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Rekonstruktion von Mesonen mit Charm im Zerfallskanal D∗+ →
D0(K−π+)π+ in p-p Kollisionen bei

√
s = 7 TeV mit ALICE

Im Rahmen dieser Arbeit wurde die prompte Produktion des D∗+(2010)
Mesons und seines Antiteilchens bei Midrapidität im Zerfallskanal D∗+ →
D0(K−π+)π+ in p-p collisions bei

√
s = 7 TeV im ALICE Experiment

gemessen. Der differentielle Wirkungsquerschnitt wird in zehn Intervallen
des Transversalimpulses im Bereich 1 < pT < 24 GeV/c vorgestellt.
Der gemessene differentielle Wirkungsquerschnitt von prompter D∗+(2010)
Meson-Produktion wird durch modernste Rechnungen in perturbativer
QCD im Rahmen von FONLL und GM-FVNS innerhalb der relativ
großen Unsicherheiten im Experiment und in den Rechnungen beschrieben.
Hadronisierung von Charm nach D Mesonen mit einem leichten Quark (d)
erlaubt eine Beschreibung innerhalb des statistischen Modells. Der gesamte
Charm Produktionsquerschnitt wurde unter zusätzlicher Verwendung der
ALICE Messungen zur prompten Produktion von D0 and D+ Mesonen
bestimmt. Es wird angemessene Übereinstimmung mit Ergebnissen anderer
LHC Experimente, ATLAS und LHCb, gefunden.

Charmed Meson Reconstruction in the D∗+ → D0(K−π+)π+ Decay
Channel in p-p Collisions at

√
s = 7 TeV with ALICE

Within this thesis, the prompt production of the D∗+(2010) meson and its
anti-particle has been measured in the D∗+ → D0(K−π+)π+ decay channel
at mid-rapidity from p-p collisions at

√
s = 7 TeV with the ALICE apparatus.

The production differential cross section is presented in ten intervals in the
transverse momentum range 1 < pT < 24 GeV/c. The measured differential
cross section of prompt D∗+(2010) meson production is described by state-
of-the-art perturbative QCD calculations within the framework of FONLL
and GM-FVNS within rather large uncertainties in both experiment and
calculations. Hadronization of charm into light flavor (d) D mesons allows
for a description within the statistical model. The total charm production
cross section was extracted by additionally taking into account the ALICE
measurements on the prompt production of D0 and D+ mesons. Fair
agreement with results from other LHC experiments ATLAS and LHCb is
found.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) is the theory of strong interactions. It
has two remarkable features. One is asymptotic freedom [1, 2], i.e. the
interaction between quarks weakens as they get closer to each other. The
other is color confinement, which prohibits single color charge in vacuum.

The asymptotic freedom reveals that the strong interaction is very
small at high energy scales, where the strong coupling constant αs � 1.
This enables perturbative methods to be applied in QCD calculations.
Perturbative QCD (pQCD) has successfully calculated the R ratio in e+e−

annihilation. However, it is not applicable when low-energy interactions
are involved in the process, e.g. the initial state in hadron collisions. The
factorization theorem makes the calculation possible for wider circumstances.
It states that one may treat the short-range and long-range processes, the
short-lived and long-lived interactions, and the high-energy and low-energy
scales separately.

The calculation of heavy-flavor (c, b) quark cross sections in hadro-
production is a good application of pQCD and factorization theorem. The
hard processes of heavy quark production are eligible for pQCD calculation,
since their energy scales are much larger than the QCD scale ΛQCD. On
the other hand, the factorization theorem makes it possible to take the non-
perturbative processes of particle distribution function and hadronization
fragmentation function into account separately.

The charm cross section in high energy hadron collisions has been a
remaining challenge in pQCD calculations. First, the charm cross section
from calculations is less precise than the bottom cross section, since the
energy scale is not as large. Second, the parton distribution function at
low Feynman-x regime is not well understood. Third, the high collision
energy introduces a second energy scale, which causes the differential cross
section at high momentum to not be reproduced by a standard NLO pQCD



Chapter 1. Introduction

calculation. The third difficulty is solved by introducing a resummation of the
logarithmic terms into the NLO pQCD calculation. Models (e.g. FONLL [3],
GM-VFNS [4]) with resummation have successfully reproduced the high
momentum cross section distribution measured by CDF [5, 6]. However,
the problems associated with calculations of the low momentum differential
charm cross section and the total charm cross section remain.

The Large Hadron Collider (LHC) at CERN near Geneva, Switzerland,
provides proton-proton collisions at the world’s highest center-of-mass energy√
s = 7 TeV in the runs during 2010 and 2011 (8 TeV in the run of year

2012). Additionally, it provides lead-lead collisions at center-of-mass energies
up to

√
sNN = 2.76 TeV per nucleon-nucleon pair. At these energies, heavy

quarks are produced in abundance. Compared to the previously highest
energies in nucleus-nucleus collisions achieved at the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory in Upton, New York,
the production of charm quarks (bottom quarks) is roughly ten times (100
times) larger at the LHC.

The dominant fraction of charm quarks emerges in open charm hadrons,
e.g. D mesons, while hidden charm hadrons, e.g. J/ψ, carry roughly one
percent of the total charm yield [7]. At the LHC, the ALICE experiment
measures most of the heavy quark hadrons in both proton-proton and lead-
lead collisions. Open charmed hadrons are identified by measuring their
displaced decay vertex [8] with high spatial resolution with help of the inner
tracking system (ITS) of ALICE.

In lead-lead collisions, heavy-flavor (c, b) quarks are excellent tools to
study the degree of thermalization of the initially created matter [9]. The
critical temperature and density are exceeded, allowing quarks and gluons
to be freed from their hadronic boundary and form a deconfined phase of
matter – a quark gluon plasma (QGP) [10, 11].

The large masses of heavy quarks are almost exclusively generated
through their coupling to the Higgs field in the electro-weak sector, while
the masses of the light quarks (u, d, s) are dominated by spontaneous
breaking of chiral symmetry in QCD. This means that in a QGP, where chiral
symmetry might be restored, light quarks are left with their bare current
masses while heavy-flavor quarks remain heavy. Due to their large masses
(� ΛQCD), heavy quarks are dominantly created in early stage perturbative
QCD processes. The overall number of heavy quarks is conserved since their
heavy mass is much larger than the maximum temperature of the medium.
Thus thermal production is negligible. Also, cross sections for heavy quark-
antiquark annihilation are marginal [12].

Frequent interactions at the partonic stage will cause these heavy
quarks to participate in collective motion [13, 14, 15] and finally kinetically

2



equilibrate. This led to the idea of statistical hadronization of charm
quarks [16]. At high momentum, charm and bottom quarks propagating
through the medium provide another tool for probing the medium, e.g.
the gluon density [17]. Due to their large mass, novel effects have been
predicted [18].

The work presented in this thesis is the full reconstruction of the
D∗+(2010) via the hadronic decay channel D∗+ → D0(K−π+)π+ and charm
production cross section in proton-proton collisions at

√
s = 7 TeV, measured

with the ALICE detector in mid-rapidity. This work was performed in
collaboration with the ALICE group, and has been part of three publications
by the ALICE collaboration [19, 20, 21].

This thesis is organized as follows. Chapter 2 gives a brief overview of
heavy quark physics in proton-proton collisions. Chapter 3 addresses the
Large Hadron Collider and its four main experiments with a closer look
at the ALICE detector. The data sample and the ALICE offline data
processing flow in the simulation and the reconstruction are also shown.
In Chapter 4, the reconstruction of D∗+ via the hadronic decay channel
D∗+ → D0(K−π+)π+ in p-p collisions is shown, with the yield extraction
selection method. Chapter 5 presents the study of the correction, explaining
how the efficiency is obtained. The systematic uncertainty is discussed
in Chapter 6. Chapter 7 presents the differential and integrated charm
production cross sections in p-p collisions, which is the result of this work.
Comparison is given to other measurements from ALICE, e.g. D0 → K−π+,
D+ → K−π+π+ and D+

S → φ(K−K+)π+. A summary and outlook is given
in Chapter 8.
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Chapter 2

Charm Production in Hadron
Collisions

The quark model was first proposed by Murray Gell-Mann [22] and
George Zweig [23] independently in 1964, to classify the numerous discovered
hadrons using sub-nuclear particles known as quarks. They considered
only three quarks (up, down, and strange). The fourth one was first
suggested by James Bjorken and Sheldon Glashow [24] and named charm
quark. The first discovered particle containing charm quarks is the J/ψ
meson, which was found independently in e+ − e− collisions at the Stanford
Linear Accelerator Center (SLAC) [25] and in p-Be collisions at Brookhaven
National Laboratory (BNL) [26] in 1974.

In this chapter, the charm production in proton-proton collisions is
discussed first. The calculation of its cross section using perturbative QCD
is described in detail. Furthermore, several pQCD calculation models are
introduced. Finally, the charm production in heavy ion collisions is briefly
described, where we focus on the effects of the interactions between charm
quarks and the medium.

2.1 Charm Production in p-p Collisions

Timeline

The typical production of charm quarks in p-p collisions is schematically
illustrated in Fig. 2.1. The starting time is defined as the point when the
two projectile protons meet each other in the beam direction, coinciding
with the strong interaction occurring between the colliding partons. Charm-
anticharm quark pairs are produced from the kinetic energy of the partons.
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pp cc D,Λ,... K,π,e,...

hard 
scattering

~ 0.08 fm/c

hadronization
~ 1 fm/c

decay
~100 µm/c

Figure 2.1: Timeline of charm production in p-p collisions, from the initial
collision through to the decay of charmed hadrons.

The formation time of the quark pair is related to their Compton wave
length. We can give a rough estimation that the charm quark is produced
at t ≈ h̄/2mcc

2 ∼ 0.08 fm/c. The produced quarks can not live individually.
Due to the confinement of the color charge, the quarks are confined into
hadrons. The process that the produced quarks and anti-quarks combine into
hadrons is named hadronization. It occurs at a time which corresponds to the
size of a hadron (t ≈ R/c ∼ 1 fm/c). Hadronic resonances in excited states
are unstable and decay via strong processes into ground state hadrons. The
decays of these excited hadrons occur ∼ 1 fm/c after their creation. No flavor
number is changed in the strong decay, and the net charm quark remains in
the hadron. After ∼ 100 µm/c, the charmed hadron in the ground state
decays through weak interaction. It has ∼ 95% probability of decaying into
a strange quark s, and ∼ 5% probability of decaying into a down quark d [7].
The daughter particles of the decay are then detected in the experiments.

Hard Scattering

In proton-proton collisions, the initial interaction happens between two
partons, one from each projectile proton. The interaction is a strong process,
where charm quarks are produced in pairs, a charm quark and an anti-charm
quark, because flavor number is conserved. The combination of the two
interacting partons that produce charm-anticharm quark pair can be gluon-
gluon or quark-antiquark. Some Feynman diagrams of quark-antiquark and
gluon-gluon processes are drawn in Fig. 2.2.

There are infinitely many possible processes, which can not be listed one
by one. In the calculations, we consider only the dominant processes. The
processes are sorted by the order of strong coupling constant in the Feynman
diagram. For example, pair creation and quark fusion are Leading Order
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�
Quark Fusion

�
Pair Creation
�
Flavor Excitation

�
Gluon Splitting

Figure 2.2: Feynman diagrams of charm production in quark-antiquark
process qq → QQ̄ (top) and gluon-gluon processes gg → QQ (bottom).

(LO) processes. Flavor excitation and gluon splitting are Next-to-Leading
Order (NLO) processes. There are higher order processes NNLO, NNNLO,
etc., but their cross sections are highly suppressed, when the strong coupling
constant is very small (αS � 1). These terms will be discussed again in the
next section, where perturbative QCD calculations are introduced.

Within the limited acceptance of the detector, the full reconstruction
of charmed hadrons is limited in a certain rapidity region. Given a certain
collision energy of the proton beams, the hard processes that can be measured
in a rapidity region correspond to the colliding partons in a certain phase
space of momentum transfer Q2 and momentum fraction Bjorken-x. The
parton kinematics in 7 TeV p-p collisions at LHC is shown in Fig. 2.4. With
increasing beam energy, the lowest x-value of the active parton decreases,
when a fixed rapidity range is considered.

At LHC energies, the cc quark pair at mid rapidity is produced from the
partons with typically x ∼ 10−4, where the gluon contribution dominates
the parton distribution function, as displayed in Fig. 2.3. Hence, the gluon-
gluon processes (gg → QQ) are dominant in charm production at LHC at
mid-rapidity, compared to quark-antiquark (qq → QQ̄) processes.

Hadronization

A color-charged particle can not exist alone freely. After the creation of a
heavy quark in the initial hard process in a p-p collision, it will hadronize
quickly (∼ 1 fm/c). The interaction between two quarks is described by the
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Figure 2.3: Parton distribution function (PDF) from MSTW (Martin-
Stirling-Thorne-Watt) 2008 in Next-to-Leading Order, at two different
momentum scales [27].

strong force, which increases with distance. The large strong force energy
potential binds the two into a meson, and in some cases, binds three quarks
into a baryon.

Figure 2.5 shows the relative abundance of charmed hadrons in the
rapidity range |y| < 1. Charm quarks hadronize into D mesons, Λc baryons
and hidden charmed mesons. These fragmentation fractions are measured
from other experiments and then fitted with parametrized functions. The
Review of Particle Physics [7] lists the fragmentation fractions of charm quark
to D mesons as,

f(c→ D0) = 0.557± 0.023,

f(c→ D+) = 0.226± 0.010,

f(c→ D∗+) = 0.238± 0.007. (2.1)

Decay of Charmed Hadrons

Charmed hadrons have non-zero net charm flavor number, so they are also
named open charmed hadrons. This is in contrast to hidden charmed
hadrons, which have charm quarks but a zero net charm flavor number.
Table 2.1 shows a list of open charmed hadrons with their intrinsic physical
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Figure 2.4: LHC parton kinematics (Q2, x) phase space at
√
s = 7 TeV

compared to HERA [28]. For charm production at mid rapidity, where
Q = M ≈ 1.5 GeV, the Bjorken-x of the active parton is about ∼ 3 · 10−4.

characteristics. The list contains only the mesons with a charm quark. The
corresponding charge conjugates containing an anti-charm quark are not
given.

The D mesons consist of a charm quark and a light (u, d, s) anti-quark.
The Λc and Σc baryons consist of a charm quark and two other light quarks.
As shown in Table 2.1, the charmed hadrons are not stable, as their mean
lifetime is rather short. The excited charmed hadrons decay via strong
interaction, and their Breit-Wigner decay widths are smaller than the order
of ∼ 1 MeV, which corresponds to a mean lifetime of about ∼ 200 fm/c.
The other charmed hadrons, which decay via weak interaction, have mean
lifetimes on the order of about ∼ 100 µm/c.

Decay of Excited-State Charmed Hadrons
The mesons in excited states, named D∗ mesons, decay strongly into lower

9
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Figure 2.5: Relative abundance for hadrons with a charm quark in central
rapidity |y| < 1. The numbers are taken from PYTHIA citePYTHIA
simulations in p-p collisions at 14 TeV [30].

Charmed
Hadron

Valence
Quark

I(JP ) Rest Mass (MeV/c2) Life Time /
Decay Width

D0 cu 1
2
(0−) 1864.86 ± 0.13 cτ = 122.9 µm

D+ cd 1
2
(0−) 1869.62 ± 0.15 cτ = 311.8 µm

D+
s cs 0(0−) 1968.49 ± 0.32 cτ = 149.9 µm

D∗0 cu 1
2
(1−) 2006.98 ± 0.15 Γ < 2.1 MeV

D∗+ cd 1
2
(1−) 2010.28 ± 0.13 Γ = 96 keV

D∗+s cs 0(??) 2112.3 ± 0.5 Γ < 1.9 MeV

Λ+
c cdu 0(1

2

+
) 2286.46 ± 0.14 cτ = 59.9 µm

Σ++
c cuu 1(1

2

+
) 2453.98 ± 0.16 Γ = 2.26 MeV

Σ+
c cdu 1(1

2

+
) 2452.9 ± 0.4 Γ < 4.6 MeV

Σ0
c cdd 1(1

2

+
) 2453.74 ± 0.16 Γ = 2.16 MeV

Table 2.1: Table of charmed hadrons. These numbers have been taken
from [7].

(or ground) states, where the charm flavor still exists in the final state after
the decay. The decay scheme of the charmed mesons from J1 (D∗0, D∗±) to
J0 (D0, D±) state is shown in Fig. 2.6. The orbital quantum number L of
these D mesons is equal to 0, so the angular quantum number is equal the
spin J = S. The D∗0 mesons decay to D0 mesons, and the D∗± mesons
decay to D0 or D± mesons. The width of the D∗0 meson is < 2.1 MeV, and
that of the D∗± meson is 96 keV. We can easily deduce their mean lifetimes

10
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τ ∼ 10−21 s ∼ 1 pm/c from the mass width-life time relation τ = h̄
Γ
. Thus

they decay almost immediately after their creation in the collision, and the
distance they travelled away from the collision vertex is not noticeable with
current experimental methods.

Figure 2.6: Decay modes of excited charmed mesons.

Decay of Ground-State Charmed Hadrons
The ground state charmed mesons, e.g. D0 and D±, can only decay
via weak interactions. Compared to the decays of D∗ mesons via the
strong force, these ground state D mesons have much longer lifetimes, and
their flight distances before decaying is measurable using precise tracking
detectors. If the daughters of a decay are all detected, the charmed
hadron are kinematically fully reconstructed via this channel. Some of these
channels have significant branching ratios, and are used for charmed hadron
reconstruction in experiments. Their branching ratios are listed below [7]:

B.R.(D0 → K−π+) = 3.88± 0.05%,

B.R.(D+ → K−π+π+) = 9.13± 0.19%,

B.R.(D+
s → K+K−π+) = 5.49± 0.27%. (2.2)
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These charged kaons and pions from the decays of D mesons can be
detected by tracking detectors in a magnetic field. These tracks can be
identified by the fact that they originate from the decay vertex of D mesons,
which results in an impact parameter ∼ 100 µm to the primary collision
vertex. The identification of these particles requires high spatial resolution
detection in the vicinity of the primary vertex.

2.2 Perturbative QCD in Heavy Quark

Production

Given asymptotic freedom [31] as a key characteristic of the strong force,
the strong coupling constant αS is small at short distance (i.e. high energy)
interactions, see Fig. 2.7. This allows perturbative methods to be applied
in calculations of these short distance strong interactions. One of these
applications is heavy quark production in hadron collisions [32]. The hard
interaction cross section of heavy quark production σ̂ can be calculated
perturbatively. Its perturbative expansion in terms of αS is:

dσ̂ = dσ̂(0) + αSdσ̂
(1) + α2

Sdσ̂
(2) + ... . (2.3)

The prerequisite to make σ̂ calculable in perturbative QCD (pQCD) is
the heavy quark mass M , for two reasons listed in the following:

• The gluon emission of a moving quark is suppressed in the cone
θ < m/E. For a heavy quark, its mass M provides a cut-off of collinear
divergence. This ensures that the heavy quark cross section is finite in
the pQCD calculation. On the other hand, for a light quark with a
mass m ∼ 0, the collinear gluon emission are not calculable in a fixed
order pQCD calculation.

• M is much larger than the QCD scale. The strong coupling constant
is αS ∼ ln( µ

ΛQCD
)−1. In the heavy quark hadro-production process,

the energy scale µ of the process is of the order of the heavy quark
mass M . In order to make the powers of αS small in the expansion,
M should be large compared to the QCD scale ΛQCD. The QCD scale
ΛQCD defines a scale where the coupling constant becomes large, and
ΛMS(Nf = 5) = 213 ± 8 MeV [33], where Nf is the number of active
quark flavors.

The production cross sections of charm, bottom and top quarks meet
these prerequisites and allow to be calculated perturbatively. These quarks

12



2.2. Perturbative QCD in Heavy Quark Production

pp –> jets (NLO)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2012

Lattice QCD (NNLO)

Z pole fit (N3LO)

τ decays (N3LO)

Figure 2.7: Summary of the strong coupling constant αS measured in different
experiments, as a function of energy scale [33]. A clear signature of the
energy dependence of αS is observed, which is consistent with the feature of
asymptotic freedom at large values of Q.

are much heavier than ΛQCD, and are called heavy quarks. The other three
quarks are considered light quarks. The production cross sections of light
quarks are calculable with pQCD only when the momentum is larger than
the QCD scale.

In the pQCD calculation of the productions of each heavy quark flavor,
the perturbative effects are different due to their different masses. The
heavier the mass is, the smaller the strong coupling constant becomes, and
thus the smaller the high order corrections of O(αnS) are. Hence, given the
perturbative calculation at the same order, the uncertainty of the charm cross
section calculation is larger than that of bottom, and even larger than that
of top.

The mass of the quark M defines the scale of the strong coupling, which is
the relevant scale when one calculates the total cross section. If one wants to
calculate differential cross sections in pT, y phase space, one will have to face
another scale of energy of the quark E (or transverse momentum pT). E and
pT are correlated. In high-energy hadron collisions, we have to deal with the
fact that the scale of E and pT can be much larger than the scale of the heavy
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quark mass. Also, at a fixed collision energy, the charm production involves
partons with much lower Bjorken-x value than the bottom and the top. The
uncertainty of parton distribution at low x addresses larger uncertainty of
the charm cross section in hadron collisions.

Factorization

The hard scattering process of charm production happens in a very
small space-time scale, while the hadronization process is a long distance
interaction. The strong coupling constant is very small (αS � 1) at short
distance (ultraviolet side (UV) in spectroscopy), and becomes large (αS ∼ 1)
at long distance (infrared side (IR) in spectroscopy), see Fig. 2.7. The distinct
behavior of the strong interaction in these two regimes enables us to calculate
them separately, separating the hard process and the hadronization. This
separation is called factorization. The factorization scale µf is introduced to
enable the calculations in both the short and long distance regimes. The short
distance process are calculated with perturbative methods. The factorization
scale is arbitrary, as there is no clear border between short distance and long
distance. In pQCD models, the value of the factorization scale are chosen to
minimize the perturbative uncertainties.

In proton-proton collisions, the production of charmed hadrons is
calculated as,

dσ(pp→ D +X) =
∑
i,j

∫
dx1dx2dzfi(x1, µf )fj(x2, µf )

×dσ̂ij→cX(αS, x1, x2, µf )×DD
c (z), (2.4)

where i and j are the colliding partons, carrying a fraction x of the momentum
of the proton; c is the outcoming charm quark. The calculation of the charm
hadron cross section in pp uses three ingredients:

• The parton distribution function (PDF) f(x, µ), which is the
probability density that a parton has a fraction x of the the proton
momentum in the Breit frame, as shown in Fig. 2.3;

• The cross section of hard partonic interaction dσ̂ij→cX of the charm
quark production;

• The charm-to-hadron (c → D) fragmentation function (FF) DD
c (z),

which is the probability density that a charmed hadron carrying a
certain proportion of the momentum of its parent charm quark. The
parameter z is the ratio of the momentum of the D hadron to the
momentum of the c quark.
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The PDF of a proton and FF are assumed to be universal functions and
do not depend on the collision system or energy. The proton PDF is mostly
measured in Deep Inelastic Scattering (DIS), and FF is measured in e+− e−
collisions. However, there are singularities in two regimes of the calculation.
They are:

• UV singularities due to the infinite loop diagrams;

• IR singularities due to soft gluon emissions;

• Collinear singularities due to collinear gluon emissions.

The soft and collinear singularities are absorbed into the PDF by using
the factorization theorem, while the UV singularities are absorbed into the
strong coupling constant by using renormalization.

Renormalization

In pQCD calculations, the UV singularities remain, even after the
factorization method has been applied. The contribution of these loop
diagrams may cause unrealistic infinite momenta. Thus renormalization is
needed in the calculation. By including the integration up to an energy scale
limit µr, the ultraviolet singularities from the loop diagrams are absorbed
into the strong coupling constant αS. The renormalization scale µr defines
the scale of the strong coupling constant in pQCD calculations.

Modified PDF

The distributions of partons in a proton are non-perturbative features.
However, to deal with the soft collinear infinities, the PDFs are included into
perturbative calculations. By reproducing the modified parton distribution
functions, the singularities in the long distance regime are absorbed in
the bare parton distribution functions. Some of the soft and collinear
singularities appear both in the virtual and real gluon emission diagrams,
and their integration over the emitted partons cancel each other out. The
remaining singularities are absorbed into the parton distribution function.
The factorization scale µf acts as an ultraviolet cutoff of the emitted soft
gluons.

In the calculation of heavy quark production, the modifications used to
absorb the singularities are applied on two aspects. One is by including
the heavy quark in the initial state. Heavy quark pairs are created from
gluon splitting in the proton. The modified heavy quark distribution function
is thus calculable with perturbative methods. The other is by including a
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perturbative fragmentation function, which defines the kinetic relation from
a light parton to a heavy quark. It is worth noting that this fragmentation
function is different from the quark-to-hadron fragmentation function.
The light-parton-to-heavy-quark fragmentation function is perturbatively
calculable, whereas the non-perturbative quark-to-hadron fragmentation
function must be extracted from experiments and its distribution at other
scales must be calculated with evolution equations. With these modifications,
the soft collinear singularities are absorbed in the perturbative heavy
quark PDF and the perturbative light-parton-to-heavy-quark fragmentation
function.

In pQCD calculations, the modified PDF is described as a running parton
distribution function f(x, µf ), in terms of parton momentum fraction x of the
proton and the factorization scale µf . We can not get the absolute value of
f(x, µf ) from pQCD calculations. However, by using the DGLAP evolution
equation [34], we are able to determine its µf dependence.

In practice, a PDF is measured at a given scale µ0. Then the evolution
equations are solved to determine the PDF at other scales. The parton
splitting function in the evolution equation depends on αS, and needs to be
calculated perturbatively. It is expressed as a power series of αS. Currently,
the calculation of the DGLAP evolution equation has been up to the precision
level of NNLO.

Fragmentation Function

Hadronization is a soft process that happens ∼ 1fm/c after the parton
scattering. The factorization theorem indicates that it is independent
from the hard scattering process, both in time scale and energy scale.
A fragmentation function, which links the kinematics of the quark and
the hadron, must be modelled to meet the experimental results. The
hadronization process can not be calculated perturbatively, given the fact
that it is a long distance interaction. The quark-to-hadron fragmentation
function is measured from experiments and parametrized in different models.

One example of a non-perturbative quark-to-hadron fragmentation
function model is that from C. Peterson [35]. It is parametrized as the
ratio between the hadron energy and the incident quark energy. Thus, this
fragmentation function is assumed to be universal, as it does not depend
on the absolute energy of the quark. Peterson’s fragmentation function is
parametrized as

DH
Q (z) ∝ 1

z(1− (1/z)− εQ/(1− z))2
, (2.5)
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where DH
Q (z) is the quark-to-hadron fragmentation function representing the

fragmentation probability density, z = EH/EQ, EH is the outgoing hadron
energy, and EQ is the incoming heavy quark energy. Although the parameter
εQ corresponds to (mq/mQ)2, it is taken in practice as a free parameter and is
then fitted to experimental results. For charm and beauty quarks, εc = 0.06
and εb = 0.006 are commonly used values in this calculation.
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Figure 2.8: Peterson’s fragmentation function, with εc = 0.06 and εb = 0.006.

There are other fragmentation functions which are also commonly
used, such as the Kartvelishvili-Likhoded-Petrov function [36], the Bowler
function [37] and the Collins-Spiller function [38]. All of these fragmentation
functions must be further constrained by experimental data.

The Scale Factors µr,f

In a complete calculation, the physical cross section is independent of
the choice of the µr and µf , which makes the observables (i.e. charmed
hadron cross section) calculable. This key feature of pQCD is called the
renormalization group equation (RGE):

µr,f
dσ

dµr,f
=

dσ

dlnµr,f
= 0. (2.6)

Although the scale factors µr,f are arbitrary, their values may not be chosen
freely. The RGE is valid when the physical observable is calculated in all
orders, which is not feasible presently. It is obvious that the higher the
orders one takes into the calculation, the less varied the calculation becomes,
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and so the dependence on the choice of scale decreases. With the applicable
theoretical calculation, one may calculate up to a certain precision level with
different scales, and check the variation of the calculated observable.

In order to reduce the dependence of an observable on the scale as much
as possible, we need to choose an optimum scale µr,f to cope with the limited
precision level we have achieved. The running coupling gives a convenient
way of describing the variations under the change of the interaction energy
scale.

The calculation shows that the QCD corrections depend on the logarithm
of the scale factor over the hard scale. To minimize the coefficient factors of
the perturbative terms, the arbitrary scales should be chosen as the order of
the hard scale, i.e. the charm quark mass in the case of charm production.
When the differential cross section is calculated, a second scale pT must be

introduced. Thus, the scale factors are usually chosen as µr,f =
√
M2 + p2

T,
in order to match the two scales.

2.3 pQCD Calculation Models

As discussed above, pQCD calculation is only able to provide the cross section
at the level of the fundamental fields of QCD. Therefore, non-perturbative
inputs, the PDFs as well as the FFs, are needed to compare the theory
with the actual measurements. Furthermore, the measurements does not
extend over full phase space, whereas many relevant theoretical calculations
are provided over large or full phase space.

In order to overcome these shortcomings and to make a comparison
between the measurements and the calculations, two kinds of methods have
been applied. One is to make the comparison of the total cross section.
We have to apply a correction to the data. The correction is obtained
either from Monte Carlo simulation or theory calculation. The correction
deconvolutes the hadronization, and extrapolates the measurement to full
phase space. The shortcoming of this method is its poor precision level. It
depends strongly on the simulation or the theory one chooses, as the results
are usually extrapolated by one or two orders of magnitude.

The other method is to use a multi-differential experimental result. The
corresponding observable in the theory calculation must be refined to make
a comparison possible. This method minimizes the effect of theoretical
correction and extrapolation, but raises two challenges in the calculation.
First, it requires a better understanding of the perturbative calculation in
the regions of phase space where the pQCD has large uncertainties. Second,
it requires precise non-perturbative ingredients, the PDF and FF, as inputs.
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These must be extracted from data, and matched well with the calculation.

2.3.1 Resummation

The issue of scale dependence arises when the pT differential cross section is
calculated. Due to the existence of a second scale of energy E, in addition
to the scale of quark mass M , a large scale dependence of the cross section
at high pT is found in a standard NLO pQCD calculation. The heavy quark
production cross section can be decomposed as the following, in terms of the
quark mass m over energy scale E,

σQ(E,m) = σ0(1 +
∑
n=1

αns

n∑
k=0

cnk lnk
[
E2

m2
+O(

m

E
)

]
), (2.7)

where σ0 is the Born cross section, cnk is a coefficient that also contains
functions of m and E, and cnk vanishes as powers of m/E, when E � m.

The logarithmic term ln(E2/m2) originates from the collinear gluon
emission. Its soft components are absorbed by factorization, and the rest
contributes a higher order correction in the high-pT region in the differential
cross section. These higher order corrections become non-negligible in the
region where pT � m. Hence, a resummation of the higher order logarithmic
terms of the pQCD calculation is important for heavy flavor pT differential
cross section calculations.

The resummation is calculated in many different ways for varying models.
It may contain the resumming leading (αns lnn(E2/m2), LL) or also next-to-
leading (αns lnn−1(E2/m2), NLL) logarithmic terms. State-of-the-art models
like ACOT(χ) [39], FONLL [3], GM-VFNS [4], and BSMN [40] all share the
same methodology.

These perturbative approaches need to omit the higher orders of the m/E
terms and use a resummation factor for the logarithmic terms, which are not
accurate at a low energy scale where E ∼ m. This has been a challenge of
the pQCD calculation of the heavy quark production cross section, and needs
experimental data to extrapolate to the low momentum scale for comparisons.
Aside from the energy scale, the uncertainty of quark masses mQ for charm
and beauty contributes to the total systematic uncertainty.

The resummation predicts a result of a massless particle, which is only
valid in the E � m region. To obtain a prediction over the full energy range,
one needs to interpolate the result with a fixed order calculation, which is
valid also in the E ∼ m range.

The available pQCD models follow this method of calculation, but differ
in two aspects. One is the perturbative order evaluated in the initial PDFs.
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The other is the way of matching the resummed cross section with fixed order
calculations.

2.3.2 MNR

The framework MNR [41] was devised by Mangano, Nason and Ridolfi, and
aimed for the description of heavy quark production in strong interactions.
It provides a massive pQCD calculation in NLO accuracy. Here, “massive”
means that the heavy quarks are considered massive, while the light quarks
are considered massless. The resummation of the logarithmic terms is not
used, thus it is classified as a standard fixed order (FO) calculation. The
active flavor number in the initial state is fixed to nlf = 3, which means
that the heavy quarks only appear in the final state. For that reason, this
calculation is also classified as Fixed Flavor Number Scheme (FFNS). The
factorization and renormalization scales µf , µr are taken in units of µ0, where

µ0 = mT =
√
m2
Q + p2

T. The choice of µ0 = mT includes both the scales of M
and pT, thereby containing both of the hard scales. This choice of µ0 makes
the differential cross section calculable.

The lack of resummation of the higher order logarithmic terms makes
the cross section more scale-dependent in the region where pT � M . While
the pT-differential cross section is less accurate in the high-pT region, the
total cross section is not significantly affected, since the total cross section is
dominated by the low-pT region. Thus, standard NLO models, e.g. MNR,
are reliable for the total cross section calculations.

2.3.3 FONLL

The name of FONLL (Fixed Order plus Next-to-Leading Log resummation)
explains its matching method, which matches a standard fixed order (FO)
calculation at next-to-leading order with a full resummation of next-to-
leading order logarithms (NLL). The FO calculation includes all the terms
of order α2

S and α3
S. The resummation includes all of the leading logarithm

(LL) terms α2
S(αS ln pT/m)k and all of the next-to-leading logarithm (NLL)

terms α3
S(αS ln pT/m)k. The matching of NLL resummation and the fixed

order calculation is presented as the following,

σFONLL
Q (pT,m) = FO + (RS− FOM0)G(m, pT), (2.8)

where FO stands for the NLO fixed order calculation with non-zero quark
mass, and RS is the resummed calculation with massless quarks. FOM0
represents the terms that are double counted both in FO and RS. The
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expression of FOM0 indicates that it is calculated at the massless limit as
m/pT approaches zero. G(m, pT) is an arbitrary factor for power suppressed
terms, as

G(m, pT) = p2
T/(p

2
T + c2m2), (2.9)

where c = 5. This factor is introduced because in the region of pT < 5m,
where the massless limit gives unreliable results, the contribution has to be
suppressed. This factor does not affect the NLO+NLL accuracy, since it only
applies to the the energy scale beyond the perturbation-effective region.

With more details, the FO, RS and FOM0 in Eq. 2.8 can be written as
the following:

FO =
∑
i,j∈L

fifjσ̂ij→QX(pT,m),

RS =
∑

i,j,k∈L+H
fifjσ̂

MS
ij→kX(pT)Dk→Q,

FOM0 =
∑
i,j∈L

fifjσ̂ij→QX(pT,m→ 0). (2.10)

The initial states applied in the calculation of FO and FOM0 terms are the
light flavored PDFs, where no heavy quark participates. In the calculation
of the RS term, however, heavy quarks are included in the perturbatively
calculated modified PDF. Moreover, a perturbative light-parton-to-heavy-
quark fragmentation function is included in the final states, which describes
the fragmentation of a parton into a heavy quark. The inclusion of
the modified PDF and light-parton-to-heavy-quark fragmentation function
absorbs the collinear divergences.

The uncertainties of the FONLL calculation are categorized in the
following:

• Uncertainty of the Scales
The factorization and renormalization scales µf , µr determine the
running coupling constant αS and the parton distribution function
PDF. The scale factors are arbitrary parameters. We choose µf , µr ∼
mT to minimize their effect on the calculation of the cross sections. But
there are still uncertainties originating from the choice of the scales.
The scaling uncertainties are determined as the region between the
maximum and the minimum cross sections when varying µf and µr in
the range 0.5 <

µf
mT
, µr
mT

< 2, while keeping the ratio within the range

0.5 <
µf
µr
< 2.

• Uncertainty of the Heavy Quark Mass
The mass of the charm and bottom quarks are not well known, since
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we only observe them in bound hadronic states. Typically, in pQCD
calculations, the charm quark mass is set to 1.5± 0.2 GeV/c2, and the
bottom quark mass is set to 4.75± 0.25 GeVc2.

• Uncertainty of Parton Distribution Function
The gluon densities at low x and high Q2 region in the PDF are not
well constrained from existing measurement, since it requires hadronic
collisions at high center of mass energies.

0 5 10 15 20 25 30
-5

10

-4
10

-3
10

-2
10

-1
10

1

 [GeV]
T

charm hadron p

0 5 10 15 20 25 30

 [
m

b
/G

e
V

]
T

/d
p

σ
 d

×
) *

 D
→

f(
c

-5
10

-4
10

-3
10

-2
10

-1
10

1

total uncertainty

mass

scales

PDFs

fragmentation

0 5 10 15 20 25 30
-5

10

-4
10

-3
10

-2
10

-1
10

1

 [GeV]
T

beauty hadron p

0 5 10 15 20 25 30

 [
m

b
/G

e
V

]
T

/d
p

σ
d

-5
10

-4
10

-3
10

-2
10

-1
10

1

total uncertainty

mass

scales

PDFs

fragmentation

0 5 10 15 20 25 30

R
a

ti
o

0

0.5

1

1.5

2

2.5

3

 [GeV]
T

charm hadron p

0 5 10 15 20 25 30

R
a

ti
o

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

R
a

ti
o

0

0.5

1

1.5

2

2.5

3

 [GeV]
T

beauty hadron p
0 5 10 15 20 25 30

R
a

ti
o

0

0.5

1

1.5

2

2.5

3

Figure 2.9: Breakdown of the different components of the uncertainty on
dσ/dpT for charmed and beauty hadrons at LHC [42]. The cross sections
and the uncertainties are calculated with MNR model.

Among these uncertainties, the one from the variation of the scales
represents the perturbative uncertainty, which originates from the discarded
high-order perturbative terms. The other two represent the uncertainties
arises from the input, which include the ΛQCD,mc,mb, PDF and FF.

Figure 2.9 shows the uncertainty components of the heavy flavor hadron
cross sections calculated with MNR model. Comparing the uncertainties of
the MNR calculation, FONLL has much smaller scale variation uncertainty
in the high-p

T
region. Nevertheless, the other properties of the uncertainties
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are also applicable for the FONLL uncertainties, as the FONLL calculation
is merely the MNR with the resummation.

The uncertainty from the scale variation is dominant, especially in the
low-p

T
region. This uncertainty originates from the perturbative calculation.

We calculated the cross section at a certain precision level, and the higher
order terms are discarded. Those discarded terms are reflected as the
uncertainties from scale variation.

The perturbative uncertainty of the charm cross section calculation is
much larger than the perturbative uncertainty of the beauty cross section.
The difference between the beauty quark mass and the QCD scale is much
larger than the difference between the charm quark mass and the QCD scale.
Given the fact that the perturbative scale is chosen to be the heavy quark
mass in the heavy quark cross section calculations, the perturbative method
fits more in the beauty cross section calculation than in the charm cross
section calculation. In another word, the higher order terms, which are
discarded, are much smaller in beauty cross section calculation and are larger
in charm cross section calculation.

In the charm hadron p
T
-differential cross section, the uncertainty from the

fragmentation function is also large, especially at high-p
T

region. If we use a
resummed calculation, of which the scale variation uncertainty is reduced in
the high-p

T
region, the fragmentation uncertainty is dominant in the high-p

T

region.
The uncertainties from the quark masses and the PDFs are negligible

compared to the scale variation uncertainties. The uncertainties from quark
masses and the PDFs are larger in the low-p

T
region, but they are still smaller

than the scale variation uncertainties in that region.
The differences between FONLL and a standard NLO calculation are

summarized in the following:

• Collinear Resummation
FONLL has a smaller scale dependence than a NLO calculation in
the high-pT region, since it provides resummed logarithmic terms in
the NLL accuracy as a correction, in addition to a standard NLO
calculation.

• Zero Heavy Quark Mass
The resummation is calculated with massless heavy quarks, while the
FO calculation is still based on massive quarks. Since resummation
aims only in the region where pT � m, it is safe to assume the heavy
quark massless.

• Variable Flavor Number Scheme (VFNS)
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The renormalization and factorization scheme in FONLL is the
standard modified minimal subtraction scheme (MS), in which the
heavy quark is considered to be an active quark. In the fixed order
calculation FO, the number of active flavor quarks is equal to the light
flavor number nf = nlf , which is 3 for charm cross section calculations
and 4 for bottom cross section calculations. In the resummation
calculation, the number of active flavors nf is varied depending on
the scale µf , the border of which is determined as the heavy quark
mass M . This gives nf = 3 if µf < mc; nf = 4 if mc < µf < mb; and
nf = 5 if µf > mb. The coupling constant αS and PDF are modified
according to the change in nf .

The differences are due to the inclusion of the RS into the standard FO
(NLO) calculation. This additional RS can be also regarded as a Zero Mass
Variable flavor Number Scheme (ZM-VFNS) calculation. In the region where
pT � m, FONLL is equal to the RS (ZM-VFNS) calculation, since FO and
FOM0 converge when m/pT → 0. In the region where pT � m, FONLL is
equivalent to FO (FFNS) calculation, since limpT/m→0G(m, pT) = 0. In the
region where pT ∼ m, FONLL has contributions from both FO and RS. In
that region, the uncertainties from both sides contribute to the calculation.
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Figure 2.10: Charm cross section calculated with FONLL and standard NLO
calculations in 7 TeV p-p collisions [43].

As shown in Fig. 2.11, FONLL describes the data well within its
uncertainties. Due to the limitations of the perturbative calculation, the
uncertainty in the low-pT region remains large. This large uncertainty in the
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Figure 2.11: FONLL calculations of the differential cross sections ofD mesons
at Tevatron. The data show the measurement of the D meson cross sections
from CDF Run II [6]. The grey bands represent the results from FONLL.
The calculation for D+

s is absent due to the unavailable D+
s fragmentation

function.

low-pT region also exists in FO (NLO) calculation, as shown in Fig. 2.10.
This leads to a large uncertainty of the total charm cross section, since most
of the produced charm quarks are below 5 GeV/c. The two models agree with
each other within uncertainties, but the shape of the differential distribution
is different. This is due to their different ways of handling the calculation in
the high-pT region.

2.3.4 GM-VFNS

General Mass Variable Flavor Number Scheme (GM-VFNS) uses a massless
resummed calculation and combines with a massive fixed order calculation.
The logarithmic terms are absorbed in the perturbatively modified PDF and
light-parton-to-heavy-quark fragmentation function. In heavy flavor PDFs,
the heavy quarks are considered active partons that participate in the hard
scattering process. In the perturbative FF, the heavy quarks are fragmented
from the light quarks. Meanwhile, the mass dependent terms are still retained
in the hard process. Simply put, the GM-VFNS combines the virtues of
FFNS (FO) and ZM-VFNS (RS) calculations. This idea is the same as that
used in FONLL. The main difference between them is the matching method.
The charmed hadron cross section in GM-VFNS calculation can be described
as the following:

σGM−V FNSH (pT,m) =
∑
i,j∈L

fifjσ̂ij→QX(pT,m)DMS
Q→H
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+
∑

i,j,k∈L+H
fifjσ̂

MS
ij→kX(pT)DMS

k→H , (2.11)

where the hard cross section term σ̂ij→QX(pT,m) is defined by:

σ̂ij→QX(pT,m) = σ̃ij→Q(pT,m)− σsub

= σ̃ij→Q(pT,m)− σ̃ij→Q(pT,m→ 0) + σ̂MS
ij→QX(pT). (2.12)

In Eq. 2.12, the cross section σ̂ij→QX(pT,m) is calculated in a way
(FO-FOM0+RS) which is similar to that in FONLL. The term σsub is the
difference between the hard scattering cross section in the massless limit and
the one in the genuine massless calculation. This difference, which contains
the collinear logarithms, is removed from the FO cross section σ̃ij→Q(pT,m).
In this approach, the subtraction term is convoluted with the universal non-
perturbative light flavor PDF and FF.

The second term of Eq. 2.11 contains only the sub-processes that are not
taken over in the first term. There, the perturbative parton PDF and light-
parton-to-heavy-quark FF are applied together with the non-perturbative
hadron FF, since DMS

k→H = Dk→QDQ→H .
The differences between GM-VFNS and FONLL are summarised as the

following:

• Resummation Scheme
In FONLL, the collinear singularities are absorbed in the perturbative
PDF and light-parton-to-heavy-quark FF. In GM-VFNS, the
singularities are associated with the massive quark by mass
factorization, and are subtracted in the massive calculation in the
massless limit.

• Hadron Fragmentation
FONLL calculates the heavy quark cross section. Its combination with
a non-perturbative quark-to-hadron FF gives the cross section at the
hadron level. However, the fragmentation used in GM-VFNS is a non-
perturbative parton to hadron, whose heavy quark to hadron part has
not been deconvoluted. Thus the GM-VFNS calculation is limited to
only the hadron level.

• Matching
The FONLL model uses an artificial suppression function G(m, pT) to
minimize the massless calculation in the low-pT region, whereas GM-
VFNS does not have such suppression. This implies a considerable
difference between the two models in the pT ∼M region.
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There are several sources of uncertainties in the GM-VFNS calculation.
The uncertainty from the scale variation is the dominant one. It is also the
only one illustrated in the uncertainty band. This part of the uncertainty
is determined by a variation of the scales µr, µi, µf in the range 0.5 <
µr
mT
, µi
mT
,
µf
mT

< 2, while keeping the ratios within the range 0.5 < µr
µi
, µi
µf
,
µf
µr
<

2. The region between the maximum and the minimum cross section is
considered to be the uncertainty band. The variables µi and µf represent
the factorization scales in the initial and final states, respectively.

The other sources of uncertainty include the uncertainty of the quark
mass, and the uncertainty of the PDF and FF. Those uncertainties are much
smaller than that from the scale variation [4]. Thus, they are not included
in the uncertainty bracket.

27



Chapter 2. Charm Production in Hadron Collisions

28



Chapter 3

The LHC and ALICE

3.1 The Large Hadron Collider

3.1.1 LHC Setup

The Large Hadron Collider (LHC) located at the European Organization for
Nuclear Research (CERN) near Geneva collides two counter rotating beams
of protons or heavy ions at unprecedented high energy and luminosity. It
is situated roughly 60 ∼ 100 m below ground in a circular tunnel of 27 km
circumference. The LHC is designed to provide proton-proton collisions at
luminosities of up to 1034 cm−2 s−1 and a maximum center-of-mass energy
of
√
s=14 TeV [44], exceeding the maximum Tevatron energy by almost one

order of magnitude. For lead-lead collisions the maximum attainable collision
energy per nucleon-nucleon pair is

√
s

NN
= 5.5 TeV at a design luminosity

of 1027 cm−2 s−1. This collision energy exceeds the highest energy provided
by the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National
Laboratory (BNL) by a factor of 30. A Large Ion Collider Experiment
(ALICE) is capable of particle tracking in high multiplicity events, which
is dedicated in measuring heavy ion collisions.

A schematic overview of the CERN accelerator complex is shown in
Fig. 3.1. Protons are accelerated to 90 keV and then extracted from the
duoplasmatron proton-source. They are further accelerated in the linear
accelerator LINAC2 up to 50 MeV and then passed to a multi ring booster
synchrotron for acceleration to 1.4 GeV. In the Proton Synchrotron (PS) the
bunch patterns are generated and protons reach an energy of 26 GeV. The
Super Proton Synchrotron (SPS) accelerates protons to 450 GeV and serves
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Figure 3.1: Schematic view of the accelerator complex of CERN. This figure
has been taken from [45].
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as an injector to the LHC where the protons reach up to 7 TeV.
1232 superconducting dipole magnets keep the proton ring inside the ring.
They provide a magnetic field up to 8.3 T and are cooled down to 1.9 K by
liquid helium. Focusing of the beam in transverse direction is achieved by
392 quadrupole magnets.
Lead ions are provided by an electron cyclotron resonance source, bunching
and further acceleration is performed by a radio frequency quadrupole. The
ions are then selected in the charge state Pb27+ and further accelerated in the
linear accelerator LINAC3 to a kinetic energy of 4.2 MeV/nucleon. A carbon
foil strips the ion charge with the charge state Pb54+ being selected in a filter
line. They are further accelerated in the Low Energy Ion Ring (LEIR) to
an energy of 72 MeV/nucleon. After transfer to the PS they are accelerated
to 5.9 GeV/nucleon and sent to the SPS. In between they are fully stripped
to Pb82+. The SPS accelerates the fully stripped ions to 177 GeV/nucleon,
before injecting them into the LHC where the lead ions reach a maximum
energy of 2.76 TeV/nucleon.

The two independent particle beams orbit inside the LHC storage ring
clockwise and counterclockwise, respectively. The two beams cross each other
at four interaction points which are each equipped with one of the main
experiments, as indicated in Fig. 3.2.

3.1.2 LHC Experiments

Three experiments (ATLAS, CMS, LHCb) were designed for proton-proton
collisions. ALICE is the only dedicated experiment to investigate heavy ion
collisions.

ATLAS: A Toroidal LHC Apparatus (ATLAS) is designed to give a
decisive answer on the long-time postulated existence of the standard
model Higgs-Boson and experimentally probe theories beyond the
standard model, i.e. the search for supersymmetric particles and extra
dimensions.

CMS: The Compact Muon Solenoid (CMS) is, complementary to ATLAS,
the other detector at LHC aimed to investigate Higgs-Boson,
supersymmetric particles and extra dimensions.

LHCb: The LHC Beauty (LHCb) experiment studies CP violation in B-
meson systems. CP violation might be able to explain the asymmetry
between matter and antimatter in our universe.
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Figure 3.2: Schematic view of the Large Hadron Collider and the four major
experiments ALICE, ATLAS, LHCb and CMS. This figure has been taken
from [45].

ALICE: A Large Ion Collider Experiment (ALICE) is the dedicated heavy
ion experiment at the LHC to identify and characterize the quark gluon
plasma created in high-energy collisions of Pb-Pb nuclei.

3.1.3 LHC in Operation

The LHC provided first p-p collisions at injection energy in November 2009.
In December, a collision energy of

√
s=2.36 TeV was achieved, exceeding the

so far highest collision energy of the Tevatron of
√
s=1.96 TeV. A long run

in 2010 with p-p collisions at
√
s=7 TeV followed. In November 2010, first

Pb-Pb collisions were delivered. An overview of the LHC operation is given
in Table 3.1.

In 2011, the proton-proton collisions have reached a peak luminosity
∼ 4 · 1033 cm−2 s−1. The integrated luminosity versus time in the year 2010
is shown in Fig. 3.3. LHC continues running p-p collision in the years of 2011
and 2012, with one month of Pb-Pb running at the end of each year. The
p-Pb collision was started in February 2013.
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Date colliding system
√
s(
√

s
NN

) (TeV)

23-Nov-2009 p-p 0.9
Dec-2009 p-p 2.36
Mar-2010 p-p 7.0
Nov-2010 Pb-Pb 2.76

2011 p-p 7.0
2011 p-p 2.76

Nov-2011 Pb-Pb 2.76
2012 p-p 8.0
2013 p-Pb 5.02

2013/2014 machine consolidation and training
2014+ p-p 14.0

Pb-Pb 5.5

Table 3.1: LHC schedule of operation with p-p and Pb-Pb collisions.

First Pb-Pb collisions at 1.38 TeV per beam were provided on November
7th, the Pb-Pb run ended on December 6th. The integrated luminosity
collected is ∼ 150 µb−1.

3.2 The ALICE Detector System at the LHC

A Large Ion Collider Experiment (ALICE) is designed to identify and
characterize the Quark Gluon Plasma (QGP) created in the heavy ion
collisions. It is capable of determining the identity and precise trajectory
of more than ten thousand charged particles over a large momentum range
from 100 MeV/c to 100 GeV/c in transverse momentum.

The ALICE detector system is shown in Fig. 3.4, and the pseudo rapidity
coverage of the ALICE sub-detectors is shown in Fig. 3.5. Topologically, the
sub-detectors are placed in two groups: one is in the mid-rapidity region,
and the other is in the forward-rapidity region.

The ALICE sub-detectors in the central barrel covers the mid-rapidity
region approximately of ∼ −1 < η < 1, and is surrounded by the L3-
magnet. The L3-magnet produces a homogeneous magnetic field of up to
0.5 T parallel to the beam axis. This magnetic field provides momentum
dispersion for charged particles in the plane transverse to the beam axis.
Inside the L3-magnet in the central barrel, a list of sub-detectors, among
which those related to this thesis are briefly presented in the following
sections, are arranged in cylindrical shells around the interaction point [46].
From the inner most to the outer, those sub-detectors are: Inner Tracking
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Figure 3.3: Integrated LHC luminosity in 2010. In the later runs,
ALICE was applying horizontal separation between crossing bunches at the
ALICE collision point (P2), not to exceed an instantaneous luminosity of
2 · 1029 cm−2 s−1 and a collision probability per bunch-bunch crossing of less
than 5%. This figure has been taken from [45].

System (ITS), Time Projection Chamber (TPC), Transition Radiation
Detector (TRD), Time Of Fight detector (TOF), High-Momentum Particle
Identification Detector (HMPID), PHOton Spectrometer (PHOS), Electro
Magnetic Calorimeter (EMCal), ALICE COsmic Ray DEtector (ARCODE).

In addition to those in the central barrel, other sub-detectors covering the
high pseudo rapidity region complete the ALICE measurement in a larger
acceptance coverage. Muon Spectrometer performs the muon detection in
the region of −4.0 < η < −2.5. The Forward Multiplicity Detector (FMD)
is placed in the rapidity range −3.4 < η < −1.7 and 1.7 < η < 5.0. The
Photon Multiplicity Detector (PMD) covers the region of 2.3 < η < 3.7.
There is other detectors in the forward rapidity region, namely Zero Degree
Calorimeter (ZDC), T0 and V0.
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3.2. The ALICE Detector System at the LHC

Figure 3.4: Schematic overview of the ALICE detector. This figure has been
taken from [47].

Figure 3.5: Pseudo rapidity coverage of the ALICE detectors [48].

The ALICE detector has the following advantages in comparison with
other experiments:

• ALICE is build with the hadron collision system with the highest center

35



Chapter 3. The LHC and ALICE

Figure 3.6: Particle identification capabilities of the ALICE detectors as a
function of particle transverse momentum [48].

of mass system energy men have ever made;

• ALICE has the world largest Time Projection Chamber (TPC) with
full azimuthal coverage, which provides charged particle reconstruction
in high multiplicity heavy ion collisions;

• ALICE has full azimuthal coverage providing correlation studies;

• The Inner Tracking System (ITS) of ALICE detector measures as close
as down to 4cm to the beam axis, which enables excellent vertex
resolution and secondary particle identification;

• ALICE is able to identify particles in large transverse momentum
range with various technologies. As shown in Fig. 3.6, the ALICE
detectors are able to perform full particle identification in the transverse
momentum range from 0.1 GeV/c to 50 GeV/c at mid-rapidity.

3.2.1 Inner Tracking System

Detector Layout

The Inner Tracking System (ITS) consists of six cylindrical layers of three
different module types: two layers of Silicon Pixel Detectors (SPD), two
layers of Silicon Drift Detectors (SDD) and two layers of double-sided Silicon
micro-Strip Detectors (SSD), respectively from the inner layer to the outer
layer. Those six layers are located at radii r = 4, 7, 15, 24, 39 and 44 cm [47].

The first layer of the SPD, located at only 4cm from the beam axis, covers
almost four units of pseudo-rapidity to provide a continuous coverage in η for
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3.2. The ALICE Detector System at the LHC

the measurement of charged particle multiplicities, together with the forward
multiplicity detectors. The two layers of SPD and the two layers of SDD
are made of truly bi-dimensional devices, owing to the high particle density
expected and the necessity to achieve good impact parameter resolution.
The two layers of SPD have good spatial precision of 12 µm in the rφ-
plane, while the two layers of SDD have good spatial precision of 28 µm in
z-direction. The two outer layers are made of double-sided silicon micro-
strip detectors and have 20 µm spatial precision in the rφ-plane. The precise
spatial measurement in ITS allows for the extrapolation of a track back to the
primary vertex of the collision with an impact parameter resolution better
than 100 µm. The main parameters of the constituent sub-detectors are
given in Table. 3.2.

Pixel Drift Strip
Spatial precision rφ(µm) 12 38 20
Spatial precision z(µm) 100 28 830
Two track resolution rφ(µm) 100 200 300
Two track resolution z(µm) 850 600 2400
Cell size (µm2) 50× 425 150× 300 95× 40000
Active area per module (mm2) 12.8× 69.6 72.5× 75.3 73× 40
Total number of modules 240 260 1698
Total number of cells (M) 9.84 23 2.6
Average occupancy (inner layer)(%) 2.1 2.5 4
Average occupancy (outer layer)(%) 0.6 1.0 3.3

Table 3.2: Parameters of the various silicon detector types of ITS. A module
represents a single sensor element [47].

Detector Performance

The Inner Tracking System provides a precise primary vertex reconstruction.
Furthermore, with the geometry information provided by ITS in the particle
tracking, secondary vertices from weakly decaying particles such as hyperons
and open heavy-flavored hadrons, e.g. D and B mesons, are also well
reconstructed and can be separated from the primary vertex. The impact
parameter of a track, which is the Distance of Closest Approach (DCA) of
the track when extrapolated back to the primary vertex, is a signature of
the secondary decay vertex. The resolution of the impact parameter in the
transverse plane is shown in Fig. 3.7 as a function of transverse momentum.
The primary vertex is calculated from all tracks but without the track under
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Figure 3.7: Transverse impact parameter resolution from p-p collisions. The
impact parameter is the closest distance from the reconstructed collision
vertex to an extrapolated particle trajectory. The plot is showing the
resolution of its projection on the transverse plane, both in data and
simulation.

investigation, and a constraint on primary tracks being within the beam
cross section region is applied. The impact parameter resolution at 1 GeV/c
is better than 80 µm, which is in the order of the D meson decay length
(∼100µm).

3.2.2 Time Projection Chamber

Detector Layout

The Time Projection Chamber (TPC) is the main tracking detector in the
central barrel of ALICE. The TPC provides charged particle momentum
measurement and primary vertex determination with precise momentum
resolution at large tracking efficiency of better than 90% and two-track
separation in the pT region of up to several 10 GeV/c. The TPC also
provides track-by-track event reconstruction for the high-multiplicity Pb-Pb
collisions at the LHC energy. In the Pb-Pb collisions at

√
sNN = 2.76TeV in

2010, it measures events with charged primary particle multiplicity density
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of dNch/dη = 1584± 4(stat.)± 76(syst.) [49].
The TPC is cylindrical in shape with an inner radius of 80 cm, an outer

radius of 250 cm and a overall length of 5 m, covering full azimuth and
the pseudo-rapidity range of |η| < 0.9. The total material budget is kept
at the level of 3% in radiation length to ensure minimal multiple scattering
and secondary particle production. It consists of an 88 m3 cylindrical field
cage, which is divided by a central membrane into two drift regions. The
central membrane is a high voltage central electrode which defines a uniform
electrostatic field. The whole drift volume in the cage is filled with a gas
mixture of (85%Ne/10%CO2/5%N2). This drift gas requires a high drift
field (400V/cm) to secure an acceptable maximum drift time of ∼ 88 µs.

Charged particles traversing the active TPC volume ionize the gas along
their trajectory, liberating electrons that drift towards the end plate of the
chamber, where the signal amplification is provided through the avalanche
effect (gas gain of 2 × 104) in the vicinity of the anode wires. Moving from
the anode wire towards the surrounding electrodes, the positive ions created
in the avalanche induce a negative signal on the pad plane, which is further
processed by the front-end-electronics. Three-dimensional space points are
reconstructed from the measured drift time (z-direction) and position on
the cathode pads (x, y-direction) of the induced signal. In total, the TPC
provides up to 160 space points for each particle trajectory.

Detector Performance

The momentum resolution of the TPC stand-alone tracking was measured
from cosmic rays passing vertically through the TPC. The momentum
resolution is estimated to be better than 2% for tracks with momentum
smaller than 2 GeV/c and 7% at 10 GeV/c, as shown in Fig. 3.8. The
momentum resolution for low momentum tracks is limited by multiple
scattering with detector material, and at high momentum by the spatial
resolution of the TPC.

The TPC provides identification of charged particles by correlating the
measured specific energy deposit dE/dx and the reconstructed momentum.
In genereal, the energy loss of a particle traveling trough matter is mainly
due to ionization. The energy loss is described by the Bethe-Bloch equation
[7], described as following:

−〈dE
dx
〉 = Kz2Z

A

1

β2
[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ(βγ)

2
], (3.1)

where K = 4πr2
emec

2NA = 0.30707MeV cm2/mol, Z,A are the atomic
number and atomic weight of the target, I is the average ionization potential,
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Figure 3.8: TPC transverse momentum resolution measured with events from
cosmic rays. This figure has been taken from [50].
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Tmax is the maximum energy transfer to a free electron in a single collision,
and δ(βγ) is the correction of density effect. The energy loss is related to both
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the projectile and the target. It is proportional to the electron density of the
target matter, and proportional to the square of the projectile charge. More
importantly, the energy loss depends on the projectile velocity, described in
the equation as βγ. The Bethe-Bloch equation is effective from βγ ≈ 0.1,
which is comparable with ”velocity” of the atomic electron, to βγ ≈ 1000,
at which velocity the radiation effects become significant. A minimum
ionization corresponds a projectile at a velocity of around βγ ≈ 3to4. The
energy loss reaches a Fermi Plateau, when βγ of the particle is larger than
100. The onset and the height of the Fermi Plateau are due to the density
correction canceling the relativistic effect. The equation in terms of particle
momentum varies only depending on its mass, which gives an identification
of the particle species.

The measured TPC dE/dx spectrum in p-p collisions is displayed in
Fig. 3.9. The energy loss statistical distribution, which is also referred as
straggling function is approximately Gaussian, when the target is thick. But
for the thin slice used in the ionization sampling in TPC, it follows a Landau
distribution with a tail on its higher energy side. To deal with this effect, a
truncated mean is applied to obtain the dE/dx. The energy loss resolution is
5% at the Fermi Plateau and is close to the design value. As a demonstration
of the functionality of particle identification with TPC, the band shaped
clusters of each particle species are separated well from each other. In ALICE
TPC, the energy loss is parameterized with a form proposed by ALEPH [51],
instead of Bethe-Bloch equation. The parameterized function is:

−〈dE
dx
〉(βγ) =

P1

βP4
(P2 − βP4 − ln(P3 +

1

(βγ)P5
)), (3.2)

which nicely fits the distribution. and

3.2.3 Time of Flight Detector

Detector Layout

Low
transverse momentum hadron identification is achieved via measurements
of energy loss in the silicon layers and in the TPC gas. The Time of Flight
detector (TOF) extends particle identification to larger momentum. Based
on 1638 double-stack Multi-gap Resistive Plate Chambers (MRPC) with an
intrinsic time resolution of about 60 ps, the TOF barrel covers a surface
larger than 160 m2 at a radius of about 3.7 m. It was optimized for the
identification of hadrons with a transverse momentum below 2 GeV/c. The
separation of pions and kaons is better than 3σ to keep the contamination
below a 10% level in presence of a huge bulk of hadrons at low momentum.
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In the ALICE MRPC, each resistive electrode is spaced one from the other
with equally sized spacers creating a series of ten gas gaps, each 250 µm thin.
Electrodes are connected to the outer surfaces of the stack of the resistive
plates reading out all gas gaps in parallel while all the internal plates are left
electrically floating. The flow of positive ions and electrons generated in the
avalanche processes maintain the correct voltage between the intermediate
plates. Pickup pads (96 per strip), with an area of 3.5 × 2.5cm2 each, are
arranged in two-row arrays.

Detector Performance
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Figure 3.10: Relativistic particle velocity as function of momentum measured
with TOF in p-p collision at

√
s = 900 GeV. The dependence on particle mass

is visible for the different particle species.

As shown in Fig. 3.10, TOF itself provides particle identification for
kaons and pions up to 1.5 GeV/c. The measurement is from proton-proton
collisions at

√
s = 900 GeV. The time resolution achieved in the flight time

measurement of a single track is ≈ 160 ps. The intrinsic timing resolution of
the TOF detector was estimated to be ≈ 80 ps, with another contribution
to the overall timing resolution from the V0 detectors, which provided the
starting time of the time-of-flight measurement.
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3.2.4 VZERO Detector

Detector Layout

The VZERO (V0) detector consists of two arrays of scintillator (V0A and
V0C) on opposite sides of the interaction point. V0A is located 340 cm away
from the interaction point in beam direction, covering the pseudorapidity
range 2.8 < η < 5.1. V0C is located 90cm from the interaction point,
covering −3.7 < η < −1.7.

Detector Performance

The V0 detector provides both timing and amplitude information. It provides
minimum bias trigger information for the central barrel detectors, and serves
as a luminosity monitor in proton-proton collisions. In Pb-Pb collisions, it is
used to obtain the centrality of the event and also as a centrality indicator
providing two different centrality triggers.

The timing resolution of V0 is better than 1 ns. By measuring the time
interval between a V0A and V0C signal, beam-beam collisions are identified
from background beam-halo or beam-gas events.

3.3 Data Collection

The data used in this analysis are collected from the p-p collisions at√
s=7 TeV in year 2010. The data consist 314 million minimum-bias (MB)

collision events. In order to achieve the integrated luminosity, we need to
calculate the trigger cross section first.

3.3.1 Minimum Bias Trigger

In the certain period, when the data used in this analysis are taken, the
proton-proton collisions were triggered with minimum bias for the central
barrel detectors. The minimum bias (MB) trigger is defined as the logical
OR between the requirement of at least one fired readout chip in the SPD,
and at least a signal in one of the two VZERO detectors. It is estimated by
Monte Carlo simulation [52] that the MB trigger is about ∼ 87% sensitive
to the proton proton inelastic cross section.

The inelastic cross section of p-p collisions is obtained from the Van der
Meer scan [53]. The Van der Meer scan is performed by displacing the two
beams against each other in horizontal or vertical direction. The luminosity
reduction W is a function of displacement d:
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W (d) = L(d)/L0. (3.3)

This luminosity dependence reflects the beam profile in transverse
directions. Given a Gaussian beam profile, the luminosity is described as:

L0 =
N1N2fNb

4πσxσy
, (3.4)

where N1, N2 are the beam intensities, f is the revolution frequency, Nb

is the bunch number and σx, σy are the beam widths. By measuring the
luminosity reduction W (d), we can determine the beam profile σx, σy, and
further the beam intensity N1, N2, which leads to the determination of the
luminosity L0.

The σinelasticpp = 71.4 ± 0.7(stat.) ± 7.1(syst.) mb is measured. The MB
trigger cross section is then determined as σtrigger = 0.87 · σinelasticpp = 62.3
mb.

3.3.2 LHC Luminosity

During the data taking, the relative LHC luminosity at the ALICE
experiment is measured by using the event rate of p-p collisions Rpp. One
can simply obtain it from:

Rpp = σtrigger · L, (3.5)

where σtrigger is the cross section of the event trigger, and L is the luminosity
of the beam. For a period of running, if we consider the triggered cross
section to be constant, we get the integrated luminosity:

Npp = σtrigger · Lint, (3.6)

where Lint is determined by the number of p-p collision events Npp and the
triggered cross section σtrigger. For data collection used in this analysis, the
corresponding integrated luminosity is 5 nb−1.

3.4 Offline Analysis

The ALICE Offline Framework (AliRoot) is the common framework for the
analysis of ALICE data built on the basis of the ROOT [54] system. ROOT
is an object-oriented software package developed by CERN providing an
environment for high energy physics data analysis. AliRoot makes full use
of all the ROOT potential, entirely written in C++, with some external
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programs (hidden to the users) in FORTRAN. The framework ifself, together
with ROOT, is in continuous development.

The objective of the AliRoot offline framework is to reconstruct and
analyse the physics data stemming from simulated or real collisions. AliRoot
is also used to perform simulations for the study of the detector response and
the evaluation of the physics performance. Figure 3.11 shows the schematic
of the AliRoot work flow. In general, there are three different steps of
functionality: (1) simulation, (2) reconstruction and (3) analysis.

The simulation contains event generator and transport package, where
primary interaction and detector response are simulated. The reconstruction
takes the detector signal or simulated signal as input, and converts the
information into reconstructed vertices and tracks as well as identified
particle types. The analysis framework contains many topics of physics, and
the one used for charmed hadron reconstruction is described in Chapter 4.

Figure 3.11: Schematic work flow of the AliRoot offline framework. This
figure has been taken from [55].

3.4.1 Monte Carlo Simulations

The p+p interactions are simulated via the event generator package PYTHIA
6.4 [29]. It is based on a combination of analytic results and various QCD
models. Other event generators are also available in AliRoot for rare signal
generations, e.g. HIJING [56] is used as a generator for jets in heavy ion
collisions.
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After their generation, particles in the final state are fed into the transport
program. These particles are transported through the simulated material of
each sub-detector, and the interaction with the material is also simulated.
The material and geometry of the detectors are simulated with GEANT3 [57].
At each interaction point between the particle and the material, the energy
deposition and location of the interaction are with a data type called hits.

The simulation of the detector response generates the summable
digits (sdigits) from the energy deposition. The sdigits are the detector analog
responses, before the analog-digital conversion. The front-end electronics and
the data acquisition system are simulated. The sdigits are then converted
to the digitized digits. The truncation of the signal is also included in the
digitization. The output digits closely resemble the raw data collected from
the detector. These two formats are interchangeable.

3.4.2 Reconstruction

The reconstruction is the process of converting the raw data/digits
information into that used in the physics analysis. The reconstruction process
in AliRoot involves three steps: clusterization, tracking (including vertexing),
and event reconstruction.

Clusterization is operated by the local reconstruction within each sub-
detector separately. In this step clusterization is done first to convert
adjacent digits into clusters. A clusters is acquired by combining the digits
of adjacent pads that were presumably generated by the same particle that
interacted with the detector. Weighted center position and sum of the
signal (proportional to the total energy deposition) is saved in a cluster.

The tracking procedure assigns space points to tracks and reconstructs
their kinematics. It is the main part of the reconstruction procedure and
also one of the most challenging tasks of the experiment. It involves the
reconstruction of a particle trajectory and the primary collision vertex as well
as the secondary vertices from particle decay (e.g. D0 → K−π+, Λ→ pπ−).
The Kalman filtering [60] approach is used in the tracking in the mid-rapidity
region.

The general tracking strategy in the mid-rapidity sub-detectors consists
of the following three steps. First, the tracking starts from the outer radius
of the TPC, where the track density is minimal. The track candidates ’seeds’
are found and the tracking algorithm proceeds to smaller TPC radii. This
is because a seed has only a small number of clusters and the precision of
its parameters is not good enough to extrapolate it outwards to other sub-
detectors. When all the seeds are extrapolated to the inner radius of the TPC,
the TPC tracks are prolonged as close as possible to the primary vertex. On
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the way to the primary vertex, the tracks are assigned additional ITS clusters,
which improves the track parameters. After all the TPC tracks are assigned
to their ITS clusters, a special ITS stand-alone tracking procedure is applied
to the still unassigned ITS clusters, finding the low pT tracks.

In the second step, the tracking is restarted from the primary vertex back
to the out layer of the ITS and then to the outer wall of the TPC. At this point
the precision of the estimated track parameters is sufficient to extrapolate
the tracks to the outer TRD, TOF, HMPID and PHOS sub-detectors. The
momentum resolution is improved with more clusters assigned.

In the final step of the tracking, all tracks are refitted backwards to the
primary vertex or to the most inner radius. In case of secondary tracks, they
are not extrapolated with a constraint to the primary vertex, and the track
parameters are good enough in the refit step.

The vertex position in beam direction is reconstructed by the SPD, the
most inner two layers of the ITS. The correlation of the two points z1, z2 in
the two layers is used for the reconstruction of vertex in beam axis. The
reconstruction of the vertex position in the r − φ plane is acquired using
the reconstructed tracks. A more precise primary vertex reconstruction with
exclusion of secondary tracks is applied for D and B hadron reconstructions.

All the information acquired from the reconstruction is classified in each
event, and store in the Event Summary Data (ESD). The ESD is further
called by a specific analysis.

47



Chapter 3. The LHC and ALICE

48



Chapter 4

D∗+ Reconstruction

In this analysis, D∗+ mesons are kinematically fully reconstructed via
the decay channels D∗+ → D0 + π+

s and D0 → K−π+. Track quality
selections and decay topology selections are applied and optimized for the
D∗+ significance. To reduce the combinatorial background, pion and kaon
particles, as the daughters of D0, are identified using the measured signal of
energy loss and time-of-flight. The raw yields of the D∗+ signal are extracted,
in several pT intervals, from the peak in the invariant mass plot. In this
chapter, the terms of D∗+ and D0 include their charge conjugates D∗− and

D
0
, if not specified otherwise.

4.1 D∗+ Decay Channel

There are two consecutive cascade decay channels involved in the D∗+

reconstruction. One decay product from the D∗+ decay is the D0 meson,
which decays further into a K− and a π+. The other decay product is a π+,
which has a low momentum due to the small mass different between D∗+ and
D0. In the D∗+ reconstruction analysis, the low momentum pion is called
soft pion, and is symbolized as π+

s or π+
soft. Thus, one first has to reconstruct

the D0 meson via the D0 → K−π+ channel. Then the reconstructed D0 and
another pion in the same collision event are paired, and the invariant mass
of the D∗+ meson candidate is calculated.

4.1.1 D0 → K−π+ Decay Channel

A D0 meson consists of two valence quarks, a light u quark and a heavy c
quark. Its rest mass is mD0 = (1864.86 ± 0.13) MeV/c2 [7]. Since the D0



Chapter 4. D∗+ Reconstruction

meson is the lightest charmed hadron, it decays only through weak processes,
e.g. transforming the charm quark into an s quark with a mean decay length
of cτ = 122.9 ± 0.5 µm [7]. The branching ratio to the decay channel
D0 → K−π+ is (3.88 ± 0.05)% [7]. The two daughter particles, K− and
π+, are of opposite charge. When the two daughters of the D0 → K−π+

decay are in the central rapidity region of the ALICE detector, they will be
detected by the tracking detectors ITS and TPC. Due to the short decay
length of the D0 meson, the daughter particles are created before they reach
any of the detectors. Thus the decay vertex, i.e. the starting point of the
daughter particle trajectories, is not directly measured by the detector. It
is reconstructed by extrapolating the measured trajectories in the direction
towards the primary collision vertex and measuring the crossing point of the
two daughter trajectories.

Figure 4.1: Schematic view of the D∗+ → D0(K−π+)π+ decay [8].

Figure 4.1 demonstrates a typical D∗+ → D0π+ and D0 → K−π+ decay.
The two curves represent the two extrapolated trajectories of K− and π+.
The two curves are displaced from the primary vertex. The variables of the
decay mechanism, as shown in the figure, are defined in the following:

The primary vertex is the proton-proton collision vertex in 3-
dimensional space. It is also the production point of the prompt D∗+ and
D0 particle. Due to the short life time of the D∗+, it is also approximately
the production point of the D0 which decays from a D∗+ meson.

The secondary vertex is the point in 3-dimensional space where the D0

particle decays. (3.88±0.05)% of the D0 mesons, as listed in Tab. 4.1, decay
though the D0 → K−π+ channel.

The daughter particles are the outcoming particles from the decay. In
the case of the D0 → K−π+ decay, the K− and π+ are the daughter particles.
In contrast to the neutral mother particle, the two daughter particles have
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opposite charges. With a magnetic field in parallel to the beam direction, the
flight trajectories of the daughters are curved in the transverse plane, with
opposite orbiting directions. In Fig. 4.1, the two curves drawn in different
color codes represent the prolonged trajectories of the two daughter particles.
The daughter particles originate at the secondary vertex and move away from
the primary vertex.

The D0 flight line is the straight line connecting the primary vertex
and the secondary vertex. It is the trajectory of the D0’s motion, which
is straight since it is a neutral particle and does not bend in the magnetic
field. The dashed line in Fig. 4.1 is the prolonged D0 flight line for better
demonstration.

The impact parameter d0 is the distance of closest approach between
the primary vertex and the prolonged daughter particle trajectory, as dK0 and
dπ0 shown in Fig. 4.1 for the impact parameters of K− and π+, respectively.
The impact parameter is the distance in 3-dimensional space by definition.
But in the analysis, it is calculated as the distance in the projection on the
transverse plane. The reason is that the detector resolution in the transverse
plane is much better than that in the beam direction, as listed in Tab. 3.2.

The pointing angle θpoint is defined as the angle between the D0 flight
line and the reconstructed D0 momentum direction. Ideally, those two lines
have identical direction, but in the measurement, they may be different due
to the limited detector space resolution and momentum resolution. The
pointing angle is used for D0 candidate selection in the reconstruction.

The DCA (Distance of Closest Approach) is the closest distance
between the prolonged trajectory of the two daughter particles. It is used for
D0 candidate selection, in order to remove false combination of two tracks
which are not stemming from a D0 decay.

The decay angle θ∗ is the angle, in the center-of-mass coordinate system
of the D0, between the D0 flight line and the flight line of the daughter
particles. Due to momentum conservation law, in the rest coordinate system
of D0, the two daughters are flying back to back, and the decay angle for the
two daughters to D0 are θ∗ and π−θ∗. In the experiment, we always measure
the decay angle by calculating the value cosθ∗, making it independent on the
ordering it of the daughter particles. The value cosθ∗ = 1 represents that
the daughters move in parallel to the D0 direction, and cosθ∗ = 0 represents
that the daughters move perpendicular to the D0 flight direction.

4.1.2 D∗+ → D0 + π+s Decay Channel

The D∗+ meson is a vector meson with a heavy c valence quark and a light d
valence anti-quark. The total orbital momentum is J = 1h̄ with the spins of
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D0 decay mode Fraction (Γi/Γ) Decay momentum (MeV/c)
K−π+ (3.88± 0.05)% 861
K−π+π+π− (8.08 + 0.21

− 0.19
)% 813

K−π+π0 (13.9± 0.5)% 844

Table 4.1: Main D0 decay channels. These channels are often used in D0

reconstructions. These numbers have been taken from [7].

both valence quarks aligned in parallel and no orbital momentum amongst
them. The rest mass of the D∗+ meson is mD∗+ = (2010.28± 0.13) MeV/c2

and differs by only ∆m = 145.421 MeV/c2 from the rest mass of the lighter
D0 meson. Strong decay to the D0 meson occurs by emitting a charged pion
which is close to the phase space boundary resulting in a low momentum of
39 MeV/c of the emitted charged pion in the rest frame of the D∗+ meson.
The branching ratio in the decay channel D∗+ → D0 +π+

s is (67.7±0.5)% [7].
The peculiar kinematics in the decay of the D∗+ meson leads to a rather long
lifetime corresponding a narrow internal width Γ = (96± 22) keV/c2. Thus,
the width of the invariant mass of the reconstructed D∗+ is solely defined by
the experimental momentum resolution. Since the D∗+ decay is subject to
strong interactions, the lifetime is too short for topological reconstruction.
Within the experimental resolution, the soft pion is emitted at the primary
vertex.

D∗+ decay mode Fraction (Γi/Γ) Decay momentum (MeV/c)
D0π+ (67.7± 0.5)% 39
D+π0 (30.7± 0.5)% 38
D+γ (1.6± 0.4)% 136

Table 4.2: D∗+ decay channels. These numbers have been taken from [7].

4.1.3 The Soft Pion π+s

The transverse momentum distribution of the two daughter particles π+
s and

D0 from the D∗+ decay are simulated in p-p collisions. The pT correlation
of the two daughter particles is shown in Fig. 4.2. The small kinematic
momentum of the D∗+ → D0+π+

s decay leads to the following characteristics:

• The momenta of the two daughter particles π+
s and D0 are mainly

acquired from the kinetic energy of the mother particle D∗+.
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Figure 4.2: Transverse momentum distribution of π+
s and D0 mesons from

D∗+ → D0 +π+
s decays from PYTHIA simulation in p-p collisions at

√
s = 7

TeV.

• The velocities of the two daughters π+
s and D0 are almost the same as

the velocity of the mother particle D∗+.

• The momenta of the two daughters are correlated. Their momenta are
nearly proportional to their rest masses. The pT of the soft pion is
about ∼ 1/13 of that of the D0.

• The direction of the two daughter particles π+
s and D0 are correlated,

especially for those with high momenta.

We can see most of π+
s are distributed with pT about ∼ 100 MeV/c,

while the D0 has a typical pT of ∼ 1 GeV/c. To optimize the acceptance
for D∗+ reconstruction, the soft pion has to be detected at lowest momenta.
Presently, when using TPC and ITS together as tracking detectors, the lower
momentum cut is pT > 100 MeV/c. These is limited by the inner radius of
TPC, where low momentum particles do not reach. Due to this limitation,
most of the D∗+ particles, which have low transverse momentum soft pion
daughters, are not able to be reconstructed. To overcome this, tracking with
the ITS detector only is applied.

ITS stand-alone tracking

The general tracking procedure with TPC and ITS combined is started from
tracking in TPC and then assign ITS clusters to the track. Aside from that,
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the ITS stand-alone tracking uses ITS clusters only. Its uses a grouping
algorithm to group the clusters from different layers within a search window
in the (θ, φ) angle. Then a fit is applied on the clusters, including the primary
vertex, with a parabola, as shown in Fig. 4.3. This algorithm is described
in [61].

Figure 4.3: Schematic view of stand-alone tracking in the ITS. Left: tracking
high pT particles; right: tracking low pT particles [62].

By using ITS as a stand-alone tracking algorithm, the momentum cut
may be lowered down to 60 MeV/c, see Fig. 4.4. The inclusive momentum
distribution of pions from p-p collisions peaks around 500 MeV/c and is
thus much harder than the soft pion distribution from D∗+ decay. We do not
apply an upper cut on the soft pion transverse momentum, in order to have a
high acceptance for D∗+ reconstruction at large transverse momentum where
the soft pion is boosted to higher momentum by the relativistic speed of the
mother particle.

4.2 Reconstruction Scheme

4.2.1 Invariant Mass

In the reconstruction procedure, a D0 candidate is retrieved from the
combination of two reconstructed daughter trajectories of opposite charge,
which are considered as decay products stemming from the same mother D0.
The mass, energy and momentum vector, i.e. the 4-vector, is calculated from
the reconstructed momentum vector of the two daughter candidate tracks and
assuming a K− or π+ mass, respectively.

For a particle, in natural units, the mass M is

M2 = E2 − ‖~p ‖2. (4.1)
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Figure 4.4: pT distribution of the soft pion from the D∗+ decay. The three
sets of (θ, φ) represent the searching window settings in the ITS stand-alone
tracking. The (θ1, φ1) is the conservative setting for Pb-Pb runs, and the
other two are for pp runs [62].

In the current case, with one mother of mass M and two daughters, this
results in,

M =
√

(E1 + E2)2 − ‖~p1 + ~p2‖2. (4.2)

Here, with D0 as the mother and two daughter particles of total energy E1

and E2, and three momentum ~p1 and ~p2, the invariant mass of the initial
state is calculated.

The reconstruction of the D∗+ requires only one more step, by combining
the reconstructed D0 candidate with a π+, and calculated the invariant mass

difference ∆m, makes a D∗+ candidate. Likewise, combining a D
0

candidate
with a π− makes a D∗− candidate.

4.2.2 ∆m Distribution

The D∗+ reconstruction is presented by the difference in invariant mass
∆m = mD∗+ − mD0 between both reconstructed D mesons. The mass
resolution in ∆m is solely defined by the momentum resolution of the soft
pion π+

s . The D∗+ signal is then expected as a narrow peak in the ∆m
distribution close to the phase space boundary and thus on a rather low
combinatorial background.
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4.2.3 Particle Combination

In p-p collisions at LHC energies, more than 100 charged particle tracks
are reconstructed in the central barrel in a single event. The possible
combinations of each two tracks are too large a number, and, most
importantly, will introduce a large background with false combination
compared to the tiny amount of real D0 found.

Thus, the topological selection is used in the reconstruction scheme as a
powerful tool to enhance the signal to background ratio. A D0 → K−π+

decay is a typical two-prong decay from a neutral mother into daughters
of opposite charge. The decay vertex is the creation point for both of the
two daughter particles, and the vanishing point of the mother particle. Such
a decay vertex is called a secondary vertex, which is displaced from the
primary vertex of the beam-beam interaction. From the measurement, the
tracks from a decay cross at the decay vertex within some deviation due to
the finite resolution. By extrapolating the two track trajectories, a virtual
crossing point is established and considered the secondary vertex of the D0

candidate.

The secondary vertex is reconstructed both online and offline. The
online vertexer gives fast reconstruction of the particle vertex in the event
reconstruction procedure, while reconstructing tracks from the the summable
digits. But this could not be applied to the reconstruction of secondary
vertices from the decay of charmed meson, which has a typical decay length
of 100µm, which is too close to the primary collision point and outside
the detector sensitive area. The offline secondary vertex reconstruction is
used in this analysis. There are two alternative algorithms for the offline
vertexing, one using the minimization of the the Distance of Closest Approach
(DCA) of two daughter tracks, another using the Kalman Filter for vertex
reconstruction [63].

In an event, to get all the D∗+ candidates, a secondary vertexing
algorithm contains the following tasks. First, a pre-selection (see Sec. 4.3)
is applied for all charged ESD tracks, and grouped in two parts according
to the charge sign, positive and negative. Every combination of one positive
and one negative track is taken into account. Then a set of topological
selections are applied on those D0 candidates. Those selections are made
by applying cuts on the topological objects of the D0 secondary vertexing,
including impact parameter (dK,π0 ), product of impact parameter (dK0 × dπ0 ),
distance of closest approach (DCA), transverse momentum of the daughter
track (pTK,π

), pointing angle (cos θpoint), and decay angle (cos θ?). These

selected D0 candidates are combined with a soft pion candidate, D0 with a

positive pion, and D
0

with a negative pion. Further selections on the D∗+
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are applied afterwards.

4.2.4 Vertexing Algorithm

The secondary decay vertex of the D0 meson is typically 123 µm away from
the primary vertex, which is a very short distance. The discrimination of
these decay vertices of D0 meson requires a good reconstruction performance
of both the primary and secondary vertices.

Primary Vertex The primary vertex is reconstructed by extrapolating
all tracks in the ITS inwards in direction of the beam axis. The tracks are
grouped in all possible pair combinations, and the weighted center of the
minimum distance of approach of the track pair is considered a primary
vertex candidate. The primary vertex is determined by searching for the
minimum χ2 to those candidates in 3-dimensions.

In order to remove tracks that are not from the primary vertex, the χ2

of primary vertex is re-calculated by removing tracks one by one. A track
is removed from the primary vertex calculation, if the contribution to the
χ2 of the track is larger than a threshold. The final primary vertex is
acquired, when no such tracks are left, and the χ2 difference by removing
tracks is always smaller than the threshold. This method removes strange
decay particles from the primary particle calculation.

Secondary Vertex The secondary vertex of a D meson decay is
reconstructed by calculating the minimum distance of approach of the two
tracks. The algorithm is the same as the one used in determining primary
vertex candidates when reconstructing the primary vertex. The tracks are
propagated to the vicinity of the primary vertex. The secondary vertex is
determined as a weighted center of the segment of minimum approach of the
two prolonged tracks.

The D0 daughter tracks have typically ∼ 100 µm impact parameter to
the primary vertex, which is too close to the primary vertex and can not be
excluded in primary vertex reconstruction. However, in the determination
of the secondary vertices of the D0 mesons, their daughter tracks should be
removed from the primary vertex reconstruction. Especially in p-p collisions,
where the multiplicity is relatively low, the primary vertex is spoiled by
the secondary tracks. In the analysis of charmed hadron reconstruction
via hadronic decay channels, the primary vertex is re-calculated for each
secondary candidate, by removing the tracks used for the secondary vertex
from the primary vertex reconstruction.
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4.3 Track Selection

In the reconstruction of D∗+ mesons, the first step is the selection of
the daughter track candidates. Those daughter track candidates are then
combined to reconstructed D0 and D∗+ candidates. The track selection
involves selections on the track quality, its topology and the track kinematics.

The track selection is made on the daughter particles candidates of D0,
but not on the soft pion decayed from D∗+. Given the poor reconstruction
efficiency of the soft pion, the selection criteria of the soft pion candidates is
kept as loose as possible.

The signal tracks represent those K, π daughter tracks, which decay from
the D0 → K−π+ channel. The background tracks are those not stemming
from the D0 → K−π+ channel.

4.3.1 Selection on Track Quality

The quality of a reconstructed particle track is determined by the number of
space points assigned to the track. A reconstructed track with good quality
has more space points assigned along its trajectory. In the ITS detector,
there are 6 layers of detectors. Each layer is able to provide one hit for a
track. In the TPC detector, moving charged particles ionize the gas, and the
induced signal from the ionized gas is grouped in a so-called cluster. The
TPC can measure up to 160 clusters for a track. If a track is measured by
more than one sub-detectors, the track quality is much improved by the space
point given by those detectors.

Tracks assigned with more measured space points are preferred. As a
track with good quality, its probability of being a false track is minimal. It
also has good momentum and spatial resolution.

Selection on Track Status Measurement at various distances to the
beam can improve the quality of the track. For a reconstructed track at mid-
rapidity, four sub-detectors may take part in the tracking procedure. They
are ITS, TPC, TRD and TOF. Their presences are tagged as the status of
the track.

There are three passes in the global track reconstruction flow of the central
barrel. The first pass is track finding and fitting in the inward direction inside
the TPC and then to ITS. Tracks are found by connecting the clusters. The
next pass is propagating the track back outwards, which reconstructs the
track by starting with the ITS via TPC and TRD to TOF. In the last pass, the
tracks are refitted inward passing through TRD, TPC and ITS, consecutively.
The first pass is aimed for track finding and fitting; the second is to include
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all available detector information into the tracking; and the third pass is to
extract the track parameters.

For the present analysis, each track is required to have both TPC and ITS
contribute in the refit procedure. A selection on tracks reconstructed with
TPC in the refit procedure guarantees a good track momentum resolution.
Since the TPC has the most measured space points in the tracking, a track
reconstructed with TPC will lead to a best fit with the space points to the
track.

A track with ITS in the refit procedure has optimal spatial resolution near
the collision point. A track is extrapolated from the measured ITS points
to the primary vertex. The impact parameter of the tracks from the D0

decay can be used to distinguish the secondary particles from the primary
particles. The ITS measurement also improves the space resolution of the
primary vertex, because we are able to exclude the secondary tracks from
the primary vertex reconstruction procedure.

Selection on Number of Track Clusters The TPC provides a maximum
of 160 clusters of reconstructed space points. The more clusters are assigned
to a track, the better spatial and kinematic resolution it has. The selection
on the number of TPC clusters of a track is a decisive selection on the quality
of the reconstructed track. By selecting tracks with a minimum of 70 TPC
clusters, most poorly reconstructed tracks are excluded from the analysis.

The ITS provides clusters at the positions which are close to the collision
vertex. These ITS clusters play the most important role in determining
the track topology when the track is extrapolated to the primary vertex.
Since the innermost measurement is most critical to estimate of the displaced
vertex, the applied selection is crucial for reconstruction of a secondary vertex
close to the collision point. In the present analysis, tracks are required to
have at least one SPD hit.

4.3.2 Selection on Track Kinematics

Selection on Transverse Momentum Tracks with low transverse
momentum are strongly bent in the magnetic field. Additionally, they suffer
from multiple scattering in the detector material. The extrapolation of a low
momentum track to the primary vertex implies large uncertainties.

Most of the particles with low momentum are not from D0 decays. Decays
of resonances (e.g. ∆++ → pπ+) generate low momentum pions. Also, δ-
electrons traversing the TPC gas have very low momenta. On the other
hand, most daughter particles from the D0 → K−π+ decay channel have
momentum above 500 MeV/c. The transverse momentum distribution of
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both signal and background tracks are shown in Fig. 4.5. A selection of
pT > 0.5 GeV/c is made for a track. This selection rejects a large fraction of
background tracks while keeping most of the signal tracks.
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Figure 4.5: Transverse momentum distribution of tracks before selection.
Magenta: all tracks from both signal and background; Blue: daughter tracks
K, π from D0 decays. The data are from a minimum bias simulation with
PYTHIA.

Selection on Pseudorapidity There is a selection on the pseudorapidity
of the tracks. It requires a track to have |η| < 0.8. Given the acceptance of
the TPC detector is |η| < 0.8, this selection removes the tracks that may be
affected by the edge effect. It ensures that in the selected η region, the track
reconstruction efficiency is homogeneous.

4.3.3 List of Single Track Pre-Selection

Table 4.3 lists the criteria used for track selection. These selections are
applied to the track candidates for D0 reconstruction. These selections
improve the signal to background ratio of the reconstructed D0 candidates.

4.4 Topological Selections

The selection of D∗+ on topological variables consists of two parts. One part
of the selections is made on the topology of the D0 → K−π+ decay. The
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Track selection threshold value
Track status ITSrefit

TPCrefit
Clusters in SPD (max. 2) ≥ 1
Clusters in TPC (max. 160) ≥ 70
Transverse momentum pT (GeV/c) > 0.5
Pseudorapidity |η| < 0.8

Table 4.3: List of parameters used for track selection. Only tracks passing
all these selection criteria are used for D0 reconstruction.

other part of the selections is made on the D∗+ → D0π+ decay (shown in
Fig. 4.1).

The decay length of the D∗+ meson is in the order of ∼ 1 pm. It is
impossible to identify the D∗+ decay point from its production point. Thus,
in a reconstructed event, the D∗+ → D0π+ decay topology is very simple.
Both the daughter particles D0 and π+

s are stemming from the primary
vertex.

On the other hand, the decay length of the D0 meson is in the order of
∼ 100µm. With the help of the ITS detector, we are able to identify the D0

decay point from its production point. By applying topological selections,
we are able to enhance the D0 signal in the D0 candidates.

4.4.1 Topological Selections of D0

Shown in Fig. 4.1, a D0 → K−π+ decay has a general two-prong decay
topology, where the two curves of secondary particle trajectories have a
superposition as considered a secondary decay vertex. Based on the two-
prong decay topology, a number of selections and cuts are made to improve
the significance of signal from background:

• cut on pTK,π (transverse momentum of a secondary track), which
represents the curvature of the track;

• cut on dK,π0 (track impact parameter with respect to the primary
vertex);

• cut on dK0 × dπ0 (product of the two impact parameters);

• cut on DCA (Distance of Closest Approach);
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• cut on cos θpoint (pointing angle), the angle between reconstructed

D0 momentum vector and the vector from the primary vertex to the
secondary vertex;

• cut on cos θ? (decay angle), the angle between the momentum vector
of reconstructed D0 in laboratory frame and the momentum vector of
reconstructed positive secondary particle in the center of mass frame;

• cut on the invariant mass of D0;

• cut on pT(πs) (transverse momentum of the soft pion),

The distributions of these topological variables are different between
the signal and the background. The selections on the topological variables
improve the signal to background ratio. The threshold of each selection is
chosen to be the value at which a maximum D∗+ significance is obtained.

In the topological selections of the D0 mesons, the signals are the D0

candidates with both K, π tracks originating from a D∗+ meson. Those D∗+

mesons decay into D0 mesons, and the D0 mesons decay further into K and
π mesons. The other D0 candidates with K, π not inherited from a same
D∗+ meson are considered background.

One thing is worth noting here. There are such D0 candidates with the
combination with K, π tracks which are decayed from a D0 mesons, but such
D0 mesons are not stemming from a D∗+ decay. These D0 candidates are not
considered as signals, although they have the same topological distribution
as the signals. In the ∆m distribution, these D0 candidates will behave as
background anyway, since they do not form a D∗+ resonance with a pion.

Selection on pT of the Daughter Tracks As shown in Fig. 4.5, the
daughter tracks of D0 background are heavily weighted at low pT. The
daughter tracks of D0 signals have relatively higher most probable value of
pT. A selection on the pT with a lower threshold may increase the significance
of the D0. It will also increase the signal D0 as daughters from D∗+ decay.

This selection is different from the pT selection on the single track. Those
tracks failed the single track selection are not used in the D0 reconstruction.
They are not combined with another track to reconstruct the D0 candidates.
However, this pT selection is made on the D0 candidates, by comparing the
threshold with the pT of their daughter tracks. As the threshold is chosen
differently for each pT interval of the D∗+ meson, a track that fails the
selection in one D0 candidate may pass the selection in another D0 candidate.
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Selection on Impact Parameter d0 of Daughter Tracks The impact
parameter is the distance of closest approach between a track and the primary
vertex. The impact parameter can be disentangled into two projections, the
projection in transverse plane r−φ and in beam axis z. The impact parameter
in the r − φ plane is defined as:

d0(rφ) = q[ρ−
√

(xV − x0)2 + (yV − y0)2]. (4.3)

Here q is the charge sign of the particle, ρ is the radius of the track curve
projected in the transverse plane, and (x0, y0) is the center of the projected
(arch shaped) curve. The primary vertex point has the coordinates (xV , yV ).
The impact parameter projection in beam direction z is:

d0(z) = ztrack − zV , (4.4)

where zV is the position of the primary vertex in beam direction, and ztrack is
the z direction projection of the closest approach point to the primary vertex
on the track. Due to the resolution of the ITS detector, the measured impact
parameter in the r−φ plane is much more precise than the measured impact
parameter in z direction. Thus, the selection is made only on d0(rφ). In the
thesis, the term d0 implies d0(rφ).

The D0 daughter tracks K, π originate from the secondary vertex, which
is displaced from the primary vertex by typically cτ = (123.0 ± 0.4) µm.
The impact parameter d0 of the daughter tracks has similar magnitude. The
average impact parameter is dK,π0 ≈ 105 µm in the rapidity range |y| < 1,
according to a calculation from [8].

Figure 4.6 shows the distribution of impact parameters d0 for π tracks
from different sources. The sign for the impact parameter indicates the
direction from the primary vertex to the track, as shown in Eq. 4.3. For
a positive charged track, it has a positive d0 if the primary vertex is outside
the curve, and a negative d0 if the primary vertex is inside the curve. It is
the opposite for a negative charged track.

The data is from PYTHIA simulation. At large absolute values of d0,
the signal is limited by statistics. The background is dominated by wrong
combinations of primary tracks. Other background track sources are given
by tracks with large impact parameter coming from the decay of hyperons,
e.g. Λ,Ξ, and Ω and decays from K0

S. Some of the primary tracks undergo
multiple scattering in the material of the beam-pipe and of the innermost
detector layer and appear at large impact parameter. Annihilation of p and
n in the beam-pipe and the innermost SPD layer also lead to background
tracks with large impact parameter. Both the signal and the background
tracks are heavily distributed at small d0. A selection on the absolute value
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Figure 4.6: Impact parameter distribution of π tracks. Gray: primary π
tracks; Blue: Secondary π daughter tracks from D0 decay; Magenta: π tracks
from hyperons, e.g. Λ,Ξ, and Ω decay and from K0

S decay; Red: π tracks
decay from p̄ annihilation in the beam pipe or detector material.

of d0 with a upper threshold may reduce many of the D0 background. The
removal of the background tracks may increase the D∗+ significance. At
the same time, the removal of the signal tracks may also decrease the D∗+

significance. However, the removal of the background makes a larger effect on
the D∗+ significance, since the number of D0 candidates scales approximately
with the square of the track number, and most of them are background D0.

Selection on Impact Parameter Product dK0 × dπ0 of the Daughter
Tracks The impact parameter indicates not only the distance of closest
approach from the primary vertex to a track, but also the relative position
from the primary vertex to a track. For a track with positive charge, the
impact parameter is positive if the primary vertex is outside the track curve,
and the impact parameter is negative if the primary vertex is inside the track
curve. For a track with negative charge, the sign of the impact parameter is
reversed. As is shown in Fig. 4.7, the product of impact parameters of the
daughter tracks from a signal D0 has a negative sign.

In the case of the D0 → K−π+ decay topology, the two signal tracks in
a combination stemming from the same mother D0 meson have the primary
vertex relatively either both inside or outside. Considering the opposite
charge of the two tracks, the product of the impact parameters in a signal
combination has a negative value. The distribution of the product dK0 × dπ0
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Figure 4.7: Sign of the product of the impact parameters of the two tracks
from the decay of D0 in the transverse plane. The ones with negative impact
parameter products are candidates track pairs from D0 decays .
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Figure 4.8: The product of the impact parameters of the K, π tracks from
D0 candidates. The signals are the D0 candidates decayed from D∗+ mesons.
The background are the other D0 candidates.

is shown in Fig. 4.8. The difference between the signal and background is
significant. The distribution is deteriorated due to the finite resolution of
the primary vertex reconstruction. Thus there are some signal entries with
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positive values of dK0 × dπ0 . The background is from random combination
of tracks with equal positive and negative impact parameters, thus the
distribution of their product is symmetric.

An upper threshold of dK0 ×dπ0 is applied in the selection. A large portion
of the background D∗+ mesons are removed, while most of the signal D∗+

mesons are kept.

Selection on DCA of Daughter Tracks The distance of closest
approach directly represents the topological correlation between two K, π
daughters stemming from a D0 decay. The distance is calculated from the
two extrapolated track curves, and then projected on the r− φ plane. With
perfect tracking, the signal combinations have a DCA of 0, which means the
two curves cross at the decay vertex. In practice with finite spatial resolution,
the DCA distribution of the signal is dispersed from 0, while the background
distribution is much wider, as shown in Fig. 4.9.
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Figure 4.9: Distribution of the distance of closest approach of the two
daughter tracks.

An upper threshold of DCA is applied in the selection, in order to increase
the D∗+ significance.

Selection on Pointing Angle cos θpoint of the Reconstructed Mother
Particle In the case of the D0 → K−π+ decay topology, the pointing angle
is the angle between the direction of the reconstructed D0 momentum and the
direction from the primary vertex to the secondary vertex. This distribution
is shown in Fig. 4.10. Since the D0 is originating from the primary vertex,
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the decay angle of a signal D0 is distributed around 0◦. The signal entries
with large decay angle are from D0 decays at short decay length. This is
because that the resolution of the pointing angle becomes very low, when
the distance between the primary and secondary vertex is short.

The cos θpoint distribution of the background is much flatter. More
entries are distributed where cos θpoint is small. A lower threshold of
cos θpoint will remove background combinations, while keeping most of the
signals.
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Figure 4.10: Cosine of the pointing angle between D0 flight line and its
reconstructed momentum direction. Hereby shown are the distributions of
signal and background from D∗+ → D0π+ decays.

Selection on Decay Angle cos θ? of the Decay The decay angle θ? is
defined as, in the reference frame of the D0 particle, the angle between the
pion momentum and the D0 flight direction. The θ? of the signal D0 mesons
is distributed in the direction where the daughter momenta in the D0 frame
is perpendicular to the D0 flight line. On the other hand, the background
is more enhanced in the direction where the daughter momenta is along or
opposite to the D0 flight direction. The cos θ? distribution of signal and
background are shown in Fig. 4.11.

An upper threshold of the decay angle is applied in the selection, in order
to increase the D∗+ significance.

Selection on Invariant Mass of D0 The selection of the reconstructed
D0 candidates which pass the selections on the invariant mass spectrum will
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Figure 4.11: The distribution of cos θ?. Hereby shows respectively the entries
of signal and background from D∗+ → D0π+ decay.

remove most of the background from the candidate D0 which is used for the
combination with soft pion. The selection is made in the region of ±3σ of a
Gaussian fit on the D0 invariant mass peak.

4.4.2 Cuts Optimization

Both the D∗+ signal and background counts depend on the threshold value of
the selection, so does the D∗+ significance. We show the distribution of the
significance as a function of the threshold value in Fig. 4.12. The thresholds
may be chosen such that the D∗+ significance is the largest.

However, the cut variables are not independent from each other.
Correlations between the cut variables exist, e.g. between the dK,π0 and
dK0 × dπ0 . The significance of the reconstructed D∗+ mesons is a function
of the multi-dimensional cut variables. We need to find a point in this multi-
dimensional space, where the significance reaches its maximum.

The idea of optimizing the cut value is to approach the optimum multi-
dimensional coordinate in one direction after another direction. Firstly,
no topological cuts are applied. The significance dependencies on each
variable are plotted. The cut threshold on each variable is chosen where
the corresponding significance reaches its maximum. These threshold values
are the initial values. If there are no correlations between cut variables, these
values will be the final optimum threshold values. Secondly, the initial cuts
are applied on all the variables. The significance dependency on one variable
is plotted. A new optimum value is found, and the threshold value of the cut

68



4.4. Topological Selections

 threshold (GeV/c)
πK,

T
p

0 1 2 3 4 5 6 7 8 9 10

s
ig

n
if

ic
a
n

c
e
 (

a
rb

. 
u

n
it

)

0

100

200

300

400

500

600

700

800

900

(a)

 threshold (cm)
πK,

0
d

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

s
ig

n
if

ic
a
n

c
e
 (

a
rb

. 
u

n
it

)

0

100

200

300

400

500

(b)

)2 threshold (cm
π

0
dK

0
d

­0.1 ­0.08 ­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06 0.08 0.1

­3
10×

s
ig

n
if

ic
a
n

c
e
 (

a
rb

. 
u

n
it

)

0

50

100

150

200

250

300

(c)

dca threshold (cm)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

s
ig

n
if

ic
a
n

c
e
 (

a
rb

. 
u

n
it

)

100

200

300

400

500

(d)

 threshold
point

θcos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
ig

n
if

ic
a
n

c
e
 (

a
rb

. 
u

n
it

)

360

380

400

420

440

460

480

500

520

540

560

580

(e)

* thresholdθcos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
ig

n
if

ic
a
n

c
e
 (

a
rb

. 
u

n
it

)

0

50

100

150

200

250

300

350

(f)

Figure 4.12: Significance of reconstructed D∗+ as functions of selection
thresholds. The selections are applied on 6 topological variables
independently. These variables are pK,πT (a), dK,π0 (b), dK0 × dπ0 (c), DCA
(d), cos θpoint (e), cos θ? (f). This was studied with 150M simulated p-p
collision events with PYTHIA.

on this variable is updated by the new value. Then, the updated cut values
are applied. The significance dependency on another variable is plotted. The
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threshold value of the cut on this variable is also updated. This procedure
is done for all the variables consequently. When all variables are processed,
more iterations over the variables are performed, until the difference of every
cut values to the previous iteration is smaller than a quantified threshold.

The cut optimization is operated on PYTHIA simulation. The cut values
are determined in several pT(D∗+) bin, as shown in Table. 4.4. The cut
variables reach their optimum values and are stable after 5 iterations. The
distributions shown in Fig. 4.12 are after the optimization procedure, where
the optimized thresholds are applied on all the variables.

pT (GeV/c) dca (cm) cos θ? pK,πT dK,π0 (cm) dK0 × dπ0 (cm2) cos θpoint

1-2 < 0.03 < 0.7 > 0.8 < 0.1 < −0.00002 > 0.9
2-3 < 0.03 < 0.7 > 0.8 < 0.1 < −0.00002 > 0.9
3-5 < 0.03 < 0.7 > 0.9 < 0.1 < −0.000002 > 0.8
5-8 < 0.03 < 0.7 > 1.0 < 0.1 < −0.000002 > 0.8
8-24 < 0.03 < 0.7 > 1.0 < 0.1 < −0.000002 > 0.8

Table 4.4: Optimized thresholds of the topological selections in various pT

intervals.

4.5 Particle Identification

The particle identification (PID) is applied on selections of the tracks used
for D0 reconstruction are kaons and pions. The PID is not applied on soft
pion π+

s candidates. The PID information is acquired from TPC and TOF
respectively. The TPC provides identification of kaon and pion up to a
transverse momentum of 0.7 GeV/c, and the TOF makes it up to 2 GeV/c.

4.5.1 PID Selections on D0 Daughter Particles

The TPC identifies kaon and pion clearly up to a momentum of 0.7 GeV/c.
One can see from the dE/dx distribution as a function of track momentum,
where the kaon and pion bands are separated more than 3 times of the
standard deviation below 0.7 GeV/c. For tracks above 0.7 GeV/c kaon
and pion bands starting to merge in the dE/dx distribution, where the
identification of kaon and pion is not 100% effective.

In the present analysis, the the PID method is applied in a way that an
optimum efficiency has priority. In other words, the PID information is only
used to discard identified wrong tracks. Practically, we select a ±2σ band-
shaped region of a kaon distribution, and the particles outside the region are
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Figure 4.13: Top: TPC Signal of particle energy loss versus the momentum.
Bottom: TOF Signal of particle velocity versus the momentum divided by
the charge.

considered not a kaon. The same method is used for pion selection. The
tracks in the region where two bands are overlapping are considered both as
a candidate of kaon and pion.

There is PID information provided by time of flight, too. The distribution
of kaon and pion tracks are also in a band-shape region in the flight time
distribution as a function of particle momentum. The two band from kaon
and pion are separated 3σ up to a momentum of 1.5 GeV/c. Here the
selection of ±3σ of kaon and pion band is applied. The region outside the
region is considered not a kaon and not a pion.
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Chapter 4. D∗+ Reconstruction

The combination of the two PID method is rejection on identified non
kaon or non pion. i.e., a track is excluded from kaon candidates, if it is
identified a non kaon by either TPC or TOF, and the same for pion.

The PID efficiency is not 100% from TPC and TOF. A track may hit
the non-effective area of the detector, do not have enough hits to have a
valid PID information or do not have enough transverse momentum to hit
the detector. The TPC has a PID efficiency nearly 100% for tracks over 150
MeV/c. But TOF has only 60% efficiency for track over 500 MeV/c. To
have the optimum efficiency of the selections, we keep the tracks without
PID information also as particle candidates of kaon and pion.

Table. 4.5 shows the TPC PID and TOF PID application algorithm for
kaon and pion. The combined PID is require both TPC and TOF PID return
TRUE value. This is because by definition, either of the two gives a nearly
perfect rejection efficiency.

TPC PID availability TPC in 2σ TPC PID
YES YES TRUE
YES NO FALSE
NO - TRUE

TOF PID availability TOF in 3σ TOF PID
YES YES TRUE
YES NO FALSE
NO - TRUE

Table 4.5: TPC and TOF PID criteria for a given track (valid for both kaon
and pion).

Candidate Charge and Reflection The selection is applied on both
tracks used for the combination, i.e. one kaon track and one pion track. For
the present analysis, both D0 and D0 are reconstructed, via the channels
D0 → K−π+ and D0 → K+π− respectively. From reconstruction, we
reconstruct D0 by assigning negative tracks the kaon mass and positive tracks
the pion mass and calculate the invariant mass of the two, and vice versa
for D0 reconstruction. Without the PID information, the invariant mass
distribution is contaminated by the combination with a wrong mass assigned,
i.e. a positive pion and a negative pion are combined with a wrong mass
assigned to the positive particle and make up an entry in the invariant mass
distribution of D0.

With the help of TPC and TOF PID, this contamination is reduced
to the extent where the efficiency is still not affected. What remains
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4.5. Particle Identification

in contamination is dominated by the combinatorial background from
uncorrelated tracks. But there is another source of background which from
real D0 and D0 daughters but assigned by the wrong mass to daughter
candidates. While the entry with correct mass assigned is still in the invariant
spectrum, this wrong-mass-assigned invariant mass is a reflection. It has
fewer entries than the signal, since it requires both of the two tracks are in
the overlapping region in TPC dE/dx and Time of Flight spectra. But it
needs to be corrected afterwards, since it distributes around the D0 mass and
has entries beneath the peak area in D0 and D0 invariant mass spectrum.

4.5.2 PID Selection on the D∗+
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Figure 4.14: ∆m = mD∗+ −mD0 invariant mass spectrum from p-p collisions
at
√
s = 7 TeV without particle identification, and with a 2σ selection from

the specific energy loss in the TPC, and an additional 3σ selection in the
time of flight.

Particle identification has been applied to the daughter candidate K, π
tracks of D0. It it not applied on the soft pion for two reasons. One it
that, the soft pion detection efficiency is low. The second is that, at the low
momentum region, pions are dominant in the amount, where PID does not
increase the purity significantly. So for the D∗+ reconstruction, the PID is
applied on the D0 daughters.

The effect of PID selection is shown in Fig. 4.14. Pions and kaons were
selected within a 2σ band from the specific energy loss in the TPC, and an
additional 3σ selection in the time of flight has been applied. While the
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Chapter 4. D∗+ Reconstruction

background is drastically decreasing, we have checked that 90% of the D∗+

signal survives the selection, as one would expect.

4.6 Yield Extraction

To extract the yield of the signal, the distribution of both the signal and the
background should be understood well. The signal is expected to follow
a Gaussian distribution. The background, on the other hand, can not
parametrized in a simple way. The distribution of the background is both
statistical and kinematical. Furthermore, the peak in the ∆M invariant mass
distribution is at the edge near the kinetic boundary, where the entry density
decreases deeply with ∆M getting smaller. Here, two method are used to
describe the background, fit with parametrized function and use D0 side
bands to simulate the background shape.

4.6.1 Background Fit

The fit function for D∗+ background is the product of square root function
and exponential function, which was used in [6]. It is written as

fBKG(∆M) = A
√

∆M −mπ · eB(∆M−mπ). (4.5)

The signal is fitted by Gaussian function

fSIG(∆M) =
A√
2πB

e−
(∆M−C)2

2B2 . (4.6)

The fitting procedure is in three steps. First, the non-peak region of
the spectrum is fitted with the background function only. Second, using the
parameter from last step, fit the whole spectrum with signal + background
function. Third, recalculate the background function with fit signal +
background function over the whole spectrum.

The yield of the Gaussian fit over signal is obtained from the integral,
parameter A. Thus the raw yield is A normalized by the bin width.

4.6.2 Bin Counting

Another signal yield extraction method is bin counting. The signal +
background in −3σ to 3σ of the peak region is obtained by adding the counts
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in the corresponding bins. The 3σ is mostly not at the bin edge position,
one may choose a counting with or without the last bin.

The background is obtained by an integration of the fit function of the
background shape, over the selected bin range. Then the subtraction between
the counted count and the integration is the signal yield.

4.6.3 D0 Sideband

The background distribution is also estimated by using the D0 sideband
background. The background D0 candidates near the peak in D0 invariant
mass spectrum are kinetically similar to the signal region. Thus a calculation
of this D0 background and soft pion gives a good approximation of the
background distribution in the signal region.

The D0 sideband is selected from ±10σ to ±4σ, while the signal D0 is
selected from −3σ to 3σ. The width of selection is twice as that of the signal,
which is because on one hand, the statistical error of the side band is smaller
with larger statistics, and on the other hand, the sideband is still not too
far away from the signal that the kinetic behavior of those candidates are
still similar to the signal. The sideband background in ∆M invariant mass
spectrum is then normalized to the measured spectrum, and then subtracted
from the latter. The subtracted spectrum is fitted with Gaussian function.

4.6.4 Raw Yields

Finally, the yield is extracted from the reconstructed spectrum. Figure 4.15
shows the invariant mass spectrum.

The resulting invariant mass ∆m = mD∗+ − mD0 distribution from p-p
collisions is shown in Fig. 4.16 for 10 different pT regions. The D∗+ signal
appears as a narrow peak of width σ ≈ 0.6 MeV/c2 centered at a mean
of (145.4 ± 0.1) MeV, which in excellent agreement with values from the
PDG [7]. Note that the width of the reconstructed D0 meson is in the order
of 10 MeV/c2. By taking the mass difference ∆m = mD∗+ −mD0 , the width
in the reconstructed D∗+ meson is solely given by the momentum resolution
of the soft pion and thus much narrower. The background is kinematically
restricted at lower invariant mass at a value corresponding to the pion rest
mass of mπ+ = 139.57 MeV/c2 [7]. With the given statistics, the signal
extends up to pT < 24 GeV/c and is almost background-free at these high
momenta.

The background is smoothly increasing with invariant mass and steeply
decreasing with the transverse momentum of the reconstructed D∗+. This
reflects the inclusive single particle spectra of daughter candidates K−, π+

75



Chapter 4. D∗+ Reconstruction

)2) (GeV/cπ)­M(KππM(K
0.13 0.135 0.14 0.145 0.15 0.155 0.16

2
E

n
tr

ie
s
 /
 0

.5
 M

e
V

/c

0

200

400

600

800
+

π 
0

 D→ 
*+

D
+

π +
π 

­
 K→    

 > 1 GeV/c
T

p

 79±) = 1567 σ3±S(

 0.03 MeV±mean = 145.45 

 0.04 MeV± = 0.65 σ

Figure 4.15: ∆M invariant mass spectrum from minimum bias p-p collisions
at
√
s = 7 TeV, integrated over pT > 1 GeV/c and |η| < 0.8.

pT bin (GeV/c) Signal Background Significance
1 - 2 46± 21 525± 23 1.9± 0.9
2 - 3 265± 49 1373± 37 6.5± 1.2
3 - 4 435± 43 1013± 32 11.4± 1.1
4 - 5 323± 27 257± 16 13.4± 1.1
5 - 6 209± 19 87± 9 12.1± 1.1
6 - 7 119± 15 41± 6 9.4± 1.2
7 - 8 74± 9 7± 3 8.2± 1.0
8 -12 101± 11 14± 4 9.4± 1.0
12 -16 22± 5 2± 1 4.6± 1.0
16 -24 9± 3 0± 0 2.9± 1.0

Table 4.6: The reconstructed yields of D∗+ + D∗− signal and background
in 10 pT intervals. The corresponding significances ( signal√

signal+background
) are

shown as well.

which is steeply decreasing with momentum leading to less combinatorial
background.
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Figure 4.16: ∆m = mD∗+ −mD0 invariant mass spectrum in 10 pT bins from
1 GeV/c to 24 GeV/c for minimum bias p-p collisions at

√
s = 7 TeV.
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Figure 4.16: ∆m = mD∗+ −mD0 invariant mass spectrum in 10 pT bins from
1 GeV/c to 24 GeV/c for minimum bias p-p collisions at

√
s = 7 TeV.

4.7 QA of the D∗+ Reconstruction

4.7.1 Reconstructed D∗+ Yield

The signal of reconstructed D∗+ are extracted from the integral of a Gaussian
fit over the invariant mass peak. Similarly, the background yields are
extracted from the integral of a fit function over the background within ±3σ,
where σ is the width of the invariant mass peak. Their signal and background
yield in each pT bins are shown in Fig. 4.17.

The distribution of the signal raw yields has a maximum in the bin
of 3 < pT < 4 GeV/c. This is because, at low pT, the reconstruction
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Figure 4.17: Extracted D∗+ signal and background in ±3σ region, from
minimum bias p-p collisions at

√
s = 7 TeV. The results are shown in 10 pT

bins from 1 GeV/c to 24 GeV/c.

has tight selection to reduce the background count, where the efficiency is
low. At higher pT, the cross section is small, where the yield suffers from
low production. The background distribution has a similar shape, with a
maximum in the bin of 3 < pT < 4 GeV/c. The difference between the signal
and background distribution is that the background decreases more rapidly
with increasing pT. This indicates that the signal spectrum is ”harder” than
the background spectrum, since charmed hadrons have a higher average pT.
Note the step in the raw yield at 8 − 24 GeV/c, due to the increase of the
bin width.

The Significances of the reconstructed ∆m = mD∗+ − mD0 invariant
mass distribution are shown as a function of D∗+ pT in Fig. 4.18. Except
for the first and last pT bin, all the D∗+ signals are reconstructed with
large significances. The large significances verify our D∗+ reconstruction
measurement, and also guarantee relatively small statistical and systematic
uncertainties .

4.7.2 Reconstructed D∗+ Mass

The reconstructed D∗+ masses are shown in the left panel of Fig. 4.19. Those
masses are extracted from the fit with Gaussian over the invariant mass
spectra in a certain pT range. The center and its standard deviation are
determined by the free parameter C in the fit function Eq. 4.6.

The current PDG value is ∆m = 145.421 ± 0.010 MeV/c2. The result
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Figure 4.18: Significances of the reconstructed D∗+ peaks, from minimum
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Figure 4.19: Mean and width of ∆m = mD∗+ − mD0 invariant mass peak,
from minimum bias p-p collisions at

√
s = 7 TeV. The results are shown in

10 pT bins from 1 GeV/c to 24 GeV/c. The value of ∆m from PDG [7] is
shown in red.

is well distributed around the PDG value. The standard deviation is only
∼ 0.1 MeV/c2, which is at a 0.07% level. The uncertainty is mainly due to
the binning and the finite statistics. The bin width used for the invariant
mass spectrum is 0.5 MeV/c2, and the invariant mass peak range contains
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4.7. QA of the D∗+ Reconstruction

6− 8 bins. The result of mass center with an uncertainty of 1/5 bin width is
acceptable. Another reason for the uncertainty of the mass peak is from the
statistics of signal. The first and last pT bin have few signal counts, and the
means of the peaks have larger uncertainties.

For comparison, the measurement of D0 in these events, from the channel
of D0 → K−π+, has a mass center of m(D0) = 1.867 ± 0.001 GeV/c2. The
absolute uncertainty is ten times larger, but the relative error ( 0.06%) is at
the same level of D∗+ measurement. This consistency supports the result of
our analysis.

4.7.3 Reconstructed D∗+ Mass Width

The peak widths of reconstructed D∗+ are shown in the right panel of
Fig. 4.19. Those widths of the peaks are extracted from the fit with a
Gaussian over the invariant mass spectra in each pT bin. The width and
its standard deviation are determined by the free parameter B in the fit
function Eq. 4.6.

The intrinsic width of the D∗+ due to its life time accounts to Γ = 96±22
keV/c2. The peak width we observe in the analysis is ∼ 0.7 MeV/c2, which is
7 times larger than the intrinsic width. The experimental result is dominated
by the momentum resolution of the reconstructed daughter particles, is much
larger than the decay width, and the latter one is ”hidden” in the measured
wider peak.

The width of the ∆m invariant mass is much smaller than other resonance
particles (e.g. the peak width of D0 → K−π+ is 14 MeV/c2). This is because
of the ∆m is the subtraction between the D∗+ and D0 reconstructed masses,
and K, π we used for calculating the D0 mass are the same ones used in
calculating the D∗+, with an additional soft π. The subtraction of the two
masses cancels the K, π momentum resolution effect and only keeps the one
from the soft π. Due to the subtraction between D∗+ and D0 invariant mass
with, the momentum uncertainty of the daughter K−, π+ of D0 is removed,
and the width of ∆m peak is only affected by the momentum uncertainty of
the soft pion.

4.7.4 The D0 and D∗+ Invariant Mass Spectra

On the way of making the ∆M = M(D∗+) −M(D0) distribution, we have
made both the D0 and the D∗+ plots. But the background level is too high
for us to see the signal peak there. However, we can apply selection around
the peak in the ∆M = M(D∗+)−M(D0) distribution and plot the invariant
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mass of D0 and D∗+. Their distributions of invariant mass spectra are shown
in Fig. 4.20.
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Figure 4.20: Invariant mass spectra of D0 and D∗+ from minimum bias p-p
collisions at

√
s = 7 TeV, integrated over pT > 1 GeV/c.

Both the mass peaks of D0 and D∗+ are well distributed around its value
from Particle Data Group. Comparing the peak width to that of D∗+ in
∆M invariant mass spectrum, the width is much larger for the reason that
it corresponds to two track resolution combined, while the later correspond
to the resolution of soft pion only. The signal count from the ∆M spectrum
is slightly smaller than the count from the D0 and the D∗+ spectra, which is
due to the cut on the D0 invariant mass.
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Corrections

The reconstructed particles do not represent an identical set of the
produced particles from the collisions. Detector geometry, detection
efficiency, particle identification and reconstruction algorithm may affect the
efficiency for detection. Thus, the efficiency is evaluated with simulated
collision events, by calculating the ratio of reconstructed particles of a certain
kind to the number of generated particles of the same kind. Then, the
efficiency is used for correcting the extracted raw yield. In this chapter, the
efficiency is defined first, and then the correction method is described. The
efficiency of D∗+ reconstruction is shown, followed by a study of correction
on D∗+ mesons feed-down from B mesons, a D∗+ production source which
is not negligible.

5.1 D∗+ Efficiency

The reasons for a finite efficiency can be classified into two parts. One reason
for the loss is the limitation in the detection method, e.g. detector geometry
and detection efficiency. The other reason is due to artificial selections in
the D∗+ reconstruction. These artificial selections sacrifice the D∗+ signal
quantity, but improve the D∗+ signal quality and reduce the uncertainty. In
the analysis, the efficiency is unfolded into two steps, the acceptance and the
reconstruction efficiency.

The acceptance is a pure instrumental effect. The D∗+ acceptance is the
ratio of the D∗+ in the detector acceptance to the generated D∗+. The D∗+ in
the detector acceptance represent those D∗+ mesons, the daughter particles
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of which pass through the sensitive area of the detector. It is expressed as

Acc =
Ndet

Ngen

, (5.1)

where Ngen is the generated D∗+ particles, Ndet is the number of D∗+ where
all three daughter particles pass through the sensitive area of the ALICE
detector.

Simply put, the reconstruction efficiency represent the ratio of the D∗+

is reconstructed to the D∗+ that are accepted. It is caused by both detector
properties and artificial selection criteria. It consists of the efficiencies
from particle detection, D∗+ reconstruction, particle track quality selection,
particle identification selection, kinematic selection and decay topology
selection. The reconstruction efficiency Effrec is defined as

Effrec =
Nrec

Ndet

, (5.2)

where Nrec is the number of reconstructed D∗+, which is extracted from the
entries in the peak of the D∗+ invariant mass spectrum.

From the point of the analysis, the acceptance and the reconstruction
efficiency both behave as one part of the total efficiency. The term of
efficiency ε indicates acceptance times reconstruction efficiency Acc×Effrec,
which equals

ε = Acc× Effrec =
Nrec

Ngen

. (5.3)

5.2 D∗+ Corrections

The efficiency is calculated by applying the analysis on results from Monte
Carlo simulations of proton-proton collisions. The simulation is performed
using PYTHIA [29] with Perugia-0 tune. The propagation of a particle
through the detector geometry and the electronic response is simulated
with the GEANT3 [57] package. The reconstruction, including event
reconstruction, primary and secondary vertex reconstruction, and selections
on tracks and decay topology, is applied with the same algorithm as for real
data.

The D∗+ yield is evaluated in nine steps of the D∗+ reconstruction
analysis, starting from the generation of D∗+ mesons in a limited acceptance
in the rapidity range |y| < 0.5 to the D∗+ mesons fulfil the topological
and PID selections. The steps where the D∗+ yield is evaluated in the
reconstruction are listed in the following:
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5.2. D∗+ Corrections

Generated Limited is the step where the D∗+ (or D∗−) is fragmented from
a c (or c) quark. The yield is evaluated that the D∗+ mesons are in the
limited rapidity range |y| < 0.5. The generated events are in the range
of |y| < 2, which is safely covering the rapidity acceptance. In order to
provide a corrected result in a rapidity unit centered at |y| = 0, we use
a limited D∗+ yield for correction.

Generated in Acceptance is the step where all three generated daughter
particles from the D∗+ → K−π+π+

s decay pass through the acceptance
of the central barrel sub-detectors, which is |η| < 0.8 and pT > 0.1
GeV/c for K,π particles from D0 decays, and |η| < 0.8 and pT > 0.05
GeV/c for the soft pions from D∗+ decays. In the event simulation, all
the daughter particles of one D∗+ are required to have induced signals
in the detector.

Generated Vertex step is where the event with the D∗+ candidate has a
generated primary vertex which is in a reconstructible range along the
z-axis.

Generated Refit step is where the generated D0 daughter particles K,π
are successfully reconstructed in the third iteration of the track
reconstruction procedure with ALICE central barrel sub-detectors.

Reconstructed is the step where the D∗+ is reconstructed and all its
daughter tracks have passed the pre-selections.

Reconstructed in Acceptance is the step where the reconstructed
daughter tracks are in the acceptance.

ITS Clusters Request is the step where the tracks from D0 decays has a
minimum of 5 ITS clusters (max. 6), and at least 1 cluster in the SPD
(max. 2).

Topological Selections is the step where the reconstructed D∗+ passes the
topological selections that is the same as described in the analysis with
data.

Reconstructed with PID step is where the reconstructed tracks from D0

decays pass the TPC and TOF PID selections. The selection method
is the same as described in the analysis with data.

The D∗+ efficiency at each step with respect to the first step is shown
in Fig. 5.1. The effect of each selection step on the D∗+ efficiency
is demonstrated. Among these steps, the track pre-selections and the
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Figure 5.1: Relative D∗+ yield as each step in the reconstruction procedure.
The yield is normalized to the Generated D∗+ yield in the limited rapidity
range |y| < 0.5.

topological selections account for most of the signal loss. The integrated
efficiency at the final step is ∼ 9%.

The acceptance is extracted between the step of Generated in Acceptance
and Generated Limited. The reconstruction efficiency is extracted between
the step of Reconstructed with PID and Generated in Acceptance. The
product of acceptance and efficiency is extracted between Reconstructed with
PID and Generated Limited. They are shown in Eq. 5.4.

Acc|pT,η =
Yield(Generated in Acceptance)|pT,η

Yield(Generated limited)|pT,η

,

Eff |pT,η =
Yield(Reconstructed with PID)|pT,η

Yield(Generated in Acceptance)|pT,η

,

ε|pT,η =
Yield(Reconstructed with PID)|pT,η

Yield(Generated limited)|pT,η

, (5.4)

Hence, the reconstruction efficiency here in this analysis is the ratio
between reconstructed D∗+ after topological selections, quality selections and
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5.2. D∗+ Corrections

PID selection to the generated D∗+ in ALICE central barrel acceptance.
It can be further unfolded into the detector efficiency and the selection
efficiency. The ratio of Reconstructed in Acceptance to Generated in
Acceptance is the efficiency from the detector effect. The ratio of
Reconstructed with PID to Reconstructed in Acceptance is the efficiency
from the selection in the D∗+ reconstruction algorithm. The reconstruction
efficiency as functions of pT and y are shown in Fig. 5.2.
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Figure 5.2: D∗+ reconstruction efficiency as functions of pT (left) and y
(right). The efficiencies of prompt D∗+ and D∗+ from decay of b-hadrons are
shown separately. The prompt D∗+ efficiency without PID is also shown as
a control of PID quality.

The D∗+ reconstruction efficiency is increasing as a function of pT. It is
due to the different selections applied in each pT bin. At low pT, where the
selections are stronger, the efficiency is from below 1% to a few percent. For
D∗+ at pT ∼ 10 GeV/c, the efficiency is about ∼ 20% and the increase slows
down. The efficiency is in favor of D∗+ at high pT. This is because that
the selection of the impact parameter product dK0 × dπ0 is in favor of D0 with
longer decay length. Thus, the high pT D

∗+ mesons, most of which have long
D0 decay length, have higher efficiency than the low pT D∗+ mesons.

The difference between the efficiencies with and without PID selections
is constant, proving that the PID efficiency is nearly ∼ 90%. The difference
between the prompt D∗+ efficiency and D∗+ from B feed-down efficiency is
significant at low pT, where the latter one is larger. This is due to the large
flight length of B mesons, compared to that of D mesons, is favoured by the
impact parameter selections on the decay daughters. At high pT, where the
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Figure 5.3: Left: the detector acceptance of D∗+ mesons as a function of
pT. The acceptance is normalized with respect to the generated D∗+ in the
rapidity range |y| < 0.5. Right: the rapidity distributions of the generated
D∗+ mesons in the limited rapidity range |y| < 0.5 and the generated D∗+

mesons in the detector acceptance.

selection is much looser, this effect is smaller, thus the efficiencies of the two
are similar.

The D∗+ reconstruction efficiency as a function of y has a plateau in the
range |y| < 0.6, and drops at the edges. This is because for D∗+ mesons
at the rapidity edge, some of their daughter particles may fall out of the
detector acceptance.

The D∗+ acceptance is shown in the left plot in Fig. 5.3. The efficiency
is increasing as a function of pT. The main reason is that the low pT D∗+

mesons have large opening angle between daughters. This may lead to that
some daughters fall out of the detector acceptance. It is worth noting that at
high pT the acceptance exceeds 1. This is because that the D∗+ in acceptance
is not a subset of the D∗+ generated. The generated D∗+ mesons are limited
in the range |y| < 0.5. This normalized range in rapidity is where we want
to measure the differential cross section. This is confirmed by the right plot
in Fig. 5.3, where both distributions of the D∗+ generated in |y| < 0.5 and
the D∗+ in acceptance are shown.

The total efficiency ε is shown in Fig. 5.4. Both the efficiencies of prompt
D∗+ and D∗+ from B mesons decay are shown. The prompt D∗+ efficiency
is ∼ 0.5% at the lowest pT bin and ∼ 40% at the highest pT bin.

88



5.3. B Feed-down Correction

 (GeV/c)
T

p
2 4 6 8 10 12 14 16 18 20 22 24

 E
ff

ic
ie

n
c
y

×
 A

c
c
e

p
ta

n
c
e

 
*+

D

­210

­110

1

 Gen. in |y|<0.5
*+

D

 Rec.
*+

D

*+
Prompt D

, no PID
*+

Prompt D

 from B decay
*+

D

Figure 5.4: The product of acceptance and efficiency of D∗+ reconstruction
as a function of pT (left). The efficiencies of prompt D∗+ and D∗+ from decay
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is also shown as a control of PID quality.

5.3 B Feed-down Correction

At LHC collision energies, b − b quark pair production is not negligible
compared to the charm cross section. Figure 5.5 shows various modes of
B meson decays to D mesons. The branching ratio of B±/B0/B0

s/b− baryon
admixture decay to D∗+ is (17.3± 2.0)%[7]. As pointed out in Table. 5.1, all
B hadrons produced at mid-rapidity is about 6.5% of all D hadrons produced
for 14 TeV p-p collisions.

This charm production from B feed-down is due to the process of weak
decay. Apart from the charm production in the hard process from the
collisions, this feed-down source should be moved out in order to calculate
the charm cross section.

Nb method

One method for the correction of B feed-down is feed-down subtraction, called
the Nb method. The corrected differential spectrum is
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Figure 5.5: B mesons as D meson source.[64]

Particle Yield 〈dN/dy〉|ylab|<1

D0 +D
0

0.1908 0.0196
D+ +D− 0.0587 0.0058
D+
s +D−s 0.0362 0.0038

Λ+
c + Λ

−
c 0.0223 0.0026

B0 +B
0

0.00577 0.00084
B+ +B− 0.00576 0.00083
B0
s +B0

s 0.00168 0.00025

Λ0
b + Λ

0

b 0.00106 0.00016

Table 5.1: Total yield, average rapidity density for |y| < 1, for hadrons with
charm and beauty from PYTHIA simulations in p-p collisions at

√
s = 14

TeV [30].

1

εc→D
· (dN

raw
D

dydpT

−Nb) =
1

εc→D
· (dN

raw
D

dydpT

− dN raw
B→D

dydpT

),

Nb = Lint ·∆y · εtrigger ·B.R.b · εB→D ·
dσrealB→D
dydpT

. (5.5)

Nb is the subtracted B feed-down raw counts, which is derived from the

FONLL cross section calculation
dσrealB→D
dydpT

. In Eq. 5.5, Lint is the integrated
luminosity, εtrigger is the trigger efficiency, εB→D is the B feed-down efficiency.
The derivation between the cross section and the raw counts is further
discussed in Chapter. 7, see Eq. ??.
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This method is independent from the theory calculation of charm cross
section. But it leads to higher uncertainty due to introducing the luminosity,
trigger efficiency, compared to the other fc method.

fc method

Another method of correcting the B feed-down is evaluated by a factor fc,
which is the ratio between measured D∗+ from c quark and all measurable
D∗+. The factor fc is calculated by the following formula:

fc(pT, y) =
1

1 + εB→D
εc→D

·
dNreal
B→D

dydpT
dNreal
c→D

dydpT

, (5.6)

where the yields
dNreal

B→D
dydpT

and
dNreal

c→D
dydpT

are from FONLL calculations, and the
efficiencies εB→D and εc→D are from the correction framework on PYTHIA
simulations.
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Figure 5.6: B feed-down correction factor fc for D∗+, as a function of
pT. The prompt and non-prompt D∗+ are from FONLL calculations, and
the efficiencies are from PYTHIA simulation, as shown in Fig. 5.2. The
uncertainty is from the FONLL calculation.

Figure 5.6 shows the distribution of the B feed-down correction factor,
as a function of pT. One observes that the fraction of reconstructed prompt
D∗+ is more than 90%, and a little higher at low pT region. The B feed-down
effect is slightly larger at higher pT.
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This method depends on the theory calculation of cross section on both
prompt D∗+ meson and D∗+ meson from feed-down, but is only sensitive
to the relative ratio. The uncertainty is mostly from the theory calculation.
The extreme uncertainty is obtained while assuming no correlation between
the FONLL uncertainties of prompt D∗+ and D∗+ from feed-down. The
conservative uncertainty is calculated while assuming the uncertainties are
fully correlated.
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Systematic Uncertainties

The systematic uncertainty from the analysis is caused by the method of
the analysis. There are eight sources of systematic uncertainties considered
in this analysis. They are either from the the reconstruction or from the
correction. Each of them is evaluated by comparing the result with that
from a different method.

6.1 Systematics from Reconstruction

Yield extraction The yield extraction of the raw signal has an uncertainty
mainly caused by the small statistics of signal in the invariant mass spectrum.
The statistic is even smaller if we split the analysis in pT bins.

Comparing to the statistic uncertainty, the systematic uncertainty from
yield extraction is relatively small. In the analysis, the yield is extracted by
the integration of the Gaussian fit over the signal peak. In order to estimate
the systematics of the yield extraction method, we used the bin counting
method for comparison.

The fitting function is, for the signal and background respectively, the sum
of a Gaussian function (Eq. 4.6) and a square root times exponential function
(Eq. 4.5). In the fitting method, the yield is the integral of the Gaussian
within ±3σ range. In the counting method, the yield is the sum of the bin
values within ±3σ range with the integral of the background subtracted.
Figure 6.1 presents this comparison. The fluctuation of the center value
of the yield ratio represents the systematic uncertainty, while the error bars
represent the statistic uncertainty. The relative systematic uncertainty of the
yield extraction is below 10%. The statistic uncertainty is still dominant.
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Figure 6.1: Systematics of yield extraction methods. The fitting method is
compared with the bin counting method.

PID The inclusion of the particle identification is another source of
systematic uncertainty. The efficiency is affected if we introduce the PID
method on the track selections. This source of systematics is evaluated by
the efficiency of PID selection, defined as the ratio of the yield with PID
applied to the yield without PID applied. The difference between the PID
efficiency in the data reconstruction and from the simulation represents the
systematics introduced by the PID method.

The track selection on PID method from energy loss and time of flight
is sensitive to the detector response, and also the selection criteria. The
systematics originates from the Gaussian distribution of the energy loss signal
and flight time. The center value and the width of the Gaussian rely on
the calibration of the detectors. During the operation, the detectors are
calibrated at each run period. The distributions of the energy loss and time
of flight are well parametrized. Furthermore, the PID selection criteria used
in this analysis are chosen to be simple to minimize the systematic effects,
which is described in Chap. 4. We select the distribution within ±2σ in
dE/dx and ±3σ in time of flight. These selection criteria are rather loose,
where the probability density is already smaller than 5%, so the effect on the
systematics is kept small.

As shown in Fig. 6.2, the yield ratio between with and without PID
method is distributed over the expected value. The expected value of the
ratio is:

R = R2
TPCR

2
TOF = 0.9542 × 0.9972 = 0.906, (6.1)
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Figure 6.2: Systematics of PID methods. The D∗+ yield with PID method
using TPC ±2σ and TOF ±3σ is compared with the yield without applying
any PID selection. The ratio of the yield with PID to the yield without PID
is drawn in the right plot. The expected value of the ratio is drawn in red.

where, RTPC and RTOF are the expected efficiency from the selection on
the Gaussian distribution. The PID selection is applied on the two daughter
particles K, π from the D0 decay, thus the ratio is calculated with power
of two. The systematic uncertainty of the PID method is presented by the
fluctuation of the center value of the yield ratio, which is found to be below
5%.

Tracking The systematic uncertainty of the tracking efficiency using ITS
and TPC in ALICE is studied by varying the track selection criteria. The
comparison between the simulation and the data shows a systematic of 8%
for the two body D0 → K−π+ decay [19]. The corresponding systematics of
a single track efficiency is 4%. However, some soft pions from low pT D∗+

decays are only reconstructed by ITS alone. Those tracks, which mainly
have pT < 150 MeV/c, will have an additional contribution to systematic
uncertainty for the reconstructed D∗+ in the range of pT < 3 GeV/c. This
results a systematic uncertainty of 13% for D∗+ below 3 GeV/c, and 12% for
D∗+ above 3 GeV/c.

Selection Efficiency The systematic effect becomes significant when the
distribution of the cut variables are different between data and simulation.
This effect is even more significant if the cut threshold is very tight. To
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understand this systematic effect, we apply a modified cut and compare the
corrected yields. The result shows that the systematic uncertainty is 22% at
1 < pT < 2 GeV/c, and is 10% at pT > 2 GeV/c [19].

6.2 Systematics from Correction

B feed-down Among those D∗+ mesons reconstructed in the analysis,
about 10% are generated from the decay of B mesons, as shown in Fig. 5.6.
These D∗+ mesons from b → D∗+ are subtracted, and what is remaining
are prompt D∗+ mesons from the hadronization of charm. Here the ratio of
c→D∗+
b,c→D∗+ is estimated the pQCD calculations within FONLL. The model has

been tested with the bottom production at Tevatron [65] and LHC [66, 67],
and it describes the data well. A systematic uncertainty is included by
adopting the uncertainty c→D∗+

b,c→D∗+ ratio from the calculation, the relative
uncertainty is shown in Fig. 6.3.
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Figure 6.3: The ratio of c→D∗+
b,c→D∗+ to it center value. The distribution

is calculation with FONLL. The error bars represents the systematic
uncertainty of B feed-down calculation.

The systematic uncertainty is determined by varying the parameters of
factorization and resummation scales and the mass of the bottom quark. By
using the extreme parameters in the calculation with the FONLL model, we
determine the minimum and maximum value of the ratio of c→D∗+

b,c→D∗+ allowed
in the FONLL model. The center value is calculated with the parameters at
their center values.
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The systematic uncertainty is calculated separately for each pT bin. The
uncertainty is larger at low pT. The large uncertainty at low pT is from the
limit of perturbative calculation at this energy scale.

pT shape The efficiency used for D∗+ correction is determined from Monte
Carlo simulation with the PYTHIA event generator using the Perugia-0 tune.
Its slope in pT differential cross section is different from that of the FONLL
calculation, especially the slope at high pT. This will lead to a systematic
uncertainty in the efficiency, and affect the cross section in the shape of pT

distribution.
This systematic uncertainty due to different pT shape between simulation

and FONLL is estimated from the relative difference between the efficiencies
from the two. The difference in the D∗+ efficiency due to pT shape is 3% at
1 < pT < 2 GeV/c, and is less than 1% at pT > 2 GeV/c [19].

Normalization The normalization is based on the integrated luminosity
Lint. The systematic uncertainty of the normalization is from the
determination of the integrated luminosity. As shown in Eq. 3.6, the
determination of the integrated luminosity needs a precise measurement of
Minimum bias trigger cross section σMB, which is further determined by the
measurement of σV 0AND/σMB ratio. This relative factor is measured to be
≈ 0.87, with uncertainty within 4% over the analyzed data sample.

Branching ratio The branching ration is taken from the Particle Data
Book [7]. The branching ratio of D0 → K−π+ decay is (3.88± 0.05)%, and
that of D∗+ → D0 + π+

s decay is (67.7 ± 0.5)%. The branching ratio of the
two decays is (2.61± 0.04)%, where the systematic uncertainty is 1.5%.

6.3 Systematics Summary

The systematic uncertainty is summarized in Tab. 6.1. The total systematics
is the quadratic sum of all. The dominant systematics are the B feed-
down subtraction, the tracking efficiency and the selection efficiency. The
systematics at high pT are smaller than those at low pT.
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Chapter 6. Systematic Uncertainties

pT 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-12 12-16 16-24

Yield 10% 5%

PID 5%

Tracking 13% 12%

Selection 22% 10%

Feed- +3% +4% +4% +4% +5% +5% +5% +6% +6% +6%
down -38% -27% -16% -13% -11% -10% -10% -10% -10% -9%

pT shape 3% 1%

Norm. 4%

B.R. 1.5%

Table 6.1: Summary of the systematic uncertainties of D∗+ cross section in
the pT intervals in the range 1 < pT < 24 GeV/c.
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Chapter 7

Charm Cross Section

As mentioned in Chap. 2, in order to make a comparison between
measurements and theoretical calculations, the result of charm production
measurement is presented in two ways. One is the differential charmed meson
cross section, the other one is the integrated charm total cross section.

In this Chapter, both the D∗+ differential cross section and the total
charm cross section are shown as the result of this analysis. The
measurements are compared with theoretical calculations. The differential
and total cross sections of other charmed mesons measured with the ALICE
experiment are also presented. Moreover, the production ratios of charmed
mesons are calculated. A discussion of the results is given in the end.

7.1 Differential Charmed Meson Cross

Section

Comparing to the measurement of total charm cross section, the
measurement of differential cross section of a charmed meson is more straight
forward and less calculation-involved. Although it raises many difficulties
in the theoretical calculations to make a corresponding prediction, such
as resummation, fragment function, etc. The comparison between theory
and experiment at this level reveals much more information, and helps us
understand more about pQCD.



Chapter 7. Charm Cross Section

7.1.1 Differential D∗+ Cross Section

Method of Calculation

The ideal differential cross section of D∗+ is shown as a distribution in the

two-dimensional (p
T
, y) phase space, as d2σD

∗+
(pT,y)

dydpT
. However, the ALICE

central barrel sub-detectors limit our measurement in the central rapidity
region of the phase space. We present the differential cross section of D∗+

as a function of p
T
, of which the values are integrated over the rapidity

range |y| < ymax. The D∗+ (D∗− not included) cross section is given by the
following formular:

dσD
∗+

(pT)

dpT

||y|<0.5 ≡
1

2

1

∆pT

fc(pT) ·ND∗+,D∗−
reco (pT)

ε(pT) ·B.R. · Lint
. (7.1)

The number ND∗+,D∗−
reco (pT) is the raw signal yield of both reconstructed

D∗+ and D∗− mesons in the mid-rapidity region. The acceptance of
D∗+, D∗− reconstruction with ALICE central sub-detectors is |y| < 0.8. The
variables ε(pT) and fc(pT) are the efficiency and the feed down correction
factor respectively. Both are calculated from PYTHIA simulation, shown
in Chap. 5. B.R. stands for the branching ratio of D∗+ → D0π+ and
D0 → K−π+ cascade decays. The integrated luminosity is represented by
Lint.

The efficiency ε composes both the acceptance and the reconstruction
efficiency, and ε is normalized to the D∗+, D∗− in the rapidity range |y| < 0.5.
The feed down correction factor fc subtracts the measured D∗+ mesons those

originating from B meson decay. Thus, the part of fc(pT)·ND∗+,D∗−
reco (pT)

ε(pT)·B.R. in

Eq. 7.1 is equal to the number of produced prompt D∗+ and D∗− mesons in
the rapidity region |y| < 0.5.

The corrected yield of D∗+ and D∗− mesons is normalized by the pT

bin width ∆pT. Since we the cross section of only D∗+ mesons will be
given as the result, the D∗− is removed by dividing the cross section by
2. Last, the normalized yield is divided by the integrated luminosity Lint.
The integrated luminosity is calculated as Lint = Npp/σpp, where Npp is the
number of proton-proton collisions and σpp is the minimum-bias trigger cross
section of the proton-proton collisions. The calculation of Lint was discussed
in Chap. 3.

There are two approximations in the calculation of D∗+ pT-differential
cross section. They are:

• The calculation assumes that the rapidity distribution of D∗+ meson
cross section in the range |y| < 0.5 is flat. The validity of this
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7.1. Differential Charmed Meson Cross Section

assumption is confirmed by the PYTHIA 6.4 [29] and FONLL [3].
These calculations suggest that the D∗+ cross section are uniform with
1% in this rapidity range. To make a more precise claim, we present
our result as a pT-differential cross section integrated over 1 unit in

the rapidity direction (dσ
D∗+ (pT)
dpT

||y|<0.5), instead of a double differential

cross section (d
2σD

∗+
(pT,y)

dydpT
|y=0).

• The calculation assumes that, in proton-proton collisions, D∗+ and D∗−

mesons are produced equally in the measurable (p
T
, y) phase space.

In proton-proton high energy collisions, the charm and anti-charm
quarks are equally produced. Additionally, the net charge density of
the collision system is nearly zero. Thus, there is no preference in
the D∗+ and D∗− production procedure, and the assumption is valid.
Based on this assumption, the D∗+ cross section σD

∗+
is calculated as

1
2
(σD

∗+
+ σD

∗−
).

Result

The pT-differential cross section of D∗+ meson is determined from Eq. 7.1,
and the result is shown in Fig. 7.1. The data were collected from LHC
proton-proton collisions at 7 TeV in the year 2010. 314 million minimum-
bias collision events were analysed. The corresponding integrated luminosity
is Lint = 5 nb−1.

The measurement is applied in the rapidity region |y| < 0.8. The result is
not shown in divided rapidity bins. First, because this is only a small rapidity
coverage in the full rapidity range. Second, the distribution in this region is
nearly flat. Last, separation of the data leads to larger statistical uncertainty.
Thus, the result is integrated over the rapidity region |y| < 0.8, and further
normalized into 1 rapidity unit. In the region 1 < pT < 24 GeV/c, the data
are distributed in 10 bins. The coverage is limited at both ends. At the lower
edge, the measurement is limited by the minimum pT threshold of which a
particle is detectable. At the higher edge, the measurement is limited by the
reconstruction efficiency and the statistics of the collected data.

In Fig. 7.1, the data points are drawn at each bin center. However, the
value dσ/dpT||y|<0.5 do not correspond to the value at the pT bin center.
Instead, it represents the integrated and normalized value over the D∗+

mesons in the range of certain pT bin. Accordingly, the center of mass value
〈pT〉 represents the mean pT value of the D∗+ mesons in certain pT bin.
The 〈pT〉 for each pT bin is calculated from the reconstructed D0 mesons
from D0 → K−π+ decay channel. In each pT bin, the invariant mass is
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Figure 7.1: D∗+ pT differential cross section in proton proton collsions at√
s = 7 TeV. The result is compared with FONLL (in red) and GM-VFNS

(in blue) calculations.

plotted first. The pT distribution of the entries in the mass peak region
is then made. The contribution from combinatorial background is further
subtracted by using the entries from two side bands near the mass peak in
the invariant mass plot. The 〈pT〉 of the residual is calculated. This 〈pT〉
values are compatible for D∗+ meson. The values of 〈pT〉 and dσ/dpT||y|<0.5

are shown in Table 7.1.

The data show a clear trend of decreasing D∗+ cross section as the
pT increases. The systematic uncertainties are larger than statistical
uncertainties in every pT bin. The relative systematic uncertainty is much
more significant at low pT bins, especially in the bin 1 < pT < 2 GeV/c.
This originates from the correction of B feed-down D∗+ mesons, where the
FNOLL calculation introduces large uncertainty at low pT. The values of
〈pT〉 have larger uncertainties at both low pT bins and high pT bins. At the
lower edge, it is from the large statistical uncertainty of the combinatorial
background. At the higher edge, it is from low statistics of the signal.

The FONLL and GM-VFNS calculations are both presented in Fig. 7.1 in
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7.1. Differential Charmed Meson Cross Section

pT bin (GeV/c) 〈pT〉 (GeV/c) dσ(D∗+)
dpT

||y|<0.5± stat. ± syst. (µbc/GeV)

1-2 1.5±0.3 99± 22 +28
−54

2-3 2.5±0.2 51.6± 5.9 +8.7
−13.1

3-4 3.5±0.1 27.9± 2.3 +4.6
−5.2

4-5 4.5±0.1 10.97± 0.87 +1.81
−1.88

5-6 5.5±0.1 5.68± 0.45 +0.97
−0.99

6-7 6.5±0.1 3.25± 0.27 +0.55
−0.56

7-8 7.4±0.1 1.73± 0.21 +0.29
−0.30

8-12 9.4±0.3 0.674± 0.050 +0.113
−0.116

12-16 13.8±0.9 0.160± 0.016 +0.030
−0.031

16-24 17.0 +2.0
−1.0

0.027± 0.004 +0.007
−0.007

Table 7.1: pT-differential cross sections and mean pT of D∗+ meson in each pT

bins. The data are measured by the ALICE experiment in p-p collisions at
7 TeV. The values correspond to the data points in Fig. 7.1. The systematic
uncertainties from the normalization and the decay branching ratio are not
included.

comparison. Both calculations use CTEQ6.6 parton distribution functions to
define the initial conditions. The numeric values of the calculations represent
the integrated and normalized values over the ranges of each pT bin. The
result of the calculation is shown as a bracket between an upper and a lower
limit. This uncertainty is not the standard deviation, and the uncertainty
profile is not Gaussian either. The center value is calculated with an arbitrary
parameter, while the upper and lower limits are calculated with extreme
values of the parameters. Thus, the center value is not preferred over other
values at the edge, and every value inside this bracket is one possibility. The
details of the two calculation models were introduced in Chap. 2.

In the FONLL calculation, three sources of uncertainties are considered.
They are the uncertainty from the scale variation, uncertainty from the charm
quark mass, and the uncertainty of the PDF. The perturbative uncertainty
is acquired by varying the factorization and renormalization scales µf , µr in
the range 0.5 <

µf
mT
, µr
mT

< 2 and 0.5 <
µf
µr

< 2, where mT =
√
pT

2 +mc
2.

The uncertainty from the charm quark mass in the FONLL calculation is
obtained by varying the charm quark mass within the range 1.3 < mc < 1.7
GeV/c2. The uncertainty of the PDF is also included in FONLL. These
uncertainties are calculated separately, with the other parameters fixed at
their central values. The total uncertainty is taken as the square root of the
quadratic sum ∆σFONLL =

√
∆σ2

µf ,µr
+ ∆σ2

mc + ∆σ2
PDF.
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Chapter 7. Charm Cross Section

In contrast, in the GM-VFNS calculation, only the uncertainty from the
scale variation is considered. This is for the reason that, in both calculation
schemes, the uncertainty from the scale variation is dominant. There are
two factorization scales µi, µf in the GM-VFNS calculation. Both µi, µf and
the renormalization scale µr are limited to the range 0.5 < µi

mT
,
µf
mT
, µr
mT

< 2.

Moreover, their ratios are limited to the range 0.5 < µi
µf
,
µf
µr
, µr
µi
< 2. The

charm quark mass is fixed at mc = 1.5 GeV/c2. The PDF uncertainty is also
not included in GM-VFNS.

The ratios between the measurement and the two theories are also
shown in Fig. 7.1. The central value of FONLL is calculated with the
scale parameters µf = µr = mT and the charm quark mass mc = 1.5
GeV/c2. Similarly, in GM-VFNS, the central value is calculated with the
scale parameters µi = µf = µr = mT.

The comparison between the measurement and the FONLL and GM-
VFNS calculations reveals:

• Both FONLL and GM-VFNS calculations are compatible with the
measurement within uncertainty. The measured data points are inside
the predicted ranges of both calculations, except for a slight difference
between data and FONLL in bin 12 < pT < 16 GeV/c.

• The measured data points are at the lower edge of the GM-VFNS
calculation, and are systematically smaller than the central values of
GM-VFNS prediction. The two bins in 8 < pT < 16 GeV/c are
exceptions, which should be due to the relatively large uncertainties
compared to the calculations.

• The measured data points are at the higher edge of the FONLL
calculation, and are systematically larger than the central values of
FONLL prediction.

• In the low-pT region, the differences between the center values of
the calculations and the measurement are relatively larger than the
differences in the high-pT region.

• In the low-pT region, the uncertainties of the calculations are larger
then the uncertainties of the measurement. Whereas, in the high-pT

region, the uncertainties of the measurement are relatively larger, if one
considers both the systematic and statistical uncertainties.

The comparisons between the calculations and the measurement result
enable us to understand the successes and limits of the current pQCD
calculations.
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7.1. Differential Charmed Meson Cross Section

In the low-p
T

region of the charm differential cross section, the pQCD
calculations agree with the measurements. However, among all the sources
of the uncertainties, the perturbative uncertainty is too large. The other
calculation uncertainties from the quark mass and the PDF are overshadowed
by the perturbative uncertainty. Thus, the comparison is limited by
the precision level of current pQCD calculation. A higher order pQCD
calculation of charm cross section may reduce the perturbative calculation,
and will reveal more information by comparing to the measurements.

In the high-p
T

region of the charm differential cross section, the
resummation method has much reduced the perturbative uncertainties.
The calculations from FONLL and GM-VFNS models give more precise
predictions than the measurements from ALICE. However, there is difference
between those two calculations. This indicates that, the uncertainty of the
resummed pQCD calculations may be underestimated at high-p

T
region.

Even though, the calculated charmed meson p
T

cross sections agree well
with the measurement up to 24 GeV/c.

7.1.2 Differential Cross Sections of Other D Mesons

Differential Cross Sections of D Mesons in p-p Collisions at 7 TeV

Along with the D∗+ analysis, other charmed baryons are reconstructed and
measured with the ALICE experiment. The results found for the D0, D+

and D+
S cross sections are shown here for comparison.

Figure 7.2 shows the D0 and D+ differential cross section in proton-proton
collisions at 7 TeV. The D0 mesons are reconstructed from the D0 → K−π+

channel (B.R. = 3.88 ± 0.05). The D+ mesons are reconstructed from
the D+ → K−π+π+ channel (B.R. = 9.4 ± 0.4). The mean proper decay
length cτ of the D0 and D+ mesons are 123 and 312 µm, respectively. The
topological selections and particle identification method are applied on both
reconstructions. The reconstructed raw yields are about ∼ 8300 and ∼ 2800
for D0 and D+ mesons. Both analyses are done with the same data sample
as shown in Fig. 7.1. Both FONLL and GM-VFNS calculations are presented
in comparison to the measurements.

The differential cross section of the D0 reconstruction is shown in the
region 1 < pT < 16 GeV/c. The last bin 16 < pT < 24 GeV/c is not
available due to the limited signal to background ratio. On the other hand,
the differential cross section of the D+ reconstruction is shown in the region
1 < pT < 24 GeV/c, which is the same as that of the D∗+ analysis.

For both analyses, The comparisons between the measurements and the
calculations give a same conclusion as given by the D∗+ analysis. We
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Figure 7.2: D0 and D+ pT differential cross section in proton proton collsions
at
√
s = 7 TeV [19]. The result is compared with FONLL (in red) and GM-

VFNS (in blue) calculations.

found that the first bin of the measured D+ cross section is above the
theoretic value, and also has large systematic uncertainty. Except for
that, the calculations have good agreement with the measurement, also the
FONLL (GM-VFNS) is systematically below (above) the measurement. The
remaining issue of the comparison is that the theoretical uncertainties are
too large. The results from the D∗+, D0 and D+ analyses are also consistent
with the pT-differential cross sections of the D mesons measured in 7 TeV
proton-proton collisions with the ATLAS experiment [68].

Figure 7.3 shows the D+
S differential cross section in proton-proton

collisions at 7 TeV. The D0 mesons are reconstructed from the D+
S → φπ+

and φ → K−K+ cascade channels (B.R. = 2.28 ± 0.12). The mean proper
decay length of the D+

S is cτ = 150 ± 2µm. The data were collected
in 2010. They are from the same period as been used in D∗+, D0 and
D+ analyses. There are about ∼ 480 D+

S mesons are reconstructed. The
measured differential cross section is given in the range 2 < pT < 12 GeV/c,
and divided into 4 pT bins. The rapidity range is |y| < 0.5.

The kT factorization at LO and GM-VFNS calculations are shown as
the comparisons of the measurement. The D+

S cross section from FONLL
calculation is not available. This is because that the D+

S fragmentation
function is currently unavailable in the FONLL framework. The GM-VFNS
calculation has good agreement with the measurement. However, the kT

factorization are systematically below the measurement. Nevertheless, its

106



7.1. Differential Charmed Meson Cross Section

0 2 4 6 8 10 12 14

c
)

­1
b

 G
e

V
µ

  
 (

|y
|<

0
.5

 |
T

 /
 d

p
σ

d

­110

1

10

210

310

ALICE
­1 = 4.8 nb

int
 = 7 TeV, Ls, pp s

+
D

 5.3% BR norm. unc. (not shown)± 3.5% lumi, ±

ALICE data points

stat. unc.

syst. unc.

Theory predictions

GM­VFNS

 fact.
T

LO k

0 2 4 6 8 10 12 14

T
h

e
o

ry

0.5
1

1.5
2

2.5

GM­VFNS
Data

  (GeV/c)
T

p
0 2 4 6 8 10 12 14

D
a

ta
  

/

0
0.5

1
1.5

2
2.5

­fact.
T

LO k
Data

ALI−PUB−40201

Figure 7.3: D+
S pT differential cross section in proton proton collsions at√

s = 7 TeV. The result is compared with kT factorization at LO [69] (in
magenta) and GM-VFNS (in blue) calculations [70].

upper limit are covered in the lower part of uncertainties range of the
measurement. Further conclusions are hard to be addressed based on the
limited data points given by the measurement.

Differential Cross Sections of D Mesons in p-p Collisions at 2.76
TeV

In order to calculated the charm nuclear modification factor in the Pb-Pb
collisions, the cross sections of D mesons in proton-proton collisions at 2.76
TeV is needed as the baseline. A short run of proton-proton collisions at√
s = 2.76 TeV was carried out. But the statistics is limited and does not

allow a comparison with the Pb-Pb measurements for every pT bins. Thus,
the p-p baseline is achieved by scale down the cross section measured at 7
TeV collisions. The scaling factor is from the FONLL calculation, taking
the ratio of the cross section at 2.76 TeV to the cross section at 7 TeV.
The 2.76 TeV measurement and the scaled cross section provide us more
understandings on the pQCD calculations.

The pT differential cross sections of D0, D+ and D∗+ at 2.76 TeV are
shown in Fig. 7.4. The detector setting, trigger setting and analysis method
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Figure 7.4: D0, D+ and D∗+ pT differential cross section in proton proton
collsions at

√
s = 2.76 TeV. The result is compared with FONLL (in red)

and GM-VFNS (in blue) calculations [20].

are the same as been used in the 7 TeV measurement. The number of collision
events is 58M, which corresponds to an integrated luminosity Lint = 1.1
nb−1. The D+

S meson can not be reconstructed with this small amount of
data, due to its relatively low production rate and reconstruction efficiency.
The measured differential cross sections are available in a smaller pT range
2 < pT < 12 GeV/c, where an additional data point 1 < pT < 2 GeV/c is
provided in the D0 measurement. The result is in a smaller pT phase space
than that from the 7 TeV measurements due to the limited statistics.

The measured differential cross sections are also compared with FONLL
and GM-VFNS calculations. The conclusion given by the comparison is the
same as that from 7 TeV measurement. Except for the D+ cross section at
bin 8 < pT < 12 GeV/c, the theory calculations and the measurements are in
good agreement. The data points are systematically higher than the central
value of the FONLL calculation, and lie on the upper edge of the uncertainty
bracket. On the other hand, the data points are lower than the GM-VFNS
central values.

The comparisons of the 2.76 TeV cross section to the 2.76 TeV cross
section scaling are shown in Fig. 7.5. The scaling factor is evaluated with
the center value of the FONLL calculation at both 2.76 TeV and 7 TeV.
The uncertainty is estimated with the variation of the parameters. We found
agreement in every pT bin. These agreements suggest that the shape of
the D mesons cross section distributions are well reproduced by FONLL
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Figure 7.5: D0, D+ and D∗+ pT differential cross section in proton proton
collsions at

√
s = 2.76 TeV, compared with the scaling of the cross sections

at
√
s = 7 TeV. The ratio of the 2.76 TeV cross section to the 7 TeV scaling

is shown in the bottom [20].

calculations.

7.1.3 D Mesons Ratios

The ratios of D+/D0, D∗+/D0, D+
s /D

0 and D+
s /D

+ in 7 TeV p-p collisions
are shown in Fig. 7.6. There are systematic uncertainties, which are
considered in both measurements of the two mesons taking the ratio. These
correlated uncertainties between two D meson measurements are treated
separately. The systematic uncertainty from the B feed-down is estimated
from the spread of the cross section ratios. The systematic uncertainty from
the tracking efficiency is cancelled between three-body decay channels. The
error is estimated to be 4% when the ratio of the cross section of a three-
body-decaying meson and a two-body-decaying meson is calculated.

The predictions from FONLL, GM-VFNS and PYTHIA are shown as
comparisons with the measurement. The prediction of the D+

s cross section
from FONLL is not available, due to the absence of a proper fragmentation
function. Those predictions are made in the rapidity range |y| < 0.5. In
PYTHIA, the tune of Perugia-0 for charm hadronization is applied.

The ratios from the FONLL and GM-VFNS models are calculated by
assuming a correlation of perturbative uncertainty between the D mesons.
When the ratio is calculated, the same scale parameters are applied to
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Figure 7.6: The ratios between the D mesons as a function of pT in pp
collsions at

√
s = 7 TeV. The result is compared with FONLL (in red),

GM-VFNS (in blue) and PYTHIA 6.4.21 with Perugia-0 tune [20].

the calculations of both D mesons. Thus the uncertainties from the scale
variation cancel to large extent. The prediction of the D+/D0 and D∗+/D0

ratios from FONLL and GM-VFNS models agree with the data within
uncertainties. The meson ratios predicted by FONLL and GM-VFNS come
from their fragmentation functions. Those fragmentation functions are fitted
to existing measurements, and are not from perturbative calculations. This
agreement exhibits the consistency of the D meson fragmentation among
experiments in different collision systems. Fig. 7.6 also shows that the ratios
of D+

s /D
0 and D+

s /D
+ are slightly above the prediction from GM-VFNS and

PYTHIA. We note that the uncertainties of these two ratios are relatively
large, which mainly originate from the D+

s measurement. Within the large
uncertainty, we observe that the ratios between strange D mesons and non-
strange D mesons have little dependence on pT. An analysis with higher
statistics will enable us to give a stronger conclusion.
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7.2 Total Cross Sections of D Mesons

Comparing to the differential cross section of charm mesons, the total charm
cross section is a more intrinsic quantity. It is less related to experimental
circumstances, and is relatively easy to calculated with pQCD. But the
measurement of the total charm cross section needs to involve the either
calculations or simulations, which may raise the systematic uncertainty.

In order to measure the total charm cross section, we have to integrate
the measured differential cross section in the visible range of (p

T
, y) phase

space. Then the result is extrapolated to the whole phase space.
The visible cross section is defined as the integral of the differential cross

section in the measured region of phase space. The total cross section is
the integral of the extrapolated differential cross section over the full phase
space. The extrapolation method in the phase space is based on the FONLL
calculation.

7.2.1 Visible Cross Sections of D Mesons

In the case of this analysis, the measured D∗+ differential cross section is
provided in the range |y| < 0.5 and 1 < pT < 24 GeV/c. This range is
limited by the acceptance of the detector, the statistics of the data and the
reconstruction efficiency. The visible D∗+ cross section measured by the
ALICE experiment is calculated as the following:

σD
∗+

vis. =
∫ y=0.5

y=−0.5

∫ pT=24GeV/c

pT=1GeV/c

d2σD
∗+

ALICE(pT, y)

dydpT

dydpT

=
∫ pT=24GeV/c

pT=1GeV/c

dσD
∗+

ALICE(pT)||y|<0.5

dpT

dpT. (7.2)

In Eq. 7.2,
dσD

∗+
ALICE(pT)||y|<0.5

dpT
is the pT-differential cross section we have shown

in Sec. 7.1. The integral is simply the sum of the differential cross sections
over all pT bins. The visible cross sections of the other D mesons are
calculated in the same way. They are measured in the same rapidity range
|y| < 0.5, and in the pT ranges where the measurements are performed. The
visible cross sections of D∗+ and the other D mesons measured with the
ALICE central rapidity detectors are summarized in Table 7.2.

7.2.2 Method of Extrapolation

The extrapolation is performed by multiplying the visible cross section by an
extrapolation factor fFONLL. The extrapolation factor is determined by the
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Meson
√
s (TeV) pT (GeV/c) σDvis.± stat. ± syst. (µb)

D0 7 1-16 412± 33 +55
−140

D+ 7 1-24 198± 24 +42
−73

D∗+ 7 1-24 203± 23 +30
−67

D+
s 7 2-12 53± 12 +13

−15

D0 2.76 1-12 317± 85 +72
−120

D+ 2.76 2-12 47± 9 +10
−12

D∗+ 2.76 2-12 59± 14 +13
−14

Table 7.2: Summary of the visible cross sections of the D mesons measured
by the ALICE experiment in p-p collisions at 7 TeV and 2.76 TeV. The
visible cross sections are in the rapidity range |y| < 0.5. The systematic
uncertainties from the normalization and the decay branching ratio are not
included.

ratio of the theoretical total cross section in the full range of (p
T
, y) phase

space to the theoretical cross section in the visible phase space. The subscript
tells that the extrapolation factor is extracted from the FONLL calculations.
In the case of the D∗+ analysis, its total cross section is calculated as the
following:

σD
∗+

tot = σD
∗+

vis. · fFONLL, (7.3)

fFONLL =

∫ y=∞
y=−∞

∫ pT=∞
pT=0

d2σD
∗+

FONLL(pT,y)

dydpT
dydpT∫ y=0.5

y=−0.5

∫ pT=24GeV/c
pT=1GeV/c

d2σD
∗+

FONLL(pT,y)

dydpT
dydpT

. (7.4)

Our knowledge of the D meson hadro-production cross section is limited
in the small phase space. For that reason, the extrapolation must rely on
the theory calculations. FONLL is a good candidate for this extrapolation,
for the reasons listed below:

• Compared with standard NLO calculations, FONLL has a good
accuracy in the high-p

T
region. The resummation of the logarithmic

terms enables FONLL to give a precise prediction of the differential
cross section in the high-p

T
region. Due to the limited statistics, the

measurement is absent at p
T
> 24 GeV/c, where FONLL gives a very

good estimate of the cross section.

• FONLL calculations have a reasonably small uncertainty in the low-
p

T
region. The cross section decreases logarithmically as a function

of pT. Thus, the integrated total cross section is dominated by the
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7.2. Total Cross Sections of D Mesons

contribution from the low-p
T

region. The extrapolation uncertainty
of the total cross section is also dominated by the uncertainty in
this region. The FONLL calculation applies a suppression function
G(m, p

T
) in order to suppress the zero mass resummation in the low-

p
T

region. This merit significantly reduces the uncertainty of the
FONLL calculation in the low-p

T
region, whereas other theoretical

models with zero mass resummation calculation, e.g. GM-VFNS, do
not have precise predictions at pT ∼ 1 GeV/c or lower.

• FONLL has good agreement with data in the visible range of phase
space. Although the measured data points are systematically above
the central value from the FONLL calculations, the shape of the
measured distribution is well reproduced by FONLL. Considering that
the extrapolation factor fFONLL is only the ratio of the FONLL cross
section in two different regions, the absolute value of the FONLL
calculation does not affect the extrapolated result.

The extrapolation factor fFONLL is calculated using the central value of
the FONLL calculation. It also has a non-negligible uncertainty, since the
FONLL prediction of the differential cross section has large uncertainties.
Three sources of the uncertainties are considered. They are the uncertainty
from the scales µf , µr, the uncertainty from the charm mass mc, and
the uncertainty from the parton distribution function PDF. We vary each
parameter independently, while keeping the other parameters fixed at their
central values. The upper and lower uncertainties are calculated separately,
hence the uncertainty is asymmetric. Take the scale uncertainty as an
instance, the maximum and minimum values of the extrapolation factor
are fMAX

µf ,µr
= FONLLMAX

µf ,µr
/FONLLMIN

µf ,µr
is fMIN

µf ,µr
= FONLLMIN

µf ,µr
/FONLLMAX

µf ,µr
.

The upper (lower) uncertainty is the difference between the maximum
(minimum) value and the center value fFONLL. The total uncertainties of
the extrapolation factor is then taken as the square root of the quadratic
sum ∆fFONLL =

√
∆f 2

µf ,µr
+ ∆f 2

mc + ∆f 2
PDF. The uncertainties of the total

cross section from the extrapolation are then calculated as

∆σD
∗+

tot (extr.) = σD
∗+

vis. ·∆fFONLL. (7.5)

7.2.3 Total Cross Sections of D Mesons

The extrapolation factors are summarized in Tab. 7.3. The numbers
correspond to the ratios of the total cross sections in the (p

T
, y) phase space

to the cross sections measured in the visible (p
T
, y) phase space.
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Meson
√
s(TeV) fFONLL(σDtot) fFONLL(dσ

dy
|y=0)

D0 7 10.7 +6.3
−0.5

1.25 +0.29
−0.08

D+ 7 10.7 +6.2
−0.5

1.25 +0.29
−0.08

D∗+ 7 10.4 +6.1
−0.4

1.21 +0.28
−0.07

D+
s 7 N.A. 2.23 +0.71

−0.65

D0 2.76 9.9 +6.3
−0.4

1.35 +0.48
−0.06

D+ 2.76 19.9 +8.8
−1.9

2.72 +0.80
−0.49

D∗+ 2.76 18.2 +8.6
−1.7

2.50 +0.72
−0.39

Table 7.3: Summary of the extrapolation factors of D mesons calculated
with FONLL in p-p collisions at 7 TeV and 2.76 TeV. Both the extrapolation
factors for total cross section σDtot and rapidity differential cross section dσ

dy
|y=0

are listed.

In addition to the total cross section, we also give the result of dσ
dy
||y|<0.5.

This is simply done by extrapolating the differential cross section only in the
pT dimension of the phase space, then integrating over the range of pT > 0, in
the rapidity region |y| < 0.5. The result is ∆σ

∆y
||y|<0.5, but we may consider it

to be the differential cross section dσ
dy
|y=0, since the distribution in this small

central rapidity region is rather flat.

We are not able to extrapolate the D+
s cross section to the full phase

space, because FONLL prediction of D+
s differential cross section in the full

phase space is unavailable. The absence of D+
s prediction from FONLL

calculation is due to the lack of D+
s fragmentation function in the FONLL

model. However, we managed to calculate the D+
s differential cross section

in the central rapidity. We started from the pT-differential cross section of
charm quark from FONLL calculation. It is then combined with the charm
to hadron fraction fc→D from ALEPH [71], and the fragmentation functions
from [72].

In the 7 TeV p-p collisions, to get the total cross section, the measured
cross section is multiplied by the extrapolation factor of ∼ 10. This means we
measure only ∼ 10% of the total cross section. The extrapolation factor from
visible cross section to full pT range is ∼ 1 at mid-rapidity, which means the
measurement covers a large portion in the pT distribution. In the 2.76 TeV
p-p collisions, the scale factor is even higher except for the D0 measurement.
This is because that the measurements have smaller pT coverage due to
the limited statistics. Only the D0 measurement has a measurement in the
1 < pT < 2 GeV/c, where a large portion of the cross section distribute.

The extrapolated total cross sections of the D mesons are listed in
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Meson
√
s(TeV) σDtot(mb) stat. syst. lum. B.R. extr.

D0 7 4.42 ±0.35 +0.59
−1.50

±0.15 ±0.06 +2.59
−0.19

D+ 7 2.12 ±0.26 +0.45
−0.78

±0.07 ±0.04 +1.23
−0.09

D∗+ 7 2.11 ±0.24 +0.31
−0.70

±0.07 ±0.03 +1.24
−0.08

D0 2.76 3.13 ±0.84 +0.71
−1.19

±0.06 ±0.04 +2.02
−0.14

D+ 2.76 0.93 ±0.19 +0.20
−0.22

±0.02 ±0.02 +0.41
−0.09

D∗+ 2.76 1.08 ±0.25 +0.24
−0.26

±0.02 ±0.02 +0.51
−0.10

Table 7.4: Summary of the total cross sections of D mesons measured by the
ALICE experiment in p-p collisions at 7 TeV and 2.76 TeV.

Meson
√
s(TeV) dσ

dy
|y=0(µb) stat. syst. lum. B.R. extr.

D0 7 516 ±41 +69
−175

±18 ±7 +120
−37

D+ 7 248 ±30 +52
−92

±9 ±5 +57
−18

D∗+ 7 247 ±27 +36
−81

±9 ±4 +57
−16

D+
s 7 118 ±28 +28

−34
±4 ±6 +38

−35

D0 2.76 428 ±115 +98
−163

±8 ±6 +151
−23

D+ 2.76 127 ±26 +28
−31

±2 ±3 +38
−23

D∗+ 2.76 148 ±35 +33
−36

±3 ±2 +42
−23

Table 7.5: Summary of the dσ
dy
|y=0 of D mesons measured by the ALICE

experiment in p-p collisions at 7 TeV and 2.76 TeV.

Table 7.4. The pT integrated cross section of the D mesons in the central
rapidity dσ

dy
|y=0 is also shown in Table 7.5. The cross sections of D0, D+ and

D∗+ mesons were measured in p-p collisions at both 7 TeV and 2.76 TeV.

The uncertainties of the statistics, the systematics, the luminosity, the
branching ratio, and the extrapolation are also scaled by the extrapolation
factor. Among these sources of uncertainties, the extrapolation uncertainty
and the systematic uncertainty are dominant. The systematic uncertainty
originate from the reconstruction and the correction of the raw data, which
were discussed in the previous chapter. The extrapolation uncertainty is
asymmetric, which is from the uncertainty of FONLL calculation.

The relative extrapolation uncertainty of the total cross section is much
smaller than that of the dσ

dy
|y=0 cross section. This is for the reason that,

the extrapolation from the range of |y| < 0.5 to the full phase space has a
large uncertainty. There, the distribution of the differential cross section in
the wide range of |y| > 0.5 relies only on the calculation. The combination
of the measurement in central rapidity and the measurements in forward
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rapidity will provide a more precise total cross section. The extrapolation
from the combined ALICE and LHCb data gives an improved result [43].

7.3 Pv

The parameter Pv represents the ratio of vector cd D mesons to cd D mesons
in pseudoscalar or vector states. It is calculated by using the ratio between
D∗+ cross section and the sum of D∗+ cross section and prompt D+ cross
section (those not from D∗+ decay), as shown in Eq. 7.6. We take only
the resonances with the smallest masses, since the other resonances only
contribute a very small part of the production cross sections.

Pv =
σD
∗+

tot

σD
∗+

tot + σD
+

tot − σD
∗+

tot × (1−BRD∗+→D0+π+
s

)

=
σD
∗+

tot

σD
+

tot + σD
∗+

tot ×BRD∗+→D0+π+
s

. (7.6)

The prompt D+ cross section is calculated by subtracting the cascade D+

cross section from the cross section of all the D+. The cross section of cd D
mesons in both pseudoscalar or vector states is equal to the cross section of
D+ and D∗+ → D0π+

s . By applying the total cross section of D∗+ and D+

in 7 TeV and 2.76 TeV, we get

Pv(7TeV) = 0.59± 0.06(stat.)± 0.18(syst.)± 0.01(B.R.)+0.005
−0.003(extr.),

Pv(2.76TeV) = 0.65± 0.10(stat.)± 0.13(syst.)± 0.01(B.R.)+0.011
−0.004(extr.).

The extrapolation uncertainty is calculated in the same way as the
extrapolation factor fFONLL. The three uncertainty sources (scale, charm
quark mass and parton distribution function) from FONLL calculations are
varied separately, while the other two are fixed at the central values. Each
maximum deviations from their central value of Pv are summed quadratically.

The extrapolation uncertainty is negligible. This is because the FONLL
uncertainty is correlated between the D∗+ and D+ total cross section
calculations. The luminosity uncertainty also cancels. The statistical and
systematic uncertainties are dominant.

These values, in comparison with other experiments at different collision
energies and different collision systems, are shown in Fig. 7.7. The average
of the experimental measurements reported in Ref. [74] is 0.594±0.010. The
weighted average including LHC measurements is Pv = 0.60± 0.01, which is
shown by the yellow band.
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Figure 7.7: The Pv values of cd D mesons in various experiment systems [6,
19, 20, 68, 73, 71]. The average of the measurement in Ref. [74] is also shown.
The weighted average value is represented by the yellow band.

In the PYTHIA generator, the ratio Pv is defined by the parameter
PARJ(13), the default value of which is Pv = 0.75. This is calculated
from naive spin counting. A vector state D meson has 3 possible spins,
while a pseudoscalar state D meson has zero spin. This gives a naive
calculation of P spincounting

v = 3/(3 + 1) = 0.75. The argument of spin
counting originates from heavy quark effective theory (HQET) assuming
infinite heavy quark masses. However, the mass difference between D∗+ and
D+ is ∆m/m ≈ 7.5%, which makes the HQET assumption less applicable.
In contrast, the mass different of the B meson system is ∆m/m ≈ 0.87%,
where the HQET assumption is more reliable.

Calculations using the Lund symmetric fragmentation function [75] with
exact Clebsch-Gordan coefficient coupling from the virtual quark-antiquark
pair to the final hadron state functions predict Pv = 0.63. In this model,
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the difference between the hadron masses are taken into account in the
fragmentation function.

The Statistical Hadronization Model [76] predicts that the ratio of total
yields of prompt D∗+ to D+ is 3 · (mD∗+/mD+)2 · exp(−(mD∗+ −mD+)/T ) ≈
1.4, at a temperature of T = 164 MeV. From this we obtain Pv ≈ 0.58±0.13
for T = 164± 10 MeV. We find that both predictions of Lund fragmentation
function and Statistical Hadronization Model agree with our measurement
within uncertainties.

7.4 Total Cross Section of Charm Quark

Production

Finally, we calculated the total charm cross section σcctot by dividing the total
D meson cross section by the fragmentation fraction of each D meson. The
fragmentation fraction is the probability that a charm quark forms into a
certain D meson species fc→D. The measured D mesons are sorted into two
groups, with one having the D0 and D+ mesons and the other having the
D∗+ meson. They can not be summed together, because the second group
is a subset of the first one, and exists in an earlier time sequence. The total
charm cross section is calculated from the total cross section from the two
groups, as shown in the following:

σcctot;D0D+ =
σD

0

tot + σD
+

tot

fc→D0 + fc→D+

. (7.7)

σcctot;D∗+ =
σD
∗+

tot

fc→D∗+
. (7.8)

The fragmentation fractions are fc→D0 = 0.557± 0.023, fc→D+ = 0.226±
0.010, and fc→D∗+ = 0.238± 0.007. The weighted average of the two results
σcctot;D0D+ and σcctot;D∗+ is then calculated, where the weights are defined by the
errors. This average is considered the total charm cross section in proton-
proton collisions measured with ALICE. The result is listed in Table 7.6,
where F.F. stands for the uncertainty from the fragmentation fractions. We
find that the extrapolation uncertainty provides one of the largest errors.
The statistical and systematic uncertainties are also significant.

Figure 7.8 summarizes the measured charm cross section as a function of
center-of-mass energy. A number of charm quark production cross section
in various experiments [77, 78, 79] are shown, including recent results from
ALICE, ATLAS and LHCb experiments in proton-proton collisions at 7 TeV
and 2.76 TeV. Those experiments are carried out in different nucleon-nucleon
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√
s(TeV) σcctot(mb) stat. syst. lum. B.R. F.F. extr.

7 8.5 ±0.5 +1.0
−2.4

±0.3 ±0.09 ±0.2 +5.0
−0.4

2.76 4.8 ±0.8 +1.0
−1.3

±0.1 ±0.06 ±0.1 +2.6
−0.4

Table 7.6: Total charm cross sections in proton-proton collisions at 7 TeV
and 2.76 TeV measured by ALICE experiment. The total cross section is
extrapolated from the D0, D+ and D∗+ cross section at mid-rapidity.

Figure 7.8: Total charm cross section as a function of colliding energy
measured by various experiments in nucleon-nucleon collisions. The three
data points from ALICE, ATLAS and LHCb are measured at the same
energy. The horizontal displacement of the data points is drawn for reading
convenience.

collision systems. The cross sections from proton-nucleus (pA) and deuteron-
nucleus (d-A) collisions are scaled down by the number of binary nucleon-
nucleon collisions, which is calculated with Glauber model. The extrapolated
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total cross sections measured by the three experiments at LHC have good
agreement with each other.

These measurements are compared to the MNR model, which is an
NLO pQCD calculation. The solid curve represents the calculation with
the parameters set to their central values. The dashed curves represent the
uncertainties of the calculation, which is mainly from the scale variation. In
terms of the total cross section calculation, the resummed calculation (e.g.
FONLL, GM-VFNS) does not make any improvement over the standard
NLO calculation. The resummed terms only make corrections in the high-pT

region, while the low-pT region contributes mainly to the total cross section.
With the measurements from ALICE, ATLAS and LHCb experiments

added, the calculations are tested at a new energy realm. The charm
cross sections measured by LHC experiments are still following the trend of
increasing cross section with collision energy, as indicated by the calculation.
This is because with the higher collision energy, a larger domain of partons
distributed in the proton (nucleon) participate in the production of the charm
quark. It is also obvious that the experimental results are systematically
above the center value of the calculation but still within the uncertainty
range.

The cross section shown in Fig. 7.8 is scaled from the measured p
T
, y phase

space to full phase space by a factor ∼ 10. Therefore, the measurement of
the total charm cross section suffers from a large extrapolation uncertainty.
However, the NLO pQCD calculation gives an even larger uncertainty,
which is mainly from the scale variation. Moreover, the uncertainty band
is broadening as the collision energy increases. This is because, in high
energy collisions, the uncertainty from the low-x parton distribution becomes
significant. The fact that the measurements have more precise results than
the calculation leaves a challenge for the calculation to provide more precise
predictions. The comparison of the differential cross sections gives more
deconvoluted information on the pQCD calculations.
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Chapter 8

Summary and Outlook

Within this thesis, for the first time D∗+ mesons have been identified
by their topological decay in the D∗+ → D0(K−π+)π+ decay channel (and
charge conjugates) at mid-rapidity from p-p collisions at

√
s = 7 TeV

with the ALICE detector. The topological selection criteria were chosen
to optimize the D∗+ significance. Particle identification with the Time
Projection Chamber and the Time of Flight detector was applied. The
reconstructed D∗+ mass is in excellent agreement with values from the
literature; the mass resolution is well reproduced by Monte Carlo simulations.
The yield is presented in ten transverse momentum bins from 1 to 24 GeV/c.

The measured differential cross section of prompt D∗+ meson production
is described by state-of-the-art calculations in perturbative QCD, e.g.
within the framework of FONLL and GM-FVNS. The central values of
the predictions are systematically below (FONLL) or above (GM-FVNS)
the data. However, within the rather larger uncertainty in both data
and calculations, agreement is found. Taking into account the ALICE
measurements of the prompt production of D0 and D+, the total charm
production cross section was extracted. Fair agreement with results from the
other LHC experiments ATLAS and LHCb was found. The hadronization
of charm, once created, to charmed mesons containing a light quark d is
independent of the collision system and energy and allows for a description
within the statistical model.

In order to address charm production at ultra-low pT , one might have
to use loose topological selection and rely on careful subtraction of the
incredible large combinatorial background [80]. Presently, in pp and p-Pb
the dependence of the charm production cross section on charged particle
multiplicity [81] is poorly understood, and poses a formidable challenge to
all models.



Chapter 8. Summary and Outlook

Further, the measurement presented in this thesis serves as an essential
reference for studies into bulk properties of the Quark-Gluon-Plasma created
in Pb-Pb collisions. The nuclear modification factor of D0, D+ and D∗+

shows a large suppression, indicating strong energy loss of a charm quark
propagating in the QGP. This measurement has already been published [21,
82].

Presently, the LHC is in its first long shut down until the end of 2014.
In the second round of data taking from 2015-2017, a ten-fold increase in
collected data is expected. This will allow a precise measurement of charm
production at higher transverse momentum, which will make studies of e.g.
charm-jet correlations feasible. During the second long shut down in 2018,
ALICE will upgrade the Inner Tracking System [83] with improved pointing
resolution and higher read-out rate capabilities. Full reconstruction of B
mesons at low momentum will then become possible [84].
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