has been introduced to suppress the large difference for pT ≤ 5m.

3.1 Fragmentation into hadrons

It is not possible to observe quarks as free particles since soon after their production,

they are confined in color-neutral particles called hadrons. This is related to the scale

dependence of the strong coupling αS described in section 2.1. We observed there that
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the interaction is strong for small energy scales or equivalently for large distances. For

such scales, the strong coupling is large and perturbative calculations are not feasible.

Therefore, the hadronization is described by non-perturbative fragmentation functions.

The FONLL predictions for hadrons HQ with a heavy quark Q are obtained through a

convolution

dσ
HQ

FONLL = dσQFONLL ⊗D
HQ

Q , (3.3)

where dσQFONLL denotes the predicted differential cross section for the production of a

heavy quark Q and D
HQ

Q is the non-perturbative fragmentation function. The function

D
HQ

Q (z) describes the probability that a heavy quark Q hadronizes into a hadron HQ,

which has the four-momentum fraction z of the heavy quark.

The hadronization of bottom quarks b to hadrons Hb is parametrized by a Kartvelishvili

et al. distribution

DHb
b (z) = (α+ 1)(α+ 2)zα(1− z) (3.4)

in the context of FONLL calculations. The single parameter α of the distribution has

been extracted from experimental data from LEP [14]. To account for uncertainties in

the mass, α has been determined for three different values of the bottom mass. The

values used for the mass of the bottom quark are mb = 4.50, 4.75, 5.00 GeV with the

corresponding parameters α = 26.7, 24.2, 22.2, where mb = 4.50 GeV with α = 24.2

denotes the central value [15]. The functional form of the distribution is illustrated in

figure 3.1.

The hadronization of charm quarks into D mesons D0, D+ and D∗ is given by non-

perturbative fragmentation functions which have been constructed in [16] using frag-

mentation functions describing the fragmentation of a heavy quark into a pseudoscalar

and vector state provided in [17]. For the sake of brevity, we do not give the definitions of

these functions here but note that these functions have a single free parameter r, which

has been extracted from ALEPH e+e− data in [14]. Again, in order to account for un-

certainties in the quark mass, the parameter r has been determined for three different

values of the charm quark mass mc. These values are mc = 1.3, 1.5, 1.7 GeV with the

corresponding r = 0.06, 0.1, 0.135, where mc = 1.5 GeV with r = 0.1 denotes the central

setting. The non-perturbative fragmentation functions for the charm hadronizing into a

D meson are illustrated in figure 3.2.
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Figure 3.1: The Kartvelishvili et al. distribution with α = 24.2. This distribution is

used to describe the hadronization of a bottom quark b into a hadron Hb.
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Figure 3.2: The non-perturbative fragmentation functions describing the hadronization

of a charm quark c into one of the D mesons D0, D+ and D∗ for the central

parameter r = 0.1. The integrals are normalized to one.
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In both cases we can observe, that the peak of the distributions is located near z = 1.

This means that most of the hadrons HQ will carry large momentum fractions z of

the heavy quark Q. A qualitative explanation for this is, that the heavy quark Q is

slowed down insignificantly when forming a hadron with lighter quarks. Therefore, the

produced hadron HQ has almost the whole four-momentum of the initial heavy quark

Q. We can further observe, that the distributions describing the fragmentation of a

charm quark into a D0 and D+ meson have two peaks, which represent the D0 and D+

mesons coming from the decay of D∗ and D0 and D+ mesons originating directly from

the hadronization of charm quarks.

3.2 Theoretical uncertainties

The FONLL calculations depend on the heavy quark mass m, the renormalization and

factorization scales µR and µF and the parton distribution functions (PDF). An uncer-

tainty is associated with each of these parameters. The determination of the uncertainties

is described in the following.

To account for variations due to the scale dependence, the renormalization and factori-

zation scales µR and µF are varied around the central value µ = (p2
T +m2)1/2 using the

central values mb = 4.75 GeV for the mass of the bottom and mc = 1.5 GeV for the mass

of the charm quark. Let ξR = µR/µ and ξF = µF /µ. To avoid accidental compensations

between both scale dependences of the calculated cross section, µR and µF are varied

independently in the range 0.5 ≤ ξR, ξF ≤ 2.0 with the constraint 0.5 ≤ ξR/ξF ≤ 2.0.

The cross section is calculated for the following settings of the renormalization and

factorization scales relative to the central value µ:

(ξR, ξF ) ∈ {(1, 1), (0.5, 0.5), (2, 2), (0.5, 1), (1, 0.5), (2, 1), (1, 2)} .

The difference between the cross section corresponding to the central value ξR = 1,

ξF = 1 and the envelope obtained by the variation is defined to be the uncertainty

∆(dσ)±scale

related to the scale dependence of the differential cross section. The pT-differential cross

section of the charm quark for different scale settings is displayed in figure 3.3. In

this figure, the ratio of the predictions for different scales over the central prediction is
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depicted as well. We can observe that the scale variation is large for small pT and is

decreasing as pT increases.

The values of the heavy quark mass used for the central calculations are mb = 4.75 GeV

for bottom and mc = 1.5 GeV for charm quarks. To account for the dependence of the

FONLL calculations on the heavy quark mass, the calculations are performed for three

different values of the mass. These are mb = 4.50, 4.75, 5.00 GeV in the case of bottom

and mc = 1.3, 1.5, 1.7 GeV for charm quarks. The parameters of the non-perturbative

fragmentation functions are set to the corresponding values described in section 3.1.

The renormalization and the factorization scale are set to µ = (p2
T +m2)1/2. Again, the

envelope defines the uncertainty

∆(dσ)±mass .

The variation of the charm quark pT-spectrum due to mass variation is depicted in

figure 3.4.

The last uncertainty accounted for is associated with the PDF set used for the calculation

of the differential cross section. The default PDF set is CTEQ 6.6 [18]. The mass and

the scales are set to their central values and the uncertainty related to the PDF set is

evaluated as proposed in [19]. This defines again an uncertainty

∆(dσ)±PDF .

Figure 3.5 illustrates the variation of the charm pT-differential cross section due to the

PDF uncertainty.

These three uncertainties combined in quadrature define the total uncertainty of the

FONLL calculations. That is, the total uncertainty is given by

∆(dσ)± =
√

∆(dσ)2
±scale + ∆(dσ)2

±mass + ∆(dσ)2
±PDF . (3.5)

The FONLL calculation for the charm pT-spectrum with the total uncertainty band is

depicted in figure 3.6. If we compare this figure with the figures 3.3, 3.4 and 3.5, we

observe, that the total uncertainty is by far dominated by the uncertainty due to scale

variations.

FONLL predictions used within this thesis have been provided on the publicly acces-

sible web page [20]. We used predictions for proton-proton collisions at
√
s = 7 TeV.
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Figure 3.3: The pT-differential cross section of the charm quark for different scales in-

tegrated over y. The grey shaded area defines the envelope of the scale

variations and defines the uncertainty due to scale dependence.
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Figure 3.4: The pT-spectrum of the charm quark for three different masses mc =

1.3, 1.5, 1.7 GeV integrated over all y. The variation of the charm mass to

lower and higher values bounds the central cross section. The green area in

between defines the uncertainty band of FONLL calculations due to varia-

tions of the charm mass.
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Figure 3.5: The variation of the charm pT-spectrum integrated over all y due to the un-

certainty related to the parton distribution function used for the calculation.
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Figure 3.6: FONLL predictions for charm production in proton-proton collisions at
√
s =

7 TeV. The pT-spectrum with the total uncertainty band due to variations

of the charm mass, the renormalization and factorization scales and due to

uncertainties related to the parton distribution function is depicted.
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Predictions have been provided for distribution in pT, in y etc. as well as for the total

cross section within pT and y ranges specified by the user. It is also possible to make a

choice between different PDF sets and fragmentation functions, but we used the default

settings for our calculations. Results are provided for different settings of the parameters

summarized as follows.

• central is the result corresponding to the central settings of the parameters. These are

mb = 4.75 GeV for the bottom and mc = 1.5 GeV for the charm mass, ξF = ξR = 1 for

the ratio of the factorization and renormalization scales relative to µ = (p2
T +m2)1/2.

• min is the lower boundary given by the difference of the central value and the uncer-

tainty ∆(dσ)− as defined in equation 3.5.

• max is the upper boundary given by the sum of the central value and the uncertainty

∆(dσ)+ as defined in equation 3.5.

• min_sc is the minimum of the cross sections obtained by the variation of the scales,

that is

min{dσ(ξF ,ξR) | (ξF , ξR) ∈ {(0.5, 0.5), (2, 2), (2, 1), (1, 2), (1, 0.5), (0.5, 1)}}

for all pT in the considered range.

• max_sc is the maximum of the cross sections obtained by the variation of the scales,

that is

max{dσ(ξF ,ξR) | (ξF , ξR) ∈ {(0.5, 0.5), (2, 2), (2, 1), (1, 2), (1, 0.5), (0.5, 1)}}

for all pT in the considered range.

• min_mass denotes the lower boundary of results obtained by varying the charm mass.

• max_mass denotes the upper boundary of results obtained by varying the charm mass.

• min_pdf denotes the lower boundary of results obtained by accounting for uncertain-

ties related to the PDF.

• max_pdf denotes the upper boundary of results obtained by accounting for uncertain-

ties related to the PDF.
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• fr=.5 .5 denotes the prediction obtained for setting the scales to ξF = 0.5 and

ξR = 0.5.

• fr= 2 2 denotes the prediction obtained for setting the scales to ξF = 2.0 and ξR =

2.0.

• fr= 2 1 denotes the prediction obtained for setting the scales to ξF = 2.0 and ξR =

1.0.

• fr= 1 2 denotes the prediction obtained for setting the scales to ξF = 1.0 and ξR =

2.0.

• fr= 1 .5 denotes the prediction obtained for setting the scales to ξF = 1.0 and

ξR = 0.5.

• fr= .5 1 denotes the prediction obtained for setting the scales to ξF = 0.5 and

ξR = 1.0.
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4 Extrapolation

The general idea of the extrapolation is as follows. Suppose we have measured the

integrated cross section of a certain particle X over a domain A ⊆ R≥0×R of the (pT, y)

phase space, which we will call σexpr
A (X). Further suppose, that there is a theoretical

prediction for the double differential cross section d2σ(X)
d(p2T)dy

of the considered particle X

for the whole phase space. Our aim is to extrapolate the integrated cross section for a

domain B of the phase space using the measured and predicted cross sections. To this

aim we calculate

σtheo
A (X) =

∫
A

d2σ(X)

d(p2
T)dy

d(p2
T) dy , (4.1)

σtheo
B (X) =

∫
B

d2σ(X)

d(p2
T)dy

d(p2
T) dy . (4.2)

σtheo
A (X) is the predicted integrated cross section for the measured region A and σtheo

B (X)

is the predicted integrated cross section for the domain B of the extrapolation. To obtain

the extrapolated cross section σextr
B (X) for the domain B, we simply assume

σextr
B (X)/σtheo

B (X) = σexpr
A (X)/σtheo

A (X) . (4.3)

The notion of this assumption is that the ratio of the number of particles X we expect

to observe in the domain B of the phase space to the predicted number of particles for

the same domain is equal to the ratio of the number of particles we already measured

in the domain A to the number of particles predicted by the theory for the domain

A of the measurement. So essentially, we assume that the theoretical predictions we

are using describe at least the shape of the cross section of the considered particle

X appropriately such that the ratio of the measured and predicted cross sections are

constant. Equation 4.3 defines the extrapolated cross section. We can write this equation

in the more convenient form

σextr
B (X) = σexpr

A · fBA (X) , (4.4)

where we introduced the extrapolation factor fBA (X) = σtheo
B (X)/σtheo

A (X).

In the course of this section, we will describe the single ingredients of the extrapolation

procedure. We will start by explaining the general methods used by the ALICE and

LHCb collaborations to measure charm production in proton-proton collisions at
√
s =
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7 TeV and present the integrated cross sections of charmed hadrons measured by these

two collaborations. Then, we will explain how these measured cross sections have been

combined to use them for the extrapolation of the different charmed hadrons followed

by the description of theoretical predictions used to describe the cross sections of the

measured particles. Finally, we will explain how cross sections have been extrapolated

and how uncertainties have been propagated.

4.1 Measurement of charm production

Due to confinement, charm quarks produced in proton-proton collisions cannot be ob-

served as free particles since they hadronize soon after their production. The probability

for a charm quark to form a charmed hadron of a certain kind is called fragmentation

fraction. These have been measured in e+e− annihilation processes by several groups

[21]. The ratios are depicted in figure 4.1. Although it is not possible to measure charm

D0

56.5%

D+

24.6%

D+
s

8.0%
+
c

9.4%
Rest1.5%

Figure 4.1: The fragmentation fractions for a charm quark hadronizing into a charmed

hadron. The values for the fractions have been taken from [21].

production directly, the production of charmed hadrons can be measured principally.
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Using then the fragmentation fractions, one can obtain the charm production cross sec-

tion from these measurements. Furthermore, if we measure cross sections of D0, D+, D+
s

and Λ+
c originating from the hadronization of charm quarks, we can obtain the charm

pair cross section by adding up the single conrtibutions assuming that the residual 1%

is negligible. In measurements of charmed hadron production, it has to be taken into

account that there are two sources. The first source is the hadronization of charm quarks

produced in proton-proton collisions for instance. These charmed hadrons will be called

prompt hadrons. The second source is the decay of bottomed hadrons. Since hadrons

from these decays do not originate from charm quarks produced in the collision, this

source is considered to be background. Another challange is that charmed hadrons have

short lifetimes. Their decay length is of the order of few 100µm and therefore they decay

before they can be observed. However, it is possible to reconstruct these hadrons from

their decay products using invariant mass reconstruction.

Suppose a particle X with four-momentum pX decays into the particles A1, A2, . . . , AN

with four-momenta p1, p2, . . . , pN . The reaction is given by

X −→ A1 +A2 + · · ·+AN . (4.5)

Since energy and momentum are conserved, it holds

pX =
N∑
i=1

pi . (4.6)

Taking the square of both sides of this equation we obtain

m2
X = p2

X =

(
N∑
i=1

pi

)2

=

(
N∑
i=1

Ei

)2

−

(
N∑
i=1

~pi

)2

. (4.7)

This means that, if we can measure the energies Ei and the momenta ~pi of the decay

products, we can reconstruct the mass of the decayed particle and identify it. However,

since not all particles A1, A2, . . . , AN detected orginate from the decay process, there will

be a so-called combinatorial background due to combinations of uncorrelated particles.

Combinations of particles originating from the decay of the particle X will then cause

a peak in the invariant mass spectrum at the mass mX of the decayed particle X.

Unfortunately, the combinatorial background can become rather large especially for

decay processes with many decay products and can conceal the peak in the invariant

mass spectrum. Thus, a preselection of the detected particles is performed using a
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lifetime tag. That is, only such detected particles are considered for the invariant mass

analysis, which originate from a common displaced vertex with respect to the primary

interaction vertex. The displacement is required to be of the order of the decay length

of particle X. This preselection reduces the combinatorial background and improves the

signal to background ratio. As an example, the invariant mass spectrum for the decay

channel D+ → K−π+π+ measured by ALICE for different ranges of the transverse

momentum pT from [4] is given in figure 4.2. We can observe a peak at approximately

1.87 GeV, which corresponds to the mass m = 1869.69± 0.16 MeV [8] of the D+ meson.

The width of the Gaussian peak is determined by the experimental resolution.
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Figure 4.2: Invariant mass spectrum for the decay D+ → K−π+π+ measured in [4]. You

can observe the peaks at approximately 1.87 GeV, which corresponds to the

mass m = 1869.69± 0.16 MeV [8] of the D+ meson.

Usually, the number of decays X → A1 +A2 + · · ·+AN is measured for several bins in

pT and y. The integrated cross section of the particle X over a bin i is then given by

σi(X) =
Ni(X → A1 + · · ·+AN )

εi(X → A1 + · · ·+AN ) · B(X → A1 + · · ·+AN ) · Lint
. (4.8)

In this equation, Ni(X → A1 + · · · + AN ) is the number of decays measured in bin i

for the considered decay channel X → A1 + · · · + AN , B(X → A1 + · · · + AN ) is the

branching ratio of the decay channel, εi(X → A1 + · · ·+AN ) denotes the efficiency of the

detector for the bin i and for the channel observed and Lint is the integrated luminosity.

The respective differential cross sections can be obtained by dividing this result with the

binwidth in pT or with the binwidth in y.

ALICE measured charm production at central rapidity |y| < 0.5 in proton-proton col-

lisions at
√
s = 7 TeV [4], [5]. The pT-differential cross section of the prompt charmed
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mesons D0, D+, D∗+ and D+
s in |y| < 0.5 were measured. The measurements have

been performed with an integrated luminosity of Lint = 5 nb−1 for the measurement of

D0, D+ and D∗+ and with Lint = 4.98 nb−1 for the measurement of D+
s . The relative

uncertainty of the integrated luminosity was 3.5% in both cases. LHCb measured also

pT-differential cross section but of D0, D+, D∗+, D+
s and Λ+

c in proton-proton collisions

at
√
s = 7 TeV for 2.0 < y < 4.5. These measurements have been performed with an

integrated luminosity of Lint = 15 nb−1 which has a relative uncertainty of 3.5% as well.

The decay channels used to reconstruct the charmed hadrons from their decay products

as described above are given in table 4.1. Note, that the cross sections given for D0

Decay channel Branching ratio

D0 → K−π+ (3.88± 0.05)%

D+ → K−π+π+ (9.13± 0.19)%

D∗+ → D0π+ (67.7± 0.5)%

D+
s → φπ+ → K−K+π+ (2.28± 0.12)%

Λ+
c → pK−π+ (5.0± 1.3)%

Table 4.1: The decay channels used by ALICE and LHCb to reconstruct the charmed

hadron yields. The branching ratios have been taken from [8].

and D+ already include feeddown from D∗+. Although both experiments measured

charm production in proton-proton collisions at
√
s = 7 TeV, the phase space covered

is different. The domain measured by ALICE for the different D mesons are given as

follows

AALICE
D0 = {(pT, y) ∈ (1, 16)× (−0.5, 0.5) | pT in GeV} (4.9)

AALICE
D+ = {(pT, y) ∈ (1, 24)× (−0.5, 0.5) | pT in GeV} (4.10)

AALICE
D∗+ = {(pT, y) ∈ (1, 24)× (−0.5, 0.5) | pT in GeV} (4.11)

AALICE
D+

s
= {(pT, y) ∈ (2, 12)× (−0.5, 0.5) | pT in GeV} (4.12)

The integrated cross sections for the measured D mesons over their respective integration

domains are provided in [22] and [5]. In [22] however, only the statistical and systematic

25



uncertainties are cited. If σ(X) denotes the cross section summed over all bins, that is

σ(X) =
∑
i

σi(X) , (4.13)

where σi(X) denotes the integrated cross section in bin i as given in equation 4.8,

then the uncertainties resulting from the uncertainty of the integrated luminosity and

resulting from the uncertainty of the branching ratios can be obtained using Gaussian

propagation of uncertainty. So, these uncertainties are given by

(∆σ(X))±lum = σ(X) ·∆Lint/Lint , (4.14)

(∆σ(X))±BR = σ(X) ·∆B/B . (4.15)

The integrated cross sections measured by ALICE are summarized in table 4.2.

Hadron σALICE stat. syst. lum. BR

D0 412.2 ±32.7 +55.2
−139.5 ±14.4 ±5.3

D+ 198.3 ±24.0 +41.8
−73.2 ±6.9 ±4.1

D∗+ 203.3 ±22.7 +30.0
−67.0 ±7.1 ±3.0

D+
s 53.0 ±12.0 +13.0

−15.0 ±2.0 ±3.0

Table 4.2: The integrated cross sections in units of µb of the D mesons over the re-

spective ranges given in the equations 4.9 to 4.12 measured by ALICE. The

values with the statistical and systematic uncertainties have been taken from

[22] and [5]. The uncertainties due to uncertainties of the integrated lumino-

sity (lum.) and due to uncertainties of the branching ratios (BR) have been

calculated using equations 4.14 and 4.15.

LHCb measured the production within 0 < pT < 8 GeV and 2.0 < y < 4.5 in bins of the

width 1 GeV in pT and 0.5 in y except for Λ+
c . For Λ+

c , bin-integrated cross sections have

been provided for bins of the width 0.5 in the rapidity range 2.0 < y < 4.0 integrated

over 2 GeV < pT < 8 GeV and for bins of the width 1 GeV within 2 GeV < pT < 8 GeV

integrated over 2.0 < y < 4.5. We will use the latter measurement, since it covers a larger

rapidity range. Only such bins have been used for the analysis in [6] where the relative

uncertainty of the cross section in that bin was smaller than 50%. Cross sections for the
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empty bins have been extrapolated using the remaining bins and prediction obtained

from the event generator PYTHIA 6. Therefore, the integrated cross sections of prompt

charmed hadrons cited in [6] are extrapolated results. In this work however, we will only

use such bins where measured cross sections are provided. The integration domains for

the different charmed hadrons measured by LHCb are then given by

ALHCb
D0 = {(pT, y) ∈ (0, 8)× (2.0, 2.5) ∪ (0, 8)× (2.5, 3.0) ∪ (0, 8)× (3.0, 3.5) ∪

(0, 8)× (3.5, 4.0) ∪ (0, 6)× (4.0, 4.5) | pT in GeV} , (4.16)

ALHCb
D+ = {(pT, y) ∈ (1, 8)× (2.0, 2.5) ∪ (0, 8)× (2.5, 3.0) ∪ (0, 8)× (3.0, 3.5) ∪

(0, 8)× (3.5, 4.0) ∪ (0, 6)× (4.0, 4.5) | pT in GeV} , (4.17)

ALHCb
D∗+ = {(pT, y) ∈ (3, 8)× (2.0, 2.5) ∪ (1, 8)× (2.5, 3.0) ∪ (0, 7)× (3.0, 3.5) ∪

(0, 7)× (3.5, 4.0) ∪ (0, 5)× (4.0, 4.5) | pT in GeV} , (4.18)

ALHCb
D+

s
= {(pT, y) ∈ (1, 8)× (2.0, 2.5) ∪ (1, 7)× (2.5, 3.0) ∪ (0, 8)× (3.0, 3.5) ∪

(1, 6)× (3.5, 4.0) ∪ (2, 4)× (4.0, 4.5) | pT in GeV} , (4.19)

ALHCb
Λ+
c

= {(pT, y) ∈ (2, 8)× (2.0, 4.5) | pT in GeV} . (4.20)

The corresponding integrated cross section have been obtained from internal analysis

notes [23]. There, it was distinguished between systematics and global systematics. The

global systematics is the quadratic sum of the uncertainty of the track efficiency and of

the luminosity. However, to be consitent with the uncertainties cited by ALICE, these

uncertainties have been rearanged. The uncertainties due to uncertainties of the track

efficiency have been added quadratically to the systematic uncertainties cited in the

analysis note giving a new systematic uncertainty. The results as we will use them in

this work are summarized in table 4.3.

4.2 Combination of ALICE and LHCb measurements

ALICE measured charm production in proton-proton collisions at
√
s = 7 TeV for the

central rapidity range |y| < 0.5 and LHCb measured for the forward rapidity interval

2.0 < y < 4.5. Since the charm production is symmetric with respect to the rapidity y,

a measurement of the cross section in some domain A ⊆ R≥0 × R of the (pT, y) phase

space defines also the cross section in the region Ā = {(pT, y) ∈ R≥0 × R | (pT,−y) ∈
A}. Therefore, when combining the integrated cross sections from ALICE and LHCb
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Hadron σLHCb stat. syst. lum. BR

D0 827.9 ±8.0 ±55.7 ±29.0 ±10.8

D+ 302.9 ±5.0 ±31.7 ±10.6 ±6.4

D∗+ 252.5 ±9.7 ±27.1 ±8.9 ±3.8

D+
s 74.1 ±5.4 ±8.6 ±2.6 ±4.3

Λ+
c 88.9 ±9.9 ±13.9 ±3.1 ±23.1

Table 4.3: The integrated cross sections in units of µb of the charmed hadrons measured

by LHCb in proton-proton collisions at
√
s = 7 TeV. The integration domains

are given in the equations 4.16 to 4.20.

measurements, we can account for this symmetry by double-weighting the results of

LHCb. The combined integration domains of the different charmed hadrons are then

A1 = AALICE
D0 ∪ALHCb

D0 ∪ ĀLHCb
D0 , (4.21)

A2 = AALICE
D+ ∪ALHCb

D+ ∪ ĀLHCb
D+ , (4.22)

A3 = AALICE
D∗+ ∪ALHCb

D∗+ ∪ ĀLHCb
D∗+ , (4.23)

A4 = AALICE
D+

s
∪ALHCb

D+
s
∪ ĀLHCb

D+
s

, (4.24)

A5 = ALHCb
Λ+
c
∪ ĀLHCb

Λ+
c

. (4.25)

The combined cross sections have then be calculated accordingly and are given by the

equations

σexpr
A1

(D0) = σALICE(D0) + 2 · σLHCb(D0) , (4.26)

σexpr
A2

(D+) = σALICE(D+) + 2 · σLHCb(D+) , (4.27)

σexpr
A3

(D∗+) = σALICE(D∗+) + 2 · σLHCb(D∗+) , (4.28)

σexpr
A4

(D+
s ) = σALICE(D+

s ) + 2 · σLHCb(D+
s ) , (4.29)

σexpr
A5

(Λ+
c ) = 2 · σLHCb(Λ+

c ) , (4.30)

where σALICE and σLHCb denote the cross sections measured by ALICE and LHCb and

they are given in the tables 4.2 and 4.3. The statistical uncertainties have been propaga-

ted using Gaussian propagation of uncertainties. For the combination of the asymmetric
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systematic uncertainties, it is argued for example in [24] that the combination of the un-

certainties using Gaussian propagation law separately is not always appropriate. There,

two models for the addition of asymmetric uncertainties have been introduced and a web

application is provided to calculate the combined uncertainty for each model. However,

we observed, that the difference between the combination of the uncertainties separately

and the combination of them using one of the models described in that paper is not

significant. Therefore, we propagate the contributions of the asymmetric systematic un-

certainty separately using Gaussian propagation. The measurement of the luminosity

for each experiment has been performed separately but the determination of the beam

intensity part of this measurement is linearly correlated between the experiments. How-

ever, we do not know the contributions of the respective parts and therefore we assume

the uncertainty to be uncorrelated and combine them using Gaussian propagation of

uncertainties. The branching ratios used by both experiments have been provided by

[8]. Therefore, they are 100% correlated and the uncertainties due to the branching

ratios have been added linearly. The results for the combined cross sections are given in

table 4.4.

Hadron σ stat. syst. lum. BR

D0 2067.9 ±36.4 +124.2
−178.5 ±59.7 ±26.8

D+ 804.0 ±26.0 +75.9
−96.8 ±22.3 ±16.8

D∗+ 708.2 ±29.8 +61.8
−86.1 ±19.1 ±10.6

D+
s 201.1 ±16.1 +21.6

−22.8 ±5.6 ±11.6

Λ+
c 177.7 ±19.8 +27.7

−27.7 ±6.2 ±46.2

Table 4.4: The combination of the integrated cross sections measured by ALICE and

LHCb in units of µb. The covered domains of the phase space are given

by the equations 4.21 to 4.25. Note that the results from LHCb have been

multiplied with two since the charm distribution is symmetric with respect to

the rapidity y.
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4.3 Theoretical predictions and comparison

Theoretical predictions for the charmed mesons D0, D+ and D∗+ have been calculated

using the FONLL framework. The calculations include theoretical uncertainties due to

variations of the charm quark mass, the factorization and renormalization scales and

due to uncertainties related to the PDF set used. A more detailed description of how

these uncertainties are treated has been discused in section 3.2. FONLL calculations

used within this thesis are taken from the web page [20]. By default, fragmentation

fractions for a charm quark hadronizing into the considered D meson are set to be

one. Therefore, these calculations have been scaled using fragmentation fractions quoted

in [21]. These are f(c → D0) = 0.565 ± 0.032, f(c → D+) = 0.246 ± 0.020 and

f(c→ D∗+) = 0.224± 0.028.

In figure 4.3, FONLL predictions have been compared to measurements of the prompt

D0, D+ and D∗+ pT-differential cross sections performed by ALICE in proton-proton

collisions at
√
s = 7 TeV. In this figure, uncertainties related to the measured data

points are the quadratically combined statistical and systematic uncertainties, which

have been taken from [4]. The shaded areas are theoretical uncertainties of the FONLL

predictions. As we can observe, FONLL predictions describe the pT-differential cross

section of prompt D0, D+ and D∗+ integrated over |y| < 0.5 as measured by ALICE

appropriately, since the measured data points and the FONLL calculations agree within

the respective uncertainties. The measured pT-distribution is in general larger than the

FONLL predictions for the central parameters. In [15] this has been interpreted as that

these deviations may indicate a preference of the data for a value of the charm mass

smaller than the central value of m = 1.5 GeV as used by FONLL. Note however that

these are results only integrated over |y| < 0.5, where only approximately 10% of the

charm quark is expected to be produced according to FONLL calculations. In order to

observe if FONLL predictions describe charm production in the forward rapidity range

appropriately as well, we compared FONLL and pT-differential cross sections of D0, D+

and D∗+ integrated over bins in rapidity y for 2.0 < y < 4.5 as measured by LHCb [6]

in the figures 4.4, 4.5 and 4.6. We can observe again, that FONLL predictions for the

pT distributions and the measured pT spectra agree within the respective uncertainties.

The measured values are again in general larger than the FONLL central values as we

have observed it in the comparison of FONLL predictions and ALICE measurements.

30



10-1

100

101

102

103

d
/dp

T| |
y|<

0.5
 (

b/G
eV

)

D0  production for
pp at √s =7 TeV
FONLL total uncertainty
FONLL central values
ALICE data

0 5 10 15
pT  (GeV)

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Da
ta/

FO
NL

L

Data / FONLL

D+  production for
pp at √s =7 TeV
FONLL total uncertainty
FONLL central values
ALICE data

5 10 15 20
pT  (GeV)

Data / FONLL

D * +  production for
pp at √s =7 TeV
FONLL total uncertainty
FONLL central values
ALICE data

5 10 15 20 25
pT  (GeV)

Data / FONLL

Figure 4.3: Comparison of pT-differential cross sections for prompt D0, D+ and D∗+

production measured by ALICE in proton-proton collisions at
√
s = 7 TeV

integrated over the range |y| < 0.5 with the corresponding FONLL predic-

tions. The uncertainties of the experimental data include the statistical and

systematic uncertainty summed in quadrature. The shaded areas illustrate

theoretical uncertainties of the FONLL predictions.
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Figure 4.4: Comparison of FONLL predictions and pT-distributions of D0 measured by

LHCb for different ranges in rapidity y.
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Figure 4.5: Comparison of FONLL predictions and pT-distributions of D+ measured by

LHCb for different ranges in rapidity y.
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Figure 4.6: Comparison of FONLL predictions and pT-distributions of D∗+ measured by

LHCb for different ranges in rapidity y.
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In the end however, the shape of the distributions is described correctly by the FONLL

calculations over a large range in rapidity. Therefore we can use FONLL predictions for

D0, D+ and D∗+ to extrapolate their cross sections.

For the theoretical prediction of D+
s , we will adapt a method used in [6]. There, it has

been argued, that D+
s and D∗+ are kinematically similar. Therefore, to describe D+

s

spectra, predictions for D∗+ have been scaled with f(c → D+
s )/f(c → D∗+), where

f(c → D+
s ) = 0.080 ± 0.017 [21]. In figure 4.7, FONLL predictions are compared to

measurements of the pT-differential cross section of prompt D+
s as measured by ALICE

[5]. Observing the ratios of the measured points to the central predictions obtained

by FONLL we can state, that these can be considered to be constant within the un-

certainties. In figure 4.8, the FONLL calculations are compared to data from LHCb [6]

measurements for different bins within 2.0 < y < 4.5. The predictions describe the shape

of the measured values within the uncertainties. So, we can use FONLL calculations for

D∗+ with the respective fragmentation fraction to describe the spectra of D+
s .

To describe prompt Λ+
c cross sections we used predictions obtained from the event gene-

rator PYTHIA 8.175 [25]. We simulated proton-proton collisions at
√
s = 7 TeV for six

different tunes of the generator. For each of these tunes, we generated one million events

and selected prompt Λ+
c . In order to compare the PYTHIA results with measurements

of pT-differential cross section by LHCb, we counted the number of selected Λ+
c baryons

within the range 2.0 < y < 4.5 and 2 GeV < pT < 8 GeV for bins in pT of the size

1 GeV. The statistical uncertainty is given as the square root of the number of Λ+
c in

the respective bin. To obtain pT-differential cross section, the numbers counted have

been multiplied by the ratio of the total cross section summed over all allowed processes

to the total number of accepted events. The minimal and maximal predictions obtained

for different settings of the tune define the theoretical uncertainty of the PYTHIA pre-

dictions, which are depicted as shaded areas in figure 4.9. Although we can observe

deviations between the LHCb measurements and the PYTHIA predictions, the shape is

described correctly since the ratios between the measured data points and the PYTHIA

predictions can be considered as being constant. Thus, we can use PYTHIA predictions

to extrapolate Λ+
c cross sections.
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Figure 4.7: Comparison of the pT-distribution of D+
s measured by ALICE in the range

|y| < 0.5 to the FONLL predictions for D∗+ scaled with f(c → D+
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D∗+). The uncertainties related to the data points are the quadratically

combined statistical and systematic uncertainties provided in [5]. The shaded

areas are the uncertainty ranges of the FONLL predictions.
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Figure 4.8: Comparison of FONLL predictions and pT-distributions of D+
s measured by

LHCb for different ranges in rapidity y.
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Figure 4.9: Comparison of the pT-distribution of Λ+
c measured by LHCb in the range

2.0 < y < 4.5 to the spectrum obtained from the PYTHIA 8.175 [25] event

generator. The uncertainties related to the data points are the quadratically

combined statistical and systematic uncertainties provided in [6]. The shaded

areas are the uncertainty ranges of the PYTHIA predictions obtained by

calculating the cross section for different tunes and then taking the envelop.

The central values correspond to the default setting of the tune. The errobars

of the PYTHIA calculations are statistical uncertainties of the PYTHIA

predictions.
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4.4 Extrapolation of charmed hadron cross sections

In this section, we will describe how the cross sections have been extrapolated using

predictions from FONLL and PYTHIA and how the uncertainties have been propagated.

We have extrapolated the charmed hadron cross sections for the three domains

B1 = {(pT, y) ∈ R≥0 × R} , (4.31)

B2 = {(pT, y) ∈ R≥0 × (−0.9, 0.9)} , (4.32)

B1 = {(pT, y) ∈ R≥0 × (2.5, 4.0)} (4.33)

corresponding to the total phase space and the mid and forward rapidity ranges covered

by ALICE. We will use these extrapolated cross sections to extrapolate the charm pair

cross section.

Extrapolation of D meson cross sections

As already discussed in the previous section 4.3, we will use FONLL predictions to

extrapolate D meson cross sections. The different predictions provided by the web-

interface [20] have been described in section 3.2. The extrapolated cross section and the

uncertainties have been determined as follows.

1. We have calculated the integrated cross sections σFONLL
A (D) and σFONLL

B (D) as de-

fined in equation 4.1 and equation 4.2 using the central predictions for the corres-

ponding meson species D. Depending on the D meson, the domain A is one of the

domains A1, A2, A3, A4 defined by the equations 4.21 to 4.24, which describe the re-

gions covered by the combined measurements. B denotes the domain of extrapolation.

2. We have calculated the extrapolation factor corresponding to the central predictions

fBA (D) = σFONLL
B (D)/σFONLL

A (D). The value of the extrapolated cross section is then

given by σextr
B (D) = σexpr

A (D) · fBA (D).

3. The combined cross sections σexpr
A (D) have statistical (stat) and systematic (syst)

uncertainties as well as uncertainties related to the integrated luminosity (lum) and

to the branching ratios (BR) of the analyzed decay channels. These uncertainties have

been propagated using Gaussian propagation of uncertainties and the central value of

the extrapolation factor fBA (D). This means, that the corresponding uncertainties of
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the extrapolated cross sections have been obtained by simply scaling them with the

central extrapolation factor. That is, we have for the propagated uncertainties

∆σextr
B (D) = ∆σexpr

A (D) · fBA (D) . (4.34)

4. As described in section 3.2, FONLL calculations have theoretical uncertainties which

have to be accounted for in our extrapolation procedure. Since these uncertainties

affect the extrapolation factor we will call them extrapolation uncertainties (extr).

To determine these uncertainties, we use the different predictions listed in section 3.2.

So, these uncertainties have been determined in four steps.

In the first step, we determined variations of the extrapolated cross sections due to

variations of the charm quark mass. We used the predictions (σFONLL
A (D))min mass,

(σFONLL
B (D))min mass and (σFONLL

A (D))max mass, (σFONLL
B (D))max mass to determine the

corresponding extrapolation factors (fBA (D))min mass, (fBA (D))max mass and extrapo-

lated cross sections

(σextr
B (D))min mass = σexpr

A (D) · (fBA (D))min mass

(σextr
B (D))max mass = σexpr

A (D) · (fBA (D))max mass

The difference between the maximum and minimum of these values and the central

prediction is then considered to be the uncertainty due to variation of the mass. Thus,

we have

(∆σextr
B (D))+mass = max{(σextr

B (D))min mass, (σ
extr
B (D))max mass} − σextr

B (D) , (4.35)

(∆σextr
B (D))−mass = σextr

B (D)−min{(σextr
B (D))min mass, (σ

extr
B (D))max mass} . (4.36)

In the second step, we determined the uncertainties related to the PDF accordingly

using extrapolated cross sections (σextr
B (D))min pdf and (σextr

B (D))max pdf. The uncer-

tainties are then given by

(∆σextr
B (D))+PDF = max{(σextr

B (D))min pdf, (σ
extr
B (D))max pdf} − σextr

B (D) , (4.37)

(∆σextr
B (D))−PDF = σextr

B (D)−min{(σextr
B (D))min pdf, (σ

extr
B (D))max pdf} . (4.38)

In the third step, the FONLL predictions (σFONLL
A (D))(ξF ,ξR) and (σFONLL

B (D))(ξF ,ξR)

for the integrated cross sections using different settings of the scales as described in
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section 3.2 have been used to obtain a set of extrapolated cross sections

(σextr
B (D))(ξF ,ξR)

using equation 4.3. If S = {(0.5, 0.5), (2, 2), (2, 1), (1, 2), (1, 0.5), (0.5, 1)} describes the

set of scale settings for ξF and ξR as given in section 3.2, then the uncertainty of the

extrapolated cross section due to variations of the renormalization and factorization

scales is given by

(∆σextr
B (D))+scale = max{(σextr

B (D))(ξF ,ξR) | (ξF , ξR) ∈ S} − σextr
B (D) , (4.39)

(∆σextr
B (D))−scale = σextr

B (D)−min{(σextr
B (D))(ξF ,ξR) | (ξF , ξR) ∈ S} . (4.40)

Finally, the total uncertainty is the quadratic combination of the uncertainties due to

mass, PDF and scales variations. This means that the total extrapolation uncertainty

is given by

(∆σextr
B (D))±extr =

√
(∆σextr

B (D))2
±mass + (∆σextr

B (D))2
±PDF + (∆σextr

B (D))2
±scale .

Extrapolation of Λ+
c cross section

In the case of the Λ+
c baryon we used prediction obtained from the event generator

PYTHIA 8.175. We have generated one million events for proton-proton collisions at
√
s = 7 TeV for six different tunes of the event generator. These tunes are denoted as

Tune:pp = 1 to Tune:pp = 6. A description of these tunes can be found in the online

manual [26]. We will denote these tunes by indices i ∈ {1, 2, . . . , 6} in the following.

The default setting is Tune:pp = 5. We will describe step by step how we extrapolated

cross sections for Λ+
c using PYTHIA predictions.

1. For each tune of the event generator we analyzed one million events. To account only

for prompt Λ+
c , we turned off decays of bottomed hadrons. Detected Λ+

c baryons

have been selected and properties like the trasverse momentum pT or rapidity y have

been stored in separate textfiles.

2. For the default setting of the tune we counted the numberNPYTHIA
A (Λ+

c ) of prompt Λ+
c

within the domain A of the combined measurements and the number NPYTHIA
B (Λ+

c )

within the domain B of the extrapolation.
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3. We can consider the counting of prompt Λ+
c baryons as a counting experiment. Ba-

sically, the extrapolation factor is given by

fBA (Λ+
c ) = NPYTHIA

B (Λ+
c )/NPYTHIA

A (Λ+
c ) .

However, since we do not know how NPYTHIA
A (Λ+

c ) and NPYTHIA
B (Λ+

c ) are correlated,

we cannot deduce the statistical uncertainty of the extrapolation factor. There-

fore, we used a Monte Carlo method to obtain the extrapolation factor with its

statistical uncertainty. That is, we drew one million random numbers Xk
A and Xk

B

from two Poisson-distribution with the single parameter of the distribution set equal

to NPYTHIA
A (Λ+

c ) and NPYTHIA
B (Λ+

c ) respectively. For each drawn pair of random

numbers Xk
A and Xk

B we calculated (fBA (Λ+
c ))k = Xk

B(Λ+
c )/Xk

A(Λ+
c ). The mean of

(fBA (Λ+
c ))k and its standard deviation are considered to be the value fBA (Λ+

c ) of the

extrapolation factor and its statistical uncertainty. The value of the extrapolated

cross section of Λ+
c is then given by

σextr
B (Λ+

c ) = σexpr
A (Λ+

c ) · fBA (Λ+
c ) .

4. The statistical uncertainty of the combined experimental cross section σexpr
A (Λ+

c ) and

the statistical uncertainty of the extrapolation factor fBA (Λ+
c ) determined in the pre-

vious step have been added quadratically giving the statistical uncertainty of the

extrapolated cross section. Thus, we have

(∆σextr
B (Λ+

c ))±stat =

√√√√((∆σexpr
A (Λ+

c ))±stat

σexpr
A (Λ+

c )

)2

+

(
(∆fBA (Λ+

c ))±stat

fBA (Λ+
c )

)2

· σextr
B (Λ+

c ) .

5. The remaining uncertainties of the combined experimental cross section σexpr
A (Λ+

c ),

that is the systematic uncertainty and the uncertainties related to uncertainties of

the integrated luminosity and branching ratio, have been propagated by multiplying

them with the extrapolation factor fBA (Λ+
c ). Thus, we have

∆σextr
B (Λ+

c ) = ∆σexpr
A (Λ+

c ) · fBA (Λ+
c ) .

6. For each tune i ∈ {1, 2, . . . , 6} the corresponding extrapolation factor (fBA (Λ+
c ))i

has been determined as described in the third step using Poisson-distributions and

the numbers of prompt Λ+
c counted for each tune within the respective domains.
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For each extrapolation factor (fBA (Λ+
c ))i we calculated the extrapolated cross section

(σextr
B (Λ+

c ))i. The extrapolation uncertainty is determined as the difference between

the maximal and minimal values predicted for the different tunes and the central

prediction. So, the extrapolation uncertainty is given by

(∆σextr
B (Λ+

c ))+extr = max{(σextr
B (Λ+

c ))i | i ∈ {1, 2, . . . , 6}} − σextr
B (Λ+

c ) ,

(∆σextr
B (Λ+

c ))−extr = σextr
B (Λ+

c )−min{(σextr
B (Λ+

c ))i | i ∈ {1, 2, . . . , 6}} .

Extrapolation results for the charmed hadron cross sections

We have written a code to perform the calculations as described above. To check if the

code worked correctly, we performed the extrapolation of D0, D+ and D∗+ total cross

sections using only the ALICE measurements and compared our extrapolated cross sec-

tions to the results cited in [22], which have been extrapolated in the same way. We were

able to reproduce the results. After the verification of our code, we extrapolated charmed

hadron cross sections. The results of the extrapolation of the charmed hadron cross sec-

tions for the different domains of the phase space are summarized in the tables 4.5, 4.6

and 4.7.

Extrapolation of Pv

The cross sections of D+ and D∗+ have been extrapolated for the total phase space B1

as explained in the beginning of this section. For the sake of convenience, we will drop

the reference to B1 in the notation and denote these cross sections simply as σextr(D+)

and σextr(D∗+). Using these extrapolated results, we can calculate the ratio Pv of cd̄ D

mesons produced in a vector state to those produced in a vector or pseudoscalar state.

The ratio Pv is given by

Pv =
N(D∗+)

N(D∗+) +N(D+)−N(D∗+) · (1− B(D∗+ → D0π+))
. (4.41)

The number of particles is proportional to the cross section. Therefore, we can extrapo-

late Pv using the extrapolated cross sections of the D+ and D∗+ mesons. The central
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Hadron σextr
B1

stat. syst. lum. BR extr.

D0 4040.8 ±71.2 +242.7
−348.8 ±116.6 ±52.4 +115.5

−70.7

D+ 1646.1 ±53.3 +155.4
−198.1 ±45.7 ±34.5 +105.5

−44.8

D∗+ 1719.4 ±72.4 +150.1
−209.0 ±46.3 ±25.8 +120.4

−62.3

D+
s 545.1 ±43.6 +58.4

−61.9 ±15.1 ±31.4 +125.1
−29.2

Λ+
c 894.2 ±105.5 +139.4

−139.4 ±31.2 ±232.5 +65.7
−0.0

Table 4.5: Results of the extrapolation for the integrated cross section over the complete

phase space. All numbers are given in units of µb.

Hadron σextr
B2

stat. syst. lum. BR extr.

D0 846.4 ±14.9 +50.8
−73.1 ±24.4 ±11.0 +60.3

−175.9

D+ 344.8 ±11.2 +32.6
−41.5 ±9.6 ±7.2 +32.2

−64.0

D∗+ 360.2 ±15.2 +31.5
−43.8 ±9.7 ±5.4 +41.0

−66.9

D+
s 114.2 ±9.1 +12.2

−13.0 ±3.2 ±6.6 +18.8
−15.8

Λ+
c 187.9 ±22.9 +29.3

−29.3 ±6.6 ±48.9 +20.1
−2.1

Table 4.6: Results of the extrapolation for the integrated cross section over the central

rapidity domain |y| < 0.9. All numbers are given in units of µb.

Hadron σextr
B3

stat. syst. lum. BR extr.

D0 519.5 ±9.2 +31.2
−44.8 ±15.0 ±6.7 +44.1

−4.1

D+ 211.6 ±6.9 +20.0
−25.5 ±5.9 ±4.4 +25.8

−3.5

D∗+ 221.1 ±9.3 +19.3
−26.9 ±6.0 ±3.3 +28.0

−5.3

D+
s 70.1 ±5.6 +7.5

−8.0 ±1.9 ±4.0 +20.9
−3.0

Λ+
c 123.9 ±15.4 +19.3

−19.3 ±4.3 ±32.2 +0.0
−15.7

Table 4.7: Results of the extrapolation for the integrated cross section over the forward

rapidity range 2.5 < y < 4.0. All numbers are given in units of µb.
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value for the extrapolated Pv is given by

P extr
v =

σextr(D∗+)

σextr(D∗+) + σextr(D+)− σextr(D∗+) · (1− B(D∗+ → D0π+))

=
σextr(D∗+)

σextr(D+) + σextr(D∗+) · B(D∗+ → D0π+)
. (4.42)

The uncertainties originating from the measured cross sections have been determined

using Gaussian propagation of uncertainties. However, note that there is no uncertainty

related to the integrated luminosity since it cancels out in the calculations of Pv. The

extrapolation uncertainties have been determined as described for the extrapolation

of D meson cross sections. That is, we have calculated the ratio Pv for all FONLL

predictions and obtained uncertainties related to mass variation, uncertainties in the

PDF and variations of the scales, which have been added quadratically to determine the

total extrapolation uncertainty. Using the extrapolated cross sections in table 4.5, we

obtain

P extr
v = 0.612± 0.019 (stat)+0.046

−0.061 (syst)± 0.009 (BR)+0.007
−0.008 (extr) .

This value is smaller from what we would expect from simple spin counting, that is

Pv = 3/(3 + 1) = 0.75 since there are three spin states for D∗+ and one for D+.

This argument originates from heavy-quark effective theory assuming that the difference

between the masses of the two D mesons can be neglected for large enough heavy quark

masses. In [22] it is noted, that there are also predictions in the range 0.55 to 0.64

within the framework of statistical models. Our extrapolated value is within this range.

Further, our result also agrees with the ATLAS value [3]

PATLAS
v = 0.63± 0.03 (stat)+0.02

−0.03 (syst)± 0.02 (BR)+0.04
−0.02 (extr)

within uncertainties.

4.5 Extrapolation of charm pair cross section

The charm pair cross section has been determined for the domains B1, B2 and B3 given

by the equations 4.31, 4.32 and 4.33. The central value of this cross section is simply

given by the sum of the cross sections of D0, D+, D+
s and Λ+

c . Note that the cross

section of D∗+ does not contribute to the charm pair cross section, since it decays into
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D0 and D+. Further, there is a residual part of approximately 1% (see figure 4.1) which

has been neglected since we expect the total uncertainties to be significantly larger than

this residual contribution to the charm cross section. Therefore, we have

σextr
B (cc̄) = σextr

B (D0) + σextr
B (D+) + σextr

B (D+
s ) + σextr

B (Λ+
c ) . (4.43)

The uncertainties originating from the measurements, that is statistical and systema-

tic uncertainties as well as uncertainties resulting from uncertainties of the integrated

luminosity and branching ratios have been propagated using Gaussian propagation of

uncertainties. They are given by

∆σextr
B (cc̄) =

√
∆σextr

B (D0)2 + ∆σextr
B (D+)2 + ∆σextr

B (D+
s )2 + ∆σextr

B (Λ+
c )2 . (4.44)

To determine the extrapolation uncertainty, we have to divide the charm pair cross

section into two parts. The first part should only contain FONLL and the second part

only PYTHIA predictions. The second part is simply given by the cross section of the

Λ+
c baryon, since this is the only particle where we used PYTHIA predictions. The

FONLL contribution is given by the sum

σextr
B (D0, D+, D+

s ) = σextr
B (D0) + σextr

B (D+) + σextr
B (D+

s ) . (4.45)

To obtain the extrapolation uncertainty of this expression, we have calcualted the set of

extrapolated values

(σextr
B (D0, D+, D+

s ))i = (σextr
B (D0))i + (σextr

B (D+))i + (σextr
B (D+

s ))i , (4.46)

with (σextr
B (D))i = σexpr

A (D) · (fBA (D))i. For convenience, we used an index i to de-

notes the values obtained for different settings of the FONLL parameters as described

in section 3.2. The extrapolation uncertainty of σextr
B (D0, D+, D+

s ) is then calculated by

determining the mass, the scales and the PDF contributions and adding them in quadra-

ture. For the final result of the extrapolation uncertainty, we have also accounted for

the extrapolation uncertainty of the PYTHIA contribution. Therefore, the extrapolation

uncertainty of the charm pair cross section is given by

(∆σextr
B (cc̄))±extr =

√
(∆σextr

B (D0, D+, D+
s ))2
±extr + (∆σextr

B (Λ+
c ))2
±extr . (4.47)

The charm pair cross section has been extrapolated for the three different domains B1,

B2 and B3 corresponding to the total phase space, the mid rapidity range |y| < 0.9 and

the forward rapidity domain 2.5 < y < 4.0. The results are summarized in table 4.8.
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Domain σextr
B (cc̄) stat. syst. lum. BR extr. total

B1 (total) 7126.2 ±144.7 +325.4
−429.1 ±129.9 ±242.9 +350.2

−122.9
+570.4
−544.1

B2 (mid) 1493.3 ±30.9 +68.2
−89.9 ±27.2 ±51.0 +112.4

−247.7
+146.9
−271.6

B3 (forward) 925.1 ±20.0 +42.5
−55.6 ±16.8 ±33.5 +90.7

−18.4
+108.8
−72.4

Table 4.8: Extrapolation results for the charm pair cross section in different domains of

the phase space. B1 denotes the total phase space, B2 the central rapidity

domain |y| < 0.9 and B3 the forward range 2.5 < y < 4.0. All numbers are

given in units of µb.

In figure 4.10 we compare our extrapolated cross section for the total phase space to total

cross sections provided by LHCb in [27], by ATLAS in [3] and by ALICE in [22]. The

uncertainties given in that figure are the total uncertainties, which have been determined

by adding all individual contributions to the uncertainty quadratically. We can observe

that our determined value for the total charm pair cross section agrees with the other

values within uncertainties. However, our value has a much smaller total uncertainty

than the other values being of approximately 8%. So we can conclude, that combining the

measurements of ALICE and LHCb enabled us to reduce the extrapolation uncertainty,

which was the dominant contribution to the total uncertainty. Figure 4.11 shows the

energy dependence of the total nucleon-nucleon charm pair cross section. The values

correspond to different experiments and are given in [3], [22], [27], [28], [29] and [30].

These results are compared to NLO calculations [31]. We can observe, that all values

are within the uncertainty band of the NLO calculations. However, they are all above

the central prediction illustrated by the continuous line. This possibly indicates that

the charm quark mass is less than assumed in the NLO calculation, which is 1.5 GeV for

the central predictions. This is further supported by a recent analysis of cross sections

in deep inelastic electron-positron scattering at HERA, which extracts a charm mass

mc = 1.26± 0.06 GeV [32] where the given uncertainty is the quadratic combination of

the single contributions.
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Figure 4.10: Comparison of our extrapolated cross section for the total phase space to

total cross sections provided by LHCb in [27], by ATLAS in [3] and by

ALICE in [22].
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Figure 4.11: The energy dependence of the total charm pair cross section. The values

are from [3], [22], [27], [28], [29] and [30]. In case of proton-nucleus (pA)

or deuteron-nucleus (dA) collisions, the measured cross sections have been

scaled down by the number of binary nucleon-nucleon collisions calculated

in a Glauber model of the proton-nucleus or deuteron-nucleus collision ge-

ometry [22]. The results are compared to NLO calculations [31].
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5 Summary

Within this thesis the total charm pair production cross section in proton-proton colli-

sions at
√
s = 7 TeV was determined. We compared predictions for the pT-distributions

obtained from the FONLL framework with experimental data measured by ALICE and

LHCb. We observed, that FONLL predictions were appropriate to describe the shape of

the spectra. Since FONLL prediction are only available for D mesons, we compared Λ+
c

data with predictions obtained from the event generator PYTHIA 8.175. We observed

again, that the shape of the pT-spectrum is well described by the PYTHIA predictions.

Therefore, we decided to use FONLL predictions to extrapolate D meson and PYTHIA

predictions to extrapolate Λ+
c cross sections. In order to take advantage of the ALICE

and LHCb measurements, we combined these cross section covering a large domain of

the (pT, y) phase space. We were able to reduce the relative extrapolation uncertainty

of the total charm pair cross section being now approximately 5%:

σtot(cc̄) = 7.13± 0.14 (stat)+0.33
−0.43 (syst)± 0.13 (lum)± 0.24 (BR)+0.35

−0.12 (extr) mb ,

σtot(cc̄) = 7.13+0.57
−0.54 (total) mb .

The relative total uncertainty is approximately 8%. Compared to former results provided

in [3], [22] and [27] this is an improvement of a factor of two for the relative uncertainty

and thus the most precise determination of the total charm pair production cross section

at the LHC so far.
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