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Abstract Heavy quarks (charm and beauty) are an important probe for the character-

ization of the quark-gluon plasma (QGP), a state of color deconfined, hadronic matter.

Experimentally, the QGP is produced in ultrarelativistic heavy-ion collisions, where heavy

quarks are automatically generated and interact with the produced medium. Within this

work, the properties of the beauty quarks in the medium are measured via the semilep-

tonic decays of the associated hadrons. The measurement is based on the particle

identification and tracking capabilities of the ALICE detector at the LHC. The separa-

tion of eletrons from beauty-hadron decays from the abundant background electrons is

achieved using fits of the impact parameter distribution based on templates from Monte

Carlo simulations. This approach makes use of the comparatively large decay length of

the beauty hadrons (cτ ≈ 500 µm). The large particle multiplicities in central Pb–Pb

collisions at
√

sNN = 2.76 TeV create a particularly challenging environment for the mea-

surement. The determined nuclear modification factor hints at values above unity for

low transverse momenta of the electrons. In this region, the beauty quarks may partici-

pate in the collective motion of the medium. The nuclear modification factor decreases

towards larger pT, where an energy loss of the partons in the medium is expected. The

measured range of 1.3 < pT < 8 GeV/c also represents a region where contributions

from both radiative and collisional interactions with the medium can contribute and is

thus particularly interesting for the understanding of the interaction of heavy quarks with

the medium.





Deutsche Zusammenfassung Schwere Quarks (Charm und Beauty) sind eine wichtige

Sonde um die Eigenschaften des Quark-Gluon Plasmas (QGP), ein Zustand von ‘Decon-

finement’ der Materie, zu charakterisieren. Experimentell wird das QGP in ultrarelativis-

tischen Schwerionenkollisionen erzeugt, wo schwere Quarks automatisch entstehen und

mit dem erzeugten Medium interagieren. In dieser Arbeit werden die Eigenschaften von

Beautyquarks im Medium über die semileptonischen Zerfälle der zugehörigen Hadronen

gemessen. Die Messmethode basiert auf den Spurrekonstruktions- und Teilcheniden-

tifikationsfähigkeiten des ALICE-Detektors am LHC. Die Unterscheidung von Elektro-

nen aus Zerfällen von Beautyhadronen von den Untergrundelektronen wird durch einen

Fit auf der Basis von Stoßparameterverteilungen aus Monte Carlo-Simulationen erre-

icht. Diese Herangehensweise nutzt die relativ hohe Zerfallslänge der Beautyhadro-

nen (cτ ≈ 500 µm) aus. Die hohen Teilchenzahlmultiplizitäten der zentralen Pb–Pb-

Kollisionen bei
√

sNN = 2.76 TeV machen die Messung zu einer Herausforderung. Der

ermittelte nukleare Modifikationsfaktor deutet auf Werte oberhalb von eins bei niedrigem

Transversalimpuls der Elektronen hin. In diesem Bereich könnten die Beautyquarks an

der Bewegung des Mediums teilhaben. Bei höherem pT, wo ein Energieverlust der Quarks

an das Medium erwartet wird, sinkt der nukleare Modifikationsfaktor. Das Messintervall

von 1.3 < pT < 8 GeV/c entspricht einem Bereich in dem sowohl radiative als auch

Stoßprozesse relevant sind und ist daher besonders interessant um die Wechselwirkung

schwerer Quarks mit dem Medium zu verstehen.
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Chapter 1

Introduction

The measurements of ultrarelativistic heavy-ion collisions opened the door to the study

of a new state of hadronic matter. Experiments at the CERN Super Proton Synchrotron

(SPS) [1, 2] and later at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron

Collider (LHC) give access to a state of deconfined quarks and gluons, the Quark-Gluon

Plasma (QGP). The analysis of the QGP gives an insight into the emergent properties

of the strong interaction. The complexity of the non-abelian QCD but also of the heavy-

ion collisions themselves shows the importance of using a variety of measurements to

understand the properties of the produced matter.

An important probe for this characterization are heavy-flavors, meaning charm and

beauty quarks, which can give an insight into the transport properties of the medium

[3, 4]. The main focus of this work is the measurement of beauty quarks via the decays

of their associated hadrons to a final state containing electrons.

Chapter 2 of this thesis aims to give a general understanding of the experimental

access to the properties of the quark-gluon plasma, while the connection to approaches

based on heavy-flavor measurements is discussed in more depth in chapter 3. The

analysis discussed in this work is based on measurements by the ALICE experiment.

The particularities of the subsystems that are particularly relevant to it are described in

chapter 4.

A short overview of the general principles of the analysis is given in chapter 5. In

comparison to earlier analyses with ALICE in pp collisions [5, 6], the approach described

in this work is based on the use of the full information contained within the distribution

of the transverse impact parameter of electrons. As will be shown, the high-multiplicity

environment of the central (head-on) Pb–Pb collisions requires accurate methods for

the estimation of the uncertainties associated with the measurements, which take into

account the peculiarities of the measurements at high multiplicities. For this reason,
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CHAPTER 1. INTRODUCTION

the description of the analysis is split into three parts. These are arranged by logical

connection rather than by the sequence they are applied in in the analysis. For this

reason, the electron candidate selection in chapter 6 is discussed together with the

efficiency that results from this choice and with the uncertainty of this estimation.

Accordingly, chapter 7 is concerned both with the signal extraction method as well

as with the associated uncertainties. This includes both the bias of the maximum

likelihood estimator as well as the uncertainty in the accuracy of the impact parameter

distribution templates which come from simulations of the detector and event properties.

These estimates are central to the applicability of the method. Wherever possible, the

uncertainties are estimated using data-driven methods and the known biases are corrected

to the extent in which they are known.

The finite resolution of the measurement of the transverse momentum influences the

measured distribution. The correction of this effect leads to a different mathematical

structure than the correction for biases or efficiencies and it is thus treated separately.

Chapter 8 aims to describe the mathematical formulation of this correction and to explain

the choice of the particular correction algorithm.

The result of the analysis described in these chapters is the first measurement of

beauty-hadron decay electrons at low transverse momentum in Pb–Pb collisions with

ALICE. To interpret the result, it is useful to compare it with the corresponding mea-

surement in pp collisions. This will be the subject of chapter 9. The resulting nuclear

modification factor is then compared to theoretical predictions, to the corresponding

p–Pb result and to a simple phenomenological model to understand the information

contained within it.

Finally, the advantages of this analysis method suggest its application to different

measurements as well, in particular to gain further insights in the interpretation of the

results. Additionally, the formalism of the approach allows for a generalization when

additional knowledge is available. The directions for such further developments are

discussed in chapter 10.

The approach to the extraction of information from the available data is based on the

idea of Bayesian inference [7, 8]. While the fundamental idea of the signal extraction is

a maximum likelihood approach, this point-of-view allows for the clearest understanding

of the meaning of the systematic uncertainties inherent in the measurement [9].

In order to make this thesis more concise, frequent terms are often abbreviated.

In these cases as well as for acronyms, the first appearance will be written in bold

script. An overview of all terms with short explanations can be found in appendix A for

convenience.
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Chapter 2

Heavy-ion collisions and the

quark–gluon plasma

2.1 Quantum chromodynamics

2.1.1 Introduction

The gauge field theory of the strong interaction is called quantum chromodynamics

(QCD). It describes the interaction of quarks and gluons. It is a non-abelian gauge

theory with a Lagrangian that is invariant under local SU(3) symmetry transformations

[10]. The N2− 1 = 8 generators correspond to the gluon fields. Gluons are the gauge

bosons of the strong interaction. The field tensor can be written as [10]

Fa
µν = ∂µAa

ν −∂νAa
µ +gs f abcAb

µAc
ν (2.1)

Figure 2.1: Vertices for QCD Feynman graphs. Left: Quark-gluon interaction. Center :

Three-gluon vertex. Right: Four-gluon vertex

3



CHAPTER 2. HEAVY-ION COLLISIONS AND THE QUARK–GLUON PLASMA

QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  

0.1
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DIS jets (NLO)

October 2015

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 2.2: The running coupling αs in QCD [11].

with Aa the gluon fields, gs the coupling constant and f abc the so-called structure

constants of the SU(3) group. a, b and c are the color indices. The last term is specific

to non-Abelian gauge theories and gives rise to interactions between the gauge bosons.

The Lagrangian of QCD is

L =−1
4
(Fa

µν)
2 +∑

q
ψ̄q,a(iγµ

∂µδab−gsγ
µtabAµ −mδab)ψq,b (2.2)

where repeated indices are summed over [11]. The explicit sum is over the quark flavors.

The second part gives a ψ̄Aψ-term, which corresponds to a quark-quark-gluon vertex in

the Feynman rules similar to the interaction vertex in in quantum electrodynamics. In

addition, now third and fourth order terms of the gluon fields appear in the first term of

equation 2.2, which lead to vertices describing gluon interactions as shown in figure 2.1.

This is a consequence of the fact that the gauge bosons themselves also carry (color)

charge in QCD. Solving the corresponding renormalization group equation [10] leads at

1-loop to the result:

αs(µ) =
g2

s
4π

=
2π

11− 2
3N f

1
ln µ

ΛQCD

(2.3)

with the energy scale µ . N f is the number of quark flavors which fulfill 4m2
q < µ2.

ΛQCD is the location of the QCD Landau pole. A comparison to measurements is shown

in figure 2.2. The running coupling decreases with increasing Q2 [12, 13]. The small

coupling at large momentum transfer - or equivalently, small distances - is referred to as

asymptotic freedom. A direct consequence is that perturbative calculations - referred to

as pQCD - only converge well for larger momentum transfers.
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CHAPTER 2. HEAVY-ION COLLISIONS AND THE QUARK–GLUON PLASMA

In the Lagrangian, left and right-handed quarks light quarks are decoupled, due to

their small mass compared to the relevant scale ΛQCD. However, the lowest-energy

states of the vacuum do not have this symmetry. As a result, e.g. 〈uū〉 has a nonzero

expectation value even in the QCD vacuum. This phenomenon is called chiral symmetry

breaking.

The lightest hadrons are bound quark-antiquark states (mesons) and triple-quark

states (baryons) with zero combined color charge. So far, no objects with nonzero net

color charge were found in the vacuum [11]. This property is called confinement. It has

not been derived from first principles but is expected to follow from QCD.

2.1.2 The QCD phase diagram

From the principles of the previous section it follows that all quarks are hidden within the

individual hadrons. Within the hadron, the strong interaction affects them comparatively

little, but strongly confines them within a small volume. If the temperature of baryonic

matter (or the QCD vacuum) is increased to sufficiently large values, pions can be

produced thermally. If the number of baryons or the density of the thermal pions increases

sufficiently, the volume of the hadrons fills up the vacuum. In this case, a single quark

cannot be associated with a specific hadron [14]. This means, that at large temperatures

and/or baryon densities, QCD matter can exhibit a phase transition to a state with

deconfined quarks. From the above argument, this should happen at temperatures of

the order of 1–2 times the pion mass or the QCD scale ΛQCD ∼ 200 MeV (a more

thorough calculation may be found in [15]). The resulting state of deconfined matter is

called the quark-gluon plasma [16].

Figure 2.3 shows a sketch of the phase diagram of QCD. The phase transition can

only occur under extreme conditions like the high temperatures of matter shortly after

the big bang. It is at present unclear whether the conditions inside some compact stars

can also produce deconfined matter [18].

In the quark-gluon plasma, the chiral symmetry is restored. As a result, the masses

of the quarks are their bare values. The thermodynamic degrees of freedom are gluons

and quarks, while in the confined phase the degrees of freedom are the hadrons.

2.1.3 Lattice QCD

The running coupling allows for perturbative calculations at large momentum transfer.

The regime of the QCD phase transition however is not easily accessible due to the

large coupling. In such a regime, large successes have been made using discretized QCD

5



CHAPTER 2. HEAVY-ION COLLISIONS AND THE QUARK–GLUON PLASMA

Figure 2.3: Phase diagram of QCD. (figure taken from [17])

calculations. This approach is called lattice QCD. Approaching a lattice spacing of zero

and infinite lattice size should then recover QCD. The calculations are usually done using

in Euclidean time −iτ = t which simplifies the calculation of the path integrals [19]. As

a result it is difficult to access time-dependent dynamics and the calculations typically

concern time-independent properties.

Calculations of the chiral susceptibility at different temperatures suggest a rapid

crossover from hadronic matter to matter with restored chiral symmetry and deconfine-

ment. This is shown in figure 2.4. The calculations were performed at vanishing baryon

density. The transition temperature for the chiral symmetry restoration was estimated

as[20, 21]

Tc = 154±9 MeV . (2.4)

Due to the smooth transition, the transition temperature is not defined precisely and

depends on the observable [21, 22].

The lattice calculations [22, 23] can also make predictions about the equation of

state of the deconfined matter. Figure 2.5 shows the results for pressure, energy density

and entropy density. These can be used as input for the hydrodynamic calculations

needed to describe heavy ion collisions.
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CHAPTER 2. HEAVY-ION COLLISIONS AND THE QUARK–GLUON PLASMA

Figure 2.4: Chiral susceptibilities for light flavors and strangeness in a lattice QCD

calculation. The rise suggests a rapid crossover for the chiral phase transition. (figure

taken from [20])

Figure 2.5: Lattice calculations for the thermodynamic quantities of the QCD matter.

(figure taken from [23])
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CHAPTER 2. HEAVY-ION COLLISIONS AND THE QUARK–GLUON PLASMA

Figure 2.6: Visualization of the anti-de Sitter spacetime with black hole. The corre-

sponding field theory can be understood to live on the boundary. (figure taken from

[24])

2.1.4 Gauge/string duality

While many practical calculations in QCD make use of a weak-coupling approach, the

so-called holographic principle has given analytical insights into the opposite, the strong

coupling limit. The fundamental idea is the AdS/CFT correspondence [25]: A four

dimensional N = 4 supersymmetric Yang-Mills theory in a flat space-time corresponds

to a string theory in ten-dimensional anti-de Sitter space (AdS5×S5). The temperature

in the field theory corresponds to the radius of a black hole (or black brane) in the

string theory [26] as illustrated in figure 2.6. This breaks the conformal symmetry, by

introducing a scale.

A very useful property of the correspondence is that a strong coupling in the field

theory corresponds to weak gravity. In the limit of the coupling strength and the number

of colors Nc going to infinity, the string theory reduces to a classical supergravity. In

this case, the strings can either be approximated as point particles or as classical strings

where the action can be calculated by a classical integral over the string world sheet.

While the conformal field theory is not equal to QCD, the AdS/CFT correspondence can

be used to gain a more thorough understanding of the properties of a field theory with

strong coupling.

2.2 Heavy-ion collisions

Given the difficulty of accessing the time shortly after the big bang and the interior of

compact stars, the only way to study the quark-gluon plasma is to create it experimen-

tally. This can be achieved via ultrarelativistic heavy-ion collisions. Compared with -

8



CHAPTER 2. HEAVY-ION COLLISIONS AND THE QUARK–GLUON PLASMA

Nucleus 1

Nucleus 2 Nucleus 2

Nucleus 1

b

Figure 2.7: Sketch of a nucleus-nucleus collision shortly before (left) and after (right)

the initial intractions.

for example - the periodic boundary conditions of the lattice calculations, this system is

much more complex. Most observables thus make use of the fact that the hadronic mat-

ter equilibrates to some extent, which greatly simplifies theoretical calculations of that

part of the process and allows for phenomenological models to be applied. Given that

the collision itself is not accessible to detectors, all information about the processes must

be deduced from the final state particles that are created. The following paragraphs will

give a brief overview of the different phases of the collision.

2.2.1 Initial State

In the laboratory frame, the two colliding nuclei are highly Lorentz-contracted. As

sketched in figure 2.7, the collisions will not usually be head-on. The nuclei are complex

systems consisting of interacting nucleons whose configuration differs from one collision

to the next. To access the initial moments of the collision, it is useful to connect the

complex state of the nuclei with initial nucleon-nucleon collisions such as those measured

in the proton–proton collisions at the LHC. In particular, it is useful to understand the

typical numbers of nucleon-nucleon collisions and the number of participating nucleons

in the nuclei.

A fundamental value to describe the collision geometry is the impact parameter of

the two nuclei b. For a larger impact parameter, typically fewer nucleons interact and

fewer particles are produced in the collision. The connection of the collision geometry

and the distribution of nucleon-nucleon interactions can be estimated using Glauber-

modeling [27]. This approach starts with measured or modeled density distributions of

the nucleons in the nucleus. The fundamental assumption is the independent distribution

of all nucleons according to this common probability density ρA(x,y,z) and that this

9



CHAPTER 2. HEAVY-ION COLLISIONS AND THE QUARK–GLUON PLASMA

Figure 2.8: Example of a Glauber Monte Carlo calculation for Au–Au collisions. (figure

taken from [27])

distribution is not changed by individual collisions. In this case, it is useful to integrate

out the beam-direction and define: TA(x,y) =
∫

ρA(x,y,z)dz. The expectation value for

two nucleons to interact is then proportional to the nuclear overlap function:

TAB(b) =
∫

TA(~x)TB(~x−~b)d2A . (2.5)

In practice, it is useful to solve this using numerical approaches. The Glauber Monte

Carlo approach randomly distributes the nucleons of each nucleus according to the density

distribution. The nuclei are overlaid according to the impact parameter. In the simplest

approach, the nucleons are modeled as solid disks: if they overlap, an interaction takes

place. By repeating this sufficiently often, it is simple to extract the expected number

of binary (nucleon-nucleon) collisions Ncoll and the expected number of participating

nucleons in a collision Npart . In this way, it is also possible to define classes of the

collision centrality. For the present analysis only the 20% most central collisions were

considered in the Pb–Pb collisions. In practice, the centrality class definition is based

on detector signals as explained in chapter 4. The Glauber model can then be used

associate this class with an impact parameter and make estimates about the nuclear

overlap function and the number of binary collisions as shown in table 2.1. The number

of produced particles scales approximately with Npart , while hard processes (like the

creation of heavy quarks) scale with Ncoll.

10
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Centrality b 〈Ncoll〉 〈Npart〉 〈TAA〉

0–20% 0–7 fm 1211 308 18.915

Table 2.1: Glauber model estimates for the centrality range used in the analysis based

on [28].

Figure 2.9: Comparison of equilibration with a weak-coupling approach and in AdS/CFT.

(figure taken from [29])

2.2.2 Equilibration

The equilibration process is associated with an intermediate strength coupling. It can

be approached by a strong-coupling approached based on holography [29]. Alternatively,

a weak-coupling approach can be used. In this case, the high occupation numbers in

the early phases allow for real-time lattice calculations [30, 31]. For the later times, a

kinetic theory can be applied [32]. Remarkably, both approaches give similar predictions

for a rapid equilibration as shown in figure 2.9. Comparison to measurements suggests

an early onset of the applicability of hydrodynamics of the order of 1 fm/c, although this

might already appear far from equilibration of the longitudinal and transverse pressure

[32].

Experimentally, an interesting question about these processes appeared in the form

of the direct photon puzzle: Photons can traverse the QCD medium easily, because they

do not participate in the strong interaction. Thermal photons are produced with a strong

11
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Figure 2.10: Left: pT-distribution and Right: anisotropy of direct photons in Au–Au

collisions. (figure taken from [33])

dependence on the temperature and comparison of theoretical predictions with measure-

ments suggest a production in the early phases of the collision. On the other hand,

measurements of the azimuthal anisotropy (as discussed in the next subsection) suggest

production after a significant hydrodynamic flow has developed - which is associated

with equilibration. This is shown in figure 2.10.

2.2.3 Flow

The local thermodynamic equilibrium simplifies the description of the bulk of the matter.

To estimate general parameters like the system size and the lifetime, it is possible to

make use of the correlations between identical bosons in phase space in a similar way

as the Hanbury Brown-Twiss approach of using photons to deduce stellar radii. The

interpretation of the resulting volume and time is complex but the results from ALICE

as shown in figure 2.11 suggest a significantly larger volume of the fireball at the LHC

compared to the lower-energy experiments. The results point to a lifetime of the system

of the order of 10 fm/c.

Qualitatively, the collective expansion of the medium can be identified from the

pT-distributions of charged particles. Figure 2.12 shows the resulting distributions for

charged pions, kaons and protons. Comparison between the pp and Pb–Pb results and

12
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Figure 2.11: Product of the three HBT radii, which gives an estimate for the volume of

the region of homogeneity. (figure taken from [34])
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Figure 2.12: pT-distributions of identified charged particles in Pb–Pb collisions measured

with ALICE. (figure taken from [35])

13



CHAPTER 2. HEAVY-ION COLLISIONS AND THE QUARK–GLUON PLASMA

Figure 2.13: Example of an event plane of a collision.

the central and peripheral Pb–Pb results shows that the particles are pushed towards

larger transverse momenta. The effect is stronger for the heavier particles, which is

consistent with the expectation that the particles move at the same velocity.

To quantify the collective motion of particles within the medium, it is useful to

consider the effects of the initial anisotropy of the system. Figure 2.13 shows the

collision geometry in the transverse plane. In non-central collisions, the overlap region

of the nuclei is almond-shaped (in the transverse plane). The two centers of the nuclei

define the so-called reaction plane. The extent of the interaction region is smaller in

this direction. Fluctuations in the initial state cause additional anisotropy. The effect

of the initial anisotropy on the final state yields information about the properties of the

quark-gluon plasma.

For this purpose, the anisotropy of the final state can be compared to predictions

from hydrodynamic simulations. Ideal hydrodynamics is based on a set of conservation

equations for the energy-momentum tensor and the baryon number as well as an equation

of state. In viscous hydrodynamics, additional dissipative terms appear. The first-order

Navier-Stokes equation gives rise to superluminal signals [36], so a higher-order analogue

is needed, such as the Israel-Stewart equation [37]. The equation of state is often

based on lattice calculations. For very high temperatures, the running coupling becomes

smaller. In this limit, the QCD medium should behave as an ideal gas. Since α(Tc) is

still sizeable and the typical energy of particles should be of order T , this ideal behavior

does not necessarily appear at temperatures close to Tc.

The initial spatial anisotropy (figure 2.13) is converted into a momentum anisotropy

of the final state, which is used to access thes fluid dynamic properties of the medium

experimentally. For an ideal gas-like expansion, the momentum distribution should be
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simulation using viscous hydrodynamics. (figure taken from [38])
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isotropic. In the case of interactions, there is a pressure gradient from the center of the

overlap region to the vacuum outside. This leads to an acceleration of the medium along

the gradient. Thus, more particles can be expected in-plane and with larger momenta.

One approach to quantify this is via the Fourier-coefficients of the azimuthal particle

distribution [38]:

vn = 〈cos[n(ϕ−Ψn)]〉 . (2.6)

For v2, the angle Ψn can be the reaction plane. As the higher harmonics are the result

of fluctuations, they would cancel out for this choice. Thus for these, Ψn is calculated

from the azimuthal particle distributions themselves for each event[39].

Measurements like the one shown in figure 2.14 show the dependence of the v2 on

the particle mass that is expected due to the fact that all particles come from the same

medium. Comparisons to theoretical calculations point to a medium that is close to

an ideal liquid. This suggests strong interactions within the medium [36]. Calculations

using the AdS/CFT correspondence in the infinite coupling limit yield a shear viscosity

of η/s = 1
4π

for a large class of theories with a gravity dual [26], which is interpreted as

a lower bound [40]. Measurements suggest that the QGP created in heavy-ion collisions

comes close to this bound.

2.2.4 Hadronization

As the fireball from the collision expands, the temperature decreases until it drops below

the transition temperature. After sufficient expansion, the matter again consists of

individual hadrons (and a few leptons) that cease to interact. This freeze-out process

is complex, but broadly defined by two relevant temperature scales: The first is the

chemical freeze-out after which the particle composition of the matter ceases to change.

The second is the kinetic freeze-out, after which the particles do not significantly interact

any more.

The relative abundances of different hadron species can be well described by as-

suming a hadron gas in chemical equilibrium including the relevant resonances [42].

This approach is based on a grand-canonical formalism, which requires a baryon chem-

ical potential and a temperature for the chemical freeze-out as input. Inverting this

approach, temperature and baryon chemical potential can be deduced from the hadron

abundance ratios. For central Pb–Pb collisions at LHC energies this yields a temperature

of 156 MeV with vanishing baryon chemical potential µb as shown in figure 2.15.
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Figure 2.15: Results of the statistical hadronization model compared to measurements

with ALICE. (figure taken from [41])
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Chapter 3

Heavy Quarks in heavy-ion collisions

In addition to the light hadrons and photons discussed in the previous chapter, heavy

quarks are a useful probe of the quark-gluon plasma. The heavy quarks - meaning charm

and beauty - are generated in the initial interactions of the collision itself and then tra-

verse the produced medium. A study of the charm and beauty hadrons produced after

the hadronization gives insight into the transport properties of the medium. The com-

plex processes involved in the production, interaction with the medium and hadronization

require thorough theoretical methods as well as a diverse set of measurements to dis-

entangle the different effects. This chapter will present a short overview of the current

understanding of heavy quarks in the QGP to motivate the measurement of electrons

from beauty-hadron decays – the main subject of this work.

The nuclear modification factor RAA has proven to be a useful tool to quantify

the interaction with the medium. It relates measurements in pp and Pb–Pb (or p–Pb)

collisions by comparing a nuclear collision to a superposition of an equivalent number

of independent nucleon-nucleon collisions. Given known pT-differential cross-sections in

pp and Pb–Pb, the total cross section should scale as dσAA/dpT = A2dσpp/dpT if the

individual collisions do not affect each other and assuming only hadronic interactions. A

is the mass number of the colliding nuclei. The nuclear modification factor shows the

change from this hypothesis:

RAA =
dσAA/dpT

A2dσpp/dpT
, (3.1)

An example is shown in figure 3.1. The Z0 bosons and in particular the leptons

produced in its decay do not participate in the strong interaction and should therefore

not be affected by the medium. Accordingly, the RAA is consistent with unity within the

uncertainties. To make RAA -measurements in different centrality classes, it is useful to
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Figure 3.1: Nuclear modification factor of Z0 bosons measured by the CMS collaboration.

(figure taken from [43])

generalize equation 3.1. Given, that the hard processes scale with the number of binary

collisions, the equation can be expressed as

RAA =
dNAA/dpT

〈Ncoll〉dnpp/dpT
=

dNAA/dpT

〈TAA〉dσpp/dpT
, (3.2)

with TAA the nuclear overlap function introduced in section 2.2.1 and dN/dpT the

pT-differential particle yield per collision. This definition can be used for selections in

centrality. Thus, the RAA compares the pT-distribution of particles from one proton-

proton collision with one binary collision of two nucleons in Pb–Pb.

3.1 Initial hard scatterings

Due to the large mass of the heavy quarks compared to the temperature of the medium

at LHC energies essentially all charm and beauty quarks are produced in the initial

nucleon-nucleon collisions. This clearly defined moment of creation makes them well-

calibrated probes of the QGP. The mass is not only large compared to the expected QGP

temperatures but also compared to ΛQCD allowing for perturbative methods to calculate

the production cross sections (as discussed in section 2.1.1). The calculations typically

make use of factorization: The assumption that the production processes can be split
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up into terms representing the (hard) interactions of the partons and the nuclear parton

distribution functions (nPDFs). It is typically assumed that the medium interactions and

fragmentation processes are also independent and thus factorize as well.

Figure 3.2: Ratio of PDFs for nucleons in Pb and protons from different calculations.

Shown are the modifications for valence quarks (left), sea quarks (center) and gluons

(right). (figure taken from [44])

In this approach, the nPDFs are universal objects [10], meaning that they can be

applied in all collision systems. The nPDFs generally differ from the PDFs in the proton-

proton collisions. By combining a variety of measurements and theoretical calculations,

the change can be estimated. Many calculations make use of the EPS09 set of nPDFs

[44]. The resulting modifications to the PDFs of protons are shown in figure 3.2.

The pQCD processes to create heavy quarks are at leading order quark-antiquark

annihilation q+q→Q+Q and gluon-gluon fusion g+g→Q+Q. Higher order processes

contain the virtual corrections to these processes as well as the processes q+q→ Q+

Q+ g, g+ g→ Q+Q+ g and g+ q(q)→ Q+ Q̄+ q(q) [47]. The measurements in

pp collisions provide experimental verification of these calculations. Figure 3.3 (left)

shows the comparison of the measured beauty cross section and calculation using a

fixed-order plus next-to-leading logarithms (FONLL) approach, which resums some of

the logarithmic term that appear in the calculations. Even though, the RAA is used to

quantify the effects of the medium, its value also depends on the slope of the initial

pT-distribution. If the pT-distribution drops off more quickly with pT, the RAA will have

lower values for the same energy loss. For this reason, models of the interaction of heavy

quarks with the medium need sufficiently accurate pT-distributions as input.
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Right: RpA of electrons from beauty-hadron decays in p–Pb collisions in comparison

with models. (Publication in preparation [46])

3.2 Heavy flavors during equilibration

To disentangle the interaction of heavy quarks with the quark-gluon plasma from those

that would also be present without it, it is useful to consider proton-nuclei collisions,

such as the p–Pb collisions at the LHC. These are not only sensitive to changes in the

parton distribution functions, but also to additional effects specific to colliding nuclei.

They can include multiple scatterings of the partons [48] or energy loss of the heavy

quarks in the nuclei. Figure 3.3 shows a measurement of beauty-hadron decay electrons

in p–Pb collisions with no significant deviation from the correspondingly scaled pp result,

suggesting that these effects are most likely small.

Theoretical calculations for the interaction with the medium usually assume thermal-

ization of the medium. Given the short timescale (≈ 0.3 fm/c [49]) of the thermalization

compared to the lifetime of the medium (≈ 10 fm/c) this appears justified. More de-

tailed analysis suggests only a small influence of the precise description of the energy

loss in the non-thermalized medium [50, 51].

3.3 Interaction with the thermalized medium

The interaction of heavy quarks with the QGP can provide useful information about the

deconfined matter. Fast quarks lose energy in the interactions. Given that the heavy
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quarks are produced early in the collision at a fairly well known rate and that there is

hardly any pair annihilation due to the small number density, the heavy quark measure-

ments serve as a type of tomography of the medium. The description of the energy loss

can broadly be separated into two categories: Weak and strong coupling approaches.

In the weak-coupling approaches, the interaction with the medium is interpreted as in-

teractions of the heavy quarks with the constituents of the medium, which are then

included in a transport equation. In the strong coupling approach, the heavy quark and

the medium are interpreted according to the AdS/CFT correspondence. In the following,

the general principles of the strong coupling approaches based on AdS/CFT as well as

weak-coupling approaches using pQCD will be discussed as the extreme cases followed

by a brief overview over some currently used models. In general, all energy loss for-

malisms need to be combined with the background of an expanding medium to describe

measurements at low transverse momenta.

3.3.1 Heavy-quark energy loss in AdS/CFT

Figure 3.4: Sketch of the interaction of heavy quarks with the medium in AdS5/CFT.

(figure taken from [52])

The calculation using the holographic principle is done assuming that the typical

momenta in the medium are much smaller than the quark mass and that the change in

momentum is small over the time scales considered. This results in a quark that moves

at a constant velocity for the purpose of calculation. Associated with the world line of

the quark is the so-called Wilson line. It is an important quantity for the effect of the

medium on heavy quarks and describes the rotation of the parton’s color due to the field

[26]. The dual description of the Wilson line is a (macroscopic) string hanging down

into the AdS5-space as sketched in figure 3.4. The equation of motion can be obtained
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by extremizing the Nambu-Goto action obtained by integrating over the world-sheet of

the string. The result from the corresponding calculations is

dp
dt

=−π
√

λT 2

2mquark
p , (3.3)

which is a mass-dependent drag force [24, 26]. The result also shows a clear depen-

dence of the drag on the mass of the heavy quark.

3.3.2 Heavy-quark energy loss in pQCD calculations

In the weak-coupling approaches, the interaction of the heavy quark is interpreted as

interactions with individual quarks and gluons in the QGP. To connect knowledge about

the scattering processes with the change in the phase-space distribution of the heavy

quark fQ, a transport equation is used. The Boltzmann equation describes how this

evolution occurs with a known collision integral C[ fQ] and an external force F :[
∂

∂ t
+

~p
Ep

∂

∂~x
+~F

∂

∂~p

]
fQ(t,~x,~p) =C[ fQ] (3.4)

The collision integral contains contributions from all processes considered in the

calculation. Given that the momentum exchange per collision typically is small compared

to the heavy quark momentum, the scattering rate can be expanded in powers of the

momentum transfer, yielding the Fokker-Planck equation. In this case, the interaction is

represented by the first and second moments of the scattering amplitude, which appear

in transport parameters for momentum friction and diffusion [4]. The Fokker-Planck

equation is often implemented using a Langevin process [3]:

d~p
dt

=−ηD(p)~p+~ξ (t) (3.5)

d~x
dt

=
~p
E

, (3.6)

which allows position updates and includes a drag in the first term and a stochastic

diffusion part in the second.

The interactions can broadly be categorized into elastic and radiative processes. In

analogy to electromagnetic Bremsstrahlung, which is suppressed with the fourth power of

the mass, elastic processes are expected to dominate at lower temperatures and heavy

quark momenta, while radiative processes should become more important at higher

energies. A prediction of the separate contributions is shown in figure 3.5. Figure 3.6

shows Feynman diagrams associated with elastic 2→ 2 processes. For the exchange
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Figure 3.5: Fractional energy loss due to radiative and collisional processes separately

based on the framework described in [53–55]. (figure taken [56])

Figure 3.6: Leading order Feynman diagrams associated with elastic interactions of heavy

quarks with the medium. (figure taken [57])
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of soft gluons, a screening mass can be introduced as an infrared regulator [4]. This

incorporates the Debye screening of the medium at large distances.

The radiative (2→ 3) processes with an additional gluon in the final state are ex-

pected to be suppressed for small emission angles of the gluon relative to the momentum

of the heavy quark [58]. This so-called ”dead cone” effect leads to the expectation of

a larger energy loss by light quarks compared to heavy quarks and of charm quarks

compared to beauty quarks. In addition, soft gluons produced in separate interactions

may interfere. This happens if the wavelengths of the gluons are large compared to

the distance between two scattering centers. Since the interference is destructive, this

Landau-Pomeranchuk-Migdal effect leads to a suppression of the radiation [59, 60].

Some care has to be applied with this effect, given that the Boltzmann equation as-

sumes independence of the scatterings. It can for example be included by an effective

description in the collision integral [61]. The description of the interaction gives rise to

medium parameters for the Debye mass of the gluons or the mean free path between

interactions which do not directly appear for example in the framework of the AdS/CFT

description.

3.4 Hadronization
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Figure 3.7: Petersen fragmentation functions for typical [4] choices of εQ

An advantage of the use of heavy quarks as probes of the quark-gluon plasma is

that there is a clear association of the heavy quark in the medium with the heavy
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valence quark in a resulting hadron. To gain access to the kinematics of the heavy

quark, it is important to understand how the momentum of the quark in the medium

relates to the momentum of the resulting hadron. At large momenta in the vacuum,

the approach is usually to assume a universal (i.e. independent of the collision system)

function describing the probability distribution for the hadron possessing a particular

fraction of the quark momentum z = ph/pQ. This fragmentation function can then be

fixed in one collision system (e.g. e+e−) and applied to others [4]. A frequently used

form for the fragmentation function is the Peterson fragmentation function [62]

DH
Q(z,εQ)∼

1

z [1−1/z− εQ/(1− z)]2
, (3.7)

where εQ is a parameter that controls the shape of the distribution, which has a maximum

at z ≈ 1− 2εQ and a width of ≈ εQ. The parameters for different quark flavors with

masses mQ are connected by the relation εQ ∼ 1/m2
Q [62]. Examples for charm and

beauty are drawn in figure 3.7.

In heavy-ion collisions, in particular for quarks at lower momenta, this approach

is no longer valid. Collective effects like the flow of the surrounding medium become

important. An important mechanism for the hadronization is the idea of recombination of

heavy-quarks with thermal light quarks from the surrounding medium. Several different

descriptions are used for this effect, giving different predictions also for the relative yield

of different charm and beauty hadron species. A central point from the fragmentation

in vacuum does typically still apply: The correlation of the quark momentum and the

hadron momentum is stronger for beauty quarks than for charm quarks.

3.5 Theoretical models

In the following a few different theoretical models will be compared.

The BAMPS, or Boltzmann Approach to MultiParton Scatterings model makes use

of the Boltzmann equation both to model the medium expansion and the propagation of

the heavy quarks in the medium [63]. The individual interactions are calculated based on

pQCD. These calculations include 2→ 2 elastic scatterings and 2→ 3 radiative [61] pro-

cesses and feature a running coupling. Similar pQCD approaches like the MC@sHQ[64]

use a hydrodynamic simulation for the background, while others consider only the initial

(Glaube modelled) fluctuations like the WHDG[65].

The TAMU model makes use of results from lattice QCD to extract information

about the QCD potentials as an input for the elastic scatterings [66]. POWLANG
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makes the comparison more directly via a force-force corellator in lattice QCD [67] or by

using hard thermal loop calculations [57].

For AdS/CFT calculations it is difficult to make quantitative predictions due to the

fact that no exact gravity dual for QCD is known. In the approach of Horowitz, data

from RHIC is used to constrain the parameters of the drag energy loss within reasonable

limits, which can then be scaled to the LHC energies [65].

3.6 Measurements
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Figure 3.8: Left: RAA and RpA of D mesons in Pb–Pb collisions at LHC energies with

ALICE. Right: Comparison to pions and charged hadrons.(figure taken [68])

To clearly separate medium effects from those present without a QGP, it is often

useful to compare the nuclear modification factors of central and peripheral nuclear

collisions with those in p–Pb. Figure 3.8 (left) shows the resulting nuclear modification

factors for D mesons measured by ALICE [68]. The measurement in p–Pb does not

show any effects that are significant with respect to the uncertainties. For the Pb–Pb

collisions, there is a clearly visible effect.

The total number of heavy quarks is mostly independent of the formation of a QGP.

The reason for this is the low density of heavy quarks in the medium which makes quark-

antiquark annihilation unlikely. The RAA thus describes mostly a migration in phase

space, where the typical momenta of the heavy-flavor hadrons decrease. Nevertheless,

an RAA lower than one is typically referred to a suppression. For a total conservation of

the D mesons, the RAA must necessarily be above one at some point. The reason that this
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is not the case for the measured range is the cold nuclear effects at low momentum[69],

which are difficult to discern in the p–Pb result. As expected, the suppression is weaker

for the more peripheral collisions due to the smaller volume of the medium. Surprisingly,

the suppression is of a similar order as that of the light hadrons (figure 3.8, right).

) c (GeV/
T

p 
0 5 10 15 20 25 30 35 40

A
A

R

0

0.2

0.4

0.6

0.8

1

1.2

1.4
ALICE

 = 2.76 TeV
NN

s0­10% Pb­Pb, 

|<0.5y |
+

, D*
+

, D
0

Average D

­extrap. reference
T

pwith pp 

TAMU elastic
Cao, Qin, Bass
WHDG rad+coll
MC@sHQ+EPOS
POWLANG
BAMPS el.
BAMPS el.+rad
PHSD

ALI−DER−102411

)c(GeV/
T

p
0 5 10 15 20 25 30

ψ
n
o
n
­p

ro
m

p
t 
J
/

A
A

R

0.5

1

1.5

2  

|<0.8)y0­50%  ALICE (|

0­20%
20­100% |<2.4)yCMS (|

w/o Coll. Diss.

with Coll. Diss.

et al.Vitev I. 
HTL
LatQCD

et al.Alberico W. M. et al.Aichelin J. 

 = 2.76 TeVNNsPb­Pb, 

et al.He M. 

et al.Uphoff J. 

WHDG

AdS/CFT

et al.Djordjevic M. 

 

Coll.
Coll.+LPM Rad.

ALI−PUB−93214

Figure 3.9: RAA of D mesons (left) and non-prompt J/ψ (right) compared with theo-

retical models. (figures taken [68, 70])

One approach to the measurement of beauty quarks is the measurement of non-

prompt J/ψ mesons. These can result from the decay of beauty hadrons. A comparison

to theoretical models is shown in figure 3.9 together with the calculations for D mesons.

The measurements for the non-prompt J/ψ are currently integrated over wider ranges of

the transverse momentum and centrality compared to the D mesons. Given the similar

RAA for light hadrons and charm mesons, it is still an interesting question how the

expected mass dependence of the energy loss is realized in nature.

A complementary approach to the measurement of hadrons is the measurement of

b-jets. The jet energy also contains contribution from the particles associated with the

hadronization process and thus can give a close approximation of the energy of the

quark after the interaction with the medium. The experimentally reconstructed jet can

also contain particles produced in the interaction with the medium which gives some

sensitivity to the understanding of the energy loss processes. Figure 3.10 (left) shows

the nuclear modification factor for beauty jets measured at LHC energies [71]. A clear

supression is visible with the measurement starting at pT = 80 GeV/c.

To access the lower momenta, an indirect measurement based on the electrons from

beauty-hadron decays is useful. The measurement in Au–Au collisions at
√

sNN = 0.2 TeV

given in figure 3.10 (right) shows the different nuclear modification factors for charm and
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Figure 3.10: Left: Measurement of beauty-jets in Pb–Pb collisions at
√

sNN =

2.76 TeV [71]. Right: Nuclear modification factor for electrons from beauty-hadron

decays for Au–Au collisions at
√

sNN = 0.2 TeV [72].

beauty [72]. The nuclear modification factor for the beauty case increases towards lower

transverse momenta, reaching unity for the central value at 3 GeV/c, while showing a

significant suppression for higher pT. The measurement is based on a similar approach

as the analysis presented in this work, using template fits of the impact parameter

distribution. Chapter 10 contains a brief discussion of the differences in the methods

and the implications for future measurements.

The influence of the mass difference of the quarks decreases with the energy of the

quarks. For measurements at high pT, beauty quarks can be expected to qualitatively

behave more similar to charm quarks and even to the light flavors at very high pT. The

low pT-region is particularly useful for the understanding of the mass dependence of the

energy loss and the disentanglement of the mechanisms of interaction with the medium.

An interesting question is whether beauty quarks at low momenta may thermalize. This

suggests the measurement of beauty hadrons at low transverse momenta in central Pb–

Pb collisions. The first such measurement is presented in this work.
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ALICE

Figure 4.1: Schematic of the ALICE detector setup.

Among the different experiments built at the interaction points of the LHC, ALICE

was designed to be particularly well suited for the measurement of heavy-ion collisions.

This purpose requires the ability to deal with large particle multiplicities in individual

collisions, measurements at low transverse momenta in the central rapidity region and

strong particle identification capabilities.

Figure 4.1 shows a schematic overview of ALICE. It broadly consists of three parts: A

central barrel region for the measurement at mid-rapidity, forward detectors for triggering,
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centrality and event plane determination and background rejection and a muon arm.

The latter is used to detect muons, which make up most of the particles that survive

interaction with the large amount of absorber material (≈ 10λint) separating it from the

interaction point. It covers the pseudorapidity range −4 < η < −2.5. Given the mid-

rapidity measurement that is the central theme of this work, the focus of this chapter

will be on detectors particularly relevant to this analysis. A more thorough overview of

the systems may be found in [73].

The so-called central-barrel detectors are placed within the solenoidal L3 magnet. It

provides a magnetic field of 0.5 T parallel to the beam axis, which is used to determine

the transverse momentum of charged particles. The track reconstruction algorithm is

based on the Kalman filter technique [74], combining signals from the different detectors.

In the following the properties of detectors particularly important for this analysis will

be discussed broadly moving from the beam-pipe radially outward.

4.1 The V0 detectors
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Figure 4.2: Centrality determination with the V0 detector [28].

The V0 detector consists of two subsystems called V0A and V0C [75]. They are

scintillator arrays on either side of the interaction point at the pseudorapidities −3.7 <

η <−1.7 and 2.8 < η <−5.1. These detectors are used in the centrality determination

[28]. For this purpose, the assumption is made that the particle production in the

collision has both a contribution from the number of nucleon participants Npart and

from the number of binary collisions Ncoll. The ratio of the contributions is then fitted

by applying the Glauber model discussed in chapter 2.2.1. The resulting model can be

used to define the different centrality classes.
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4.2 Inner Tracking System

The Inner Tracking System (ITS) [76] is responsible for the tracking of charged parti-

cles at mid-rapidity close to the interaction vertex. This ability is particularly useful for

the determination of the interaction vertex as well as the vertices of secondary decays.

For the analysis presented here, this is relevant for two main reasons: The signal elec-

trons typically do not originate from the interaction vertex itself and thus have to be

distinguished. Additionally, many background sources are produced some length away

from the interaction vertex and this needs to be measured. This requires a detector

that is placed close to the interaction vertex but which also has sufficient granularity to

distinguish the large number of charged particles produced in central Pb–Pb collisions.

The detector consists of six cylindrical layers of silicon-based detectors with a pseu-

dorapidity coverage of |η |< 0.9 for the full detector. Since this coverage is reached only

for particles from an origin within 10.6 cm of the interaction vertex along the beam axis

(about the extent of the ’interaction diamond’ in the beam pipe), a requirement of a

primary interaction vertex within 10 cm of the nominal detector center is usually applied

on the analyzed events.

Three different technologies for the design of the detector layers have been used to

address the specific challenges at the different distances to the primary vertex. The

innermost two layers are made of Silicon Pixel Detectors (SPD), which achieve the high

granularity required due to the large track density. The SPD consists of 10 sectors which

are mounted around the beam-pipe and overlap at the edges. The inner layer of the

detector has a distance of about 4 cm to the beam-axis, while it is about 7 cm for the

outer one. The individual pixels measure 50 µm in the rφ -direction and 300 µm in the

z-direction, which gives both the required spatial resolution and a good signal-to-noise

ratio [76].

The technology of the Silicon Drift Detectors (SDD) uses time information to re-

construct the full 2D spatial information. After electron-hole pairs are created in by a

charged particle, the electrons drift through the detector and the peak of their distribu-

tion in time allows for reconstruction of the origin. While the inner four layers have a

true two-dimensional resolution, this is achieved indirectly for the two layers of Silicon

Strip Detectors (SSD) connecting the ITS to the TPC. Each of these consists of two

layers of silicon strips, overlapping at an angle of 35 mrad. A comparison of these allows

for the two-dimensional reconstruction of the signal induced by charged particles.

In the following, the different layers will always be referred to as ITS layers. The

importance for the analysis in particular of the two innermost layers necessitates a thor-
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ough understanding of the detector and in particular of its description in the simulations.

The low radiation length of about 7.2% [77] (for tracks perpendicular to the beam-axis)

nevertheless needs to be taken into account as it produces background electrons from

the conversions of photons in the detector material in addition to the material from the

beam-pipe. This will be further explored in chapters 6 and 7. The ITS also provides

some particle identification. Due to the low separation of the electrons from pions, which

make up the main background of the analysis, this was not used in the analysis described

here.
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Figure 4.3: Left: Transverse momentum resolution of the central barrel tracking. Right:

Particle identification signal of the TPC in Pb–Pb collisions.

Together with the ITS, the Time Projection Chamber (TPC) [78] is the main tracking

device for charged particles in the central barrel. In addition it also provides strong

particle identification information. The TPC is a cylindrical gas detector with length

and diameter of about 5 m. The principle of operation is based on the ionization of

the gas by charged particles. A homogeneous electric field parallel to the beam-axis

lets the produced electrons drift towards the read-out modules on the end-plates of the

detector. For this purpose, the detector is divided by a central electrode. Additionally,

it is divided into an inner and outer part, containing three different sizes of readout

pads [78]. Within the readout pads of the same radius, signals that are nearby in space

and time are combined into clusters. The requirements for clusters used for tracking and

particle identification are slightly different [79]. For this reason, they will be distinguished

by using the terms tracking clusters and PID clusters respectively in this work. The
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combined signals of the ITS and TPC lead to a relative momentum resolution of a few

percent in the measured region as shown in figure 4.3 (left).

For each reconstructed track the PID clusters represent estimates of the track energy

loss along the associated track length. To combine these signals into a single signal value,

the simple use of the arithmetic mean discards all spacial information. The resulting

signal distribution resembles a Landau distribution [80, 81], which does not provide a

good separation of the different particle species. Instead, a truncated mean is used. For

this purpose, the mean is taken of the 60% of clusters with the lowest deposited charge

only. As a result the large tail of the Landau distribution is strongly reduced and for a

fixed transverse momentum resembles a Gaussian distribution. The distribution of this

straggling function will be discussed in more detail in section 6.2.4. The TPC signal

(often abbreviated as dE/dx) after the application of the truncated mean may be found

in figure 4.3 (right).

To simplify the selection or rejection of a particular signal, it has proven useful to

calculate how significantly the signal deviates from a particular particle identity hypoth-

esis:

nσ ,TPC =
(dE/dx)measured− (dE/dx)expected

σ(dE/dx)
, (4.1)

where the expected signal and the expected resolution are calculated individually for

each track. The same definition also applies for other detectors. Within this work, the

nσ ,TPC will always be used with an electron (or positron) hypothesis unless explicitly

stated otherwise.

4.4 TRD

The Transition Radiation Detector (TRD) can provide additional particle identification.

The signal combines the ionization of the detector gas by charged particles with additional

ionization from transition radiation produced in the radiator before the gas volumes. It

consists of 6 layers of detectors in radial distribution. Due to the limited acceptance of

the detector in the data taking period used for this work (10/18 sectors available), it was

used only for supplemental analysis estimating the hadron contamination as discussed in

section 6.3.
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Figure 4.4: Velocity measurement of particles based on the time-of-flight infomation.

The electrons are hidden within the signal distribution of the pions.

4.5 TOF

The Time-of-Flight detector (TOF) is an array of multigap resistive plate chambers

[75, 82]. It compares the arrival times of particles with an estimated time for the event

calculated by comparing different mass hypotheses for the particles of the event [73].

Thus, it can particularly distinguish particles with large mass differences as shown in

figure 4.4. In this way, it provides complementary information to the gas detectors,

in particular where the signal distributions of deuterons and protons cross that of the

electrons as shown in figure 4.3 (right).

4.6 Data set and detector simulations

The data set on which this analysis is based was recorded in 2010 at the LHC with a center

of mass energy per nucleon of
√

sNN = 2.76 TeV. Due to the large number of produced

particles, the minimum bias trigger based on coincident signals in the V0 and SPD

[73] detectors was fully efficient for the 0-20% centrality range discussed here. Within

the 2010 Pb–Pb data taking period, two configurations of the magnetic field (0.5 T)

were used, which will be referred to as the positive and negative field configuration

and associated with the numbers +1 and −1. This determines the direction of the

bending of charged particle tracks in the field which will be relevant for the estimation

of the background due to electrons from photon conversions in the detector material

as described in section 7.1. The data set contains about 3.3M events in the 0–20%

centrality range.

A central technique of the analysis is the use of simulated data in conjunction with
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measurements to understand the response of the detectors to different inputs. The

combination of event and detector simulations used for this purpose will be referred to

as Monte Carlo simulations. All sets of simulated data used in this work are based

on the GEANT3 detector simulation package [83]. The simulations are anchored to the

conditions of the different data taking periods to represent the time dependence of the

detector response. Two different setups for the event generation were used: The HIJING

v1.36 event generator [84] creates events which represent the minimum bias collisions.

This set of simulated events will be referred to as the minimum bias Monte Carlo

sample. Due to the rarity of the beauty and charm hadrons the information from it

about these particles has large statistical uncertainties. For this reason, a second sample

was used, which adds heavy flavour signals to the sample. In addition to the HIJING

event, a signal is added randomly based on the PYTHIA v6.4.21 event generator [85]

with the PERUGIA-0 tune [86]. The additional signals are randomly selected from a list

of heavy flavor signals, containing hadronic and semielectronic decays of charm or beauty

particles as well as J/ψ particles decaying to electrons. This set of simulated events

with added heavy flavor signals will be referred to as the signal-enhanced Monte

Carlo sample. In order not to be influenced by the additional J/ψ particles, these are

discarded for the analysis. Due to the large particle multiplicities in central events, their

general properties do not change strongly with the addition of one heavy-flavor signal.
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Analysis strategy

The beauty quarks cannot be directly measured due to confinement. At high transverse

momenta, jet measurements can give some insight into the quark kinematics, but at

low pT the connection has to be made indirectly via the resulting beauty hadrons. The

connection to the quarks is then made via theoretical calculations as discussed in chapter

3. The large statistics required prevent direct reconstruction of the beauty hadrons via

their purely hadronic decays (e.g. B+→ D̄0 π+, D̄0→K+π−), although this will become

possible for some hadron species after the planned upgrade of the ALICE detector [87].

The approach of this work is based on the measurements of electrons from semileptonic

decays of the beauty hadrons.

The measurement of electrons has the advantage that it can make use of the excellent

particle identification capabilities of the ALICE detector (as described in the previous

chapter). The electrons can either stem directly from the decay of the hadron (denoted

by b→ e) or from the decay to a charm hadron which decays semileptonically. Both

processes have a branching ratio of about 10% [11], giving a total of about 0.205 with

little dependence on the hadron species. For both cases, the electrons will be referred to

as beauty-hadron decay electrons. As a result, electrons above a few GeV/c mostly

come from the decay of charm or beauty hadrons [88].

To connect the kinematic properties of the beauty hadrons to those of their decay

electrons it is necessary to consider their decays. These are included in the Monte

Carlo simulations [85]. Figure 5.1 (left) shows the probability distribution of the pT,e

of the electrons for a given pT,mother of the mother beauty hadron. Most electrons are

produced below 1-2 GeV/c, independent of the transverse momentum of the mother

particle. The distribution P(pT,e|pT,mother) widens towards larger pT,mother. While it

seems like the connection between the electron and hadron momenta is weak, this is

actually not the case. This becomes obvious when asking for the distribution of momenta
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Hadron Decay mode B.R./Multiplicity Mass (GeV/c2) cτ (µm)

B± l+νl anything 0.11 5.28 491.1

c/c̄ X 1.19

B0 l+νl anything 0.10 5.28 455.7

c/c̄ X 1.19

Λ0
b Λ+

c l−νl anything 0.11 5.62 439.5

D± e+ semileptonic 0.16 1.87 311.8

D0 e+ anything 0.065 1.86 122.9

Λ+
c e+ anything 0.045 2.29 59.9

Table 5.1: Properties of selected open heavy flavor hadrons [11].

of the mother beauty hadrons for a given electron P(pT,mother|pT,e), which is shown

on the right side of figure 5.1. While P(pT,e|pT,mother) depends mainly on the decay

characteristics, the distribution of P(pT,mother|pT,e) also has some dependence on the

hadron spectrum in the simulation, which can be made explicit using Bayes’ theorem

(P(pT,mother|pT,e)∼ P(pT,e|pT,mother) P(pT,mother)). Nevertheless, the distribution from

the signal-enhanced Monte Carlo simulations, which are similar to the measured pp case,

can give some general insight. The result shows, that for a fixed electron pT, the mother

particle typically comes from a pT-range near the lower edge of allowed values.

Knowing that a measurement of the pT-differential yield of the electrons provides

substantial information about the beauty hadrons raises the question whether it is pos-

sible to directly calculate the pT-distribution of the beauty hadrons. The tools for such

a calculation will be discussed in chapter 8. Two results are important: The distribu-

tion P(pT,e|pT,mother) in figure 5.1 (left) propagates the pT-distribution of the hadrons

to that of the electrons, thus its inverse can be used for the other direction. If the

correlation between the two variables is not strong, this will typically introduce strong

correlations between the different regions in pT-space, which result in large uncertainties

for the individual points. If only a finite pT-range is measured, this introduces additional

uncertainties in the final result. The application of ad-hoc additional information like

regularization terms can smooth the result but leads to a bias of the measurement that

is difficult to estimate. Instead, propagating the theoretical predictions for the beauty

hadrons to those of the beauty-hadron decay electrons can be done in a straightforward
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Figure 5.1: pT-distributions of beauty hadrons and the daughter electrons in Monte

Carlo Simulations. Left: For a given hadron pT. Right: For a given electron pT. The

line shows the electron pT assuming it receives all energy of the mother particle.

manner via P(pT,e|pT,mother). For this reason, it is prudent to make the comparison be-

tween theory and measurement on the level of the electrons. This will be the approach

for the work presented here.

To get an insight into the dependence of the yield on the transverse momentum,

the measurement was performed within distinct regions of pT. For the remainder of

this thesis, they will usually be referred to as pT-bins. The transverse momentum is

measured based on the bending of the tracks in the magnetic field of the L3 magnet.

Due to the uncertainty of this measurement, it is important to clarify the use of pT in

this context. The pT-bins used for the most part will be bins of the measured pT, while

the result should finally be presented in a distribution of the true pT. The connection

between the two will be described in chapter 8. Until then, ’pT’ will always refer to the

measured value as given from a reconstruction of the detector signals.

The estimation of the yield of beauty electrons in a particular pT-bin can be split into

two parts. In a first step electrons are selected by choosing suitable quality criteria for the

tracks and by using the PID capabilities of the detectors. This yields a sample of electron

candidates with some remaining contamination by other particles. With a knowledge of

the efficiency of the selection εselection, the central values for the pT-differential yield can

be calculated as
dNb→e

corrected(pT)

dpT
=

1
εselection(pT)

dNb→e
raw (pT)

dpT
. (5.1)

This efficiency correction has an associated uncertainty due to the estimation of the
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efficiency. The selection itself was applied using a set of independent requirements for

the different detectors. An advantage of this approach is the clear separation of the

contributions from the different detectors, which allows for a more thorough estimate of

the associated uncertainties.

The second step is the estimation of the fraction of beauty-hadron decay electrons

in the sample. Two properties of beauty hadrons seem particularly useful: They have a

high mass (typically 5-6 GeV/c2) and they decay weakly, which gives them a sizeable

decay length (typically 400-500 µm). Both properties do not seem easily applicable to

the single electron measurement as single particles allow neither for the measurement of

an invariant mass not that of the decay length of a secondary vertex. Nevertheless, it

is possible to make use of both. In the low-background environment of pp collisions it

is possible to make use of the large mass of beauty hadrons by measuring the angular

correlations of electrons. The typical angles between the decay products are wider

for beauty hadrons than for those from charm, which gives some information for the

separation of their contributions [6]. For the large background in Pb–Pb collisions,

the large decay length was used to separate the different electron contributions, albeit

indirectly.

primary vertex

secondary vertex

e

dca

Figure 5.2: Impact parameter definition

When a beauty hadron decays some distance away from the primary vertex, the

daughter electron will typically be emitted at an angle relative to the mother particle’s

momentum vector. If the electron track is measured precisely and compared to the

measurement of the position of the primary vertex, they will typically be incompatible.

42



CHAPTER 5. ANALYSIS STRATEGY

This is the fundamental idea for the separation of the fraction of electrons from beauty-

hadrons decays. It can be made more precise, by considering the plane perpendicular

to the beam axis which contains the primary vertex of a collision. An example of the

projection of an electron track on this plane is shown in figure 5.2. A measure for how

incompatible a track is with the hypothesis that it comes from the primary vertex is the

distance of closest approach (dca) or impact parameter. To measure it, the track is

propagated back from the measured points in the detectors towards the primary vertex.

The smallest distance of the track depends strongly on the decay length of the mother

particle.

It has proven useful to assign a sign to the value of the dca. Often, it is assigned

as positive or negative depending on whether the track passes the primary vertex on its

left or right side. For the analysis in this work, a different definition was more suited:

The original (signed) value was additionally multiplied by the field configuration (+1 for

positive, −1 for negative field) and the sign of the charge of the particle (positron or

electron). This increases the separation power of the variable as will be shown in section

7. The resulting variable will be referred to simply as the impact parameter in the

following.

The measured value of the impact parameter depends on the decay radius (and thus

the decay length of the mother particle), the angle of the daughter particle with respect

to the momentum vector of the mother, the magnetic field (which bends the track

towards or away from the primary vertex), the resolution of the tracking close to the

primary vertex and the resolution of the primary vertex itself. In the high multiplicity Pb–

Pb collisions, the primary vertex resolution is very high compared to the proton-proton

case [73].

The analysis thus consists of three steps: Identification of a sample of electrons for

different pT-ranges, estimation of the fraction of electrons from the decay of beauty

hadrons and a correction for the measurement uncertainty of the transverse momentum.

The electron identification consists of separate requirements of detector signal ranges,

while the signal extraction is performed using the impact parameter.
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Chapter 6

Track selection and particle

identification

6.1 Introduction

Tracks measured by the detector show variations in the associated signals due to both

statistical fluctuations of the signal and dependencies of the detector signal on the

position of the track in the detector setup. The analysis is simplified by the choice of

a sample of particles with requirements for the track quality, leading to a more uniform

detector response. Additionally, the detector signals are required to be consistent with

the hypothesis that the particles are electrons. The choice for these track quality and

particle identification requirements has a certain efficiency, which was estimated mostly

based on the Monte Carlo simulations of the events and detectors. This efficiency also

has an associated uncertainty. Given the close connection between the selection criteria,

their efficiencies and the associated uncertainties, they will be discussed together in this

chapter. The selection criteria should provide a good impact parameter resolution, a low

remaining hadronic background and a high efficiency while also allowing for an accurate

estimate of the associated uncertainties. The implications for the individual detectors

will be discussed in the following.

The ITS is particularly important for the measurement of the impact parameter

because it is closest to the interaction point. Each track can have a reconstructed signal

in each of the six layers. To ensure a good resolution of the impact parameter, the

track was required to have an associated signal in the two innermost layers (the SPD)

and at least four layers in total. Apart from the impact parameter resolution, this also

reduces the background of electrons from photon conversions in the detector material,
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Figure 6.1: Reconstructed vertices of photon conversions in the detector.

which is important for the signal extraction. Figure 6.1 shows the production vertices of

electron-positron pairs in the inner part of the detector. The requirement of a signal in

the innermost two layers of the ITS removes most of the conversion electrons that are

produced outside of the innermost layer, which has two advantages: The total number of

such background electrons is reduced. Additionally, the remaining electrons are produced

close to the primary vertex. This results in an impact parameter distribution that is more

favorable for the signal extraction. It will be discussed in more detail in sections 7.1 and

7.3.2.

Figure 6.2: nσ ,TOF-distribution (left) and nσ ,TPC-distribution after application the TOF

signal requirements (right).

For the TPC, the number of clusters is strongly correlated with the quality of the
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energy loss measurement. Due to the typically larger energy deposit, the number of

clusters is larger for electrons than for most hadrons. Requiring a large number of

clusters improves both the resolution of the detector as well as making the modeling of

the signal easier. As a result, the hadron contamination is lower and the estimate of

the efficiency is better, leading to a lower uncertainty. For this purpose, 110 tracking

clusters and 80 PID clusters were required in addition to a tracking χ2 below 4, resulting

in an efficiency of 90− 95%. The distribution of the PID signal (plotted as nσ ,TPC in

figure 6.2, right) shows that the main background has a lower value, motivating an

asymmetric selection. The PID selection criterion was chosen to be −0.5 < nσ ,TPC < 3.

The efficiency of about 70% does not vary quickly with (transverse) momentum. As

a result, the efficiency within a pT-bin is less dependent on the slope of the spectrum,

which increases the accuracy of the efficiency determination and its uncertainty.

For the TOF, no additional track quality requirements were added besides the ex-

istence of a PID signal. A selection on the particles time-of-flight does not reduce the

primary background from the pions very well due to the pions’ small mass. It serves

mainly to decrease the contamination from protons and deuterons, which have a peak

that is well separated in the places where they cross the electrons in the TPC signal as

shown in figure 6.2. For this reason, a loose requirement of −3 < nσ ,TOF < 3 is sufficient.

6.2 Estimation of the efficiencies and associated un-

certainties

The track selection criteria remove a significant amount of measured tracks from the

pool of electron candidates. To take this into account, it is important to estimate both

the efficiency of this selection as well as its associated uncertainty. An estimate of the

efficiency can be obtained from Monte Carlo simulations, which was done for all steps

except the TPC PID selection. Given the large statistics of the simulations with regard to

this task, the uncertainty associated with this correction comes from the accuracy of the

representation of the efficiency in the simulation, which mostly means the representation

of the detector responses. The simulations can give little information about their own

accuracy, which means that it has to be determined by comparison to data as far as this

is possible. In this regard, it is useful to divide the total efficiency into contributions

from the individual track selection requirements. The efficiency for a particular track

selection criterion depends mostly on the representation of the relevant detector but also

to some extent on the interplay between the different detectors.
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To define the electron candidate sample, the order in which the individual criteria are

applied is arbitrary and does not influence the total efficiency. It also should not affect

its uncertainty. However, to define the efficiency of one particular selection criterion

(or a set of such) it does make a difference. In general, the choice of the particle

sample on which a selection criterion is applied changes its efficiency. Typically, having

some previous requirements applied (even for other detectors), biases the sample towards

higher quality tracks and yields a higher efficiency for a subsequent one than if this one

had been applied first. Let ci represent the selection criterion i and ε(ci|c j) be the

efficiency of the requirement of a criterion ci on a sample where c j has already been

applied. The total efficiency can then be written as

ε(c1,c2, . . . ,cn) = ε(cn|c1, . . .cn−1)ε(cn−1|c1, . . .cn−2) . . .ε(c2|c1)ε(c1) . (6.1)

While this is true for any permutation of the cn, the individual factors can change

significantly. This means, that to estimate the systematic uncertainty of a track selection

criterion it is important to also specify the sample it is applied on. For example, the

efficiency of the TPC PID signal requirement of −0.5 < nσ ,TPC < 3 is only meaningful

if it is known whether the PID cluster requirement is already in effect as this changes

the shape of the straggling function.

The order of the different criteria being arbitrary, it can be used to simplify the

estimation of the systematic uncertainties. The choice is given here, while its justification

will become apparent later, in the discussion of the individual efficiencies.

1. A requirement for a reconstructed track in the ITS and TPC: Signal in at least

two layers of the ITS and at least 30 tracking clusters in the TPC (εrec)

2. Signal in the first two layers of the ITS, and in least 4 layers total (εITS)

3. At least 110 tracking clusters in the TPC, at least 80 PID clusters and χ2
TPC < 4

(εTPC−Quality)

4. A reconstructed track in TOF with |nσ ,TOF |< 3 (εTOF)

5. A TPC PID signal with −0.5 < nσ ,TPC < 3 (εTPC−PID)

Figure 6.3 shows the cumulative efficiencies up to a given step. The efficiency is

estimated by comparing the number electrons in the range |η | < 0.8 before and after

the selection in the signal-enhanced Monte Carlo simulations. To make the sample more

representative of the properties of electrons from beauty-hadron decays, only electrons

produced within 0.5 cm of the reconstructed interaction vertex were chosen for the
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Figure 6.3: Cumulative efficiencies of the different selection steps.

determination of the efficiency. The determination of the TPC PID selection efficiency

was fully data-based and will be discussed in detail in section 6.2.4. Due to the large

samples, statistical fluctuations are small.

The accuracy of this estimate is given by the difference of the efficiency between data

and Monte Carlo simulations. However, the efficiency in data is difficult to ascertain. For

this reason, an indirect approach is necessary to estimate a possible difference between

the true efficiency and the one given by the simulations. The approach used in this

analysis may be summarized as follows: The first step is to identify the physical processes

that determine the efficiency. With this knowledge, a sample of particles can then be

chosen that is affected similarly, but which can also be selected in data. For such a

proxy sample of particles, the efficiency is determined in data and in the simulations. A

difference in the efficiency of the proxy sample points to a similar difference in efficiency

also for the beauty-hadron decay electrons and is thus used to estimate the systematic

uncertainty. In the following sections, this process will be described for the different

categories of selection criteria.

For the purpose of comparing data and simulations, the V0 samples are of central

importance. These are samples of particles, that are produced in the decay of neutral

mother particles and which can be selected using their decay topology. The selection

process is described in more detail in [89]. In particular, the decays Λ→ p−π+, K0
S→

π+π− and γ → e+e− (in the detector material) are considered as well as the processes

with the respective antiparticles. This results in samples of protons, pions and electrons
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of which the latter two are of interest for this analysis. In the following, the sample of

electrons (and positrons) selected in this manner will be referred to as the V0 electrons,

while the sample of charged pions will be referred to as the as the V0 pions for brevity.

It is not possible to perform such an analysis without at least basic tracking infor-

mation. The starting point for the analysis were the requirements of a signal in at least

two of the ITS layers and at least 30 tracking clusters in the TPC, which leads to an

efficiency of about 94%. The uncertainty should be similar to the 3% estimated in e.g.

[90] by comparing all reconstructed tracks with those reconstructed in the TPC.

6.2.1 ITS selection criteria

The efficiency of the requirement of the ITS hits depends mainly on dead areas in the

detector. A charged particle with a given production vertex, direction and momentum

will usually produce a signal in all active detector elements it traverses. If however, one

or several dead detector areas are traversed, the selection criteria might not be met.

This is mostly independent of the particle species, meaning that the efficiency is for

the most part determined by geometric effects. Therefore unidentified charged particles

can be used as the proxy sample for the estimation of the systematic uncertainties.

The efficiency of the ITS selection criteria should be similar for charged particles and

for electrons. A possible difference between the two samples might be the hadronic

interaction of charged hadrons with the detector material, which does not occur for

electrons. For this reason, the comparison is based on a geometric approach, alleviating

such difficulties.

Figure 6.4 shows the distribution of primary charged particles that fulfill the ITS

signal requirements in η −φ -space. The generated distribution can be expected to be

flat in the polar angle φ when averaging over many collisions and particles. There is no

such symmetry in the η-direction. Accordingly, the distribution was corrected for this by

normalizing with the η-distribution of tracks without the ITS requirements. This omits

some effects such as the creation of secondary particles, but still gives a representative

sample for the purpose of an estimation of the systematic uncertainty. It is apparent

from the figure that the η−φ -distribution mostly contains regions of high efficiency and

regions of very low efficiency. If these regions are normalized to represent full efficiency,

then the diagrams of figure 6.4 would represent the local efficiency in the η−φ -space.

To achieve this, a region of high efficiency is chosen (represented by the red box) and

used for normalization. A proxy for the efficiency is now the average over the whole

η−φ -space. The result of 60.2% for the Monte Carlo simulations is very close to the
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Figure 6.4: Distribution of primary charged particles in η and φ for the pT-range

1.5–2 GeV/c for data (left) and in Monte Carlo simulations (right), corrected for the

η-distribution of charged particles. One set of normalization regions is shown.

efficiency of 57% used for the correction. This supports the basic assumption that the

proxy sample is representative.

The proxy efficiency defined in this way differs slightly between data and the sim-

ulations (59.2% vs. 60.2%). To make sure this result is not dependent on the exact

point of the normalization region, the procedure was repeated for different regions and in

different (transverse) momentum bins. The result was qualitatively similar. This means,

that the efficiency of the ITS track quality requirements is represented within 2% by the

Monte Carlo simulations for this case.

6.2.2 TPC quality requirements

The second set of selection criteria concerns the tracking quality in the TPC. It mainly

concerns the number of clusters associated with a track. The ionization of the gas

depends significantly on the βγ of the particle. Additionally, the track length in the

detector depends on the transverse momentum due to the bending of the track in the

magnetic field. Both influence the number of clusters. Consequently, charged hadrons

are not a representative proxy sample in this case. It is not easily possible to obtain a

clean, representative sample of pure electrons while applying only the ITS requirements

but it can be approximated. For this purpose, the V0 electron sample described above

was used. Figure 6.5 shows the nTPC
σ ,e -distribution of electrons selected in this way. The

blue distribution shows a large peak for pions. This means, that this electron sample is
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Figure 6.5: TPC signal of V0 sample. All samples were normalized to have the same

area on the right side of the electron peak.

strongly contaminated by hadrons and cannot be used directly.

Due to the large contamination of the V0 sample, it is necessary to apply addi-

tional selection criteria. To ensure that the sample still represents the properties of the

electrons from beauty-hadron decays, it is important to understand the reasons for this

contamination as well as its properties. Selecting a similar sample in a proton-proton col-

lision results in a much smaller contamination suggesting combinatorics as a cause: The

large multiplicity of pions produces sufficient combinatorial pairs that have properties

consistent with a photon conversion production process. Additionally, the requirement

of a signal in the innermost layer of the ITS preferentially selects particles produced close

to the interaction vertex, while most photons conversions happen at larger radii.

To generate a clean sample of electrons, TPC PID would be useful. Unfortunately,

the TPC PID signal depends quite strongly on the TPC quality selection criteria: If,

for example, the truncated mean of the TPC signal is calculated with fewer clusters,

then the signal nTPC
σ ,e will be more asymmetric (as discussed in chapter 4), changing

the efficiency. Conversely, this means, that the sample will not be representative if the

TPC PID requirement is applied. The correlation effect decreases as the efficiency of the

PID requirement increases. This suggests using a weaker TPC requirement to select the

sample. Additionally, also the contamination changes significantly with the application of

the TPC quality requirements. The tracks with few PID clusters have a worse resolution,

resulting in a nTPC
σ ,e closer to the electron line. This effect means that contamination of
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the electron sample is particularly problematic for this approach and that the TPC PID

requirement should be stronger. To solve this dilemma, some additional conditions were

applied to the sample.

As explained before, the reasons for the hadron contamination of the V0 sample are

the large particle multiplicity and the requirement of a signal in the innermost layer of

the ITS. One radical way of reducing the amount of hadron contamination is to require

that all particles in the sample explicitly do not have a signal in the innermost layer.

Due to the requirement of a hit in the second layer, this preferentially selects particles

produced in the material between the first and second layer, reducing the contribution of

primary particles. In turn, this can also bias the result in two ways: The change in the ITS

cluster requirement changes the η−φ distribution of the accepted particles (as explained

before), while the TPC cluster reconstruction depends to some extent on these qualities.

Additionally, a track produced outside the innermost layer may in a high multiplicity

environment be wrongly associated with the signal of another track in the innermost

layer. This effect depends on the local track density in the η−φ region. Consequently,

this requirement would slightly bias the tracks in the sample towards coming from regions

of a lower local track density. The local track density also influences the number of PID

clusters because clusters from overlapping tracks are not used for PID. Another way of

decreasing the background is to directly use a sample from more peripheral collisions

for this purpose. The lower track number gives fewer combinations of hadron pairs that

resemble electrons from photon conversions. This approach also changes the local track

multiplicity although in a different manner.

To estimate the uncertainty without being influenced too much by the biases, several

different samples were created and the resulting differences in the efficiencies were com-

pared. Figure 6.5 shows how different choices of centrality and ITS cluster requirements

influence the remaining hadron contamination. For the weaker TPC signal cut, a range

of −1.5 < nTPC
σ ,e < 4 was chosen. For comparison also −0.5 < nTPC

σ ,e < 4 was used for a

cleaner sample with a larger bias. The comparison for the efficiency of the TPC track

quality requirements between data and Monte Carlo simulations is shown in figure 6.6.

Due to the quickly falling momentum distribution of the photons (e.g. figure 7.1), the

statistical uncertainties quickly increase with pT. Between one and two GeV/c, the

difference in efficiency is of the order of a few percent. At higher transverse momentum,

the different samples give different estimates. In particular, the sample with 0–20% cen-

trality without the first pixel deviates. The deviation changes strongly with the TPC PID

requirement, pointing to an influence of the hadron contamination. This interpretation

is further supported by the fact, that the sample with the strongest additional selection
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Figure 6.6: Comparison of the TPC track quality requirement efficiencies of the proxy

samples in data and Monte Carlo.

criteria shows the least deviation. For this reason, only the pT-interval 1−2 GeV/c was

used for the estimation of a systematic bias. In this region, the deviation is typically less

than 3%. Thus, this number was chosen to represent the uncertainty in the determina-

tion of the efficiency of the TPC quality criteria. The large deviation below 1 GeV/c

is due to proton contamination. It is worth noting here, that a 3% uncertainty on an

efficiency of 90% is rather large in itself. However, in this particular analysis it is not

significant for the final uncertainty. Due to the small change in energy loss and track

length in the TPC for electrons above 2 GeV/c, this uncertainty was assumed to be a

reasonable estimate for the larger transverse momenta as well.

6.2.3 TOF selection criteria

For the TOF requirement, a similar approach was used. Again, it is important to use

electrons for a representative signal. The efficiency of this selection is about 60%. This is

dominated by the requirement of having a TOF signal associated with the track segment.

The efficiency of the signal being within 3σ of the electron hypothesis (|nσ ,TOF| < 3)

is about 95%. For simplicity, the samples were selected in the same manner as before.

The additional TPC selection criteria improve the purity of the samples as shown in

figure 6.7, where the improvement is most apparent in the deeper minimum between

the peaks. As a consequence, this allows for a comparison at higher pT due to the

reduction of the pion contamination. On the other hand, any remaining contamination
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Figure 6.7: TPC signal of V0 sample after application of the TPC quality selection. All

samples were normalized to have the same area on the right side of the electron peak.

by heavier hadrons will have an efficiency that is small because the velocity β and thus

the TOF signal changes more strongly from electrons to e.g. protons than the TPC

cluster distributions do. This results in a greater effect due to contaminating protons

than in the previous section.

This effect can be seen in figure 6.8. Around 1 GeV/c the protons have a similar

TPC signal as the electrons (this is also shown in figure 6.2) giving rise to a large

discrepancy in the efficiency estimate of the samples. On the other hand, the comparison

is much easier for the higher momenta, above 1.5 GeV/c. There, the differences are

of the order of 10% with the deviations between the samples being of the order of the

expected statistical fluctuations, which are interpreted as the systematic uncertainty of

the efficiency. Further analysis shows, that there is a contribution both from the tracking

requirement (the existence of a TOF signal) and the PID requirement (|nσ ,TOF| < 3).

Both contribute at a similar order and partially cancel.

6.2.4 TPC PID selection

The efforts of the previous paragraphs concern the estimate of the systematic uncertainty

of the efficiencies. The values themselves originate from the Monte Carlo simulations.

For the TPC PID selection, the approach was to go a step further and also estimate the

efficiency of the selection criterion directly using a data-driven method. This means that

where it was previously sufficient to find a representative sample giving a proxy for the
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Figure 6.8: Comparison of the TOF selection efficiencies of the proxy samples in data

and Monte Carlo.

efficiency it is now essential to estimate precisely how well it reproduces the efficiency.

The difficulty is alleviated by the application of the previous selection steps. Once more,

the V0 sample of electrons from photon conversions was used. In this case, all track

selection criteria were the ones from the analysis to avoid introducing a bias to the

estimation. On the other hand, the use of the V0 sample itself already introduces a bias

which has to be corrected for.

Figure 6.9 shows the nTPC
σ ,e -distribution for electrons from the V0 sample in black.

The sample is dominated by hadrons (mostly charged pions). In contrast to the previous

estimates, it is obviously not possible to apply TPC PID to estimate the efficiency of the

TPC PID. For an estimate of the efficiency, it is necessary to add significant additional

information. This in turn requires a thorough understanding of the TPC signal itself. The

purpose of the discussion here will be to motivate the simple models used for the present

analysis. A more in-depth overview of the physics can be found in [81]. Three main

effects have to be considered: The probability distribution of the charge in individual

clusters, the truncated mean, and additional detector effects.

For each cluster, there is an associated length of track traversing the pad-row. The

ionization of the gas due to the charged particle along this track approximately (exclud-

ing some edge-effects) corresponds to the signal found at the pads after amplification.

The signal for a single cluster is the sum of the energy loss for several individual inter-

actions of the charged particle with the gas. While the exact details of the individual

interactions depend on the gas composition [81], the sum over a finite track length can
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Figure 6.9: TPC Signal distribution from the V0 sample. Several functions were used

for the extrapolation towards lower signal.

be approximated by a Landau distribution [80].

As discussed in section 4.3, the signals of the different clusters are combined using

a truncated mean: Out of all PID clusters of one track, only the 60% with the lowest

signal are considered for the average. As a result, the tail of the distribution towards

higher values is reduced. It can be shown that with some assumptions the effect of the

truncated mean can be approximated with a function of the form [91]:

f (∆)∼ L(∆) · exp(−λ∆) (6.2)

Where ∆ is the energy loss, L(∆) is the Landau distribution and λ is a positive, real

constant. A brief motivation for this form may be found in appendix B.1.

The full shape of the TPC signal distribution depends also on additional effects.

There is a dependence on the track length: A track at a larger pseudorapidity has a larger

track length associated with individual clusters, meaning a larger number of individual

interactions and thus a different shape of the resulting TPC signal. Additionally, there

are dependencies on the number of clusters, the event multiplicity, electronics noise etc..

As a significantly simplified model, these can be interpreted as different independent

probability distributions that are sampled and added to the signal. If there are sufficiently

many effects of similar size, the total effect should resemble a Gaussian noise that is

added onto the signal. If they dominate, the resulting distribution should resemble a

Gaussian.

The sum of the effects of the Gaussian noise and the truncated mean results in a
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convolution of the distributions, giving a simple model to describe the TPC signal:

f (∆)∼ L(∆) · exp(−λ∆)⊗G(∆) , (6.3)

where G(∆) is a Gaussian distribution. This model has four free parameters: The mode

and width of the Landau distribution, the parameter in the exponential function and the

width of the Gaussian. There are two important limiting cases: If the Landau·Exponential

is much wider than the Gaussian, the distribution is dominated by the effect of the

truncated mean. If the Gaussian is much wider, the distribution is dominated by noise

effects. This motivates two simpler models to represent the extreme cases: The model

of equation 6.2, which will be called the Landau·Exp-model and a pure Gaussian model.

The limiting cases are useful to estimate the uncertainty inherent in the strong model

assumptions.

An important additional effect was shown in [92]: The TPC signal distributions (as

well as nTPC
σ ,e ) have a significant tail towards higher values in central Pb–Pb collisions as

shown in figure 6.13. This was shown by selecting a pure sample of pions with the TRD.

The effect was attributed to shared clusters in the TPC. The high multiplicity in central

Pb–Pb collisions can occasionally lead to tracks being very close through much of the

TPC volume. In this case some of the clusters may contain charge from the ionization

by both particles, while the tracking algorithm is unable to distinguish them. This leads

to tracks with an associated signal that is of a factor of order two higher than the pion

signal. The effect can be seen in figure 6.2, where a ”cloud” is visible above the electron

line. As a consequence, the effect is very important for the estimation of the remaining

contamination of the electron sample. For the V0 sample the effect is reduced due to

the additional selection criteria. This difference will be considered later, to extract the

true TPC PID selection efficiency. The effect is not included in the models described

above.

To assess the accuracy of the models, they were tested using the V0 pions. Due to

the large abundance of such pions, the contamination of the sample is significantly lower

than for the electrons. The resulting fits are shown in figure 6.10. As expected, the full

model of equation 6.3 fits best. The reasons for this are both that it describes more

effects and the fact that it contains an additional free fit parameter. The extreme models

Landau·Exp and the pure Gaussian under- or overestimate the measured distribution

typically where the other deviates to the other direction. This gives further credence to

the interpretation that they present limiting cases. Some contamination may be present

in the tails of the distribution, but the result does not depend strongly on the fit range.

This suggests, that any remaining contamination does not have a strong influence on
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Figure 6.10: TPC Signal distribution for pions from the decays of kaons with fits of the

models. The pure Gaussian and Landau·Exp models deviate in opposite directions.

Model pT-range

1.25−2 GeV/c 2−3 GeV/c

Gauss 0.696 0.745

Landau·Exponential 0.724 0.768

Landau·Exponential⊗Gauss 0.707 0.745

Table 6.1: Estimates of the TPC PID selection efficiencies estimated with the three

models.

the efficiency estimation.

The models could now be applied to the electron V0 distribution. However, the

remaining hadron contamination limits the fit range somewhat, as it is not clear at

which point on the left of the peak in figure 6.9 the deviation from the pure electron

signal distribution becomes significant. The pion V0 sample can be used to slightly

improve upon this. It is important to note that is cannot be directly subtracted because

the different selection criteria of the pion V0 sample and the electron V0 sample gives

a slight bias to the distribution. The slope of the right flank however is approximately

reproduced. By fixing the amplitude there, the contamination in the region of the

electron peak is reduced. The fit was performed in the region −1.5 < nTPC
σ ,e < 5 with the

results shown in figure 6.9.

The fits result in an estimate of the TPC efficiency for each of the models. The
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Figure 6.11: Left: Normalized pseudorapidity distributions of electrons from photon

conversions and from other processes in Monte Carlo simulations. The large pT-range

was chosen to decrease statistical fluctuations. Right: Pseudorapidity dependence of

the TPC signal selection efficiency. The estimate was performed in ranges of |η |, with

mirrored points plotted.

most complex model given by equation 6.3 was considered to be the central estimate,

with the two limiting cases being used for the estimation of the modeling uncertainty.

The fits were performed in two different pT-ranges. The ranges were chosen to be fairly

large in order to have sufficient statistics. Figure 6.9 shows the resulting fits, while the

resulting efficiency estimates are given in table 6.1. The difference between the central

model and the limiting cases is of the order of 2%. This value was chosen to represent

the uncertainty due to the modeling in the extrapolation of the electron signal.

The estimated efficiencies in the two pT-ranges show a difference of about 5% in the

central values where no effect of this size is expected. This was incorporated by using a

constant efficiency estimate of 0.73 and including an additional 3% uncertainty due to

the possible momentum dependence.

It is important to consider any biases of the V0 electron sample with respect to the

signal electrons. An important effect is the pseudorapidity dependence of the signal. Fig-

ure 6.11 (left) shows the difference of the pseudorapidity distributions of electrons from

photon conversions in comparison to those from other processes. In comparison, more

conversion electrons (red line) are produced at larger values of the absolute pseudorpidity

than other electrons (green line). The difference can be explained by the difference in the

material budget for photons at different pseudorapidities. For a cylindrical geometry, the

material budget yields changes with pseudorapidity by a factor of cosh(η) (calculation in

appendix B.2). Multiplying this factor to the η-distribution the other electrons yields a

distribution (blue) very similar to that of electrons from photon conversions, suggesting
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that this is the main effect for the changed distribution. In order for this pseudorapidity

dependence to play a role, the efficiency must depend on the pseudorapidity.

To estimate the η-dependence of the efficiency of the TPC PID requirement, the fits

mentioned above were performed separately for different intervals of |η |: |η | ∈ [0,0.2],

[0.4,0.8], [0.6,0.8]. The resulting estimate of the η-dependence of the efficiency shown

in figure 6.11 (right) was then interpolated using a function of the form p0+ p1η4 with

two free parameters. Applying the different pseudorapidty distributions shown in in figure

6.11 (right) to this result, yields an effect that is smaller than 2%.
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Figure 6.12: nσ ,TPC-distribution for pions selected with the TRD [93]

.

The second important bias to the efficiency estimated with the V0 sample is the

tail of the true distribution towards larger signal values. It is estimated by studying the

corresponding effect for pions. This cannot be achieved using the V0 pion sample shown

in figure 6.10 because the selection of the decay geometry should decrease the tail in a

similar way as for the V0 electrons. For this reason, pions were selected using the TRD.

The resulting distribution is shown in figure 6.12. As discussed in [92], two types of

biases can occur: The TRD PID requirement might itself bias the distribution towards

higher quality tracks and thus decrease the influence of the tail. On the other hand some

remaining electron contamination might increase the estimate of the pion tail. It is not

obvious from figure 6.12, where the roughly exponential fall of the main peak ends and

the tail starts. The assumption of reasonable starting points for the tail (as indicated in

figure 6.12) suggest that significantly less than 1% of particles end up in the tail. This

ratio decreases quickly with pT due to the combinatorial nature of the effect. The effect
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Criteria approx. efficiency uncertainty estimate

2 ITS + 30 TPC clusters 0.94 3%

ITS 0.57 2%

TPC track quality 0.9 3%

TOF 0.6 10%

TPC PID 0.73 5%

total 0.2 12.1%

Table 6.2: Systematic uncertainties of the track selection and PID steps.

on the efficiency should thus be smaller than 2%.

For the TPC PID requirement, the uncertainty of the efficiency has contributions

from the TPC signal model (2%), the possible pT-dependence (3%), the η dependence

(2%) and the tail of the distribution (2%) yielding a total of about 5%. The uncertainties

for all efficiencies were assumed to be independent and were thus summed in quadrature.

An overview may be found in table 6.2.

6.3 Hadron contamination

Figure 6.13: Template fit used for the estimation of the hadron contamination (from

[92])

The remaining hadron contamination after all track selection criteria are applied is

treated implicitly by the signal extraction method (discussed in chapter 7). An estimate

for the impurity can be found in [92], where the hadron contamination was estimated
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Figure 6.14: Estimated contamination using a TPC PID selection of 0 < nσTPC < 3

(from [92]).

for a requirement of 0 < nTPC
σ ,e < 3. This was done by fitting the TPC signal of the

background with signal templates selected with the TOF and TRD as shown in figure

6.13. The electron signal distribution was approximated by a Gaussian. The resulting

estimate of the contamination is shown in figure 6.14. This shows a typical hadron

contamination of about 15% even at low pT. Towards higher pT, the influence of the

tail decreases, but the peak of the pion signal distribution moves closer to that of the

electrons. The looser cut of −0.5< nTPC
σ ,e < 3 in the analysis discussed in this work should

increase the contamination further. Thus, a sizeable hadron contamination consisting

mostly of charged pions can be expected throughout the measured range. Its effect on

the measurement is quantified in section 7.3.4.
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Chapter 7

Signal Extraction

After preparing the sample of electron candidates, the next step is to extract the fraction

of electrons from the decays of beauty hadrons. This can be achieved by using the impact

parameter of the electrons as additional information. The first part of this chapter is

concerned with the different sources of electrons and how they can be grouped for the

signal extraction. The second part explains the mathematical foundation of the signal

extraction method. The associated sources of uncertainty are discussed in the third part.

7.1 Electron sources

The electrons in the sample have many different sources. Their relative importance

for the analysis varies strongly with pT. Figure 7.1 shows an estimate for the non-

heavy flavor background electrons in pp collisions at
√

s = 7 TeV [88]. This background

is dominated by the decays of light mesons, e.g. the three-body Dalitz decay of the

neutral pion: π0→ e+e−γ . The light mesons typically also have large branching ratios

to photons (e.g. π0→ γγ with about 99% [11]). In relation, the contribution from direct

photons is very small [94]. Photons can convert to electron-positron pairs in the detector

material.

Strange particles contribute additionally to the background. Their fractional con-

tribution is small due to the fact that they have a long decay length and thus often

decay outside of the innermost layer of the ITS, excluding them from the measurement.

The long decay length however results in a very wide impact parameter distribution for

the remaining electrons. There is also a small contribution from the decays of J/ψ

particles, which are not considered part of the charm contribution for the background

classification.

Another background contribution are the electrons from the decays of charm hadrons.
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Figure 7.1: Non-heavy flavor electron sources in pp collisions at
√

s = 7 TeV compared

with the measured cross section of electrons. The ratio of the measured (inclusive)

electrons to the background shows that the heavy flavor contribution dominates towards

higher transverse momenta [88].
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Figure 7.2: pT-integrated and normalized impact parameter distributions for the four

groups of electron sources discussed in the text. The distributions for Dalitz and conver-

sion electrons are from minimum bias Monte Carlo simulations, while those for charm

and beauty hadron decays come from the enhanced Monte Carlo sample.

These originate mainly from the decays of D0, D+ and Ds mesons and Λc baryons (as

well as their antiparticles). Finally, the hadron contamination should be considered. It

consists mostly of charged pions produced close to the primary vertex.

For the purpose of a study based on the impact parameter, it is more reasonable

to group the background contributions in terms of their impact parameter distributions

instead of the source. Four groups were created for the purpose of this analysis. Their

pT-integrated impact parameter distributions are shown in figure 7.2.

The first group is the signal: Electrons from beauty-hadron decays. The beauty

hadrons typically have decay lengths of the order of 500 µm. Additionally, they often

decay to charm hadrons, which can also decay to electrons and thereby add a signifi-

cant decay length (table 5.1). This results in an impact parameter distribution that is

wider than the impact parameter distributions for most background contributions in the

measured pT-range. The distribution is also significantly wider than the impact param-

eter resolution and approximately symmetric around zero. The connection to the decay

length is illustrated in figure 5.2.

Similar considerations also apply to the electrons from charm-hadron decays. The

main difference is the shorter decay length. As a result, their impact parameter distribu-

tion is slimmer than that of the beauty-hadron decay electrons. Additionally the decay
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R

d0

beam pipe

Figure 7.3: Sketch of the production of conversion electrons in the detector material

(e.g. the beam-pipe).

length also varies significantly between the different charm-hadron species. This results

in a peak width that is of the order of the impact parameter resolution while the tails

of the distribution extend further outward. Thus, the impact parameter distribution of

charm-hadron decay electrons is composed of several contributions with different impact

parameter distribution, giving some uncertainty of its shape. This uncertainty has to be

taken into account in particular with respect to its effect on the estimate of the beauty

contribution.

The third group contains electrons from photon conversions in the detector material,

which will be referred to as conversion electrons in the following. The photons are

produced mostly from the decay of light mesons. In the transverse plane, the tracks of

the electron and positron are circles due to the constant magnetic field. With the added

information that the angle of the momentum of the produced electron (or positron) to

the photon is of the order mec2/Ee [95] and thus very small, a typical value of the impact

parameter is

|〈d0〉| ≈
R2|q|B

2pT
. (7.1)

The process is sketched in figure 7.3. A short derivation may be found in appendix
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Figure 7.4: Distribution of the production radii of conversion electrons in the Monte

Carlo minimum bias sample after application of the track selection criteria.

B.3. While the decay typically happens quite far from the primary vertex (the radius of

the beam pipe is 3 cm compared to cτ ≈ 500 µm for the beauty hadrons) the small

angle to the photon means that the impact parameter appears only due to the magnetic

field. As mentioned in chapter 5, within the ALICE computing framework, the sign of

the impact parameter depends on whether the track passes the primary vertex on the

left or right (with respect to the momentum vector). As a result, the average impact

parameter for conversion electrons and positrons would have an opposite sign. This

would yield impact parameter distributions that are mirrored versions of each other. A

switch of the magnetic field would have the same effect. For this reason, is is useful

to multiply the sign of the charge and field configuration with the impact parameter

value. In this case, the sign of the impact parameter indicates whether the primary

vertex is inside or outside of the circle of the track in the transverse plane. The other

distributions are affected very little, because they are nearly symmetric. As a result,

the impact parameter distribution of the conversion electrons (shown in figure 7.2) is

the only one with significant asymmetry, making it easier to distinguish with the signal

extraction method explained in the next chapter.

An important property of the conversion electrons, is the quadratic dependence of

their typical impact parameter on the production radius as given in equation 7.1. As

a result, conversion electrons with a large production radius are less distinguishable

from the signal. Conversely, suppressing conversion electrons with large production radii
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with ALICE

increases the accuracy of the beauty-hadron decay electron measurement. As described

in chapter 6, the requirement of signals in both of the innermost layers of the ITS serves

this purpose. For the smaller radii, the distribution is narrow compared to the resolution

of the impact parameter. The same is true of the higher pT-bins due to the pT
−1-

dependence. This means, that the impact parameter distribution of conversion electrons

depends on the resolution of the impact parameter as well.

The ITS signal requirements strongly decrease the number of conversion electrons

produced at larger radii, but some contribution still remains. The distribution of the

production radii in central Pb–Pb collisions is shown in figure 7.4. The conversion elec-

trons with large production radii pass the ITS signal requirements due to a stochastic

misassociation of other signals in the ITS. It is a result of the large multiplicities of the

central Pb–Pb collisions. It is important to study this effect well because it contributes

to the signal at large impact parameters. A second such contribution comes from pho-

tons produced in the decays of strange particles (e.g. K0
s → π0π0, π0 → γγ). The

fundamental difference is, that in this case the photon itself originates in a displaced

vertex and as a result, the impact parameter is not a result of the magnetic field only.

Similar to the misassociated conversion electrons described previously, the total number

of such electrons is low, but due to the fact that their impact parameter distribution

itself is wide, it is important to understand how well it is reproduced in the simulations.

The last group contains all remaining electron contributions. By far the largest con-

tribution in the measured pT-range is the contribution from the decays of light mesons.
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For the purpose of brevity, these electrons will be referred to as Dalitz electrons in the

following. The impact parameter distribution of particles produced at or very close to

the primary vertex is for the most part determined by the impact parameter resolution.

Figure 7.5 shows the impact parameter resolution for charged particles in different colli-

sion systems. The resolution improves with the multiplicity of the collision because the

primary vertex can be determined with greater accuracy if more tracks contribute. As a

result, the separation of the Dalitz electrons is slightly easier for central Pb–Pb collisions

than in pp collisions due to the sharper peak.

Similar as for the photons, some of the electrons originate from the decays of strange

hadrons. They often have an impact parameter that is large compared to the resolution.

To make sure that the impact parameter distributions for the different groups are well

represented by the Monte Carlo simulations, many possible deviations have to be checked

and any uncertainties propagated to the final result. In the next section an accurate

representation will be assumed to explain the method of the signal extraction.

7.2 Fit method

The purpose of this section is to describe how to use the different impact parameter

distributions discussed in section 7.1 to estimate the fraction of electrons from beauty

hadron decays. The different impact parameter distributions do not have a simple analyt-

ical form due to the complexity of the processes that are involved. Instead, information

about them is gained using the Monte Carlo simulations, which include information

about the decay properties as well as detector effects and the reconstruction algorithm.

The discussion in this section will concern the measurement in an individual pT-bin. It is

useful to also discretize the impact parameter (as shown in figure 7.2). The distributions

of the impact parameter as given by the Monte Carlo simulations will be referred to as

impact parameter templates in the following.

The data d consists of an integer number (counts) di for each impact parameter bin

i. Similarly, the Monte Carlo templates consist of an integer number a ji for each source

j and impact parameter bin i similar to what is shown in figure 7.2. There is also an

unknown true distribution of the impact parameter, f , with a positive, real number fi for

each impact parameter bin. Similarly, there are distributions of the expectation values

of the bin contents for the templates from the Monte Carlo simulations: A, where A ji

is the expectation value of the counts of impact parameter bin i for source j. For each

electron, there is a small and independent probability to lie in bin i. Thus, the associated
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probability distribution is the Poisson distribution. This means:

p(di| fi) =
fi

die− fi

di!
(7.2)

for the data and similarly

p(a ji|A ji) =
A ji

a jie−A ji

a ji!
(7.3)

for the Monte Carlo templates.

The assumption that the templates reproduce the data means, that a weighted sum

of the expectation values of the individual sources A ji should yield the true distribution

of the data given the correct weights. In other words, there exist amplitude factors p j

such that

fi = ∑
j

p jA ji ∀i . (7.4)

There is one such unknown parameter for each source. From the knowledge of pbeauty it

would be easy to estimate the fraction of electrons from beauty-hadron decays. Thus,

this is the parameter to estimate. From Bayes’ theorem, it is now simple to calculate

the full probability for all unknown parameters:

p(p,A|d,a)∼

(
∏

i
fi

die− fi

)(
∏
i, j

A ji
a jie−A ji

)
p(p,A) , (7.5)

with p(p,A) the prior, which will for now be considered to be constant in the parameters.

Some prior information is available from the knowledge of the physical processes leading

to the distributions. It was included indirectly as will be shown later.

Equation 7.5 gives the full solution to the discretized problem. The probability

distribution for pbeauty can be obtained by integrating over the free parameters of the fit

(marginalization). The free parameters for this case are the other p j and the A ji. For

200 impact parameter bins and four different sources, there are 804 free parameters in

total. As a result, the integration becomes quite complex. A fairly direct approach to

achieve this numerical integration is the use of Markov-Chain Monte Carlo methods [96].

However, at present it is difficult to fully ensure convergence within a reasonable time.

Figure 7.6 shows the autocorrelation [97] of the parameters in a toy-measurement (an

example built from the Monte Carlo templates with known true values). Lag signifies

the offset between the steps. Even for a separation of 100000 steps there is a significant

autocorrelation. This means that a very large number of steps is necessary to approximate

the true distribution.

To estimate the mean of 〈pbeauty〉, the mode of the posterior distribution (Eq. 7.5)

was used instead. For a flat prior distribution, this is equivalent to a maximum likelihood
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Figure 7.6: Autocorrelation plot for an example measurement built from the Monte Carlo

simulation templates. The plot shows that points with many intermediate iterations still

show significant correlation. ‘Dimension’ signifies the number of the parameter of the

model. (figure taken from [96])

approach. This approximation may contain a bias with respect to the expectation value,

which must be estimated as well. The logarithm of the likelihood is [98]

logL = ∑
i

di log fi− fi + ∑
i

∑
j

a ji logA ji−A ji . (7.6)

7.2.1 Maximum likelihood estimation

The likelihood given in equation 7.6 has 804 free parameters making the search for the

maximum challenging. While it is possible to look for the maximum directly using e.g.

an implementation of the Minuit package [99], an iterative approach is suggested in [98].

To find the maximum, the differentials with respect to the free parameters are set to

zero. From the requirement of dL /dA ji = 0 follows:

di p j

fi
− p j +

a ji

A ji
−1 = 0 ∀ j, i . (7.7)

For fixed p j these are separate sets of equations for each impact parameter bin. They

can be rearranged as [98]

A ji =
a ji

1+ p j

(
1− di

fi

) . (7.8)
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Figure 7.7: The A ji and a ji for beauty- and charm-hadron decay electrons scaled with

their amplitudes. Left: For the iteration procedure of equation 7.8. Right: For the

iteration procedure given in equation 7.10.

For every proposal of the p j, these equations can be solved iteratively by inserting the

current A ji on the right side and updating them with the result. This leaves only the four

p j as free parameters. The minimization can then easily be done numerically. The left

side of figure 7.7 shows the p jA ji resulting from the full procedure in comparison with

the p ja ji. The likelihood contains information about the A ji that comes both from the

Monte Carlo templates and from the data. Without the data, the maximum likelihood

would always lead to A ji = a ji. The information from the data should push the values

towards the true distribution and thereby slightly smooth them. It is obvious from the

plot that this is not the case as there is a bias towards lower values towards the edges.

Another possibility is to solve equation 7.7 for A ji. With the definition

fi\ j = ∑
k 6= j

pkAki (7.9)

this yields

A ji = −1
2

di p j− fi\ j(p j +1)+a ji p j

p j(p j +1)

+

√
1
4

(
di p j− fi\ j(p j +1)+a ji p j

p j(p j +1)

)2

+
a ji fi\ j

p j(p j +1)
(7.10)

The result is shown on the right side of figure 7.7. It is different from the left plot and

in line with the expectation. Apparently the convergence of the iteration with equation

7.8 is not as stable – at least for this particular task. The square root in equation 7.10

requires additional computation time, but the calculation gives a more stable result.
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be compared. (publication in preparation [46])
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Figure 7.9: Likelihood distributions for an example impact parameter bin with two

sources.

For each new step in the maximization with respect to the p j, this iteration is started

from the previous values for the A ji. After about 5 iterations, the values do not change

significantly any more. For safety, the results shown in this work were created using 10

iterations.

An example of the resulting fit is shown in figure 7.8.

7.2.2 Bins without counts from Monte Carlo simulations

If a template has no entries within one bin, meaning a ji = 0, equation 7.7 leads to

di

fi
−1 =

1
p j

. (7.11)

If several templates have zero entries in the bin, this has to be true for all these p j,

leading to inconsistencies [98]. Figure 7.9 shows the reason for this: The maximum of

the likelihood is at the edge of the allowed parameter space (A ji ≥ 0) and the derivatives

are not necessarily zero there. If there are not counts a ji in any of the templates of

this impact parameter bin, the maximum appears at the point where all A ji are zero

except for one (figure 7.9, right). This is the one with the largest associated amplitude

parameter p j. The reason for this is that in this case, a smaller expectation value A ji

is necessary to make an expected measurement fi that is consistent with the finite data

counts di.
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The resulting likelihood distribution (and thus also the probability distribution) typ-

ically shows a wide region of points with high values. The parameters are strongly

anticorrelated as there is not much information to favor one electron source over the

other. As a result, the maximum likelihood (and thus maximum of the probability dis-

tribution) is not representative of the full distribution, which was the condition for using

it in the first place. Using the maximum without further input would introduce a bias

into the measurement.

Instead, the approach in this work is to make use of prior information about the

probability distributions. To approach this, it is useful to consider, what information is

not contained in the Monte Carlo templates. From the physical processes leading to the

distributions (as explained in section 7.1), they should have a single peak around zero

and decrease towards larger and smaller values of the impact parameter (excluding the

case of the conversion electrons). However, the probability distribution of formula 7.5

does not contain this information. Any permutation of the order of the impact parameter

bins would lead to the exact same result. Additionally, this means that adjacent impact

parameter bins do not ’talk to each other’, meaning that there is no requirement for

local smoothness. Smoothness of the true distribution can be expected at least on the

scale of the impact parameter resolution. On the other hand, the ad hoc inclusion of a

smoothness requirement usually biases the distributions, making them wider. For that

reason, a more cautious approach is chosen in this work.

If the case of impact parameter bins with no counts from some of the Monte Carlo

templates occurs, it will usually appear in the tails of the distribution where A ji is

of order one or smaller. From the knowledge of the different widths of the distribu-

tions, this means that the counts there should mostly come from beauty-hadron decay

electrons because the impact parameter distribution is wider than the others. Due to

the fact that the signal-enhanced Monte Carlo sample is used to obtain the Monte

Carlo template for the beauty case, it has large statistics. As a result, one can ex-

pect pbeauty� pDalitz, pConversion. While the prior knowledge suggests, that the counts

should come from beauty (or perhaps charm), the maximum of the likelihood will be at

Abeauty,i = 0 with all counts associated with the Dalitz or conversion electrons. This can

be understood by considering the case without data: If only the templates are available

as information, the likelihood has its maximum at p jA ji = 0, but the width scales with

p j. As a result, the larger p j is, the larger is the compatibility with a nonzero value.

Since this is the case for the conversion and Dalitz electron templates, these contribu-

tions are favored by the likelihood without including the knowledge that the nonzero

counts probably come from the beauty-hadron decay electrons. To include the prior
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knowledge, the point is chosen differently: For each impact parameter bin, if a Monte

Carlo template contains a ji = 0 counts, then A ji = 0 is assumed, except for the case

of beauty electrons. For bins without entries in any of the Monte Carlo templates, this

means that

Abeauty,i =
di

1+ pbeauty
. (7.12)

This approach significantly reduces the bias of the estimator. However, it is possible

that entries appear in the bins that originate from another source. As a result, some

bias may remain. Due to the fact, that this approach is still very similar to the pure

maximum likelihood approach, the resulting point in the space of the A ji and p j will

simply be referred to as the maximum likelihood in the following.

7.2.3 Uncertainty estimation and bias correction

As mentioned previously, the posterior probability distribution is obtained by marginal-

ization of equation 7.5. The expectation values are approximated by its mode and width.

The estimate for the mode comes from the likelihood as discussed in the previous sec-

tions. It should be corrected for any remaining biases. The approach given in this section

yields both an approximation for the width as well as for the bias correction.

The statistical uncertainty of a parameter measurement is closely connected to the

fluctuation of the measured value if the experiment was repeated several times. If the

width of the distribution of the measurement does not vary quickly with the parameter

within its uncertainty, then it is a useful approximation. This is true in particular if the

distribution is close to Gaussian. Stated differently, if the experiment is repeated several

times, the variation of the parameter approximates the uncertainty of a single estimate.

A comparison of the average parameter estimate to the true value of the parameter

yields the bias of the measurement. Of course, this comparison cannot be done directly,

as the true value of the parameter is unknown, but it can be approximated.

For given true values of the p j and A ji it is simple to virtually repeat the experiment

many times by simply sampling the A ji and fi distributions according to the statistics in

the measured data and in the Monte Carlo templates. With the true values of the p j

and A ji unknown, they have to be approximated. The A ji can be approximated by the

templates, a ji. The p j can be approximated by using the measured values, the results

of the maximum likelihood approach. This yields a good estimate of the true values as

long as the true uncertainties are not too large. In the following this procedure will be

referred to as the toy model approach.
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Figure 7.10: Distribution of the measurement of pbeauty in toy model measurements

with 2000 trials in blue. The red line signifies the true input value of the models, which

is taken from the measurement. The parameter is normalized such that it shows the

resulting ratio of the measured electrons from beauty-hadron decays to all electrons.

The approximations of the A ji by the a ji of the original templates are particularly

good for impact parameter bins, with large statistics because of the
√

N dependence

of the distribution widths. To improve how representative the bins with few entries

are, two possibilities come to mind: It is possible to choose a larger pT-range of the

Monte Carlo simulations to create the templates. Alternatively, some smoothing can

decrease the fluctuations. Both improve the uncertainty estimate while at the same

time possibly introducing a slight bias in the uncertainty estimation. Comparison of

several such approaches showed, that the uncertainty estimates are not very dependent

on the exact choice. In the end, a pT-range of pt,lower < pT < 20 GeV/c was chosen,

where pt,lower is the lower edge of the pT-range that is being measured in the signal

extraction. Additionally, some slight smoothing was applied.

Figure 7.10 shows the resulting distribution for one pT-bin. The width of the dis-

tribution is not very large, giving some credence to the assumption that the toy model

is representative with respect to the uncertainty. The width of the distribution was

interpreted as the statistical uncertainty of the procedure. The difference between the

input value of the toy model and the mean of the distribution was interpreted as the

bias of the maximum likelihood estimator defined previously. The measured value for the

number of beauty-hadron decay electrons was calculated after scaling pbeauty with this
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Figure 7.11: Distribution of toy model measurements with 2000 trials in the pT-range

2−2.5 GeV/c.

correction, which corrects for the bias. The estimate of the bias itself is also associated

with an uncertainty about which little is known, except that it should be smaller than the

correction itself. In the absence of an estimate beyond that, the size of the correction

was used as an estimate for its uncertainty.

The accuracy of this estimate mostly depends on the change of the distribution with

the true value of the parameter. As the estimate is the rms of the distribution, its

accuracy should be O(rms2). It is important to note however, that while the width for

pbeauty is small, this does not in itself ensure that the estimate is accurate, as there are

other free parameters, which might have wider distributions. It is possible, to obtain

similar distributions for the other parameters as well. In this way it is easy to estimate

correlations between the parameters (as shown in figure 7.11) or arbitrary functions of

the parameters, such as pbeauty/pcharm.

It is useful to consider the fluctuations in the measured result: If the measured pbeauty

is lower than the true value, then in the toy model the contribution of the beauty-hadron

decay electrons is lower, making them more difficult to measure. This will typically

increase the estimated (relative) uncertainty. On the other hand, if the measured value

is higher, then the toy model will underestimate the uncertainty slightly. As discussed

above, this effect should be small. However, a similar consideration applies to the

background: If the measured background is lower than the true background, then the

uncertainty of pbeauty will be underestimated and vice versa. This effect mostly concerns
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the electrons from charm-hadron decays as they are most similar in width for the higher

pT measurements. As shown in figure 7.11, the uncertainty on this background – shown

in the horizontal axis – is much higher. This is due to the fact, that the electrons from

charm-hadron decays have a distribution width between that of the Dalitz and conversion

electrons and the beauty-hadron decay electrons.

The approach of this analysis is to make sure that the uncertainty of the pbeauty is not

underestimated. This is the case if the contribution from charm is strongly underesti-

mated, which can happen if the uncertainty on the charm yield is large. Such a case can

be identified by making use of the fact that if the charm contribution is underestimated,

then its uncertainty will be particularly large. To study this effect, another toy model

was used for such cases. For this, the charm contribution was artificially increased. This

change should typically increase the estimated relative uncertainty of pbeauty. The steps

of this additional check can thus be summarized as:

1. Analysis of the toy model using the measured values as input.

2. If the quadratic sum of the bias and the rms of the charm yield is larger than 0.5

(relative to measured point), additional steps are applied.

3. If the (previously performed) measurement of the ratio of the electrons from charm

and beauty hadrons α is larger than 0.5, this value is used, otherwise α = 0.5.

4. Modification of the toy model, by increasing the charm contribution until the ratio

is equal to the α .

5. Comparison of the rms of the original and the additional estimate. The larger

value is used for the uncertainties.

This additional estimation only affects the rms calculation. This value will be referred

to as the the statistical uncertainty of the fit procedure. It is important to mention,

that is would not be zero even for infinitely large statistics in the data, because it also

contains the statistical fluctuations in the Monte Carlo templates. The name is used,

because the uncertainties are independent for fits in different pT-bins before the pT-

unfolding is considered.

It is worth noting that the uncertainty estimation procedure described above is not

limited to this particular maximum likelihood estimator, but can also be applied to other

estimators. For example, a reasonable result can also be achieved with the χ2-based

method described in [91].
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7.3 Monte Carlo description and associated uncer-

tainties

The signal extraction makes use of the description of the signal and background im-

pact parameter distributions in the Monte Carlo simulations. As a result, its accuracy

depends significantly on the accuracy of the representation of the associated effects in

the Monte Carlo simulations. This is particularly important for the impact parameter

analysis because the signal and all backgrounds have their peak approximately at the

same position (compared to e.g. a signal extraction from an invariant mass distribu-

tion). Going to higher and higher degrees of accuracy, at some point the description of

the simulations will not be perfect. It is of fundamental importance for the analysis to

identify all ways in which the simulation may deviate. This can either be a bias in the

simulation, which should be corrected, or it can be an uncertainty in some of its param-

eters. Any such uncertainty should be evaluated and propagated to the final result. If

there were a direct comparison of the Monte Carlo templates to data, they would not be

needed for the signal extraction, since the templates could just be taken from data. This

means, that all evaluations must be indirect. In the following, the different effects will be

discussed separately, starting from effects affecting mostly the light meson contributions

and proceeding to those affecting mostly the ones from heavy flavors.

7.3.1 Impact parameter resolution

As discussed in section 7.1, the impact parameter distribution for the Dalitz electrons

is almost completely determined by the detector resolution. The slim peaks of the

distributions for the conversion electrons and electrons from charm-hadron decays mean

that these distributions are also affected strongly by the resolution. To gain a first

insight into the representation of the impact parameter resolution in the Monte Carlo

simulations, it is useful to consider the tracking uncertainties given by the tracking

algorithm. Figure 7.12 shows the estimate for the impact parameter resolution given by

the tracking algorithm [73] in data and the Monte Carlo simulation for charged particles.

The resolution of the impact parameter results from a convolution of the track position

resolution and that of the primary vertex. The result shows a difference in expected

resolution of about 10% between the data and the Monte Carlo simulations for charged

tracks.

The impact parameter resolution differs slightly between charged hadrons and elec-

trons. Electrons typically have a larger energy deposit in the detectors due to the higher
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βγ . They are also affected by Bremsstrahlung, which can affect the resolution. How-

ever, the geometric effects, which mostly define the impact parameter resolution, should

be the same for both. As it is not possible to obtain a high-statistics sample of pure

electrons from the primary vertex (as discussed in chapter 6), the difference in impact

parameter resolution must be inferred from charged hadrons. These were selected using

the TPC with a requirement of −8 < nTPC
σ ,e < −3, yielding mostly charged pions and

kaons.

The impact parameter distributions in data and in the Monte Carlo simulations are

shown on the left side of figure 7.13. Apart from a large number of tracks originating

from the primary vertex, there is also a significant contribution from secondary tracks.

This is apparent from the wide tails of the distributions. The ratio of primary and

secondary tracks is not reproduced in the Monte Carlo simulations. The full distribution

thus has two contributions: A slim, approximately Gaussian peak with a large number

of entries from the primary particles and a wide distribution with much fewer entries

from particles that do not originate from the primary vertex. To assess the difference

in the width of the distributions, only the former contribution is of interest. This width

can be assessed by restricting the analysis to the peak of the distribution, where the

contribution of primary particles dominates. A fit of a Gaussian distribution to the peak

yields an estimate for the resolution. The fit range was chosen as (−rms,rms), where

rms is the root mean square of the full distribution.

The right side of figure 7.13 shows the ratio of the resulting resolution estimates.

They are different by about 10% at the low edge of the measured pT-range (at 1.3 GeV/c)

to about 12% for larger transverse momenta. This is consistent with the expectation

from figure 7.12. For the correction of this effect, a difference of 10% was assumed with

the case of 12% being used to estimate the uncertainty of the correction. If the lower

resolution is due to additional fluctuations in the measurement, then it is reasonable to

assume that these are approximately Gaussian. This assumption is also very close to

the possibility that some effects cause a scaling of the original distribution, because this

is approximately Gaussian as well. It is simple to include these additional fluctuations

in the Monte Carlo simulations, by adding a Gaussian distributed random value to the

reconstructed impact parameter in the Monte Carlo simulations. The approach is based

on the assumption that the relative difference of the resolution in data and Monte Carlo

simulations is the same for electrons and charged hadrons.

For each particle in a Monte Carlo simulation, the resolution σMC is estimated from

the tracking algorithm as drawn in figure 7.12. A random number is sampled from a
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Figure 7.14: Change of the beauty-hadron decay electron spectrum going from an im-

pact parameter resolution correction of 10% to one of 12%. The spectra are divided by

the central points of the unmodified measurement. For comparison, the original mea-

surement is also drawn with the statistical and systematic uncertainties. No separate

uncertainties are drawn for the result of the check, because they can be expected to

be highly correlated. Thus, the effect is significant even though it is smaller than the

uncertainties as apparent also by the systematic deviation to values larger than unity.

Gaussian distribution with width σGauss, where σGauss is defined by

σ
2
MC +σ

2
Gauss = ((1+10%)σMC)

2 . (7.13)

This number is then added to the value of the impact parameter. The resulting resolution

is then 10% larger than before.

There is a very interesting additional property of this approach. The Gaussian width

is typically larger than the impact parameter bin width by some margin. If, for a single

impact parameter correction, the Gaussian were sampled twice, the two corrected values

would typically end up in different impact parameter bins. As a result, the distributions

within the bins would still be approximately Poisson distributed, but the statistics in the

impact parameter template would be doubled. To avoid biases, this approach is not

used, but the idea is included indirectly as will be discussed later.

As mentioned before, the uncertainty of the impact parameter resolution correction

is estimated by comparing the case of a correction by 10% with the one with 12%. This

difference represents the uncertainty in the strength of the correction. Effects due to the

uncertainty in the exact form of the resolution correction are most likely smaller. Figure
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edge of the pT-bin.

7.14 shows the ratio of the resulting measurement. For all of the comparisons of this

chapter, it is difficult to precisely estimate the amount of correlation between the two

distributions being compared, making it difficult to understand the significance of the

deviations. To maximize the accuracy of the estimate, the two cases were chosen to be

as correlated as possible. For the case of the resolution correction, this means that for

each track the same random number was used for both cases and scaled accordingly.

The deviations shown in figure 7.14 show similar deviations between adjacent points,

pointing to a systematic effect. One exception is the pT-bin of 5− 6 GeV/c, which

is interpreted as a statistical fluctuation. The deviation is larger for lower pT. This

is reasonable, given that the distributions are influenced more by the resolution at low

pT (where the resolution is worse) and that the influence of the Dalitz electrons decreases

towards higher pT. The difference can be included within

±0.1∗ exp(−pT(cm)+1.4) . (7.14)

This was chosen to represent the uncertainty of the impact parameter resolution correc-

tion.
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Figure 7.16: Left: Ratio of electrons from photon conversions produced within different

radial ranges to those produced in the beam-pipe for different multiplicities. To show that

the shape of the ratios is similar, the distributions were normalized individually before

taking the ratio. The similarity in the shape of the ratios shows the applicability of

the uncertainty estimation described in the text. The contribution from the innermost

layer of the SPD contains contributions from both reconstructed photon conversions

and mismatched conversion electrons and thus shows a different shape in the ratio.

The distribution of the production radii (right) is reproduced here for convenience. The

multiplicity was estimated by the number of particles in the central barrel fulfilling basic

tracking requirements.

7.3.2 Mismatched conversion electrons

Figure 7.4 shows the distribution of the production radii of conversion electrons that fulfill

the track selection criteria. As previously pointed out, there is some contribution with a

production vertex outside the innermost layer of the ITS even though a signal is required

there. Figure 7.15 shows the impact parameter distributions of conversion electrons. It

is interesting to note that the conversion electrons outside the innermost layer of the

ITS (at around 4.5 cm) do not show the R2 dependence of the impact parameter to the

production radius. The reason for this is that the contribution comes from a random

association of the electrons with the signal of other particles in the inner layers of the

ITS. This leads to a very wide distribution that is nevertheless fairly symmetric around

zero. These particles will be referred to as mismatched conversion electrons in the

following. It is important to ensure that the effect is correctly reproduced in the Monte

Carlo simulations because the wide distribution competes with the contribution from

beauty hadron decay electrons, particularly in the lower pT range.

The relative amount of the mismatched conversion electrons compared to the total
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Figure 7.17: Double ratio of amount of V0 pions produced at a certain production radius

with and without the requirement of hits in the two innermost layers of the ITS in data

and Monte Carlo simulations. Left: For a centality of 0-20% in data and 0-20% in

Monte Carlo simulations. Right: For a centrality of 0-20% in data and 0-60% in Monte

Carlo simulations. (Plots from [100])

number of conversion electrons depends on the particle multiplicity. The more signals

there are in the inner layers of the ITS, the larger the possibility for a mismatch. Within

the usual multiplicities of the Pb–Pb collisions, the effect is close to proportional as

shown in figure 7.16. The number of conversion electrons produced in the first pixel (blue

markers) does not show this proportionality because it has contribution from conversion

electrons that are mismatched and such that are not. It is not possible to separate the

contributions based on the production radius alone. The sum of the two effects creates

a linear dependence instead of a proportionality. It is not feasible to estimate the effect

using the V0 electrons. The reason for this is that the resolution of the production radius

is low due to the small opening angle of the electron-positron pair [95]. In addition, the

V0 electrons contain contributions not just from hadrons but also from Dalitz electrons,

which would have to be disentangled.

As a first step, it is interesting to know whether the contribution is over- or under-

estimated by the Monte Carlo simulations. This can be examined indirectly, making use

of the V0 pions instead. The same effect can happen here. The advantage is that the

production radius can be measured more accurately. Figure 7.17 (left) shows the com-

parison of the mismatched conversion in data and the simulations. As for the conversion

electrons, the particles produced within the active area and the beam pipe should create

tracks associated with their signals, while those outside only survive the track require-

ments by random misassociation. One difference of the kaons compared to the photons

is that the distribution of their decay vertices depends on their pT-spectrum. Thus, it is

not possible to compare the radial distributions of the V0 pion production radii directly.

Instead, the efficiency of the requirement of signals in the innermost two layers of the
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Figure 7.18: Change of the beauty-hadron decay electron spectrum using a conversion

electron template with a larger centrality range.

ITS is compared. As shown in figure 7.17 (left), there are more misassociations in the

simulations compared to data.

This suggests that the Monte Carlo simulations in the centrality 0-20% overestimate

the amount of mismatched conversion electrons. Given the multiplicity dependence of

the effect, it is useful to compare to a sample with a lower average multiplicity as well.

The right plot in figure 7.17 shows the comparison with a larger centrality range of

0-60% in the Monte Carlo simulations. In this case, the amount of mismatched V0

pions and thus also mismatched conversion electrons is underestimated instead. Thus,

the two plots represent extreme cases. Comparing the signal extraction with a conversion

electron template of either case gives an estimate of the uncertainty of the representation

of the effect. This is possible only with the knowledge, that the contributions to the

mismatched conversion electrons from the different production radii all behave similarly

with the multiplicity as shown in figure 7.16. In fact the effect is close to proportional

to the multiplicity. Figure 7.18 shows the change in the extracted beauty-hadron decay

electron spectrum. The change is of the order of

±0.1/pT(cm) , (7.15)

which was used to represent the systematic uncertainty associated with the representation

of the mismatched conversion electrons.
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Dalitz and conversion electron templates in Monte Carlo simulations.

7.3.3 Strangeness

The so-called Dalitz electrons also contain contributions from the decay of particles

containing strange quarks (mainly kaons) as discussed in section 7.1. These have a

very wide distribution of the impact parameter due to the long lifetime of the strange

hadrons. A similar effect also appears for conversion electrons from photons that come

from the decay of strange particles. Figure 7.19 shows the different contributions in

the Monte Carlo simulations. While the total contribution is very small in the fit range

(−0.1 to 0.1 cm), the distributions are very wide. The influence of this contribution is

closely connected to the ratio of strange mesons to light mesons. The representation of

this ratio in the Monte Carlo simulations can be estimated by comparing to the ratio of

charged particles.

Figure 7.20 shows the ratios of light hadrons. At low pT, the ratio of charged kaons

and charged pions shows approximately linear growth to a value of 0.5 at pT = 2 GeV/c.

The corresponding ratio in the Monte Carlo simulations (figure 7.21) is about a factor of

2 lower at low transverse momentum. To estimate the uncertainty of the measurement

due to this effect, the result of the signal is compared with the result after increasing

the contribution of strange particles to the Dalitz and conversion electron templates by

a factor of 2.

It is not easily possible to vary the amount of electrons from strange hadrons in

the Dalitz and conversion electron templates because a weighting procedure would re-

90



CHAPTER 7. SIGNAL EXTRACTION

)c (GeV/
T

p

R
a
ti
o

0 2 4 6 8 10 12 14 16 18

0.2

0.4

0.6

0.8

1  -π + +
π 

 p p + =2.76 TeV
NN

sALICE 

0-5% Pb-Pb

pp

0 2 4 6 8 10 12 14 16 18

0.2

0.4

0.6

0.8

1
 -π + +

π 
 

-
 + K

+
 K 0-5% Pb-Pb

Krakow

et al.Fries 

EPOS
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Figure 7.22: Change of the extracted beauty-hadron decay electron spectrum when

doubling the influence of electrons from the decays of strange hadrons in the Dalitz and

conversion electron templates.

sult in a likelihood that is not Poissonian anymore. This problem can be solved for-

mally by introducing separate templates for the contributions from strangeness and

the other contributions. The additional two templates do however increase the di-

mensionality of the maximization problem (as discussed in section 7.2). The condi-

tion pDalitz,noStrangeness = pDalitz,Strangeness and pConversion,noStrangeness = pConversion,Strangeness

should be equivalent to using the original distributions. However, there are 400 addi-

tional free parameters in the A jis. The results from this approach are the same as with

the lower dimensionality, although the maximization is computationally much more ex-

pensive. It is now easy to estimate the dependence on the ratio of the electrons from

the decays of strange particles by requiring pDalitz,Strangeness = 2 · pDalitz,noStrangeness and

pConversion,Strangeness = 2 · pConversion,noStrangeness. The resulting change in the measured

spectrum of electrons from beauty-hadron decays is shown in figure 7.22. The very

small effect is estimated with the function

±0.02/pT(cm) . (7.16)

This was used to represent the uncertainty of the contributions from strangeness to the

Monte Carlo templates.

7.3.4 Hadron contamination

The significant hadron contamination (as discussed in chapter 6.3) has a surprisingly

small effect on the measurement. To understand this, it is useful to consider the impact
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Figure 7.23: Comparison of the impact parameter distribution of the Dalitz electrons in

Monte Carlo simulations and charged pions in data.

parameter distribution of the contaminating hadrons, which mostly consist of pions. Due

to their abundance, such a template can be obtained from data. It is selected with the

TPC signal requirement −5 < nTPC
σ ,e < −3. Due to the fact that the template comes

from data, no resolution correction needs to be applied.

Figure 7.23 shows a comparison of the impact parameter distribution of Dalitz elec-

trons from Monte Carlo simulations and of the charged pions in data. The two distribu-

tions are very similar because in both cases most particles originate close to the primary

vertex. This means that the difference in the shapes is mostly due to the different res-

olutions of electrons and hadrons. As a result, the signal extraction procedure should

include much of the hadron contamination in the measured Dalitz electrons.

In the lower pT-ranges, the contribution of the Dalitz electrons to the inclusive

electron sample can be expected to be relatively large. Going to higher transverse

momenta, the electron contribution is mostly due to heavy flavor decays. As a result,

the hadron contamination can be expected to be dominating compared to the Dalitz

electrons. To estimate the uncertainty due to the unknown hadron contamination, it is

again useful to compare the two extreme cases: Using a Dalitz electron template and

using the hadron impact parameter template instead in the signal extraction. As the

difference between the two results is small, it is reasonable to assume that all intermediate

cases of the template should also give a result in between. Figure 7.24 shows the change

in the measurement. The difference is interpolated using the function

±0.1/pT(cm) . (7.17)

For the central values, the Dalitz electron template was used for the lower pT-bins. For
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Figure 7.24: Change of the extracted spectrum of beauty-hadron decay electrons by

replacing the Dalitz electron impact parameter template with the one for charged pions.

pT > 5 GeV/c, the template for charged hadrons was used instead. As the contamination

should dominate there and the statistics for the Dalitz electrons are very low, it was

assumed that the associated uncertainty should be below the function given above.

7.3.5 Momentum distribution of the heavy-flavor hadrons

The beauty-hadron decay electrons of a given pT-bin can originate from beauty hadrons

in a large transverse momentum range, as shown in figure 5.1 (right). Their average

production radius depends on the βγ of the beauty hadrons. In turn, this also influences

the impact parameter distribution of the electrons. Qualitatively, the impact parameter

distribution is wider if the beauty hadron spectrum falls more slowly with pT and

narrower if it drops more quickly. This means, that the impact parameter distribution

for the beauty-hadron decay electrons depends on the spectrum of the beauty hadrons,

which is not known before the measurement. A similar reasoning also applies to the

electrons from charm-hadron decays. The treatment of the correction and the estimate

of the systematic uncertainties differs slightly due to the availability of the D meson

measurements [69].

Charm hadrons The approach to the case of the charm hadrons is to make use of the

information of the D meson measurements. Their absolute yield is not relevant for this

effect because of the free amplitude parameters of the fit procedure. The measurement

of the D0-mesons has the largest pT range in the measurement [69]. For this reason,

it was used for the comparison. Figure 7.25 (left) shows a comparison of the measured
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Figure 7.25: Left: pT-spectra of the measured D0-mesons [69] and the mother particles

of charm-hadron decay electrons in Monte Carlo simulations. Right: Ratio of the mea-

surement and the simulations with ratio of the fits. The modified correction function for

the uncertainty estimation is also given.

D0-meson spectrum and the pT-distribution of the mother particles of the charm-hadron

decay electrons. The distributions differ strongly between the PYTHIA simulation with

a Perugia-0 tune and the measurement. The D0 meson pT-spectrum was interpolated

by a shifted power law:
dσ

dpT
∼ (pT +α)β , (7.18)

while the distribution from Monte Carlo simulations was interpolated by the sum of two

exponential functions as shown in figure 7.25 (left). The ratio (on the right) of the two

gives the appropriate correction factors. It is interpolated well by the ratio of the two

fit functions. The necessary correction is fairly large. For this reason, it is particularly

important to investigate the assumptions made with this approach. Is it reasonable

to compare only to the D0-measurement and how problematic is the extrapolation to

transverse momenta below 2 GeV/c?

The question of how representative the D0-measurement is can be split into two

parts. One is the possibly different yield of the different charm-hadron species between

the simulations and the measurement. This is the lowest order effect, given that the

absolute yield of charm hadrons does not play a role. It will be discussed separately in

the next subsection (7.3.6). There is a smaller influence from the shape of the spectrum

of the different mesons. However, these shapes do seem very similar [68] for central

Pb–Pb collisions. Accordingly, the effect can be expected to be negligible compared

to the uncertainties of the estimate of the correction. The effect of the extrapolation

to low transverse momentum can be investigated by varying the extrapolation within

reasonable limits. It turns out, that even a strong change, such as setting the ratio to
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Figure 7.26: pT-distributions of charm hadrons and the daughter electrons in Monte

Carlo Simulations. Left: For a given hadron pT. Right: For a given electron pT. The

red line shows the electron pT assuming it receives all energy of a 2 GeV/c2 mother

particle. The yellow line is the diagonal.

zero below 2 GeV/c affects the measured points less than the effect of the uncertainty

of the slope due to the uncertainties of the D0-measurement. The reason for this is

that the charm hadrons usually have a larger momentum than the electrons, meaning

that the variation affects only a small part of the contribution. Additionally, the impact

parameter distribution does not change very rapidly with the transverse momentum.

A weighting procedure for the charm hadron decay electrons would make the under-

lying probability distribution non-Poissonian. To circumvent this, a statistical correction

was chosen. Charm-hadron decay electrons were removed statistically with a probability

depending on the transverse momentum of the mother particle. The quick drop of the

ratio means, that such a correction would decrease the statistics significantly. To improve

upon this, it is useful to remember that there is a freedom in the normalization of the

ratio – any multiple can also be used. Figure 7.26 (right) shows that almost all mother

particles have transverse momenta larger than their daughters. This suggests correcting

with a different rule for each pT-bin. With r(pT) being the ratio function, a constant α

is chosen such that αr(pT) = 1 at the transverse momentum of the lower edge of the

electron pT-bin. Each electron is rejected with the probability 1−αr(pT). If this is lower

than zero, the particle is always accepted. This procedure results in a correction of the

charm-hadron pT-distribution, while keeping the Poisson statistics intact and without

decreasing the sample size too much.
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The main source of uncertainty for this correction is in the measurement uncertain-

ties of the D mesons. The measurement contains statistical uncertainties, which are

uncorrelated from one pT-bin to the next and systematic uncertainties, which may be

correlated to some unknown degree. As the main effect comes from the slope, the

largest effect would come from those points within the uncertainties that change the

(local) slope the most. The effect can be expected to be the largest at low transverse

momenta. Thus, the following extreme case was used for comparison: In the first pT-bin,

statistical and systematic uncertainties of the measurement were added and subtracted

from the central point. The second measured bin was left untouched and in the third,

the uncertainties were added. Then, an exponential function was fitted, considering

only these three points. The result gives an estimate of the strongest deviation at low

momenta that is still compatible with the uncertainties of the D meson measurement.

This variation of the correction is also shown in figure 7.25 as the red dashed line. The

effect was determined together with the corresponding effect for the beauty hadrons and

will be discussed there.

Beauty hadrons It is not possible to use the same approach in the corresponding case

for the beauty hadrons. The measurement of beauty-hadron decay electrons has the pur-

pose of providing information about the beauty hadron and the beauty quark momentum

distributions. Thus, this information is not available prior to the measurement. Instead,

the approach is to estimate how sensitive the estimated yield of the beauty-hadron decay

electrons is to a reasonable range of possible beauty-hadron pT-distributions. As for the

charm-hadron case, the correction has a free scale parameter due to the free amplitude

parameter of the signal extraction. An additional advantage is the fact that the rep-

resentation of the beauty hadrons by PYTHIA with the Perugia-0 tune is much better

than that of the charm hadrons. For the charm case, there is already a large difference

to the proton-proton collision measurement [101]. In the case of the beauty hadrons, the

measurement of beauty-hadron decay electrons in p–Pb collisions [46] agrees well with

the corresponding enhanced Monte Carlo simulations. Different from the previous case,

this means that the effect is mostly due to the influence of the medium and the necessary

correction is thus smaller. The influence of the medium is to slow down particles faster

than the medium and to accelerate those at lower velocities.

The correction factor is thus proportional to the RAA. A generic expectation is

that it decreases from low to intermediate pT. The effect on the impact parameter

distribution does not depend on the scale and also depends little on the small scale

structure. The main influence is due to the change in the slope. For that reason, the
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Figure 7.27: Left: TAMU model prediction for the B meson RAA . Right: Interpolation

used for the correction with the variations used for the uncertainty calculation.

approach is, to use a model of the RAA to determine the impact parameter distribution

for the central values of the fit and generously vary the slope to estimate the uncertainty

due to the effect of the pT-distribution of the beauty-hadrons. For the central value, the

result of a theoretical calculation was considered. The TAMU model [66] was chosen

for this purpose, as its behaviour is fairly typical when compared to other predictions

(this is discussed in chapter 9). The result shows values close to one at low transverse

momenta and falls off quickly between 5 and 10 GeV/c. At large transverse momenta,

the RAA rises slowly. The function

0.5/(1.+ exp((pT[GeV/c]−7.) ·0.7))+0.5+(pT[GeV/c]−15.)/300 (7.19)

was used to describe its general shape and to define the central points of the correction

as shown in figure 7.27 as the central red line. The statistical correction was done in

a similar way as for the charm case, excluding the step of separating the correction for

each pT-bin. Figure 5.1 shows that the assumption of the hadron pT being larger than

the electron pT is not as good at low transverse momentum due to the larger mass of

the hadrons.

In both cases, the variation checked, changed the pT-distribution towards a smaller

slope. Both variations individually change the resulting beauty-hadron decay electron

yield towards smaller values. Due to the comparatively large statistics of the beauty-

hadron decay electrons in the enhanced Monte Carlo sample, the opposite as also at-

tempted for the beauty case as shown in figure 7.27 (right). This resulted in a similar

but opposite effect. As the effect is dominated by the uncertainty of the beauty hadron

pT-distribution, both variations were combined to give the variation shown in figure 7.28.

The largest effect appears at low transverse momentum as expected from the variation.
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Figure 7.28: Change of the extracted spectrum of beauty-hadron decay electrons by

changing the correction for the beauty and charm hadron pT-distributions.
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Figure 7.29: Comparison of the impact parameter distributions of electrons from different

hadron species in the enhanced Monte Carlo simulations in the pT-interval 1.3−8 GeV/c.

Left: for the case of beauty hadrons. Right: for the case of charm hadrons.

Given the abrupt change, the deviation of the highest pT-bin is most likely due to sta-

tistical fluctuations. As visible in figure 7.27, at high transverse momentum the two

cases have the same slope but different statistics. Considering that the position of the

sudden drop in the RAA (in the TAMU model between 5 and 10 GeV/c) is not known,

it is prudent to expect that an effect of similar size might also appear at slightly larger

transverse momenta. For this reason, a constant uncertainty of the largest deviation was

assumed. This uncertainty was taken to be 8%.
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7.3.6 Baryon ratio

Thus far, the charm hadrons and beauty hadrons have been treated as a single con-

tribution each. Actually, several different species of hadrons contribute in both cases,

with their exact relative abundances not perfectly known. The uncertainty in the relative

abundances translates into an uncertainty of the impact parameter distributions of the

decay electrons if their impact parameter distributions are different. Figure 7.29 shows

the impact parameter distributions for heavy-flavor decay electrons from different species

of beauty and charm hadrons. The distributions for the beauty-hadron decay electrons

appear fairly similar to each other. Those for the charm hadron decay electrons differ

more strongly. This is unsurprising, given the larger variance of the decay lengths in the

charm case as shown in table 5.1.

The space of possible ratios is large. To gain a general understanding of the effects

of the hadron species ratios, different variations are compared. Similar as in the case

of the hadron pT-distribution in the previous section, the effect does not depend on

the absolute yield of the hadrons, but only on their relative contributions, due to the

free amplitude parameters of the fit. To estimate the magnitude of the difference in

hadron species ratios, the ratios in the templates were compared to the expectations

from the thermal model [42] as calculated in [102]. The differences are particularly large

for the Λc and Λb baryons, which are higher than PYTHIA by factor of about 2.5 and

2 respectively. The differences for the mesons are of the order of a few 10%.

Considering the impact parameter distributions given in figure 7.29, no large effect

can be expected from a change in the ratio of the B0 and B± because their distributions

are very similar. The effect of a change in the ratio of the Λb can be interpreted by

considering the different ranges of the impact parameter in the signal extraction. The

main information about the beauty contributions comes from the tails of the distribution,

where there is little background. Closer to the peak, the beauty-hadron decay electrons

contribute less than the more strongly peaked background distributions. If the template

contained a larger contribution from the Λb, this contribution would be hidden behind

the background to some extent. As a result, the fit in the tails would give the same

result, but integrating over the distribution to obtain the total yield would result in a

larger value. For the Λc, the same principle applies. However, in that case there is little

influence on the measured yield for the beauty-hadron decay electrons. The D0s are an

intermediate case. In practice it turns out, that the distribution is already fairly similar

to the distribution of the Dalitz electrons and the effect of a variation even of a factor

1.5 is small compared to the influence of the baryon ratios.
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Figure 7.30: Change of the extracted spectrum of beauty-hadron decay electrons after

increasing the baryon ratio by a factor of 3.

The estimation of the influence of the effect was done in a similar manner as the

analysis of the strangeness ratio described above: The template for the beauty-hadron

decay electrons was split into a contribution from e.g. the Λb and the rest. Then,

the signal extraction was performed with the additional template and the condition

pΛb = α pother beauty. The same was also done for charm. Given, the large uncertainties

of the baryon ratio, the uncertainty due to this effect was estimated by comparing to an

increase of the baryon ratio by a factor of 3 for both the charm and the beauty case.

The result is shown in figure 7.30. The effect is of the order of 5%. Decreasing the ratio

even to zero has a smaller effect.

The different systematic uncertainties related to the measurement and their effects

on the measurement are summarized in table 7.1. They are assumed to be mostly

uncorrelated and thus summed in quadrature.

7.4 Averaging procedure for the fluctuations of the

resolution correction

The approach to the resolution correction described in section 7.3.1 introduced addi-

tional information to the impact parameter distributions: The full distributions are the

convolution of the distributions in the Monte Carlos simulations and a correction func-

tion that was assumed to be Gaussian. For the finite number of entries in the templates,

this was applied by adding a random number sampled from a Gaussian of appropriate

width as described in section 7.3.1. The fact, that the full distribution comes from a
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Effect Uncertainty at

pT = 1.3 GeV/c

Uncertainty at

pT = 8 GeV/c

Resolution correction 11% 0.01%

Mismatched conversion electrons 8% 1%

Strangeness 2% 0.3%

Hadron contamination 8% 1%

Mother particle pT-distribution 8% 8%

Baryon ratio 5% 5%

Table 7.1: Uncertainties of different effects propagated to the measurement. In the

analysis, the interpolation functions are always evaluated at the pT-bin center.
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Figure 7.31: Left: Impact parameter templates for electrons from charm-hadron decays

with different seeds for the random-number generator of the impact parameter correction.

Right: Ratio of the resulting extracted pT-distributions of the electrons from beauty-

hadron decays.
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convolution means that it has to be smooth at least on that scale. This knowledge can

be used to decrease the effect of the statistical fluctuations in the impact parameter tem-

plates. One approach would be to sample the Gaussian several times, which increases

the entries in the corrected template. Due to the fact that two samples can still fall into

the same bin and due to the resulting correlations between the bins, this would make

the resulting likelihood much more complex and possibly introduce an additional bias.

Instead, creating several templates independently does not. Figure 7.31 (left) shows the

resulting distributions for electrons from charm-hadron decays for this approach.

To average over the fluctuations, 5 separate sets of templates were created for elec-

trons from charm- and beauty-hadron decays. The signal extraction was performed using

each pair separately. The results show some fluctuations but can also be expected to

be correlated to some unknown extent. The average of the different estimates has a

decreased statistical uncertainty. Within the framework of the uncertainty estimation

the exact size of the decrease of the statistical uncertainty is not known. In addition, the

different estimates can contain a different contribution of the systematic effects. In all

cases, the average shown in figure 7.31 (right) gives a better estimate of the true value.

For the final result, the average was used for the central points while the uncertainties

were taken from one individual contribution.
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Chapter 8

Unfolding

Most of the uncertainties and statistical fluctuations discussed so far, concern the esti-

mation of the contents of a particular pT-bin. In addition, the measured value of the

transverse momentum itself also has an uncertainty. A particle with a reconstructed

momentum near the edge of one bin might have a true momentum in the adjacent bin.

A similar effect occurs also for the pseudorapidity measurement. Due to the good res-

olution of the polar angle and the fairly flat distribution at the edge of the considered

range |η |= 0.8, the number of particles migrating into and out of the measured η-range

approximately cancel out. The same cannot be expected for the transverse momentum

because of the steeply falling pT-distribution.

Alternatively, the task might be formulated this way: Given the distribution in the

measured transverse momentum (pT,measured), what is the distribution in the true trans-

verse momentum (pT,true)? This is called an unfolding of the pT-distribution. The two

quantities are connected via the response function R(pT,measured|pT,true), which is the

probability density function for measuring a certain pT,measured given pT,true. It defines

the resolution of the pT-reconstruction. Typically, the measured value is smeared out

around the true value by the response. This has two important consequences: Firstly,

the finite resolution of the momentum reconstruction by the detectors is associated with

a loss of information about the true distribution. Thus, when the effect is corrected for,

the uncertainties of the distribution should increase. Secondly, it should be problematic

to view the unfolded distribution at scales smaller than the resolution. To simplify the

approach used in this analysis, the discussion is separated into two parts. In the first

part, the unfolding problem will be discussed for an idealized example to clarify the basic

approach. The second part serves to explain the particular case of the measurement of

beauty-hadron decay electrons and a measurement in a finite pT-range.
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Figure 8.1: Example of distribution, which is binned and then folded

8.1 Solution for an idealized problem

An example for the distribution of a measured value can be found in figure 8.1. The

green line shows the true distribution of some variable x that is being measured and which

can have values between zero and one. With a finite resolution of the measurement, the

distribution of the measured value will be different from the true one. Two examples are

plotted as the blue and red lines, which correspond to cases of different binnings.

The response function for electrons from beauty-hadron decays can be approximated

using detector simulations. Figure 8.2 shows the responses used in the example of figure

8.1 with two choices of the binning. The measured x-distribution (or pT-distribution)

ρmeasured is connected to the true distribution by a convolution:

ρmeasured(xmeasured) =
∫

∞

0
R(xmeasured|xtrue)ρtrue(xtrue)dxtrue (8.1)

The unfolding problem is the problem of inverting this equation.

For a practical application, three additional complications arise: Firstly, the distribu-

tion ρ(xmeasured) is not actually known, as the measurement is performed using finite-

width x-bins. This can be taken into account by using the same binning also for the

response, which transforms it into the response matrix. The response matrix is a good

approximation of the response, if the bin widths are sufficiently small to have the mean

value represent the function values in this range. As a result, eq. 8.1 is transformed into

the matrix equation [103]:

~xmeasured = R̂ ~xtrue , (8.2)
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Figure 8.2: Example response matrices. The underlying distribution is a Gaussian with

a width of 0.055 - slightly larger than the binning of the smaller case.

where ~xmeasured and ~xtrue are vectors of the bin contents xi of the distributions while R̂

is the response matrix. It is not necessary to use the same binning for the measured

and true distribution. However, if the number of bins is different, the inversion of the

process is not as straightforward. In this form, the matrix has a slight dependence on

the slope of the distributions in the simulations used to estimate the response matrix,

which will decrease with smaller binning. For the beauty-hadron decay electron analysis,

the measured pT-range is finite, giving information only about part of the probability

distribution. This will be discussed in the next section. Additionally, the measured

distribution will have statistical fluctuations and systematic uncertainties, which affect

the unfolding procedure and which also have to be propagated.

Using Bayes’ theorem, the posterior probability for the binned problem is:

P(~xtrue|~xmeasured) =
P(~xmeasured|~xtrue)P(~xtrue)

P(~xmeasured)
, (8.3)

where the likelihood P(~xmeasured|~xtrue) follows from equation 8.2. Assuming a flat prior

and Gaussian uncertainties, the unfolded uncertainties will again be Gaussian and the

central points can be obtained by inverting the response matrix:

~xtrue = R̂−1 ~xmeasured. . (8.4)

The uncertainties can be obtained by propagating the covariance matrix through the

inverse response matrix [103]:

(σtrue)i, j = ∑
k

∑
l
(R−1)i,k(R−1) j,l(σmeasured)k,l , (8.5)
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Figure 8.3: Example covariance matrices. The bins smaller than the resolution lead to

entries three orders of magnitude larger with large anticorrelations.

where the indices represent the bin number considered and σ the covariance matrices of

the measurement and after propagation of the uncertainty.

Figure 8.3 shows the resulting covariance matrices for the two example cases as a

function of the bin number. In one case, the bin width was chosen slightly smaller than

the resolution of about 0.055, in the other case it is larger. The negative values in the

bins next to the diagonal are a result of the smearing: The counts measured in a bin

can also originate in an adjacent bin of the true x (or even further away), but the sum

is fixed. This causes an anticorrelation in adjacent bins. The effect becomes very large

as soon as the bin width decreases to a size similar to the resolution. Comparing the

two binnings shows this effect clearly: The case of a binning even slightly smaller than

the resolution gives uncertainties three orders of magnitude larger than a binning twice

as big.

The resulting unfolded distributions for the example are shown in figure 8.4. The

uncertainty for each point is the associated diagonal element of the covariance matrix.

The large fluctuations are not the result of any mathematical error but in fact the

central values represent the maximum of the posterior (Gaussian) distribution or the

minimum-variance unbiased estimator (MVUE) in a frequentist prescription [103]. If

the whole covariance matrix is considered, no information is lost in going to the smaller

binning. The unfolding procedure can be reversed, by multiplying with the response

again, reproducing the original measurement and a fully diagonal covariance matrix. In

fact, the smaller binning contains slightly more information.
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Figure 8.4: Unfolded results from the two binnings with fits. A change from a binning

larger than the resolution to one slightly smaller changes the uncertainties for individ-

ual points significantly. A comparison to a model taking into account the correlations

however still yields the same result. As a result, all fits lie on top of each other.

This information is recovered when comparing to models. A fit of a second-order

polynomial to the unfolded distribution, taking into account the full covariance matrix,

yields the same result for both cases. The procedure is described in more detail in the

appendix B.4. In this case, the true distribution is easily recovered as shown in figure 8.4.

However, the result also means that models which differ on the scale of the pT-resolution

cannot easily be distinguished using this measurement. This is true for any binning.

For practical reasons however, it is very useful to consider this effect when choosing

a binning: Firstly, many comparisons to theory are done by eye, comparing the models to

the size of the statistical and systematic uncertainties. In this case, the large uncertainties

make the case using the smaller bins seem like a much worse measurement. Secondly, it

is usually assumed that statistical uncertainties are uncorrelated between pT-bins, which

is still approximately true if the binning is sufficiently larger than the resolution.

If additional knowledge about the true distribution of the measured variable is avail-

able, it can be incorporated into the prior. In this case, the central points for the

unfolding are not the result of a matrix inversion. It is useful to note that for a flat prior

the matrix inversion is equivalent to a maximization of the posterior probability (The

covariance then follows from the Hessian matrix). Assuming Gaussian measurement un-

certainties, this is also called χ2-unfolding. If the prior is a (multidimensional) Gaussian,
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Figure 8.5: Unfolding using Tikhonov regularization. For α = 0 (orange), the result is

the same as for the matrix inversion. For larger values, the anticorrelations decrease

while a bias is introduced. For this smooth example, the bias only becomes apparent at

large values of α . All other cases lie on top of each other relative to the line width.

the posterior is as well, so this approach still works (because the χ2 is proportional to

the log-likelihood). For physical distributions, prior information can contain knowledge

about the smoothness of the distribution. In most practical applications there is only

the abstract notion that the resulting distribution ought to be smooth, but if there were

a physical constraint on the difference of two adjacent bins, the resulting prior would be

−2log(P(~xtrue)) =
1

σ2
smoothness

nbins−1

∑
i=1

((xtrue)i− (xtrue)i+1)
2 , (8.6)

written here as the expression of the additive constant of the χ2 function. If there were

prior knowledge about the smoothness of the slope instead, the term would be

−2log(P(~xtrue)) =
1

σ2
smoothness

nbins−2

∑
i=1

((xtrue)i−2(xtrue)i+1 +(xtrue)i+2)
2 . (8.7)

The assumption of such a term is called Tikhonov Regularization ([104] as cited by

[103]). The width of the prior is then a free parameter. For brevity, it is often written as

α = 1/σ2
smoothness, the regularization parameter. This approach can also be motivated

by searching for points in the parameter space, where the result is smoothest while not

decreasing the likelihood too much [103].

Fundamentally, a regularization procedure is a form of smoothing of the resulting

distribution. The addition of prior terms that are not quantitatively based on actual,
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Figure 8.6: Response matrix of the electron pT (left) together with a the probability

distribution of the measured pT for a fixed true pT (right). The red box shows the part

of the diagram corresponding to the bins of the result, while the orange box signifies the

bins considered for the unfolding procedure.

available information will introduce a bias. Other regularization procedures exist [105–

107] but have the same drawback. Figure 8.5 shows the effect of applying additional

terms. For large values of α in the second-order Tikhonov regularization of equation

8.7 the function tends towards a straight line locally. The bias will thus be larger if the

true distribution has more small-scale features. As the true distribution is not generally

known, it is also very difficult to estimate the bias due to the regularization. Thus,

regularization should be avoided when comparing to models.

8.2 Application to the analysis

For the binning chosen for this analysis, the bin with is much larger than the resolution of

the transverse momentum. The response matrix in figure 8.6 shows that the off-diagonal

elements are small. This means that there are no problems from the effects described

previously. The response matrix was estimated from the signal-enhanced Monte Carlo

simulations. The large statistics mean that the statistical uncertainty on the response

is small. There are two main reasons for the asymmetric shape of the response matrix:

Due to the falling electron spectrum, more electrons are at the lower edge of a bin than

at the upper edge. That is why it is more likely for electrons to be measured in the

next lower bin than in the next higher one in pT. Additionally, electrons are affected
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by bremsstrahlung: Due to interactions with the detector material they may lose a

significant fraction of their energy. In this case they are measured at a lower transverse

momentum than they had at the moment of their production.

Another difference of the unfolding in the analysis compared to the example is the

finite pT-range of the measurement. As discussed in the previous chapters (link) the

signal extraction is done only for the pT-range 1.3− 8 GeV/c. The example shows,

that the unfolded result is also connected to the non-measured bins via the off-diagonal

elements of the response matrix. In summary: unfolding the measured bins requires

knowledge about the bins where no measurement was performed.

This problem is alleviated somewhat by the fact that the response is dominated by

the diagonal elements. As a result, the unfolded value in a bin depends mostly on the

measured value, slightly on the values in the adjacent bins and very little on the bins

further away. Nevertheless, it would be problematic to just assume zero entries in all

non-measured bins. Instead, the bins should be filled with the best guess for the value

and the uncertainty of this guess should be propagated to the final unfolded result. An

assumption of this kind was made for the two next lower and higher bins at the edges

of the measured range. For the immediately adjacent bins, the signal extraction was

done in the same way as it is done for the bins in the measured range. This gives

reasonable estimates for the central points. The uncertainty estimation might not be

accurate (which is why the bins are not part of the measurement range) but the error

of the uncertainty becomes very small when it is propagated to the measurement range.

For the bins adjacent to these, an assumption is made, while bins further out are not

considered. The response matrix for the unfolding only contains these (12) bins.

This is important when considering the normalization of the response. In the defini-

tion of equation 8.1, the response is a probability distribution and should thus have an

integral of unity. It is however possible to include the case that a particle is not recon-

structed at all. In that case, e.g. the reconstruction efficiency can be contained in the

response. For this analysis, the track selection efficiencies are handled separately. Nev-

ertheless, the case for the measured value to fall outside the measured range should be

included. This means, that in the response matrix the measured bins for one pT,true-bin

have a sum smaller than unity.

Figure 8.7 shows the covariance matrix (and correlation matrix) resulting from the

matrix inversion. The correlations between adjacent bins are very small, making an

interpretation as independent statistical uncertainties reasonable. Thus the correlations

of the resulting statistical uncertainties will be not be considered further.

While it is simple to propagate the statistical uncertainties through the unfolding
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Figure 8.7: Covariance matrix for the analysis for all bins considered in the unfolding. The

entries vary over several orders of magnitude. For a clearer picture of the correlations,

the correlation matrix has been plotted as well. The off-diagonal elements are small.

process, this is not the case for the systematic uncertainties. The reason is that their

(initial) correlation matrix is not known. To simplify this problem, the following approx-

imation is made: The most important elements in the response matrix apart from the

diagonal elements are the ones just next to them. This corresponds to the reasonable

intuition that the measured pT will usually still be close to the true value. As a result,

only correlations of adjacent bins are important. The effect giving rise to systematic

uncertainties typically vary smoothly with pT. This means that the systematics should

be strongly correlated between adjacent pT-bins, with the relative uncertainty being sim-

ilar. If all relative uncertainties were correlated and of the same size, then this could

be expressed as an uncertainty on a constant prefactor of the data vector, which prop-

agates trivially through all calculations. Any deviation from this case will be primarily

propagated by the diagonal elements. Thus, it is a reasonable approximation to assume

that the relative systematic uncertainties before and after the unfolding are the same.

Figure 8.8 shows the change of the central values and the uncertainties before and

after the unfolding. While the central values increase by about 15%, the uncertainties

increase by about twice this amount. This difference represents the loss of information

due to the uncertainty of the transverse momentum measurement. The unfolding al-

gorithm itself does not introduce a bias and thus does not give a contribution to the

systematic uncertainty. The assumptions about the adjacent bins however do have an

uncertainty. The most important contribution comes from the uncertainty of the bins
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Figure 8.8: Ratio of the pT distributions before and after unfolding as well as the ratio

of the uncertainties.

that are directly adjacent to the measurement range, contributing a few percent. How-

ever, for these the uncertainties are taken into account automatically via the unfolding.

This means that part of the statistical uncertainty in the first and last bin of the mea-

surement range comes from the statistical uncertainty of the signal extraction in these

adjacent bins. Given that this is actually the result of statistical fluctuations, the con-

tribution is not separated further. In these bins, the determination of the systematic

uncertainty is not very accurate, due to e.g. the proton contamination at low pT, which

is not treated explicitly. However, the this uncertainty of the uncertainty does not have a

large influence when propagated to the measurement range due to the small off-diagonal

elements of the response matrix. The bins adjacent to this (two bins away from the

measurement range) have an even larger uncertainty, as there is no measurement at all.

To get a general impression of the influence of these bins, the assumed values were varied

significantly: Given that the pT-density will typically fall over the measured range the

cases were compared, where the density stays the same and where it falls by a factor of

four from one bin to the next. The results show that this changes the unfolded result in

the adjacent bins by the order of 10% but has no significant influence to the measured

range.

This means that by the unfolding procedure described in this chapter, all contribu-

tions to the uncertainty due to the transverse momentum resolution are automatically

incorporated in the statistical uncertainties associated with the result.
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Results

After the pT-unfolding procedure and the correction with the track selection efficiency,

the result is divided by a factor of 2 to obtain the average of electrons and positrons

from heavy-flavor hadron decays. The resulting pT-differential yield is shown in figure

9.1. The resulting uncertainties are dominated by the systematic effects. To quantify

the final state effects, it is useful to compare to the case of proton-proton collisions at

the same centar of mass energy and calculate the RAA (given by eq. 3.2). The following

section will give a brief overview of the approach used to estimate the proton-proton

reference. The details may be found in [5].

9.1 The pp reference

The proton-proton reference for this analysiscomes from [5]. It was obtained with a

similar method as the one discussed in this work. The basic idea is to combine an estimate

of the background electrons with the requirement of a minimum impact parameter.

Measurements exist both for
√

s = 7 TeV [5] and for
√

s = 2.76 TeV [6]. These cover

the whole pT-range. As shown in figure 7.1, it is possible to estimate the non-heavy

flavor electron background from separate measurements by ALICE. This background

can be subtracted from the total measured electron yield to obtain the contribution

from the heavy-flavor decays. Using measurements of the charm hadrons [101, 108],

it is possible to also obtain an estimate of the charm contribution to the electrons.

Subtracting this as well yields the blue points shown in figure 9.2 (left). These have

large uncertainties, particularly at low transverse momentum. By requiring a minimum

impact parameter for the electron candidates, the contribution from beauty-hadron decay

electrons is increased relative to the other electron sources. The pT-distribution of the

electrons after applying this requirement is shown in figure 9.2 (right) together with the
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Figure 9.1: Invariant yield of electrons from beauty-hadron decays in Pb–Pb collisions

with the centrality class 0−20%.

Figure 9.2: Analysis method for the pp reference. After subtracting the estimated back-

ground, only the contribution from electrons from beauty-hadron decays remains, but

with large uncertainties. By requiring a minimum impact parameter, the background de-

creases (right), leading to a measurement with smaller uncertainties (left). (publication

in preparation [45])
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Figure 9.3: Left: Comparison of measurements at
√

sNN = 2.76 TeV and 7 TeV scaled

by FONLL. Left: Comparison of scaled and rebinned result to Pb–Pb measurement.

(publication in preparation [46])

estimates for the background electrons. Subtraction of the remaining background and

correction for the efficiency yields a measurement with significantly smaller uncertainties

as shown by the black markers in 9.2 (left). As for the Pb–Pb analysis presented in this

work, the information about the impact parameter distributions was obtained based on

the Monte Carlo simulations, which require a correction. By weighting the electrons from

the different sources according to the pT of the mother particle, both the corrections for

the selection efficiency and the information about the strength of the different sources

were applied in one step.

The measurements in pp and Pb–Pb can be compared by scaling the cross-sections

according to theoretical predictions of their center-of-mass energy dependence. Figure

9.3 (left) shows a comparison at
√

sNN = 2.76 TeV. The scaling was done using FONLL

pQCD calculations [109–111]. The results are consistent within uncertainties. Both

the systematic and statistical uncertainties are lower for the measurement at 7 TeV

even considering the additional uncertainties from the scaling. These were estimated

using variations of the renormalization and factorization scales as well as the beauty-

quark mass. A large correlation in the systematic uncertainties at both energies can be

expected. Thus, there is no advantage in combining the results as the uncertainties would

have to be added linearly. Thus, the scaled result at 7 TeV was chosen as the reference

for the RAA calculation. A comparison of the pp reference scaled with the average

nuclear overlap (discussed in section 2.2.1) is shown in figure 9.3 (right). Already in
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Figure 9.4: Nuclear modification factor of beauty-hadron decay electrons in Pb–Pb

collisions with 0−20% centrality.

this plot some difference between the distributions is visible although both have sizable

uncertainties.

9.2 The nuclear modification factor

The RAA is the ratio of the distributions in figure 9.3 (right). The form

RAA =
dNAA/dpT

〈TAA〉dσpp/dpT
, (9.1)

was already motivated in chapter 3. For the combined uncertainties, a linear uncertainty

propagation was used. This assumes that the relative uncertainties for the 1/(dσpp/dpT)

term are approximately the same as for dσpp/dpT itself. As a result, the statistical

uncertainties - which are known to be independent - are added in quadrature. The

correlation is not known exactly for the systematic uncertainties. As described in the

previous chapter, the pp reference was measured with a method that is also based on

the impact parameter. As a result, some uncertainties should appear in a similar way in

both analyses, which causes some degree of correlation between the resulting systematic

uncertainties. On the other hand, some properties of the description of the simulations
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Figure 9.5: Contributions to the systematic uncertainties of the nuclear modification

factor. These were summed in quadrature.

might change from pp to Pb–Pb and the methods are not the same. As a result, the

exact strength of the correlation is not known. In general, there are three limiting cases:

The samples can be (fully) correlated, (fully) anticorrelated or uncorrelated. If they

are correlated, the systematics cancel out in the ratio, if they are anticorrelated, they

should be added linearly and if they are uncorrelated, the correct procedure is to take

the quadratic sum like for the statistical uncertainties. From the reasoning above, the

reasonable expectation is a positive correlation: The systematic uncertainties are partially

correlated with an unknown positive correlation coefficient. The correct procedure for the

propagation is thus between subtraction and a quadratic sum. In the absence of further

knowledge, the choice was to use the quadratic sum, which represents the worst-case of

no correlation.

Figure 9.5 shows the different contributions to the systematic uncertainties of the

nuclear modification factor. In particular at low transverse momenta the main contribu-

tion comes from the pp reference. Both the PID and the signal extraction uncertainties

contribute significantly to the Pb–Pb portion of the systematics over the whole pT-range

of the measurement. Apart from the leftmost pT-bin, the systematic uncertainty stays

fairly constant at a value of about 20%. This means that a significant improvement of

the RAA measurement requires an improved pp measurement.

Figure 9.4 shows the resulting nuclear modification factor. The central values show a

decreasing trend with pT. The uncertainties are typically of the order of 30% and can be
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Figure 9.6: Comparison of the nuclear modification factor with the p–Pb result and with

theory calculations. (publication in preparation [46])

assumed to be correlated between adjacent pT-bins. The rightmost bin shows the most

significant deviation from unity with about 3.5σ . To assess the effect of the medium, it

is useful to compare to the result from p–Pb collisions, which was discussed in chapter 3

(figure 3.3, right). This comparison is shown in figure 9.6 (left). While the p–Pb result

is compatible with unity over the whole measurement range, the Pb–Pb result shows a

clear trend. The RpA result can give some information about effects that are specific

to nuclei but do not require the creation of a QGP. A modification due to the nPDFs

would give a different effect in a Pb–Pb collision than in a p–Pb collision, with the effect

being about twice as large when both participating nuclei are affected. Nevertheless,

the p–Pb result gives further credence to the nPDF calculations, which do not predict

a large effect in Pb–Pb due to the initial state. This can be seen in the right plot of

figure 9.6. The calculation based on FONLL+EPS09 yields a slightly rising expected

RAA , which is the opposite trend of the data. All of this gives further credence to the

interpretation that the deviation of the RAA from unity is due to a medium modification.

Several of the theoretical calculations arrive at similar predictions for the RAA , as

shown in figure 9.6 (right). These agree well with the data but also with each other. One

exception is the prediction of the AdS/CFT-inspired model, which predicts a stronger

suppression. Due to the migration in phase-space of the quarks towards lower energies,

the RAA rises for all models when going towards lower pT. Around the lower edge of the

measurement, most models show a peak due to the acceleration of low-energy beauty

quarks by the expanding medium. The peaks are much closer to unity than the central
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Figure 9.7: Comparison of the measured nuclear modification factor with a blast wave

model using different mean transverse velocities β .

points of the measurements but consistent within uncertainties uncertainties. The rise

towards low pTwill be discussed in a bit more detail in the next section. The pQCD

based MC@sHQ[64], BAMPS[61, 112], and WHDG[113–115] models as well as the non-

prerturbative transport model TAMU tend towards the lower edge of the measurement

while the POWLANG model result - in particular the calculation based on hard thermal

loop resummation - tends towards the upper edge of the uncertainties.

9.3 Comparison to a blast wave model

To gain some intuitive understanding of the result it is useful to compare it to a phe-

nomenological model. The blast wave approach [116] assumes full thermalization of the

medium and in particular a thermal distribution of the resulting hadrons. In this picture,

all beauty hadron move at the velocity of the local medium at freeze-out. The medium at

freeze-out is represented by a 3-dimensional hypersurface. Assuming that the energy dis-

tribution within the system of each volume element is given by a Boltzmann-distribution

with one common (freeze-out) temperature, the resulting energy distribution can be ob-

tained by boosting all particles to the lab-frame and integrating over the hypersurface.

Only radial flow is included in the model. As a result, the transverse velocity profile of

the hypersurface is assumed to be dependent only on the radius. The dependence is

described by a power law. The model thus has four free parameters: The exponent for
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the velocity profile, the mean transverse velocity, the temperature of the medium and

the mass of the particle.

The relevant particles for the model are the beauty hadrons. To connect their kine-

matics to the decay electrons, the Monte Carlo simulations described in section 4.6

were used. For simplicity, the ”pp reference” for the calculation of the RAA was simply

the output of the enhanced Monte Carlo sample, which is similar to the pp and p–Pb

beauty-hadron decay electron measurements. To derive the pT-distribution of the elec-

trons from that of the beauty hadrons, the correlation shown in figure 5.1 was applied.

This gives a slight bias for very low pT electrons, because only electrons with the basic

TPC and ITS signals were considered. However, these do not contribute greatly to the

total yield. For the comparison, total beauty conservation was assumed, meaning the pp

and Pb–Pb estimate were scaled to have the same normalization. As the model setup,

the temperature parameter was set to kT = 160 MeV, the particle mass to mB0 and the

exponent for the velocity profile to one. The result is particularly sensitive to the mean

transverse velocity. Figure 9.7 thus shows the resulting RAA for three different choices

of this parameter (β ). The theoretical considerations described in chapter 3 suggest

that, while low momentum beauty quarks may thermalize, those with very large initial

momenta might not. This suggests that the blast-wave model does not apply at very

large momenta. The results of the calculation show that the beauty quarks relevant for

this measurement might indeed be thermalized, although the description of the hydro-

dynamics in the blast-wave model is quite crude. The best description is given by the

model with β = 0.6, which is consistent with blast-wave fits of low-mass hadrons [117].

The blast-wave result can also yield some insight into the rise of the measured RAA at

low pT. The additional particles can either come from larger transverse momenta when

they lose energy or from lower transverse momenta when they are accelerated by the

expanding medium. The largest peak results from the slowest expansion. The shape of

the peak does not vary much with the model parameters. In all cases the peak reaches

at most values of 1.3− 1.4 in the RAA . The reason for this becomes apparent from

the correlation of the hadron and electron pT shown in figure 5.1 (left): Hadrons of

almost all pT have a large probability of producing a low pT-electron (0.5−1.5 GeV/c).

This means that it is difficult to find a beauty hadron RAA , which causes an excess of

electrons e.g. in the range 1.3− 2 GeV/c but not below. As a result, an RAA of 1.5

or even 2 is not consistent with beauty conservation within the measured (effective)

pseudorapidity range. If this condition is loosened, the model with β = 0.6 describes the

data very well assuming an increase in the total yield by a factor of 1.4.
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Figure 9.8: Left: Comparison to a measurement of the combined heavy-flavor decay

electron meausrement [118] (publication in preparation). Right: Comparison to an

estimate of the charm electron RAA based on the D0 measurement [69, 119].

9.4 Comparison to the charm case

From the measurement of the nuclear modification factor of D mesons [69] it is possible

to extract an estimate for the RAA of charm electrons by applying the correlation of

the mother particle transverse momentum with that of the daughter electron similar

to the approach used for the blast wave calculation [119]. Here, this was done using

electrons from D0 decays. In a similar manner, the result can be compared to the

combined electrons from beauty and charm sources [118]. The results are shown in

figure 9.8. Both show lower values of the RAA than the beauty-hadron decay electrons.

The interpretation is not as straightforward as for the beauty case, because the different

charm hadron species differ more strongly in the branching ratios to electrons than the

beauty hadrons meaning that e.g. charm conservation does not imply conservation of

the electrons from charm hadron decays. It is important to also consider the dependence

of the RAA on the slope of the spectrum as well as the quark energy loss. Due to the

generally stronger slope of the pT-distribution of electrons from charm-hadron decays,

a slightly lower RAA would be expected even for the same migration in the phase space

of the electrons. Nevertheless, the results show some indication of a dependence of the

RAA on the (heavy) quark flavor. A more quantitative understanding can be achieved

via the comparison to theoretical calculations as discussed previously.
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Chapter 10

Summary and Outlook

In this work, the first measurement of the beauty production in central Pb–Pb collisions

at low pT and at mid-rapidity was presented. The measurement was done via the decay

electrons of the resulting beauty-hadrons using template fits of the impact parameter

distribution. Both the finite statistics of the data and the Monte Carlo simulations are

considered in this approach. A clear difference is visible in the comparison of the appro-

priately scaled proton-proton measurement to the Pb–Pb result, which points clearly to

an in-medium modification of the beauty-quark momentum distribution, given that no

such effect is seen in p–Pb. Due to the fact that the measurement is based on templates

of the impact parameter distributions from Monte Carlo simulations, the reproduction

of several key features by the simulations was assessed.

Both the uncertainties associated with the simulations and with the particle identifica-

tion contribute to the sizeable uncertainties in both the pp and the Pb–Pb measurement.

Improving these uncertainties would yield additional separation power with respect to the

different theoretical calculations.

The particle identification can profit significantly from the addition of the Transi-

tion Radiation Detector. The advantage is twofold: Slight additional reduction of the

deuterons and protons should be sufficient to decrease the reliance on the TOF, which

gives the largest uncertainty due to the representation in the detector simulations. In

addition, a stronger separation of electrons from pions - a main purpose of the TRD -

allows for weaker TPC PID selection criteria, which in turn decreases the associated un-

certainty. The completion of the TRD in 2015 [120] results in full azimuthal acceptance

of this detector making this a viable option for further study in particular for the new

larger center-of-mass energy of
√

sNN = 5.02 TeV [121].

The uncertainties of the signal extraction can broadly be separated into uncertainties

due to the Monte Carlo simulations and uncertainties intrinsic to the maximum likelihood
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(or posterior) method. For the latter, improvements come both from including more

prior information and from extraction more information from the posterior probability

distribution. An important piece of prior information is the knowledge that the templates

should be smooth at some scale. This cannot be easily included by smoothing the

templates because of the resulting biases of the fits. However, it is part of the prior

knowledge, that the distributions (except for the electrons from photon conversions)

should have a single peak and then fall off towards the tails of the distribution. This

monotonous behavior can easily be included in a prior, which does however become

non-differentiable. Markov Chain Monte Carlo methods allow for the use of such priors,

also eliminating the need for the bias correction. Studies [96] have shown that these

methods can be applied using a larger impact parameter bin width (which decreases the

dimensionality of the problem). Further optimization of the proposal functions may lead

to reasonably quick convergence even for larger dimensionalities.

The uncertainty of the measurement can also be decreased by using templates based

on higher statistics. In practice, large effective statistics could be achieved for the

templates by separating the production of the electrons (the event generator and decayer)

from the detector response. This factorization can be achieved for heavy-flavour hadron

decay electrons because the detector response is almost completely independent of the

production mechanism. The templates would then in practice result from a convolution

of the distributions of the true impact parameter with the detector response. This

approach is more difficult for the Dalitz and conversion electrons. The true impact

parameter distribution of the Dalitz electrons approaches a δ -distribution relative to

the resolution. For the conversion electrons, the mismatched conversion electrons have

a different detector response compared to the rest. With sufficient statistics in the

templates, the fluctuations can be neglected (or approximated in a χ2 approach [91]),

leading to a likelihood with only four unknown parameters. In such a case, it is possible to

also consider the pT-distribution of the beauty-hadrons as a set of unknown parameters

of the fit procedure. The template distribution for the electrons from beauty-hadron

decays now depends on the pT-distribution of the hadrons. As a result, all pT-bins are

connected, because the likelihood does not factorize anymore. To analyze the resulting

common posterior distribution, Markov chain Monte Carlo methods can once more be

useful. This is the approach of the measurement by the PHENIX collaboration [72]

discussed in section 3.6. In principle, this approach results in an immediate measurement

of the beauty hadron pT-distribution. A difficulty is the wide distribution of the pT of

the daughter electrons for a given hadron pT, as shown in figure 5.1. From the examples

given in chapter 8, it is clear that the uncertainties of the electron measurement lead
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to even larger uncertainties in the pT-distribution of the beauty hadrons, which in turn

lead to uncertainties in the impact parameter distributions. Thus, such an approach has

to rely on some degree of regularization (chapter 8) in order to give reasonable results.

This addition of ad-hoc penalty terms to the likelihood/posterior distribution leads to

systematic uncertainties that are difficult to estimate.

The method used to measure the pp reference in ALICE [5, 45] is based on the

subtraction of the background electron sources estimated from other measurements, the

so-called cocktail. This information could also be applied as a prior in the method pre-

sented here, which still allows for a calculation by maximizing the posterior. This would

in effect combine the information used in both methods. Given that the uncertainty a

low pT is largely due to the uncertainty in the reference (shown in figure 9.5), both the

measurement of the RAA and RpA can profit from an improved reference.

The analysis method for beauty-hadron decay electrons introduced in this work makes

use of the full impact parameter distribution for the separation of the electron sources.

The estimates of the different contributions to the uncertainty are largely data-driven,

which produces reliable estimates. As a result, the method can easily also be applied

to different data sets. These include not only the recently measured data in Pb–Pb

collisions at
√

sNN = 5.02 TeV, but also the more peripheral collisions at 2.76 TeV.

A particularly interesting measurement is also the v2 of electrons from beauty-hadron

decays. The elliptic flow v2 was introduced in section 2.2.3 as a coefficient of the

Fourier-decomposition of the azimuthal angular distribution of the particles. In the

case of a statistical separation as in the analysis presented here, this coefficient can be

estimated by comparing the yields within an azimuthal angle of π/4 of the event plane

(‘in-plane’) and outside of this (‘out-of-plane’) (e.g. [122]). Within the calculation,

the yields appear as ratios. As a result, it profits greatly from the expected strong

correlation of the uncerainties, which cancel out in the ratio. For this reason, the

estimation of this correlation is highly beneficial. It can be achieved by comparing the

ratio plots (e.g. figure 7.14) for both cases as well as the toy model results (figure 7.10).

The complementary information from the v2 yields an additional understanding of the

interaction of beauty quarks with the hot and dense medium.

The rise of the RAA going from the value of 0.4-0.5 at the high pT edge of the

measurement range towards lower pT gives an insight into the interactions of the beauty

quarks with the medium. In this range both radiative and elastic processes may con-

tribute. The shape of the RAA points towards a strong interaction with the medium,

being qualitatively compatible with a blast-wave fit assuming full thermalization. Using

the methods developed in this work based on the use of template fits of the impact

127



CHAPTER 10. SUMMARY AND OUTLOOK

parameter distribution this can be further quantified both by applying the method to

additional data samples and by making use of the fact that the approach can make use

of any additional prior information and is thus easily generalizable. This suggests, that

the measurement of beauty-hadron decay electrons will remain an important approach

to the measurement of beauty in heavy-ion collisions at least until direct reconstruction

of the hadronic decays of beauty hadrons will become possible [87] at low pT and at

mid-rapidity after the proposed upgrade of the ALICE experiment for the LHC Run 3.
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Appendix A

Abbreviations and terms

This addendum serves as an overview of the abbreviations and terms introduced in the

text. Here, a short explanation is given, together with the page number, where the term

was first introduced in this text for reference.

BAMPS (page 27). The Boltzmann approach to MultiParton Scatterings, a pQCD-

based model for the heavy-quark energy loss and the surrounding medium.

beauty-hadron decay electrons (page 39). Electrons from the decays of hadrons

with beauty valence quarks (usually B mesons).

conversion electrons (page 68). Electrons produced in the conversion of photons in

the detector material (γ → e+e−).

Dalitz electrons (page 71). Electrons that are neither conversion electrons nor come

from heavy flavor hadron decays. These mostly originate from the decays of light

mesons.

impact parameter (page 43) Distance of closest approach of the reconstructed track

to the reconstructed interaction vertex in the transverse plane. Can be positive or

negative depending on whether the interaction vertex is inside or outside of the

circle of the projected track.

ITS (page 33). Inner Tracking System. 6 layers of silicon-based detectors near the

interaction point.

MC@sHQ (page 27). pQCD-based model of the heavy-quark energy loss.

minimum bias Monte Carlo sample (page 37). Monte Carlo simulations meant to

reproduce typical collisions.
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mismatched conversion electrons (page 87). Conversion electrons produced outside

the active area of the first layer of the ITS, randomly associated with signals of

other particles to still pass the selection criteria.

Monte Carlo simulations (page 37). Set of simulated events, combining particle pro-

duction, decays and detector interactions.

PID cluster (page 34). Integrated charge corresponding to one row in the radial seg-

mentation of the TPC suitable for use in the particle identification.

POWLANG (page 27). Model of the heavy-quark energy loss using lattice QCD cal-

culations as input.

proxy sample (page 49). A sample of particles with similar properties as the one of

interest with regard to a specific comparison.

pT-bin (page 41). Subrange of the measurement pT-range that is considered separately

in the analysis.

signal-enhanced Monte Carlo sample (page 37). Monte Carlo simulations with added

signals to increase the statistics for heavy-flavor decay electrons.

statistical uncertainty (page 81). The uncertainty of the signal extraction due to

statistical fluctuations in both the data and the Monte Carlo templates.

TAMU (page 27). Model of the heavy-quark energy loss using lattice QCD potentials

as input.

template (page 71). The distribution of the impact parameter of electrons from a

particular source as taken from a Monte Carlo simulation.

TOF (page 36). Time-Of-Flight detector. Provides PID information based on the

arrival time of particles.

toy model (page 78). The virtual repetition of the experiment to analyze the statistical

uncertainty and bias of the parameter estimate.

TPC (page 34). Time Projection Chamber. Large cylindrical gas detector used for

tracking and PID.

Tracking cluster (page 34). Integrated charge corresponding to one row in the radial

segmentation of the TPC suitable for tracking.
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TRD (page 35). Transition Radiation Detector. 6 detector layers based on a combina-

tion of energy loss in the gas and the production of transition radiation.

V0 detectors (page 32). Two scintillator arrays used e.g. in the determination of the

centrality.

V0 electrons (page 50). A sample of electrons selected by searching for decay electrons

from photon conversions.

V0 pions (page 50). A sample of charged pions selected by searching for the decays of

K0
S .

WHDG (page 27). pQCD-based model of the heavy-quark energy loss.
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Calculations

B.1 A simple model for the effect of the truncated

mean

This model was originally derived in [91]. Here, a slightly quicker derivation is presented.

The model aims at a description of the truncated mean used for the calculation of the

ALICE TPC signal. However, it can be applied more generally to truncated means of

detector signals with similar properties. One assumption of the model is that there is a

fixed umber of clusters, each with the same underlying probability distribution for the

signal.
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Figure B.1: Explanatory sketches for the truncated mean model. Left: Energy loss and

effective energy loss distribution for the track length associated to one cluster. Right:

Energy loss distribution of a single interaction of the charged particle with the gas.
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For the calculation, ∆ represents the energy loss, σcluster(∆) represents the probability

distribution of the energy loss within one cluster. Without the truncated mean, the total

energy loss is the sum of the signal in the individual clusters and its probability distribution

is given by a convolution of all clusters:

σtot = σcluster⊗σcluster . . . . (B.1)

For the truncated mean, the sum only includes the lowest 60% of signals. For a large

number of clusters this means that only signals in the lowest 60% of the pdf are included.

This means, that the truncated signal is equal to a convolution of an effective pdf which

is zero for energy loss values above some threshold. The comparison of the true and

effective energy loss distribution is sketched in figue B.1. This means, that e.g. the

truncated mean of 100 clusters is aproximated by the 60-fold convolution of the effective

energy loss distribution. This can be written as the 60-fold convolution of the associated

Landau-distributions and a correction factor. A convolution of Landau distributions

yields again a Landau. For this reason, it is useful to write the result as the product of

this Landau and a correction function:

STPC = L(∆) f (∆) , (B.2)

where L is the Landau distribution and f is the correction, which can be large. It is

useful to interpret the correction factor with regards to the convolutions: For each value

of the total energy loss ∆, there is a contribution from each cluster. The correction

factor is the ratio of the combinations that only contain contributions below the cut-off

to all possible combinations. To approximate this factor, it is useful to remember the

origin of the Landau-distribution, which is based on the Rutherford-cross section [80]

of the individual interactions of the charged particle with the detector gas. The energy

loss distribution is sketched in figure B.1 (right). Most of the individual interactions

deposit only a small amount of energy while some deposit a lot. The model assumption

is that these large energy deposits from a single interactions can push the energy loss

in the cluster that contains them over the cut off. In a further simplification, this

can be stated thusly: Each individual interaction with a large energy loss has a fixed

and independent probability of creating a cluster above the threshold. Due to the fact

that these interaction are rare, their number is Poisson-distributed. For a probability of

q= (1− p) for one such interaction to create a cluster above the threshold and λ̂ = λ̂ (∆)

the mean number of such interactions along the entire track, the correction function can
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be written as

f (∆) =
∞

∑
n=0

λ̂ n exp(−λ̂ )

n!
pn = exp(−qλ̂ ) . (B.3)

A Taylor expansion of λ̂ to first order in ∆ yields a constant term that does not contribute

and a linear term, which can be combined with the constant q, resulting in

f (∆)∼ exp(−λ∆) , (B.4)

with a positive fit variable λ .
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Figure B.2: The truncated mean model for a truncated mean of Landau distributions

with 10% (Left) and 40% (Right) of the original 100 clusters removed.

To assess the accuracy of the model, it can be directly compared to a truncated

mean of Landau distributed clusters. Figure B.2 shows the results using 100 clusters.

The result shows that the model works better for weaker truncations, while for a stronger

truncation the peak is well reproduced but the tail overestimated.

B.2 Geometrical factor for electrons from photon con-

versions

The cylindrical geometry of the detector means that the material budget of particles

from the interaction vertex to a certain distance from the beam-pipe depends on the

polar angle (or the pseudarapidity). Particles emitted at larger |η | experience a larger

material budget. The track length of a particle with some η will compare to the length

of a particle perpendicular to the beam-pipe as |p| does to pT. To connect this to the

pseudorapidity, it is useful to consider

pL

|p|
= tanh(η) , (B.5)
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from which follows

|p|
pT

=
1√

1−
(

pL
|p|

)2
=

1√
1− tanh2(η)

= cosh(η) , (B.6)

which is the required geometric factor. If the η distribution of photons and light particles

is equal, then the η distribution of the electrons from photon conversion is modified by

this factor.

B.3 Radial dependence of the mean impact parame-

ter for electrons from photon conversions

R

d0

beam pipe

Figure B.3: Sketch of the production of conversion electrons in the detector material.

This is the same figure as 7.3, repeated for convenience.

The electrons resulting from photon conversions in the detector material initially

have a momentum vector almost parallel to the momentum of the photon. The average

opening angle is of the order of mec2/Ee [95]. This fraction is so small for the energies

considered in this work, that it will be neglected. Figure B.3 shows a sketch of the
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process. In transverse plane, the shape of the tracks of charged particles is a circle with

radius

r =
pT

|q|B
, (B.7)

where q is the charge of the particle and B is the magnetic field. As sketched in the

figure, the expected impact parameter (without resolution effects) assuming a production

radius R is given by

〈d0〉=
√

R2 + r2− r = r

(√
1+

R2

r2 −1

)
. (B.8)

For the energies and production radii discussed here, R� r, allowing for the approxima-

tion

〈d0〉 ≈
R2|q|B

2pT
, (B.9)

using a Taylor expansion.

B.4 The Mahalanobis distance

For a Gaussian probability distribution of a measured parameter x, the probability density

for its true value being µ is given by

p(µ) =
1√

2πσ2
e−

1
2 (x−µ)(σ−2)(x−µ) , (B.10)

where σ−2 is the inverse variance. If n independent measurements are combined (e.g.

measurements in different pT-bins), the combined probability is given by the product of

the individual probabilities:

p(~µ) =
n

∏
i=1

p(µi|σ−2
i ,xi) , (B.11)

with xi the measured points and σ
−2
i the associated inverse variance. With the definition

Σ
−1 =


σ
−2
1

σ
−2
2

. . .

σ−2
n

 (B.12)

this can be written as

p(~µ) =
1√

(2π)n|Σ|
e−

1
2 (~x−~µ)Σ

−1(~x−~µ) , (B.13)
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with |Σ| the determinant of Σ. Now

−2log p(~µ) = ∑
i
(xi−µi)

2/σ
2
i + c , (B.14)

where c is a constant independent of µ . The first term is also known as the χ2 measure.

Its square-root is the Mahalanobis distance [123, 124]. The generalization to the case of

correlated uncertainties is now straightforward. The correlated uncertainties correspond

to a multivariate Gaussian distribution as in equation B.13. For a given covariance matrix

Σ, the inverse Σ−1 defines the probability distribution representing this covariance. Then,

the generalization to the χ2 measure can be expressed as

D2(~µ,~x) = (~x−~µ)Σ−1(~x−~µ) , (B.15)

which is the square of the Mahalanobis distance. For a fit of data values with correlated

Gaussian uncertainties, minimizing this generalized distance is equivalent to a maximum

likelihood fit or the maximum of the posterior probability distribution for flat priors.
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Additional material concerning the

signal extraction

C.1 Detailed description of the fit algorithm

This section aims to describe the implementation of the algorithm in more detail. The

additions concern mostly the starting values for the iterations.

The fit is implemented in the class ”AliMCLogLFitter”. This class needs a histogram

of the data, an array of the template histograms and the number of sources considered

as input. Optional input includes the fit range and the source to be considered to have

contributed in bins without contributions from Monte Carlo (section 7.2.2).

The initial values for the p j are set such, that the integral of p jA ji over the impact

parameter yields half the number of counts in the data histogram. The entire fitting

procedure is repeated five times for different sizes of the starting steps p j,start/10 ·n for

iteration n. The result with the highest likelihood is returned. For each iteration, the p j

are varied and for each proposal, the maximization w.r.t. the A ji is performed using an

iterative approach. The approach calls the mnseek-minimizer n times for the approach

to the maximum followed by a finer approach using the Migrad algorithm. The iteration

algorithm works as in the description given in the text.

Additional functions with coupled p j may be included. This is used for the uncertain-

ties from strangeness and the baryon ratio. The are treated like the other contributions,

except that their parameters are updated for every step according to the distribution

they are coupled to.
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C.2 Additional figures

Here the fits from all pT-bins are shown in the figures C.1, C.2 and C.3. The uncertainty

estimation diagrams for the p j are given in figures C.4, C.5 and C.6.
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Figure C.1: Fits of the impact parameter distributions (1).
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Figure C.2: Fits of the impact parameter distributions (2).
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Figure C.4: Uncertainty estimation diagrams (1).
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