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Abstract

One particularly interesting measurement detected by the ALICE (A Large

Ion Collider Experiment) set-up are electrons from the decay of heavy-flavor

quarks, such as charm and especially beauty quarks. In order to investigate

these electrons, it is crucial to distinguish them from background electrons,

which are created for example through photon conversion or Dalitz decays as

well as to distinguish the charm from the beauty electrons. For this distinction,

the impact parameter distribution of the electrons is used. One important

task is to find out the contribution of the individual sources of electrons to

the impact parameter total distribution containing the electrons of sources.

To find these contributions, the so called ‘strength factors’ of the sources,

usually a maximum likelihood fit is done, whereby the strength factors are free

parameters of the fit. However, in a maximum likelihood fit there are some

disadvantages, e.g. only an approximated uncertainty of the fit value exists

and it is impossible to use prior knowledge about the strength factors.

According to ‘Bayes’ theorem’, the likelihood can be used to build a so

called ‘posterior distribution’, which is basically a probability distribution for

the free parameters, whereby prior knowledge can be used. Sampling this pos-

terior distribution would cancel the disadvantages of the maximum likelihood

method. Hence, in this bachelor thesis a Markov Chain Monte Carlo (MCMC)

sampling algorithm is implemented and applied on the posterior distribution.

Furthermore, some properties like the correlation of the sampling points, the

convergence of the algorithm, and the applicability of MCMC methods to this

problem in general are investigated.





Zusammenfassung

Eine besonders interessante Messung des ALICE (A Large Ion Collider Ex-

periment) Detektors beinhaltet die Elektronen, die aus dem Zerfall schwerer

Quarks wie dem Charm- und vorallem dem Beauty-Quark entstehen. Um jene

Elektronen zu untersuchen, ist es essenziell, sie sowohl von den Hintergrund-

Elektronen, die beispielsweise durch Paarerzeugung von Photonen oder durch

Dalitz-Zerfälle entstehen, als auch voneinander zu unterscheiden. Für diese Un-

terscheidung wird die Stoßparameterverteilung der Elektronen benutzt. Eine

wichtige Aufgabe ist, die Anteile der einzelnen Elektronquellen an der gesamten

Stoßparameterverteilung herauszufinden. Um diese Anteile, die sogenannten

”
Stärkefaktoren“, herauszufinden, wird gewöhnlich ein Maximum-Likelihood-

Fit mit den Stärkefaktoren als freie Parameter gemacht. Allerdings birgt ein

solcher Fit manche Nachteile, wie z.B., dass die Unsicherheiten der Fitwerte

nur näherungsweise bestimmt werden können und es unmöglich ist, Vorwissen

über die Stärkefaktoren miteinzubeziehen.

Nach dem
”
Satz von Bayes“ kann aus der Likelihood eine sogenannte

”
Posterior-

Verteilung“ gebildet werden, die im Wesentlichen eine Wahrscheinlichkeitsver-

teilung für die freien Parameter unter Einbezug von Vorwissen darstellt. Die

Nachteile der Maximum-Likelihood-Methode würden durch das Samplen der

Posterior-Verteilung aufgehoben werden. Deshalb wird in dieser Bachelorar-

beit ein Markov-Chain-Monte-Carlo-Algorithmus implementiert und auf die

Posterior-Verteilung angewendet. Desweiteren werden einige Eigenschaften wie

beispielsweise die Korrelation der Sample-Punkte, die Konvergenz des Algo-

rithmus oder die generelle Anwendbarkeit dieser Methode auf das Problem

untersucht.
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1 Introduction

1.1 Particle Physics

1.1.1 The Standard Model

The Standard Model Of Particle Physics (SM) forms the theoretical foundation

of the modern physical world view in the microscopic regime. According to

it, all matter consists of elementary particles, which can be classified into

quarks, leptons, gauge bosons, and the Higgs boson. Among the quarks, one

can distinguish between positive charged and negative charged ones, as well

as between three generations. There are also three generations of charged

and uncharged leptons, which are also called ‘neutrinos’. Similarly, there are

antiparticles with an inverse charge Q for every quark and lepton.

The three fundamental interactions, the ‘Strong Interaction’, the ‘Weak In-

teraction’, and the ‘Electromagnetic Interaction’, are transmitted via the re-

spective gauge bosons, which are the ‘Gluon’, the ‘Z0- and W±-boson’ and

the ‘Photon’. The fourth interaction, gravitation, is not part of the SM. While

the weak interaction can act on all quarks and leptons, the electromagnetic

interaction can only do so on charged particles. The strong interaction can act

on all gluons and quarks and hence on all particles which are built of quarks,

leptons quarks bosons
Q = −1 Q = 0 Q = 2/3 Q = −1/3 H

e νe u d γ
µ νµ c s Z0, W±

τ ντ t b g

Table 1.1: Classification of elementary particles in the SM.
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which is why nuclei can be bound together to build a nucleus. Since the so

called color charge, which is carried by all quarks and gluons, has never been

observed isolated, but always neutral in color, one can assume that it is im-

possible to observe single quarks. Instead, quarks build so called hadrons, i.e.

doublets or triplets of quarks which cancel each other with respect to the color.

This phenomenon is called ”confinement”.

1.1.2 Quark-Gluon Plasma

According to Lattice Quantum Field Theory, when temperature trespasses

a critical value of about 160 MeV [12] (with the Boltzmann constant kB ≡
1) or when the baryochemic potential gets too high, quarks do not exist in

the hadronic state (confinement) anymore, but they form a so called ”Quark-

Gluon Plasma (QGP)”. A theoretical explanation for this is, that the strong

interaction becomes weaker as the distance of the quarks gets smaller. In

this state, quarks which are not bound into hadrons can exist. Theoretical

descriptions do not consider this system as single particles but as matter.

Hence, thermodynamic terms like temperature, phases or phase transitions can

be used to describe the QGP. However, this view requires that there are many

particles involved in the QGP as well as that there is local equilibrium such that

macroscopic quantities like temperature, pressure, energy or entropy density

can be defined. Hence, the lifetime of the system must be of a bigger order

than the inverse rate of interactions such that thermal equilibrium has enough

time to appear. In order to fulfill this requirements, one needs a many particle

collision with high energy. Therefore, in the ALICE experiment, collisions of

heavy nuclei at high energies are observed, from which one knows that they

can create enough particles and a high enough temperature to form QGP [12].

Investigating QGP is of great interest in order to obtain insights about the

strong interaction in general, but also about the time shortly after the big

bang, since one assumes that the universe has been in this state in its first few

fractions of a second, and maybe also about neutron stars, because there are

theoretical assumptions that there is QGP in the inside of some neutron stars.

However, there is no experimental proof for this.
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1.2 The ALICE Experiment

1.2.1 General Overview

In nature, one expects QGP only in the inside of neutron stars. Since these

systems are experimentally inaccessible, in order to investigate QGP one has to

produce it in the laboratory. Therefore, the strategy of ALICE is to observe pp,

p-Pb, and Pb-Pb collisions at ultra relativistic energies, because one expects

QGP to occur in latter ones. Hereby, the pp and p-Pb collisions are used as

references to control the Pb-Pb collisions. The particles are accelerated by the

Large Hadron Collider (LHC) to a center of mass energy of
√
sNN = 2.76 TeV

[3]. Past the collision, the QGP is formed and hadronizes after about 10−22 s

[12]. Additionally, in the collision many particles are created, which experience

energy loss through the QGP. The ALICE detector is able to identify and track

many of those particles or their decay products so that the properties of the

QGP can be investigated. The major aims of ALICE are to find out these

properties of the QGP like the critical temperature, speed of sound, degrees of

freedom or transport coefficients. With these properties, one can for example

garner insights about QCD with many particles [15].

1.2.2 The ALICE Detector

The ALICE detector has been constructed with the objective to study the

evolution of the system of the QGP in space and time as precisely as possible.

Hence, many different kinds of subdetectors are combined to provide an exten-

sive overview of the observed system. The detector is divided into the central

barrel, which consists of several subdetectors cylindrically arranged around

the collision point, whereby the axis of the cylinder concurs with the beam

axis, and the forward muon spectrometer. A large solenoid magnet is placed

around the central barrel and provides a magnetic field of 0.5 T in order to

bend the trajectories of charged particles so that they can be identified. Since

electrons are detected in the central barrel, a short overview about the used

subdetectors for electron analyses follows.

The innermost subdetector is the so called ”Inner Tracking System (ITS)”,
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Figure 1.1: ALICE detector, overview [2].

which is made of six layers of silicon detectors. Its purpose is the identification

of particles up to low momenta, and most important the determination of the

primary vertex and secondary vertices. It contributes to the determination of

the impact parameter strongest in the global tracking, which will be of great

importance for the separation of electron sources and will also be dealt with

in this thesis. Additionally the ITS enhances the momentum and angular

resolution [16, 2, 21].

Around the ITS, the ”Time Projection Chamber (TPC)” is arranged. The

gas detector represents the most important subdetector and consists of a cham-

ber, which is filled with 90 % neon and 10 % carbon dioxide. However, during

the data acquisition, the gas mixture consisted of neon, carbon dioxide, and

nitrogen with the proportions 90− 10− 5 [5]. In between the end caps, there

is a high voltage electrode causing the electrons which are produced from ion-

isations of the gas atoms by the incoming particles to move to the end caps.

There, the electron signal is amplified and read out by a multi-wire propor-

tional chamber. Since the drift velocity of the electrons in the gas is constant

due to the homogeneous electric field and interactions with the gas, the arrival

time of the electrons can be used to calculate the coordinate parallel to the E-

field of the trajectory of the incoming particle. Therefrom comes the name of
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the TPC. The other two coordinates are determined by the position where the

drift electron arrives at the end cap. The TPC produces the largest amount

of data of all subdetectors and, just as the ITS, provides tracking and particle

identification information. The particle identification (PID) is based on the

different energy losses of particles with same momenta but different masses.

These energy losses yield the TPC signal [18, 2, 21].

The ”Transition Radiation Detector (TRD)” consists of 522 detector cham-

bers, which are arranged cylindrically around the particle beam such that there

lie 5 rings of chambers along the beam axis. These rings are separated into

18 sectors of the azimutal angle and in each of these 90 positions there are 6

layers of chambers piled up. This arrangement of the chambers would yield

an amount of 540 chambers, yet there is a “hole” of 3 × 6 chambers for the

ALICE Photon Spectrometer (PHOS), which is why there are only 522 cham-

bers. The chambers consist each of a drift chamber and a radiator. Incoming

charged particles with γ = E/m ' 1000, which is only for electrons with

high energy the case [8], create transition radiation when passing the radiator

and ionize the gas in the drift chamber. Afterwards, if the transition photon

has enough energy, it can create additional ionizations of the xenon gas in the

drift chamber. Therefore, the TRD signal is the combination of specific energy

loss and transition radiation. At the end of each drift chamber, a Multi-Wire

Proportional Chamber (MWPC) is placed. A voltage is applied between the

wires and the radiator such that the freed electrons drift towards the MWPC,

where they are read out by means of gas amplification [8]. This signal looks

different for electrons and pions even at high momenta and thus they can be

separated, where the TPC cannot do it. Hence, the TRD aims mainly at the

improvement of electron identification and tracking. Additionally, the TRD is

used as a trigger detector for ALICE [19, 2, 21].

The ”Time Of Flight (TOF)” detector measures the time particles need to

get from the primary vertex to the TOF. It consists of 6 layers of readout

channels, which are spread cylindrically around the beam axis. In between

these layers there is gas, which is ionized by the incoming particles. This

arrangement is called ‘Multigap Resistive Plate Chamber’. The TOF is needed

for particle identifications at low momenta, because the signal of the TPC
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would overlap too much or different kinds of particles are at the crossing points

of the TPC signal and hence one would not be able to distinguish between

particle species [17, 2, 21].

1.2.3 Heavy Flavor Physics

After the heavy nuclei collision, the QGP is formed and many quarks of all

kinds are produced. Additionally, in the quark gluon plasma, light quarks can

be created through thermal production. Since thermal production is strongly

correlated with the mass of particles, heavy quarks like charm, beauty or bot-

tom quarks are produced almost completely in the initial scattering process on

a very short time scale [21]. While the top quarks decay nearly immediately

after their production, the charm and beauty quarks hadronize, traverse the

QGP and decay afterwards. For example, one can consider a charm quark,

which is produced together with an anti-charm quark almost always through

gluon-gluon interactions in the initial scattering process. With a probability

of 56.5 %, they hadronize into a neutral D and D̄ meson, which decay typ-

ically a fraction of a millimeter away from the primary vertex, which is the

location where the heavy nuclei collision took place [15]. In this fraction of a

millimeter, the charm and beauty quark transmigrate the QGP and experience

its evolution in space and time. Since the top quark decays shortly after its

production, the distance it moves is negligible. Yet, the top quark can decay

into a bottom quark, which then traverses the whole QGP. The fact that the

heavy quarks transmigrate the whole QGP and have a mass, which is larger

than the maximum initial QGP temperature, is the reason why the charm and

bottom quark are of great interest to observe. By observing their energy loss in

the QGP medium, one can garner information about QCD for many particles

as well as about the QGP in general [15]. However, heavy quarks cannot be

detected apartly, since they are subject to confinement. For this reason they

hadronize into baryons or mesons. Besides the hidden heavy flavor J/Ψ and Υ

mesons and the open heavy flavor Λc baryon the most frequently created heavy

flavor hadrons are the D and B meson, which consist of a charm and bottom

quark respectively and a lighter quark. Hence, they are also open heavy flavor
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mesons. They can decay into an electron [21]:

Hc → e± +X

Hb → e± +X (1.1)

Hc and Hb denote here hadrons, which contain a charm or a beauty quark. In

general, semileptonic decays of these hadrons have quite large branching ratios

of 9.6±0.4 % for c→ l++X and 20.5±0.7 % for b→ l++X, which makes them

attractive to observe because they allow for higher statistics [7]. Since the D

and B meson have a long lifetime, they often show a detectable distance to the

primary vertex before they decay. The detected electrons and positrons from

the semileptonic decays are impure, because there are also electrons produced

through pair creation of photons in the detector material and Dalitz electrons,

which are primary electrons mainly produced through Dalitz decays of pions.

Since one is mainly interested in the heavy flavor electrons, particularly in the

beauty electrons due to their long lifetime, one wants to know the distribution

of the electrons along a quantity called the impact parameter.

The impact parameter can be considered as something similar as the dis-

tance of closest approach (DCA). In Figure 1.2, one can see the primary vertex,

which is the location where the collision of the lead nuclei has occurred. The

mother particle, e.g. a c or b quark, is produced. The mother particle travels

through the QGP, hadronizes into a D or B meson and decays into an electron

and other particles at the location of the secondary vertex. After the detection

of the electron, its trajectory can be reconstructed and extrapolated, as if the

electron had already existed before its creation at the secondary vertex. Then,

one defines the DCA as the closest distance between the reconstructed trajec-

tory and the primary vertex. The impact parameter is the DCA provided with

a sign, which implies, whether the reconstructed electron track goes past on

the right side or the left side of the mother particle. It should be mentioned

that every decay is also possible mirrored at the track of the mother particle

with all particles replaced by their antiparticles. However, in this case the im-

pact parameter changes its sign, which leads to a mirrored impact parameter

distribution. This changes the look of the asymmetric distribution of the con-
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Figure 1.2: Illustration of the DCA [21].

version electrons, which are electrons created through pair creation of photons

in the detector material. Additionally, the magnetic field in the detector has a

different impact on differently charged particles. Hence, the impact parameter

is often multiplied with the charge of the particle, so that the distributions

look the same. The long lifetime of the D and B meson and consequently

the detectable distances of the secondary vertex to the primary vertex lead to

broadened distributions for the impact parameters of the detected electrons.

This is of great importance in order to distinguish the sources of the electrons.

Considering now the impact parameter distribution of the detected electrons

in Figure 1.3, one sees the total electron signal represented by the black dots.

The transverse momentum pT , which is the momentum of a particle perpen-

dicular to the beam axis, is cut to 1.5 < pT < 2.0 GeV/c. This distribution

is a superposition of distributions of several sources, such as electrons created

from charm or beauty decays, photon conversion in the detector material, or

from Dalitz decays of neutral pions [21]. Since one is interested in the signal

of the electrons of the first two sources, charm and beauty decays, it is useful

to know the strength factors of the different sources, which are basically the

relative contributions of them. In this plot, the signal of the various sources
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Figure 1.3: Impact parameter distribution of the electrons as a superposition
of the distributions from several sources [9].

are so called templates, which are Monte Carlo simulations of full events and

their detector response, multiplied with respective strength factors obtained

from a fit. The fitting routine will be explained in more detail in chapter 2

[20, 21].

1.3 Statistical Methods

In this section some methods, which are used and dealt with in the chapters

ahead are treated. From the common likelihood, which is used in maximum

likelihood fits, according to Bayesian statistics a posterior distribution can be

built. Then, a short introduction to Markov Chain Monte Carlo methods,

which can be used to sample this posterior distribution, is given. At last

the mathematical correct likelihood for the present problem of electron source

separation is derived.

1.3.1 The Maximum Likelihood Method

A general problem in data analysis is the following: there is a vector of mea-

surement data ~x and a theoretical model which describes the data. The model
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depends on the free parameters ~λ. In order to get the best estimate for ~λ,

one wants to know how well the data fits the model for a given set of param-

eters. A measure for this is the so called likelihood L(~λ, ~x). The likelihood

can be considered as the probability for a given set of parameters ~λ to get the

measurement data ~x and hence equals the conditional probability:

L(~λ, ~x) = p(~x|~λ) (1.2)

It is important to mention that there is no information about the absolute

probability p(~λ) of a given set of parameters in the likelihood.

A common technique to get the best estimate for ~λ is its variation until the

likelihood is maximized. This procedure is called a maximum likelihood fit.

Since a constant positive factor does not change the maximum of a function,

the normalization of the likelihood is irrelevant for the position of the maxi-

mum. Regarding the N components xi of ~x as different measurement points or

equivalently as realizations of a random variable, the likelihood of the whole

measurement ~x is the product of all N single probabilities to measure xi with

the parameters ~λ:

L(~λ, ~x) =
N∏
i=1

p(xi|~λ) (1.3)

Due to computational reasons, it is common to calculate the maximum of the

logarithm of the likelihood, whose maximum is the same as for the absolute

likelihood:

logL(~λ, ~x) =
N∑
i=1

log p(xi|~λ) (1.4)

This definition of a likelihood is called the ”unbinned likelihood”, because

every single measurement point is considered on its own.

However, there is another approach called the ”binned likelihood”. Hereby,

the measurement points are inserted into a histogram and N is not the num-

ber of points any more but the number of bins in this histogram. From the

theoretical model, the expected number of entries fi in the i-th bin can be

calculated, while the measurement data yields di entries in it. Hence, the

probability to get di entries in the i-th bin, while fi entries are expected, is
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Poisson distributed with the mean value µ = fi:

p(di|~λ) =
fdii e−fi

di!
(1.5)

The total likelihood is then the product of this probability for all bins. The

logarithm of it is

logL(~λ, ~d) =
N∑
i=1

di log fi − fi (1.6)

whereby the denominator di! from formular 1.5 has been dropped, because it

is a constant, which does not depend on the fi. It should be mentioned that

the fi are dependent on ~λ. Thus the fitting parameters are contained in the

likelihood, so that they can be varied to maximize it.

1.3.2 Bayesian Statistics

In classical statistics, the probability of an event is a measure for the frequency

with which the event would occur, if one repeated an infinite amount of trials.

One can consider a set of several trials of a random variable X, distributed

according to a probability distribution p(X|~λ), whereby ~λ is a set of parameters

which on p depends. The maximum-likelihood method can be used to get the

best estimate for ~λ. This can be considered as equivalent to the problem of the

section before, where there have been measurement data ~x instead of a random

variable X. Afterwards, one can construct a confidence interval for each sample

of X such that the true value of ~λ lies in 95% of all intervals created in this

way. However, one has to note that this statement is not equivalent to the

one that the true value lies in each interval with a probability of 95%, because

in the classical frequentist’s view the true value is not a random variable, yet

only unknown.

In Bayesian statistics, the probability is considered as the degree of belief

one has about the true value of ~λ. Hence, although in the Bayesian view

the true value is also not a random variable, it can be assigned a probability.

Additionally, prior knowledge is attached to the experiment in the form of a

factor p(~λ), which is simply called the ”prior probability distribution”. It can
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be considered as the probability distribution of having a certain set of param-

eters ~λ without knowing about the measurement X. It is the ‘personal belief’

about the ~λ, which can be formed through previous measurements, theoretical

calculations or pure reason. Regarding the outcome of an experiment p(X,~λ)

as fixed information, the so called ”posterior distribution” can be calculated

according to Bayes’ theorem:

p(~λ|X) =
p(X|~λ) · p(~λ)

p(X)
(1.7)

where p(X|~λ) is the likelihood and p(X) =
∫
~λ
p(X|~λ)p(~λ)d~λ is a normalization

constant, which does not depend on ~λ. One can see that the posterior distribu-

tion is always a conditional probability depending on the knowledge available

about the experiment. Full knowledge of the posterior distribution, which

is gained by sampling it, has several advantages compared to the maximum

likelihood method:

• Uncertainties for the best estimate can be calculated correctly by sam-

pling the posterior distribution and determining the standard deviation

of the sample. In many maximization algorithms, however, the uncer-

tainties are calculated only approximately by considering the probability

distribution referred to ~λ as Gaussian or instead of uncertainties a con-

fidence interval is given.

• Prior knowledge can be used in the form of the prior distribution p(~λ).

E.g., one could multiply a Heaviside step function

p(~λ) =

0, ~λ < 0

1, ~λ ≥ 0
(1.8)

to the likelihood in order to suppress negative values for ~λ or one could

also use results from earlier measurements to improve the inference. In

the maximum likelihood method, this could lead to a non-differentiable

function, so that numerical maximization becomes problematic.
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• The posterior distribution can be asymmetric. In this case, its expecta-

tion value delivers a better estimate than its maximum.

• Even for a high-dimensional ~λ, efficient fitting algorithms are available

through Markov Chain Monte Carlo (MCMC) methods [6].

1.3.3 Monte Carlo Methods

Sampling a function f(x) in general means to consider it as a probability distri-

bution, which presupposes that it is normalized to 1, and creating realizations

of a random variable which is distributed according to f(x). These realizations

are the sample instances of f(x) and are usually saved into an array or some

other kind of list.

One rather simple way to create random variables according to a normalized

probability function f(x) is the inverse cdf method, whereby cdf stands for

cumulative distribution function. The cdf of a probability density f(x) is

defined by:

F (x) =

∫ x

−∞
f(x′)dx′ (1.9)

In other words the cdf F (x) is the total probability that a random variable

X, which follows the probability density f(x), takes on a value X ≤ x. If

one knows the cdf F (x) of a probability density f(x) and if F (x) is invertible,

it is easy to sample from f(x), since one only has to be able to sample from

a uniform distribution U[0,1] between 0 and 1. It can be shown that creating

random variables according to F−1(U) delivers the wanted sample from f(x).

However, this method is only useful for uncomplicated distributions f(x) as

an exponential function, since in general it is not possible to construct F (x)

[13].

Another method is the so called acceptance rejection sampling, which is

one of the simplest Monte Carlo methods. It requires a so called proposal

distribution prop(x), which is simply a probability density from which it is

easy to sample from like a Gaussian or a uniform distribution. The proposal
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distribution has to fulfill the property

c · prop(x) ≥ f(x) ∀x (1.10)

whereby c is a constant and f(x) is the known probability density one wants

to sample from. A sample instance is created as follows:

1. Create a random number v ∼ prop(x) distributed according to the pro-

posal distribution.

2. Build the acceptance ratio ρ = f(v)
c·prop(v)

.

3. Create a uniform distributed random number u ∼ U[0,1] from 0 to 1.

4. If u ≤ ρ accept, else reject.

5. Repeat step 1.

The acceptance rejection method is quite useful for a low number of dimen-

sions, since it can sample almost every function and the sample instances are

completely independent. Yet, for a high dimensional function the “space” be-

tween c ·prop(x) and f(x) grows exponentially with the number of dimensions,

which is referred to as curse of dimensionality [4], and hence the acceptance

rate converges to zero, which raises the necessary steps or calculation time

beyond all measure.

For high dimensional problems, another Monte Carlo method shows its

strength, which is the so called Metropolis Algorithm (MA). Since the sam-

ple instances created by it represent a Markov chain, which is a set of random

numbers, where one number always only depends on the number generated

before, the MA is a Markov Chain Monte Carlo method. To sample from a

function another function, which is easy to sample from, is needed to serve

as a proposal distribution prop(x). However, a created proposal is now not

the value to look at anymore, as in case of the acceptance rejection method,

but it is the step size which the Markov chain performs. The only constraint

for the proposal distribution in the MA is that it is symmetric for negative

and positive values. A common choice for prop(x) is a Gaussian, but also a
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uniform distribution is possible. To create sample instances from the function

f(x) the following procedure is applied:

1. Choose a starting position and set it as your old position xold = xstart.

2. Generate a random number p ∼ prop(x) distributed according to the

proposal distribution serving as a proposal.

3. Go to the new position xnew = xold + p.

4. Build the acceptance ratio ρ = min
(

1, f(xnew)
f(xold)

)
.

5. Create a uniform distributed random number u ∼ U[0,1] from 0 to 1.

6. If u < ρ accept, else reject.

7. Repeat step 2.

Hereby it is to mention, that accepting a step means to save xnew into the

list of sample instances and move to the new position or in other words set

xold = xnew. Rejecting means to save xold into the list of sample instances and

remain at the current position, which is for example the case in Figure 1.8.

This differs from the acceptance rejection method, where nothing is saved into

the list of sample instances until a step is accepted [13]. In order to visualize

this procedure an example is given in Figures 1.4 to 1.9:

Figure 1.4: Gaussian function sampled
with the Metropolis algo-
rithm.
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Figure 1.5: A starting point is chosen.

xstart = 3

Figure 1.6: For f(xnew) > f(xold) the
step is always accepted.

xold = xstart = 3

p = −4

xnew = xold + p = −1

ρ = min

(
1,
f(xnew)

f(xold)

)
= min(1, 3.75) = 1

u = 0.9

ρ > u⇒ accept

Figure 1.7: For f(xnew) < f(xold) it de-
pends on u whether a step
is accepted.

xold = −1

p = 2.5

xnew = xold + p = 1.5

ρ = min

(
1,
f(xnew)

f(xold)

)
= min(1, 0.81) = 0.81

u = 0.4

ρ > u⇒ accept
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Figure 1.8: For ρ < u the step is re-
jected.

xold = 1.5

p = −3.5

xnew = xold + p = −2

ρ = min

(
1,
f(xnew)

f(xold)

)
= min(1, 0.75) = 0.75

u = 0.8

ρ < u⇒ reject

Figure 1.9: For ρ > u the step is ac-
cepted again.

xold = 1.5

p = −1.5

xnew = xold + p = 0

ρ = min

(
1,
f(xnew)

f(xold)

)
= min(1, 1.45) = 1

u = 0.6

ρ > u⇒ accept

Though for low-dimensional functions, acceptance rejection sampling can be

much more efficient because the sample instances are independent, for high-

dimensional functions the Metropolis algorithm is the tool of choice. The

reason for this is that one does not “throw away” that many steps as in the ac-

ceptance rejection sampling due to the big space between the proposal function

and the function one wants to sample. Although the number of accepted steps

depends on the dimension, one can simply adjust the width of the proposal

function to change it such that one has maximum efficiency, which is rather

difficult in acceptance rejection sampling. Hereby, ‘Maximum efficiency’ means

that the algorithm shows least variance for the same number of steps. However,

difficulties in the MA arise, if the optimum widths of the proposal distributions
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for maximum efficiency are not the same in every dimension, but differ from

each other for the individual dimensions. Hence, it is a tough task to align

these widths correctly for every dimension, which has to be dealt with.

1.3.4 Autocorrelation

In the ideal case, the sample instances of the MA represent a Markov chain.

Hence, each of them should only depend on the one before. In reality, how-

ever, a small width of the proposal distribution prop(x) leads to a small pro-

posal p. In that case, it will often be f(xnew) ≈ f(xold) so that steps will be

accepted more frequently than if the sample instances were independent for

more than one step between them. This phenomenon constrains the efficiency

of the algorithm, since in order to proceed through the whole function f(x)

one has to go much more steps than with independent sample instances. On

the other hand, if one chooses a large width for prop(x), almost everytime one

will have f(xnew) ≈ 0 so that most of the steps are rejected. This is even

worse due to two reasons. Firstly, the sample instances are not independent

either, since they often stay at the same position xold. Secondly, since almost

all steps are rejected, it takes many steps to compensate for this. A useful

value to summarize the impact of the width of the proposal distribution is the

so called Acceptance Rate (AR), which is defined as the number of accepted

steps divided by the number of total steps. This should not be mistaken for

the acceptance ratio ρ in the definition of the MA. Eventually, the aim is to

find the AR with best efficiency, which means to find the AR for which the

variance of the sample instances is minimal for a constant number of total

steps. Hereby, the algorithm still has to converge to f . Otherwise one could

choose a proposal width with an AR of zero, which would lead to a variance

of the sample instances of zero, because the algorithm would always stay on

the same position.

A good measure for checking the independence of the sample instances is the

correlation coefficient between the sample instances also known as autocorre-

lation function. It is defined by the covariance of those sample instances that

are a given number of steps apart from each other. In general, the covariance
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of a set of two random variables a and b is defined as [6]

Cov(a, b) = E[(a− ā)(b− b̄)] (1.11)

whereby ā and b̄ are the expectation values of a and b. Therefrom, one defines

the correlation coefficient of a and b as the normalized covariance:

Corr(a, b) =
Cov(a, b)

σaσb
(1.12)

whereby σa and σb are the standard deviations of a and b. The correlation

coefficient always fulfils −1 ≤ Corr(a, b) ≤ 1. Hereby, Corr(a, b) ≈ 1 means

that a and b show a strong positive linear correlation, while Corr(a, b) ≈ −1

means they are strongly negative linearly correlated. According to [13], the

autocorrelation function of a set of random variables or a sample of a function

X is defined as

Auto(lag) =
C(lag)

C(0)
(1.13)

with C(lag) =
1

N − lag + 1

N−lag∑
i=0

(Xi − X̄)(Xi+lag − X̄)

whereby N is the size of the sample or the number of sample instances, Xi is

the i-th sample instance of X, and X̄ is the mean of all sample instances. The

lag is the number of steps two sample instances are apart from each other.

In order to understand this formula, one can imagine that from the sample

instances of X pairs Xi and Xi+lag, which are lag steps apart, are created and

considered as two sets of a random variable. The function C(lag) returns the

covariance of these two sets. For lag = 0 it returns simply the variance of

the sample X. Therefore, the autocorrelation function is just the correlation

coefficient of all sample instances with a distance of lag steps.

In order to determine how large the AR should be, it is interesting to know

the autocorrelation of the MCMC sample for different lags. This allows to

estimate how many steps from one sample instance are needed to get an inde-

pendent one. In other words, this determines how many steps in general are
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needed to get a representative sample of the function, which should be many

more than the amount one needs to get independent sample instances.

1.3.5 Likelihood For The Separation Of Electron Sources

In this last section of the Introduction chapter, the likelihood L for the sep-

aration problem related to Figure 1.3 is deduced. From this likelihood, the

posterior distribution is built according to Formula 1.7. In the chapters ahead,

this posterior is sampled with the MA in order to get an estimate for the values

of the strength factors.

One can consider to have measurement data recorded by the detector in the

form of a histogram. In Figure 1.3, these are the black dots, which represent

the impact parameter distribution of the detected electrons. The number of

entries in the i-th bin shall be di. Additionally, we know the distributions

of the M different sources j, which are available in the form of Monte Carlo

simulations of full events and their detector response. These Monte Carlo

simulations are used to create a histogram for each electron source, the so

called templates. Therefrom, according to [14], we can calculate the estimated

number of entries in the i-th bin as

fi = ND

M∑
j=1

Pjaij
Nj

(1.14)

where ND =
∑N

i=1 di is the total number of entries in the histogram with N

bins containing the measurement data, aij is the number of entries in the i-th

bin of the template for the j-th source, and Nj =
∑N

i=1 aij is the total number

of entries in the template for the j-th source. Pj is the strength factor of

the j-th source and one has as constraint
∑M

j=1 Pj = 1. For calculations it is

convenient to normalize the Pj to pj = PjND/Nj such that 1.14 becomes

fi =
M∑
j=1

pjaij. (1.15)

28



Next, one could try to minimize

χ2 =
N∑
i=1

(di − fi)2

di
(1.16)

to get an estimate for the pj values. However, this approach assumes a Gaus-

sian distribution of the di around the mean value of fi. Although this is

approximately true for large di, the distribution for low di is not Gaussian

anymore but Poissonian.

Hence, according to Formula 1.6 the logarithm of the likelihood is

logLprel =
N∑
i=1

di log fi − fi (1.17)

where the index ‘prel’ has been added, because this is not the final likelihood

but just a preliminary one. It would be correct if the templates had infinite

statistics, yet they do not.

The templates aij are sampled and therefore underlie statistical fluctuations.

Admittedly, these fluctuations are damped by the factor ND/Nj according to

Formula 1.14, but they still have to be taken into account. Therefore, the

likelihood has to be modified. Considering the template of source j, the Monte

Carlo simulation yields a value aij for the i-th bin. This value is a random

variable distributed according to a Poisson distribution with some unknown

true value Aij. Hence, the probability that the template yields aij in the i-th

bin is

p(aij|Aij) =
A
aij
ij e−Aij

aij!
. (1.18)

These Aij are additional free parameters in the likelihood. This final likeli-

hood is now the product of the probabilities over all bins that the bin i has

a certain bin content di, while one expects fi, multiplied with the product of

the probabilities over all bins and sources that the bin of a template has the
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bin content aij, while one expects Aij:

L =
N∏
i=1

(
fdii e−fi

di!

M∏
j=1

A
aij
ij e−Aij

aij!

)
. (1.19)

The logarithm is:

logL =
N∑
i=1

[
di log fi − fi +

M∑
j=1

(aij logAij − Aij)

]
(1.20)

[14] whereby the denominators di! and aij! have been dropped again, because

they do not depend on the fit parameters. Since the expected bin content is

now

fi =
M∑
j=1

pjAij, (1.21)

the free parameters of this equation are M times pj ∼ Pj and N times Aij.

This likelihood has M × (N + 1) dimensions. Having for example a number

of bins of N = 200 and M = 4 different electron sources, one obtains a 804-

dimensional sampling problem. This is the reason why Markov Chain Monte

Carlo is appropriate for the electron separation.
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2 Approaching The Metropolis

Algorithm

In this chapter, the Metropolis Algorithm (MA) shall be applied to simple

functions, like a 1-dimensional and 1000-dimensional Gaussian. By means of

whose, some properties, e.g. the convergence of the algorithm or its autocor-

relation, and some concepts, e.g. the burn in and adaptive proposal, shall be

dealt with in order to obtain some general insights about the MA.

2.1 Sampling A One-Dimensional Gaussian

2.1.1 Definition Of Sampling Function And Proposal

Distribution

For convenient application of the MA, a ROOT class which can be used to

sample one-dimensional functions has been implemented. This class is used to

apply the MA to a Gaussian function

f(x) =
4√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(2.1)

with µ = 3 and σ =
√

2 and sample it in order to calculate the expectation

value x̄ of the sample, which tends to µ for a large number of sample instances.

The Gaussian function in Formula 2.1 could represent a posterior distribution

e.g. of a fitting problem like the one in chapter 3. This procedure intends to

check in general the proper functioning of the MA and the implemented class.
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For the proposal distribution also a Gaussian function

prop(x) =
1√

2πσ2
prop

exp

(
−x2

2σ2
prop

)
(2.2)

with the proposal width σprop =
√

3 is used. For a one-dimensional Gaussian

target distribution an Acceptance Rate (AR) of ≈ 44% provides best efficiency

[1]. Hence, σprop has been set to a value which does fulfill this.

2.1.2 Dependence On Starting Position

According to Section 1.3.3, the MA requires a pre-selected value xstart func-

tioning as a starting position. If this starting position was in a region of low

probability, it would need many steps until the Markov chain is in the region

of high probability. If the number of steps is not large enough, this leads to

a shift of the sample towards the starting point, which results in expectation

value that does not fit the true value. Therefore, one can drop the first B sam-

ple instances so that the expectation value is calculated without them. Thus,

the starting position becomes unknown without using any knowledge about

the posterior distribution. B is called the burn in of the sample. Since one has

less statistics with a larger B, it should be as low as possible. Although the

optimum value for the burn in is arbitrary, in this thesis, it is set to constitute

not more than 25% of the number of sample instances, because otherwise the

reduction of the statistics is too significant [13]. In order to test whether the

sample is independent on the starting position, one can run the MA several

times and check if the results are the same.

2.1.3 Results

In the Figures 2.1 - 2.5 the sampling function f(x) and the distribution of

the sample instances normalized to the function is shown. With an increasing

number of steps this distribution corresponds more and more to the sampling

function.

In Table 2.1 the results of a Markov Chain Monte Carlo (MCMC) fit with
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Figure 2.1: Sample of Gaussian with 1000 steps.

Figure 2.2: Sample of Gaussian with 10000 steps.

33



Figure 2.3: Sample of Gaussian with 105 steps.

Figure 2.4: Sample of Gaussian with 106 steps.
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Figure 2.5: Sample of Gaussian with 107 steps.

107 steps plus 2.5 ·106 burn in steps and an AR of 48.3% as well as a maximum

likelihood fit on f(x) are presented. The maximum likelihood fit, which was

run with the ROOT class TMinuit, yields a value with less deviation from the

real value µ = 3 and is calculated in less time. Hereby, it is important to

mention that the computation, as all computations in this bachelor thesis, was

run on the server ‘alice-serv9’, which is one of the storage nodes of ALICE in

the Physikalisches Institut Heidelberg. However, the mean value x̄ = 2.997

found by the MA is also quite close to µ and the uncertainty σx = 1.414,

which is the standard deviation of the sample instances, is also very close

to the expected standard deviation σ =
√

2 of the sampling function. The

uncertainty of the maximum likelihood fit is calculated through the gradients

of the fit parameters by TMinuit. In general, the posterior distribution does

not have to be symmetric and hence the maximum does not always coincide

with the expectation value. In this example, however, it does. One can see

that for low dimensional target distributions the MA does not have the best

efficiency, which means other algorithms can be more precise with the same

number of steps. Yet, it provides a correct estimate for the error of the fit.
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fit method fit value for µ uncertainty calculation time [s]
MCMC 2.997 1.414 18.8

maximum likelihood 3 1.883 1.3 · 10−3

Table 2.1: Results of MCMC and maximum likelihood fit on Gaussian.

In conclusion, we see that the algorithm converges correctly to the sampling

function.

2.2 Sampling An N-Dimensional Gaussian

The MA can easily be generalized for N-dimensional sampling functions by

using N proposal functions and thus creating a vector of proposals. A step is

accepted as usual, if u < min
(

1, f(~xnew)
f(~xold)

)
, whereby the vector arrows symbolise

the N dimensions of x and are not drawn from now on.

2.2.1 Definition Of Sampling Function

In order to investigate the convergence and other properties of the MA for high

dimensions, the ROOT class is modified such that it is able to sample from

N-dimensional target distributions. A 1000-dimensional Gaussian function is

sampled with it. The concrete form of the Gaussian is

f(x) =
1000∏
i=1

[
4√

2πσ2
i

exp

(
−(xi − µi)2

2σ2
i

)]
(2.3)

whereby xi is the i-th component of the vector x. µi and σi are the mean and

width for the single dimensions and in this case one has µi = 3 and σi =
√

2 ∀ i.

The N proposal functions are all equal to Formula 2.2 with the same σprop

for all dimensions. The value for σprop is determined by a procedure called

adaptive proposal.
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2.2.2 Adaptive Proposal

Since the proposal width has to be adjusted such that the algorithm has max-

imum efficiency, it is a good idea to do this automatically. One can consider

sampling an N-dimensional, spherical normal distribution, i.e. a normal dis-

tribution with the same width in each dimension, with the MA. It can be

shown, that the AR with the best efficiency for this sample tends to ≈ 23%

for N → ∞ [1]. Hence, one can periodically adjust the proposal width until

the AR reaches its optimum value. Since in this case this is done only during

the burn in phase, this is just a pseudoadaptive strategy. For the regulating

process, the recommendation of [13] is used, after which the proposal width

σprop is adjusted in the following way: after every step t, it is replaced by a

modified proposal width

σprop,t+1 = σprop,t exp

(
αt − α∗

t0.7

)
(2.4)

whereby αt is the AR until the t-th step, i.e. the number of accepted steps

divided by t, and α∗ is the optimum AR (in this case 25%). This method

increases σprop for αt > α∗ and decreases it for αt < α∗. In order to get a faster

adjustment to the optimum proposal width, additionally on every hundredth

step an addend is added to σprop,t, which is proportional to the deviation of

the current AR from the optimum one α∗. In detail, this looks the following:

For t mod 100 = 0: σprop,t → σprop,t

(
1 +

α′ − α∗

10

)
(2.5)

whereby the factor σprop,t/10 scales the addend to one order below the actual

proposal width. The t mod 100 has to be applied, because a certain amount of

sample instances is needed, to calculate the current AR α′, which is the number

of accepted steps from the last 100 sample instances divided by 100. This

procedure can be considered as some kind of proportional-integral controller,

whereby the proportional part corresponds to Formula 2.5 and the integral

part corresponds to Formula 2.4. Yet, one has to consider that the regulating

process is not proportional to the integral of the AR but only to a quantity
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that is dependent on the integral. Thus, the optimum AR can be successfully

adjusted.

However, problems arise when the optimum proposal widths of the various

dimensions differ from each other. Indeed, this method of adaptive proposal

will always reach the desired AR, yet, for multidimensional functions the AR is

not the only measure for a good efficiency, but furthermore the correct proposal

width for each dimension has to be determined. Hence in Chapter 3, when the

electron separation problem is dealt with, adaptive proposal is not applied.

2.2.3 Results

Figure 2.6: Expectation value of sample for dimensions 1-250. The error bars
indicate the standard deviation of the sample instances.

In the Figures 2.6 - 2.9, the expectation values of the sample instances for

each dimension are shown. They all accumulate around the real values of

µi = 3 ∀ i. The error bars represent the standard deviations of the sample

instances for each dimension, which also fit the real values σi =
√

2 ∀ i. To

summarize the results quantitatively, the deviations of the fitted expectation

values and standard deviations to their real values for each dimension are
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Figure 2.7: Expectation value of sample for dimensions 251-500. The error
bars indicate the standard deviation of the sample instances.

Figure 2.8: Expectation value of sample for dimensions 501-750. The error
bars indicate the standard deviation of the sample instances.
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Figure 2.9: Expectation value of sample for dimensions 751-1000. The error
bars indicate the standard deviation of the sample instances.

calculated and averaged. In detail this means:

Devµ(x) =
1

N

N∑
i=1

|x̄i − µi| (2.6)

Devσ(x) =
1

N

N∑
i=1

|σxi − σi| (2.7)

whereby N = 1000 is the number of dimensions and x̄i and σxi are the mean

value and the standard deviation of the sample instances for the i-th dimension.

These deviations and some other quantities are given in Table 2.2.

Since the standard deviation σx of the sample instances is approximately√
2 for all dimensions, the uncertainty of the mean value for each individual

dimension can be estimated as

σx̄ =
σx√
N − 1

≈
√

2

107 − 1
≈ 0.00045. (2.8)

One has Devµ(x) = 0.0011 < 3σx̄ ≈ 0.0013, which means that most expec-
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quantity value
number of steps 107

calculation time 32441 s
AR 26.29%
σprop (proposal width) 0.102
µ (real expectation value) 3

σ (real standard deviation)
√

2
Devµ(x) (mean deviation from µ) 0.0011
Devσ(x) (mean deviation from σ) 0.00968

Table 2.2: Results of MCMC fit applied to a 1000-dimensional Gaussian.

tation values x̄i do not deviate significantly from µi = 3 ∀i. Hence, the fitted

parameters describe the sampling function appropriately.

2.2.4 Autocorrelation

Since the proposal width is quite small compared to the width of the posterior

distribution, one can assume that the autocorrelation is very high. In order

to test this, the autocorrelation function Auto(lag) of a sample of a 1000-

dimensional Gaussian function is calculated according to Formula 1.13 for

a representative number of dimensions and lags, i.e. the distance in steps

between two sample instances (see section 1.3.4). The function is shown in

Figure 2.10.

Even for lag = 1000 the correlation coefficient is ≈ 0.5, while it should be

around zero for low autocorrelation. The problem with this large autocorrela-

tion is that even sample instances which are 1000 steps apart are correlated.

Hence, in order to get for example ten times to every position in the sam-

pling function, one has to fulfil at least 10 × 1000 steps. However, the AR

of ≈ 26.29 % in this calculation is close to the theoretical optimum AR of

≈ 23 % [1], which is why there is no way to reduce the autocorrelation without

reducing the efficiency of the algorithm. Yet, this theoretical optimum AR is

valid only for spherical normal problems, which does not apply for the sam-

pling function in Chapter 3. Hence an AR of 23 % is not mandatory, yet one

can assume that it is desirable to have an AR which is in the same order of
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Figure 2.10: Autocorrelation function for several dimensions.

magnitude.
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3 Applying The Metropolis

Algorithm

In this chapter, the likelihood for the electron separation problem shall be

implemented by calculating the exponential of Formula 1.20. The aim is to

find the strength factors of the different sources such that their distributions

constitute the total distribution as a superposition. This is done for a set of

realistic Monte Carlo data, which is created through simulations of full events

and their detector response. The simulation data represents the true impact

parameter distributions of the electrons. The templates and the pseudo mea-

surement data are created from this realistic Monte Carlo simulations through

sampling. The likelihood is multiplied with the prior in Formula 1.8 to form a

posterior distribution. Since neither the strength factors nor the entries in the

histogram with the impact parameter distribution can be negative, using this

Heaviside function as prior is appropriate. In detail, this is done by setting the

logarithm of the likelihood to −∞ if one of the Aij or Pj is smaller than zero.

Thus, the likelihood becomes zero and the step is rejected. The posterior is

then sampled with the MA in order to get an estimate for the strength factors

Pj. At last, the sample is investigated and tested for consistency with the true

values.

3.1 Adjustment Of the MCMC fit

3.1.1 Forming The Posterior Distribution

The measurement data for this analysis are not real detector data but data

created through Monte Carlo simulation because to assess the algorithm, a
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sample with known true values is needed. The original, simulated measurement

data are shown in Figure 3.1. In the three-dimensional histogram one can see

the impact parameter and transverse momentum distribution of the electrons

from different decay types.

Figure 3.1: Original Monte Carlo data for MCMC fit. Data from [11].

Two cuts at 1.1 GeV/c and 5 GeV/c are applied to the data so that only

electrons with a transversal momentum between these two values are taken into

account. The lower boundary at 1.1 GeV/c is set due to the worse resolution at

low pT and due to stronger bending of the trajectories, which leads to a wider

conversion electron distribution. The higher boundary is set to get higher

statistics in this analysis. Then, the histogram is divided into 4 histograms,

one for each decay origin group, and every single one of them is projected on

the impact parameter axis by integrating over the transverse momentum. The

several decay types are charm electrons, the beauty electrons, which one is

interested in, conversion electrons produced through pair creation of photons

in the detector material, and Dalitz electrons, which are primary electrons

that are mainly created through Dalitz decays of pions [21]. Thus, for every

decay type a one-dimensional histogram representing the impact parameter

total distribution of the electrons is obtained. The histograms are normalized
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by the number of entries. From these normalized histograms, the templates

are built by sampling these. The sampling method does not matter here, hence

the MA is used. Additionally, the normalized histograms are multiplied with

arbitrary strength factors Pj, which are self-invented and should sum up to

unity, and added up such that a superposition of the histograms is created.

By sampling this superposition the pseudo measurement data is obtained. In

Figure 3.2 the superposition representing the ‘real physics’ in this example and

the normalized histograms, which are used to build the templates, multiplied

with the self-invented, true strength factors Pj are shown.

Figure 3.2: Superposition of normalized histograms and normalized histograms
multiplied with the real strength factors. Data is taken for 1.1 <
pT < 5.0 GeV/c.

Having created the pseudo measurement data and the templates, one can

build the likelihood via calculation of the exponential its logarithm which is

expressed in Formula 1.20 and multiply it with the Heaviside function from

Formula 1.8 serving as prior in order to get the posterior distribution. Since

in this analysis, there are N = 200 bins and M = 4 sources, the posterior

distribution is a 804-dimensional function, whereby the 4 parameters pj are

the ones, we are really interested in (see section 1.3.5). As in this analysis, the
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number of steps for sampling the pseudo measurement data ND is the same

as for sampling the templates Nj = ND = 106, due to pj = PjND/Nj one has

pj = Pj. Hence, in the following the strength factors are referred to as pj.

3.1.2 Adjusting The Proposal Width

Since the expansion of the posterior distribution is now very different for the

various dimensions, one of the most important tasks for successful MCMC

sampling is the correct adjustment of the proposal widths. While for the pj,

which sum up to unity, the major part of the posterior distribution is at values

of the order of 0.1, it differs tremendously for the Aij. There are bins with

an expected Aij ≈ 0 and some with many entries. As a result the optimum

proposal widths differ strongly, too.

In order to ease this problem, one can consider the ansatz that a good pro-

posal width should be proportional to the standard deviation of the posterior

distribution in each dimension. Since this is unknown until the sampling of

the posterior distribution is completed, another simplification has to be done.

For a large number of sample instances Nj of the template sample, one can ex-

pect that aij ≈ Aij. Since the aij are Poisson distributed with the mean value

Aij, the standard deviation of the aij equals
√
Aij. The simplification is now

to invert this by considering the standard deviation of the Aij as being equal

to
√
aij. Even though this might not be accurate, it is sufficient to demand

that the standard deviation of the Aij is only proportional to
√
aij, since a

proportional factor β is multiplied to the latter term anyway. Additionally, it

is normally enough to have a proposal width of the correct order of magnitude

even though it is not absolutely correct. Hence, for the pj a standard deviation

of the order 0.1 is assumed. For the proposal width, this is multiplied with the

same factor β as for the Aij such that the proposal widths scale equally.

One further difficulty with this method is that there may be bins with aij = 0

but Aij 6= 0. This would result in a proposal width of 0 such that this value

would not be fitted. Therefore a little offset of the order 1 is added to
√
aij

before multiplying these values with β. The final proposal widths are thus
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given as

σprop,ij = β(
√
aij + 1) for the parameter Aij (3.1)

σprop,j = β · 0.08 for the parameter pj (3.2)

whereby for σprop,j the factor 0.08 has been chosen, because it yields a better

AR than 0.1. Thus, the adjustment of the proposal widths is very simple, as

there is only one variable β, of which they depend on. This parameter could

now undergo adaptive proposal, however, the optimum AR is unknown, which

is why β has been adjusted manually such that the AR is between 25− 50 %.

3.1.3 Choosing A Proper Starting Point

Although the Markov Chain should have forgotten its starting point after

the burn in phase, it is desirable to start it in an area where the posterior

distribution is not very low. Otherwise, the posterior distribution would be

nearly flat for a large amount of steps, which would lead to a large amount of

necessary steps until the Markov Chain “finds” the interesting area, where the

expectation value is. Hence, it is reasonable to start at a position, where we

expect the expectation value of the posterior. As mentioned in the previous

subsection, for a large number of steps Nj in the template sample one can

assume that aij ≈ Aij. Therefore, it is a good choice to set the aij as the

starting point of the Aij.

However, in this analysis, it was impossible to apply the MA without per-

forming a maximum likelihood fit before. The reason for this is that the

logarithm of the likelihood can easily reach high values. In this case, ‘high’

means, that the computer has not enough storage to operate with the absolute

likelihood, which is the exponential of this already high logarithm. Hence, a

maximum likelihood fit is used to calculate the value of the logarithm of the

likelihood in the maximum and subtract this value from the logarithm. This

is equivalent to dividing the total likelihood by a constant factor and hence

does not change the expectation value or standard deviation of the likelihood.

Since the maximum likelihood method is used anyway, it is reasonable to use
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the fitted position of the maximum of the likelihood as the starting position

of the MA because this yields the best results.

For the pj, the true values are used as starting points, which is possible,

because they are self-invented and hence known. In general, for the electron

separation problems one could use a maximum likelihood fit to get the starting

points for the strength factors.

3.2 Results

3.2.1 Summary Of The MCMC Fit

Having built the posterior and adjusted the proposal widths and starting points

one can start the MA. In Figure 3.3, the created pseudo measurement data and

the templates multiplied with the true strength factors are shown. Comparing

them to Figure 3.2 yields that the templates are an appropriate replica of the

true distributions. In Figure 3.4, the pseudo measurement data and the results

Figure 3.3: Templates for the MCMC fit.

of the MA as well as of the maximum likelihood fit are shown, whereby latter

ones are fitted with the ROOT class TMinuit. The bin contents for the results
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Figure 3.4: Results of the MCMC fit and maximum likelihood fit.

of the MA are calculated with the formula

fi =
M∑
j=1

pjAij (3.3)

whereby pj and Aij are the values obtained from the MCMC fit. The histogram

with the results is normalized by multiplying it with the factor Idata/Iresults,

whereby Idata = ND = 106 is the number of entries in the histogram with the

pseudo measurement data and Iresults is the number of entries in the histogram

with the results. Due to visualization reasons, the uncertainties are not shown

in here but will be investigated in the later sections of this work. Judging

by eye, the results fit well to the pseudo measurement data, although there

are some points with large relative deviation at the edge of the histogram. A

summary of the fit is given in Table 3.1 and 3.2. While the fitted values for p2

and p3 go well together with the true values – for p2 even within the 1σ range

– for p1 and p4 there is a significant deviation of more than 3σ. One possible

reason might be that the fit has not converged yet but needs more steps to do

so. A larger number of steps would decrease the deviation of the true value
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quantity value
number of steps 107

calculation time 17700 s
AR 25.70%
β (factor for proposal widths) 0.01

Table 3.1: Results of MCMC fit for the electron separation problem.

strength factor true value MCMC fit σx
p1 0.1 0.12499 0.00547
p2 0.1 0.09840 0.00243
p3 0.5 0.49697 0.00198
p4 0.3 0.27948 0.00317

Table 3.2: Strength factors pj obtained from fit.

while the standard deviation of the sample instances would converge to the

standard deviation of the posterior distribution. For the calculation time, it is

important to mention that the calculation was run on the server ‘alice-serv9’

again.

In order to express the goodness of the fit quantitatively, the mean deviation

of the fitted values fi from the pseudo measurement data di shall be calculated.

Since the absolute values of the fi and hence their errors vary tremendously,

not the absolute deviations but the relative ones are used. The mean relative

deviation is calculated by

Devrel(x) =
1

N

N∑
i=1

∣∣∣∣di − fidi

∣∣∣∣ . (3.4)

In this analysis one has Devrel(x) ≈ 4.75%, which is quite good. However, the

fitted values have to be compatible to the pseudo measurement data within

their errors. If they are, this would be a sign that the fit has converged

correctly. Hence the errors are investigated in the next subsection.
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3.2.2 Convergence Of The Fit

For the results of the MA algorithm in Figure 3.4, the errors are estimated

by using the rules for Gaussian propagation of uncertainty and the standard

deviations of the pj and Aij from the MCMC fit. One has

∆(fi) = ∆

(∑
j

pjAij

)
(3.5)

=

√∑
j

(∆(pjAij))2

=

∑
j

pjAij
√(

∆pj
pj

)2

+

(
∆Aij
Aij

)2
21/2

where ∆pj = σx,i and ∆Aij = σx,ij are the standard deviations of the sample

instances for the respective fit parameters pj or Aij. Since the values of the

fi have been rescaled, the errors also need to be multiplied with the factor

Idata/Iresults. To get a summary of the errors, the mean of the relative errors

is calculated by

Errrel(x) =
1

N

N∑
i=1

∆fi
fi

. (3.6)

Its value is Errrel(x) ≈ 1.30%, which is not bad. Yet, one has Devrel(x) >

3·Errrel(x), which means that on average the fitted values deviate significantly

from the pseudo measurement data. Indeed, this does not mean that most of

the fitted values deviate significantly, yet the result indicates that the fit may

not have converged. In the calculation of the mean relative error the statistical

fluctuations of the pseudo measurement data ∆fi have not been considered,

which increases Errrel(x).

In Figure 3.5 the absolute value |fi− di| of the deviation of the fitted values

for the fi from the pseudo measurement data divided by the total errors of the

deviation ∆(|fi − di|) =
√

(∆fi)2 + (∆di)2 =
√

(∆fi)2 + di is shown, where

∆di =
√
di represents the Poissonian fluctuations of the pseudo measurement

data. Some of the points have a larger deviation than 3σ but most of them do
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Figure 3.5: Deviation of the fitted values from the pseudo measurement data
in units of ∆fi.

not deviate significantly.

3.2.3 Autocorrelation

In order to investigate how many steps one needs to get independent sample

instances, the autocorrelation function Auto(lag) according to Formula 1.13

is calculated for some values of dimensions and lag, i.e. the number of steps

two sample instances are apart. It is shown in Figure 3.6. It is important

to mention that due to computational reasons the autocorrelation function is

calculated in another run than the fit in the previous subsection. Hereby, the

number of steps is decreased to N = 700000. Even for lag = 10000 the auto-

correlation is still at Auto(10000) ≈ 0.8 for almost every dimension and hence

quite high. For lag = 105 it is spread from ≈ −0.4 to ≈ 0.45 for the differ-

ent dimensions and hence still not close to 0. Therefore, it is not surprising

that the fit has not converged yet. The sample instances are simply not inde-

pendent enough. There are no tendencies of the correlation behavior between

the individual dimensions. Hence, the proposal widths have an approximately
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equal scale for each dimension. If for example the proposal width was too large

for one dimension but too small for another one, there would be a difference

in the correlation coefficients. However, the autocorrelation function for the

pj is not shown in this plot. Therefore there is a good case to believe that the

autocorrelation functions of the pj look different than those for the Aij.

Figure 3.6: Autocorrelation function for MCMC sample.

For a one-dimensional posterior distribution one can assume an optimum for

the proposal width for β ≈ 1 (see Formula 3.2), because the factor multiplied

to β to get the proposal width is of the order of the width of the posterior

distribution. This would yield a quite independent sample. In this analysis

one has β = 0.01, which means that the ratio of the standard deviation of the

posterior distribution and the proposal width is σposterior/σprop ≈ 100. Since

the Markov chain behaves like a random walk, one can expect that after kacc

accepted steps it has ‘travelled’ the distance l = σprop
√
kacc. Therefore, in order

to have travelled the whole posterior distribution, kacc = (σposterior/σprop)
2 ≈

10000 accepted steps are necessary [10]. Due to an AR of ≈ 25.70 % the

number of accepted steps kacc has to be divided by the AR to get the total

number of steps necessary until the algorithm has travelled the whole posterior

distribution once. In this case, one needs approximately 40000 steps for this.
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With a total number of steps of 107, one can estimate, that the algorithm has

travelled the posterior distribution for about 107/39000 = 250 times [10]. This

value is probably a little overestimated, since in Figure 3.6 one can see that at

lag = 40000 there is still some autocorrelation. Therefore it is quite debatable

whether this fit has converged or not.

3.3 Fit With Low Binning

3.3.1 Summary And Results

Since the fit with 200 bins has yielded an extremely high autocorrelation and

some of the pj deviated significantly from the true values, another MCMC fit is

done with N = 20 bins. This aims at the reduction of the dimension such that

the proposal widths can be increased and a lower autocorrelation is obtained.

For the fit the same statistics ND = Nj = 106 as before are used. However,

the proposal widths for the pj have been changed to

σprop,j = β · 0.017 (3.7)

such that they are smaller than in Formula 3.2. The factor 0.017 has been

chosen by comparing the autocorrelation functions of the pj to the ones of

the Aij. Since one wants the proposal widths of the several dimensions to

have approximately the same scale respective to the posterior distributions,

it is reasonable to choose the proposal widths such that the autocorrelation

functions are similar for each dimension. This is the case for the proposal width

in Formula 3.7. The results are presented in the Figures 3.7 to 3.10, which

are analogue to the Figures 3.3 to 3.6, and in the Tables 3.3 and 3.4, which

are analogue to the Tables 3.1 and 3.2. The templates multiplied with the

true strength factors in Figure 3.7 fit well to the true distributions in Figure

3.2. The sampled pseudo measurement data represent the true distribution

appropriately, too.

Again judging only by eye, in Figure 3.8, the results fit well to the pseudo

measurement data. There are some fluctuations for the impact parameter
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Figure 3.7: Templates for the MCMC fit with low binning.

Figure 3.8: Results of the MCMC fit and maximum likelihood fit for low bin-
ning.
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quantity value
number of steps 107

calculation time 2700 s
AR 14.66 %
β (factor for proposal widths) 0.08

Table 3.3: Results of MCMC fit of electron separation problem with low bin-
ning.

strength factor true value MCMC fit σx
p1 0.1 0.10477 0.00640
p2 0.1 0.11063 0.00283
p3 0.5 0.49709 0.00213
p4 0.3 0.28749 0.00373

Table 3.4: Fitted values for strength factors pj for low binning.

values > 0.1 cm and around −0.1 cm, yet in Figure 3.9 one can see that the

deviations of the fitted results from the pseudo measurement data are within

3σ for most bins. Only at ≈ −0.1 cm and at ≈ 0.15 cm, where one can see

fluctuations in Figure 3.8, the deviations exceed 3σ. However, the fluctuations

result from the pseudo measurement data and since the Metropolis algorithm

shows these fluctuations, too, the fit can still be considered to be good.

The fitted values for the pj in Table 3.4 are close to the true values. The

results for p1 and p3 are compatible with the true values within 3σ, while

the p2 and p4 show a larger deviation. A possible reason might be that the

templates are also sampled with the Metropolis algorithm and might not have

converged completely. This would shift the expectation values for the pj.

Again the mean of the relative deviation is calculated as Devrel(x) ≈ 0.0184

according to Formula 3.4. On the contrary to Formula 3.6, the mean of the

relative errors is calculated considering the statistical fluctuations ∆di of the

pseudo measurement data di:

Errrel(x) =
1

N

N∑
i=1

√
(∆fi)2 + (∆di)2

fi
. (3.8)

Thus the mean of the relative errors Errrel(x) = 0.0138 is larger than without

56



considering them and one has Devrel(x) < 3 · Errrel(x). This indicates that

the fit has converged.

Figure 3.9: Deviation of the fitted values from the pseudo measurement data
in units of ∆fi for low binning.

3.3.2 Autocorrelation

To test the convergence of the fit more precisely, again the autocorrelation

function is shown in Figure 3.10. It is very important to mention that due

to computational reasons the following plots were created in another run than

the results before, whereby the number of steps is now only 700000. One

can see that the absolute value of the correlation coefficient is below 0.2 for

lag > 5000. Hence the autocorrelation is much smaller than for the fit with

a binning of 200. However, it is important to mention that this is the result

of the lower dimension as well as of the smaller proposal widths σprop,j. With

smaller σprop,j the AR increases and hence one can increase β, which results

in a smaller autocorrelation in general. Again one can estimate the number

of steps until the Markov chain has travelled the whole posterior distribution

once. With β = 0.08 one has σposterior/σprop = 1/β = 12.5 The necessary
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number of accepted steps is kacc = (σposterior/σprop)
2 = 156.25. Divided by the

AR one has a necessary number of total steps of k = 156.25/14.66 % ≈ 1065. In

this estimation, the smaller proposal widths of the pj are not considered, which

is why the real total number should be even larger. However, this estimation

yields a smaller number than the autocorrelation function. According to the

latter one, independent sample instances should occur after 3000 - 5000 steps.

With a total number of 107 steps in this fit one can expect that the Markov

chain should have travelled the posterior distribution ≈ 107/5000 = 2000

times, which should be enough for the fit to converge.

Figure 3.10: Autocorrelation function for MCMC sample with low binning.

3.3.3 Marginals Of The Strength Factors

At last the posterior distributions of the pj shall be shown by projecting the

sample instances on the dimensions of the pj. In other words, the number of

sample instances with a certain value for pj is plotted in a histogram. This

is called marginalization and is shown in Figure 3.11. One can see that the

widths of the posterior distributions fit the values for the standard deviations

σx in Table 3.4. However, the mean values are shifted so that they do not
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coincide with the true values. Since the posterior distributions do not show

any larger fluctuations but are quite smooth and well-shaped, the problem

does not seem to be the MCMC fit but either the pseudo measurement data

or the templates. As mentioned before the templates are created using the

Metropolis algorithm and may have not converged yet, which could lead to

this shift.

Figure 3.11: One-dimensional marginals of the pj.

In the Figure 3.12 the marginals of two different strength factors are shown.

These are the projections of the sample instances on two different pj or in

other words the number of sample instances with a certain value for pj and

pk with j 6= k. First, one can see the well-formed extensions of the posterior

distributions, whereby the extension of p1 is the largest, as in Table 3.4 p1 has

the largest standard deviation σx. Furthermore, one can see the correlations

of the pj for the different sample instances to each other. The values of p1

(charm electrons) and p2 (beauty electrons), just as the values of p1 and p4
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(Dalitz electrons), are anti-correlated with each other. The p2 and p4 values are

positively correlated with each other. The values of p3 (conversion electrons)

are rather uncorrelated to the other strength factors, although a slight anti-

correlation to p1 is recognizable.

If one had only two strength factors, one would expect them to be anti-

correlated, because they have to sum up to unity and hence the increase of

one would lead to a decrease of the other. With four strength factors however,

the correlation depends strongly on the particular shape of the distributions

of the individual electron sources. Considering Figure 3.2, one can see that

the distribution of the conversion electrons is not completely symmetric but a

little shifted to the left, while the other distributions are quite symmetric. This

makes the distribution of the conversion electrons very distinguishable from the

other distributions such that the optimum value for p3 is rather independent

on the other ones. This is why the values of p3 are not much correlated with

the other pj and why the fitted values for p3 have always been good. The

distributions of the other pj are all quite symmetric and differ basically in

their width. While beauty electrons show a rather large width – due to the

long lifetime of the beauty quark – the Dalitz electrons are distributed sharply.

The charm electrons are in between these two. Hence, the distribution of the

charm electrons can partly be compensated in the fit by a superposition of

the beauty and Dalitz electrons. This explains the correlation behavior. A

low p1 can be compensated by high p2 and p4 and vice versa. Hence, p1 is

anti correlated to p2 and p4. The latter ones however, have to be positively

correlated, because they have to conserve the shape of the total distribution,

which is neither too sharp nor too wide. Hence, if the broadly distributed

beauty electrons increase, the sharply distributed Dalitz electrons must do so,

too.
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Figure 3.12: Two-dimensional marginals of the various strength factors pj.
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4 Summary, Discussion And

Outlook

In this thesis, a Markov Chain Monte Carlo sampling algorithm, namely the

Metropolis algorithm, was successfully implemented and applied to a poste-

rior distribution which describes the probability distribution of the strength

factors of different electron sources. These strength factors are the coefficients

of impact parameter model distributions of electrons for different decay types,

which build a superposition that corresponds to the impact parameter total

distribution. The aim was to fit the strength factors and analyse the appli-

cability of this method with respect to convergence of the fit in reasonable

calculation time, proper error estimation of the fitted values, and profitability

of further research on using MCMC methods for the separation of heavy flavor

electrons.

Considering the adjustment of the fit, it would be interesting to test if the

burn in is big enough by adopting the proposal of [13] and systematically

investigating whether the fit results depend on the starting location. However,

since the estimated number on which the algorithm has travelled the whole

posterior distribution is estimated to be large, namely ≈ 250 for 200 bins and

≈ 2000 for 50 bins, one can assume that the results are independent on the

starting point.

The main task in the MCMC fit is definitely finding proper proposal widths

and distributions. Since the choice done in the fit with binning 50 works, one

can consider it as appropriate. Yet, in the autocorrelation plot in Figure 3.10

one can see, that the correlation functions for the pj do not completely concur,

because they all have the same proposal width. A different one for each pj could

yield an even lower autocorrelation with the same AR and hence improve the
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efficiency. Additionally, it would be interesting to have theoretically calculated

optimal proposal widths. Alternatively, one could try to implement another

kind of adaptive proposal, which repeatedly adjusts the proposal widths in the

different dimensions looking for better efficiency.

One remaining issue are the shifts of the expectation values of the pj from

the true values. From the plots of the marginals one knows, that these shifts

are not caused by the MCMC sampling of the posterior distribution but either

by the pseudo measurement data or the templates. The algorithm seems to

converge to the wrong expectation value and therefore increasing the number

of steps would not fix this problem. A possible reason is, that the templates are

sampled with the MA, too, and therefore might not have converged because

the sample instances are autocorrelated. Although the AR of the template

sampling is forced to ≈ 30 % with adaptive proposal in the fit with binning

50, the optimum AR for this sampling function is unknown. Hence, it may

be a better choice to use acceptance rejection sampling for the templates.

Considering Table 3.2, one can see that p1 is too high, while p2 and especially

p4 are too low. This could be due to the anti-correlation of p1 with p2 and

p4 based on the similarity of these distributions. A stronger charm electron

distribution is compensated by weaker beauty and Dalitz electron distributions

and hence the expectation value is shifted. To remedy this problem, in general

a high granularity, i.e. a large number of bins, is important such that also

small structures of the source distributions can be used to distinguish them.

Additionally the templates should have good statistics, which was maybe not

given here, because they were created with the MA. However, templates with

high statistics sharpen the posterior distributions and hence lead to a lower

AR or higher autocorrelation in case the proposal widths are made smaller.

The fit applied in this analysis is not applicable for a serious source sepa-

ration problem yet, because it is not precise enough. Additionally the fitted

values for the pj have significant deviations from the true values for this set-

tings, though this is probably due to the shifts of the expectation values. While

the sample instances in the fit with binning 200 have been highly autocorre-

lated and hence the fit should be considered sceptically, one can consider the

algorithm to have converged for binning 50, at least after the shifting problem
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is fixed. Therefore MCMC methods have shown their potential to be applicable

for the electron separation.

For further investigations on this topic, it is advisable to decrease the auto-

correlation for higher binning. First of all, one can align the autocorrelation

functions of the pj to those of the Aij, which was partly done for binning 50 in

here. Then, one might consider changing the prior such that it regards the fact

that the electron distributions have a maximum. This would be accomplished

by pitching an area, from which one knows for sure that the maximum of the

distribution lies within there. Then, it is checked whether there are two Aij

for which one is farther away from the pitched area but still larger than the

other one. Every sample instance for which this is true is rejected. At last

one might consider to change the sampling algorithm. One modification of

the Metropolis algorithm is the so called ‘Gibbs sampling’. It is basically a

slow random walk sampler as well. However, while in the MA a new sample

instance is considered for each dimension at once, in the Gibbs sampling a

step is always made in only one dimension. The acceptance is dependent on

the conditional distribution of the sampling function for this dimension. Thus,

steps for the several dimensions are made one after another. This has the

advantage that the proposals for the individual dimensions do not need to be

adjusted relatively to each other and maybe it is possible to implement some

kind of high dimensional adaptive proposal with the Gibbs sampling [10].

In conclusion, there are still many possibilities to improve the Markov Chain

Monte Carlo method used in this work and since the results have already been

satisfying, further investigation in this topic is highly recommendable.
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