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Abstract

The focus of this bachelor thesis is the presentation and examination of an analysis strategy
for a pentaquark search in Λ0

b → Λ+
c (D0* → D

0
π0/γ) K− decays. The Λ+

c D
0* channel

in this decay is predicted to couple to the pentaquark state P+
c . The kinematic effects of a

reconstruction method applied to partially reconstructed events under two hypotheses of
missing particles were examined and determined. In this context, a model describing the
resolution of the Dalitz plot in the variables m2

ΛcD
0(*) and m2

D
0(*)

K−
was found for multiple

scenarios. Lastly, the applicability of the sPlot technique for background subtraction in the
given decay was evaluated. It was found that the full reconstruction of the events in this
decay does not allow for the sPlot technique to be used, which is why a different method
of background subtraction will have to be found.

Zusammenfassung

In dieser Bachelorarbeit wird eine Strategie zur Analyse für eine Suche nach Pentaquark
Zuständen im Zerfall Λ0

b → Λ+
c (D0* → D

0
π0/γ) K− erarbeitet. Es wird erwartet, dass der

Pentaquark Zustand P+
c im Kanal Λ+

c D
0* des Zerfalles auftritt. Die kinematischen Effekte

einer Rekonstruktionsmethode für nicht vollständig rekonstruierte Ereignisse unter zwei
verschiedenen Hypothesen wurden untersucht und bestimmt. In diesem Zusammenhang
wurde ein Model gefunden, das die Auflösung des Dalitzplot in den Variablen m2

ΛcD
0(*) und

m2
D
0(*)

K−
für unterschiedliche Szenarien beschreibt. Zuletzt wurde die Verwendbarkeit der

sPlot Methode für die Unterdrückung des Untergrunds im gegebenen Zerfall untersucht.
Aufgrund der Art der vollen Rekonstruktion dieser Zerfälle ist es nicht möglich die sPlot
Methode zu verwenden, weshalb eine andere Art der Unterdrückung des Untergrunds
gefunden werden muss.
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Chapter 1

Introduction

The Standard Model of particle physics summarizes the current knowledge of fundamental
particles and the forces that effect them, with the exception of gravity. The electromagnetic
and the weak and strong nuclear force are mediated by gauge bosons which are part of
the Standard Model as well as fermions which are the fundamental particles that make up
matter in the universe. This is explained in more detail in chapter 2.
In nature, quarks, which represent half of the fundamental fermions, can only exist in states
that are color neutral. Therefore at least two quarks have to be confined in a colorless
physical state. Until 2015 only states consisting of two or three quarks had been discovered,
when an analysis by the LHCb experiment announced the discovery of two pentaquark
states, containing five quarks [1]. The observation of pentaquark states is a current field of
study in particle physics and especially at the LHCb experiment.
LHCb is one of the four big experiments that are part of the CERN facility in Geneva
that houses the largest particle collider in the world, the LHC. The LHCb detector and its
functionality are presented in chapter 3.
The first observation of pentaquark states was achieved by the LHCb collaboration in 2015
by providing evidence of the existence of two such states, the Pc(4380)+ and the Pc(4450)+.
An update to this finding and evidence of a third pentaquark state, the Pc(4312)+, was
published by LHCb this year[2]. The search for pentaquark states and the discoveries
so far are discussed in chapter 4. The pentaquarks that have been observed to date,
originate from the J/Ψ p channel from Λ0

b → J/Ψ K− p decays with the quark content of
ccuud. However there are other decays observed at the LHCb that are expected to provide
intermediate pentaquark states. For example, the Λ+

c D
0(∗) channel in Λ0

b → Λ+
c D

0(∗)
K−

decays is a considerable candidate for the observation of pentaquark states with the quark
content ccuud. The high expectation for the Pc to couple to the Λ+

c D
0(∗) channel results

from one of the most popular models for pentaquark states, the model of baryon meson
molecules [3]. A feynman diagram of the decay is shown in 1.1.

The focus of this work is the analysis of the decay Λ0
b → Λ+

c (D0∗ → D
0
π0/γ) K−. Since

the π0 or γ are electrically neutral, they are very difficult to detect at LHCb which leads
to the issue that the decay can not be fully reconstructed solely using the information from
the detector. The corresponding events can only be partially reconstructed because of the
final decay products the π0/γ are missing which means that crucial information about
the decay process gets lost. Therefore these events can not be used to determine whether
pentaquark states exist in the Λ+

c D
0(∗) channel without this information. A previous work

provided a method for reconstructing the full decay from the partial information given by

1



Figure 1.1: Feynman diagram of Λ0
b → Λ+

c D
0(∗)

K−.

the detector. The goal of this bachelor thesis is to provide and test an analysis method for
the given decay using the mentioned method for reconstruction of the full decay. Testing
and quantifying the efficiency of this method under the assumption of multiple hypotheses
by a Monte Carlo study is the first part of this bachelor thesis. Furthermore, a method for
dealing with background events in the channel is explored and tested for the decay at hand.
In the future, the presented analysis method will be operated on data taken from LHCb.
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Chapter 2

Introduction to the Standard Model of
particle physics

2.1 The particles of the Standard Model

The Standard Model of particle physics summarizes the current knowledge about the
structure of matter in a collection of fundamental particles. These fundamental particles
can be divided into two categories. There are twelve fermions that matter consists of and
five gauge bosons that mediate the interactions between fermions.

2.1.1 The bosons

There are four different kinds of interactions between particles in nature, each associated
with different bosons. The gravitational force is not included in the Standard Model, but
is insignificant on the scale of particle physics. The electromagnetic interaction between
electrically charged fermions is mediated by massless and chargeless photons. The weak
interaction between fermions is carried by electrically charged W+ and W− bosons and
the neutral Z boson. The strong interaction affecting fermions carrying color charge is
described by massless and chargeless gluons. The gauge bosons all have spin 1 and are
shown in orange in figure 2.1.

2.1.2 The fermions

The twelve fundamental fermions consist of six leptons and six quarks which are grouped
into three generations each containing 2 quarks and one charged and one neutral lepton.
The electrical charge of the leptons is either 0 or −1, whereas in each generation there is
a quark with charge −1

3 and one with +2
3 . All fermions have spin 1

2 and an anti-particle
with the same mass and spin but opposite charge. They are shown in figure 2.1 sorted into
the generations.

The six leptons interact through the weak interaction and if they are electrically charged
through the electromagnetic force, while always preserving the eletrical charge throughout
the interactions. The quarks are affected by all the fundamental forces described in the
Standard Model and preserve the baryon number in their interactions which is +1

3 for
quarks and −1

3 for anti-quarks.

3



2.2. The fundamental forces

Figure 2.1: The elementary particles in the Standard Model [23].

The most recently discovered element of the Standard Model is the Higgs boson. It has
spin 0 which sets it apart from the other bosons in the Standard Model. The Higgs boson
mediates the process in which particles gain mass.

2.2 The fundamental forces

The three fundamental forces included in the Standard Model are the electromagnetic force,
the weak and the nuclear strong force. There is a theory unifying the electromagnetic
and the weak interactions in the electroweak theory and there is an effort to include the
strong force as well in which would be a theory describing all interactions in the Standard
Model.

2.2.1 The electromagnetic force

The theory describing the electromagnetic force is quantum electrodynamics (QED). It
only affects particles with electrical charge which is conserved in all electromagnetic
interactions. Since the mediator, the photon, is massless, the electromagnetic force is not
spatially restricted which sets it apart from the other fundamental forces. However, the
electromagnetic force decreases with distance r by 1

r .
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2.2. The fundamental forces

2.2.2 The weak nuclear force

The weak interation can affect all fermions in the Standard Model. The theory describing
the weak force the best is the electroweak theory which also includes electromagnetic
interactions. It is propagated by the W± and Z bosons, which, opposed to photons and
gluons, are massive and therefore limit the range of the weak force significantly. Just like
the electromagnetic force, the weak force conserves electrical charge in its interactions.
Since the weak force is the only fundamental force that can change quark flavor it is
essential to many interesting processes. It is also the force responsible for radioactive
decays of atoms.

2.2.3 The strong nuclear force

The theory describing the strong force is called quantum chromodynamics (QCD). Only
particles with color charge are affected by the strong force which includes quarks and
gluons. There are eight gluons carrying color charge and one color neutral gluon which
can therefore not mediate the strong force. Three types of color exist that particles can
be charged with, red, blue and green, as well as their respective anti-colors. Since only
color neutral particle states exist in nature, quarks and gluons are confined in so called
hadrons. Attempting to separate quarks from a confined state sets free enough energy
for the pair production of a quark and an anti-quark. There are two types of hadrons,
baryons and mesons. Baryons consist of three quarks, each carrying a different color
charge and therefore being color neutral together. Mesons contain two quarks, a quark
and an anti-quark, which also provide a color neutral state by contributing a color and its
anti-color.
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Chapter 3

Detector

3.1 The LHCb Detector

The LHCb detector is designed to study decays from particles containing either bottom or
charm quarks (or the respective anti-particles). Since the relevant quarks do not scatter in
all directions but stay rather close to the beam line, the detector is not designed around
the collision point but rather along the beam line in order to detect the particles of interest
and their decay products efficiently. The detector consists of several subdetectors which
are aligned behind one another along the beam line. Each of the subdetectors is designed
to measure certain properties of the collision particles and their decays. The detector units
gather information about the particles’ trajectories, their momenta and energies as well as
identifying to what particles the tracks belong to and what decay they originated from.
The layout of the detector and its subdetectors is displayed in figure 3.1.

Figure 3.1: Side view of the LHCb detector [20].

The subdetectors are described in the following sections.

3.1.1 VELO

The Vertex Locator (VELO) is the detector unit that is closest to the collision point. The
purpose of the Vertex Locator is to measure the trajectory of particles near the proton-
proton interactions in order to be able to identify the position of the primary and secondary
vertices which are distinctive features of decays of particles with bottom or charm quarks
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3.1. The LHCb Detector

[4]. It consists of multiple silicon microstrip modules which provide measurements of the r
and φ coordinates 7 mm from the beam line. Since this is too close to the beam during
injection, the VELO halves are movable and can be pulled away from the beam line and
are brought back into position once the beam is stable. Each module has one sensor to
measure the r coordinate and one sensor to measure the φ coordinate.

3.1.2 Silicon Tracker

The Silicon Tracker is made up of two separate detector units, one being located between
the collision point and the magnet, the Tracker Turicensis (TT), and one behind the
magnet, the Inner Tracker (IT). Both use silicon microstrip detectors, which,in the case of
the TT, cover the full acceptance region of the experiment, which is ±300 mrad horizontally
and ±250 mrad vertically [7]. There are three Inner Tracker units in T1, T2 and T3,
however they only cover the area closest to the beam line. The Silicon Trackers are used to
calculate the momentum of charged particles from their trajectory before and after passing
through the magnetic field of the magnet. Information about the transverse momentum of
particles provided from the TT is also used in the High Level Trigger [5].

3.1.3 Magnet

In order to be able to calculate the momentum of charged particles a dipole magnet was
installed in LHCb 5.3 meters from the collision area [6]. Charged particles will have a
curved trajectory under the influence of a uniform magnetic field. The momentum of the
particles can be deduced from the radius of their trajectories while passing the magnetic
field. This is why a magnet consisting of two trapezoidal coils was installed which provides
an integrated field of 4 Tm and has an acceptance region of 330 mrad horizontally and 250
mrad vertically. The setup of the magnet achieves very accurate momentum measurements
for particles with momenta up to 200 GeV/c.

3.1.4 Outer Tracker

The Tracker units T1, T2 and T3 mentioned in the section about the Silicon Trackers
consist not only of the Inner Trackers close to the beam line but also of the Outer Trackers
which have a different design than the Inner Trackers and cover the area further away from
the beam line. The Outer Trackers are designed as multiple straw-tube modules which
contain drift-tubes that are used to measure drift time and coordinates. They are used to
determine the momentum of charged particles over a larger acceptance area [7].
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3.1. The LHCb Detector

3.1.5 Calorimeters

The calorimeter system at the LHCb detector includes four separate calorimeters. The
Scintillating Pad Detector (SPD), the Pre-Shower Detector (PS), an electromagnetic
calorimeter and a hadronic calorimeter. They are used to identify particles as well as to
measure their energies and positions. In addition to that, they also provide information
about particles for the first trigger level. The electromagnetic calorimeter is used to analyze
electrons and photons whereas the hadronic calorimeter is used for hadrons. The separation
between photons, electrons and hadrons from other particles is achieved by the SPD and
the PS. In the electromagentic calorimeter there are 66 modules consisting of alternating
layers of lead and scintillator tiles [7]. The electrons and photons initiate a shower of
particles by interacting with the lead. The shower particles then produce scintillating
light in the scintillator tiles which is proportional to the energy of the incoming particle.
This is how, for example, the transverse energy of a particle can be calculated in the
calorimeter. The hadronic calorimeter is designed similarly except that it uses iron instead
of lead tiles for the shower initiation. In each calorimeter the produced light is conveyed
by wavelength-shifting fibers and is collected by photomultipliers [8].

3.1.6 Muon Detector

The muon detector system is composed of five stations M1-M5. M1 is located in front of
the calorimeter system whereas M2-M5 are placed behind it, each being separated by iron
absorbers. M1 is only used in the first trigger level, while the identification and tracing
of muons is achieved by stations M2 to M5. A muon signal is only accepted if hits can
be found in all five stations that can be assigned to the same particle, in which case the
transverse momentum will be calculated by reconstructing the tracks. This is first done in
the stations M2 to M5 and if aligning hits are found, the information from M2 and M3
is used to verify whether a corresponding hit was detected in M1 or not. The method
yields a resolution of the transverse momentum of approximately 25 %. Since M1 to M3
are utilized to calculate the direction of the track and the transverse momentum, their
resolution in the bending plane is higher than in M4 and M5 which mainly serve for the
identification of the particles [9].

3.1.7 Ring Imaging Cherenkov Detectors

A crucial part of the analysis done at LHCb is the identification of particles emerging from
decays of b-hadrons. In order to be able to separate charged hadronic particles, especially
pions and kaons, two Ring Imaging Cherenkov Detectors (RICH) are used. One is placed
between the VELO and the magnet while the other sits between the Tracking Systems
and the first muon chamber [10]. The identification of charged particles is obviously also
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3.1. The LHCb Detector

important in the context of the Λ0
b → Λ+

c D
0(∗)

K− decay. The six final state particles
of this decay, which are mostly pions and kaons, have to be correctly identified in order
for an event to be registered. Furthermore, since only charged particles can be identified
like this, the issue of having uncharged final state particles becomes apparent here. The
first RICH detector covers particles with momenta ranging from 1 to 60 GeV/c and takes
the full LHCb acceptance. This is achieved by aerogel (only in run 1) and C4F10 radiators
which produce the Cherenkov light. Cherenkov light is emitted from a dielectric medium if
a charged particle passes through the medium with a speed that is higher than the speed
of light in that medium. This Cherenkov light is then projected through two mirrors to
photon detectors which can reconstruct the angle between the particles and the emitted
photons. The angle is correlated to the velocity of the incoming particle by:

cos θc = 1
n · β

(3.1)

where β is the velocity of the particle divided by c. This yields the velocity of the particles,
which, along with information about the momentum gained from the Tracking Systems
provide the mass of the particles. The second RICH detector is installed to cover particles
with momenta from 15 GeV/c to 100 GeV/c and has a smaller acceptance compared to
the first RICH detector, however still covering the region of high momentum particles.
The Cherenkov light is emitted from a CF4 gas radiator and then focused and detected
similarly to the first RICH detector. Both RICH detectors are surrounded by magnetic
shield boxes since the photon detectors can only operate at full efficiency in magnetic fields
much smaller than it would be the case without the shielding due to the LHCb dipole
magnet. This is achieved by iron plates that reduce the external field by a factor of around
20. A sketch of the RICH-1 detector is displayed in figure 3.2 [7].

3.1.8 Trigger

LHCb uses two triggers, Level-0 Trigger (L0) and High Level Trigger (HLT), to reduce the
events in each bunch crossing significantly and to only store events which are of interest.
The L0 is a hardware trigger which operates synchronously to the bunch crossing, while
the HLT is a software trigger that only inspects events that passed the L0. The aim of the
L0 is to only consider particles with high transversal momentum and energy since mesons
with b or b quarks often produce these particles. This is achieved by choosing clusters
of particles which show the highest tranverse energy in the calorimeters or the highest
transverse momentum in the muon detectors. This, in addition to information about the
number of primary vertices from VELO, defines the L0 and reduces the event rate to 1
MHz at which the whole detector can be read out.
The HLT uses the selections from the L0 and reduces the data even more to 2kHz by
utilizing the full read out of the detector in order to determine even better which events

9



3.1. The LHCb Detector

Figure 3.2: A sketch of the first RICH detector [21].

should be stored. It is divided in two levels, the HLT1 and the HLT2. The HLT1 is mainly
used to verify events chosen from the L0 trigger by reconstructing the particles in the
VELO and the trackers, which reduces the data to about 30 kHz. The HLT2 forms the final
stage of the trigger system and eliminates further events that do not fulfill requirements
on invariant mass or the direction of the B momentum. This reduces the event rate to
about 2 kHz at which the data is stored permanently [7].
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Chapter 4

Search for exotics

As mentioned in chapter 2, hadrons are split into baryons containing three quarks and
mesons consisting of a quark and an anti-quark. However, QCD also allows for other, more
complicated states containing more than three quarks. Those states were first proposed by
Gell-Mann in 1964 and are called exotic states [11]. Tetraquarks containing two quarks
and two anti-quarks and Pentaquarks containing four quarks and one anti-quark are such
states and are subject to modern particle physics research. States with more than five
quarks have been proposed and looked for as well, however there have been no observations
of such states to date. The first observation of an exotic state was the Z(4430)± which
was discovered in 2008 by the Belle Collaboration in B decays and has a minimal quark
content of ccdu. It was found in the π±Ψ′ channel in the decay B → K π± Ψ′ [12]. In
2015, this observation was confirmed by LHCb with the measurements of the mass and the
width of the Z(4430)− being improved [13].

4.1 Pentaquark search

The first claim of having observed a pentaquark occured in 2002, when the Laser-Electron-
Photon collaboration announced they had found evidence of the existence of a pentaquark
they named Ψ+. The Ψ+ was claimed to have a mass of 1.54 GeV/c2 and a quark content
of uudds, however other experiments could not confirm the existence of the Ψ+ when they
would have been expected to [14]. The first observation of a pentaquark state was achieved
by LHCb in 2015. They published observations of the J/Ψ p channel from Λ0

b → J/Ψ K− p

decays where they measured two resonances corresponding to pentaquark states. The
observed pentaquarks include a charm and an anti-charm quark which is why they are
called charmonium pentaquarks and are labeled P+

c . The quark content of the P+
c is

ccuud. The two resonances, that were measured with a significance of more than nine
standard deviations, occured at masses of 4380 MeV/c2 and 4449.8 MeV/c2 [1]. The most
recent discovery of a pentaquark state also came from LHCb in 2019. In an analysis of the
same channel from the same decays compared to the observations in 2015, however in a
larger data sample, a new pentaquark state with a mass of 4311.9 MeV was observed with
a significance of 7.3 standard deviations. Furthermore, the Pc(4450)+ state observed in
2015 was discovered to be an overlay of two P+

c states with a significance of 5.4 standard
deviations and masses of 4440.3 MeV and 4457.3 MeV. [2]
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4.2. Pentaquark models

4.2 Pentaquark models

Since the observations of pentaquark states by LHCb, a vividly discussed and researched
topic is how such states are bound and how they can be described. One of the proposed
models are strongly bound systems. There are multiple concepts for strongly bound systems
such as a diquark-triquark combination in which a pentaquark would consist of a state
of two quarks and a state of three that are bound together by gluons. Another, similar
concept is an actual pentaquark system. Furthermore, a molecular concept is heavily
present in modern research. This model considers pentaquarks to behave like molecules of
a baryon and a meson.
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Chapter 5

The Λ0
b → Λ+

c D
0(*)

K− decay

5.1 The Λ0
b → Λ+

c D
0

K− analysis

So far, all experimental observations of the P+
c state by LHCb originate from the J/Ψ p

channel in Λ0
b decays. However, it can be expected for the P+

c to couple to other two-
and three-body channels that offer the corresponding quark content. Amongst those
expected channels are the P+

c → D
0∗Λ+

c and P+
c → D

0Λ+
c [19]. As mentioned before,

there are multiple models for describing the nature of pentaquark states. The most popular
interpretations to date are strongly bound systems, like diquark triquark systems, and
baryon meson molecules. The latter predicts large cross sections for the decay of the
P+

c to D
0∗Λ+

c and D
0Λ+

c [3]. These predictions lead to an analysis by LHCb of the
Λ0
b → Λ+

c D
0
K− decay using run 1 data in 2018. The resulting mass distribution of signal

events is displayed in figure 5.1.

Figure 5.1: Mass distribution of reconstructed Λ0
b [22].

The mass of the Λ0
b is listed as 5619.6 MeV by the PDG [18], which is also where a

resonance occurs in figure 5.1. However, a significant portion of events yield an invariant
mass which is approximately 160 MeV smaller than the mass of the mother particle of

13



5.2. D
0* → D

0
π0/γ

the decay, the Λ0
b . This means that somewhere in the detection and analysis process this

amount of energy must have been lost.

5.2 D
0* → D

0
π0/γ

An explanation for the events that yield a lower mass is that the decay was actually
Λ0
b → Λ+

c D
0*
K− and that the D0* decayed into D0

π0 or D0
γ. The π0 and the γ are

electrically neutral and therefore difficult to detect, which means that there is either no
or little information about those particles available. This implies that only the D0, Λ+

c

and K− are being recorded by the detector which is the same information one would
obtain from Λ0

b → Λ+
c D

0
K− decays. The reconstruction of the mass of the Λ0

b in
Λ0
b → Λ+

c D
0*
K− decays will be lacking the energy of the missing particle which leads

to the observed shift towards lower masses for the reconstructed Λ0
b in figure 5.1. Since

only a part of the decay products is used to reconstruct the Λ0
b mass, the concerned events

are referred to as partially reconstructed. The full decay channel for those cases would be
Λ0
b → Λ+

c (D0* → D
0
π0/γ) K−. The fact that either a γ or a π0 get lost in the detection

leads to issues in the analysis of this full decay channel which will be addressed in the
following chapters.
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Chapter 6

Analysis Strategy

The ultimate goal of the analysis is to determine whether pentaquark states exist in the
Λ+
c D

0(∗) channel in Λ0
b → Λ0

c D
0(∗)

K− decays. By using the partially reconstructed
events from the Λ0

b → Λ+
c D

0
K− analysis it can be expanded. This can be achieved

by using a reconstruction method that can obtain the D0∗ from the decay products that
are detected and analyzed. This has certain implications on the analysis process of the
Λ+
c D

0(∗) channel which are to be determined and quanitified in this bachelor thesis.

6.1 Reconstruction of the D
0*

The difficulty of analyzing the Λ0
b → Λ+

c (D0∗ → D
0
π0/γ) K− channel is the loss of

information about some of the final decay products, namely the π0 and the γ. This is due
to the fact that both the π0 and the γ are electrically neutral and are therefore not as
easily and precisely detected by the LHCb detector. A possible solution to this problem
is reconstructing the lost information from the decay particles that are actually detected.
This is done by using a variation of a closed cone method designed for the reconstruction of
missing neutrinos. The performance of this reconstruction method is crucial to the analysis
of this decay and is tested and analyzed in this bachelor thesis. One particular feature of
the reconstruction method is the fixing of the mass of the missing particle. This means,
that when using the method to reconstruct the missing energy of the decay, one has to
make either the assumption that the missing particle was a π0 or that it was a γ. Since it
is impossible to determine whether a π0 or a γ is missing for one specific event, there are
four cases that can arise when applying the method to a given event. One can apply the
reconstruction under the assumption that a π0 is lost, which can either be the case or a γ
was acutally lost that was now treated as a π. Similarly, when using the reconstruction
under the hypothesis of a missing γ, it could either be the correct hypothesis or a π is now
being reconstructed as if it were a γ. This results in four different cases that all have to be
taken into consideration when utilizing the reconstruction method in the analysis of this
decay. The occuring cases are displayed in table 6.1.

Occured decay Reconstructed decay

D
0∗ → D

0
π0 π0 γ

D
0∗ → D

0
γ γ π0

Table 6.1: Possible choices of the reconstruction particle.
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6.2. Dalitz plot

This will lead to the analysis being divided into two parts for each event. A given event will
have to be analysed under the hypothesis that a γ was lost as well as the hypothesis that
a π was lost. One important aspect of the analysis is the efficiency of the reconstruction
method for each of the cases presented in table 6.1. This is further discussed and examined
in chapter 7.

6.2 Dalitz plot

A very helpful tool for determining whether such an intermediate state exists in a three-
body-decay is a so called Dalitz plot. A Dalitz plot is a visual representation of the
phase-space of a three-body-decay. Since the kinematics of such a decay can be described
by two variables, a Dalitz plot is two dimensional. Suppose a particle decays into the
decay products A, B, C. Then, the two axes of the plot are the squares of the invariant
masses of two pairs of the decay products, which could for example be m2

AB and m2
BC .

Each decay is then plotted in this two-dimensional plot depending on the invariant masses
of the decay products that are measured. The choice of the axes depends on the channel
one wants to examine. In the Λ0

b → Λ+
c D

0(∗)
K− decay the events would for example be

plotted as functions of m2
Λ+
c D

0(*) and m2
D0(*)K− since the pentaquark state is expected to

couple to the Λ+
c D

0(∗) channel. In general, if all involved particles had spin 0 and there
were no intermediate states, the events in the Dalitz plot are homogeneously distributed
within the kinematically allowed region. The edge of this region is called the boundary of
the Dalitz plot. Such a Dalitz plot is provided in figure 6.1a. If there is a intermediate
state in a three-body-decay, the density of the Dalitz plot will peak at the mass of the
intermediate state in the corresponding channel. A good example for this is the decay of
Λ0
b → Λ+

c (D∗
s (2700)− → D

0∗
K−). The distribution in the D0∗ K− channel in the Dalitz

plot will show a resonance at the mass of the D∗
s (2700)− which, according to the PDG

[18], is 2708.3 MeV. This resonance will be visible as a band in the Dalitz plot, which is
displayed in figure 6.1.
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6.3. Monte Carlo Data
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(a) Dalitz plot without resonance.
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(b) Ds resonance.

Figure 6.1: Examples for Dalitz plots.

6.3 Monte Carlo Data

A very convenient tool for testing an analysis before applying it on real data is Monte
Carlo (MC) data. Monte Carlo data for a certain decay consists of simulated events which
means that the decay one wants to study is simulated for a certain number of times by a
program which will provide a dataset of the decay that can be obtained without relying
on real events. This is obviously limited by how well the process of a certain decay is
understood. Not only are the kinematics of the decays simulated, but also the process of
the detection of the decay products. This includes efficiencies and finite detector resolution.
This way analysis methods can be tested on MC data representing real data without being
limited by the availability thereof. One big advantage of MC studies is that the dataset
which a certain method is tested on can be much larger than a real dataset.

6.4 Generation of a dataset for Λ0
b → Λ+

c D
0*

K−

The events on which the analysis tools in this work are tested on originate from Monte
Carlo data which was generated with the simulation RapidSim [24]. RapidSim is designed
for phase space decays of hadrons containing bottom and charm quarks and can simulate
the process of a decay in the LHCb detector [15]. In the following the MC data was
created for Λ0

b → Λ+
c (D∗

s (2700)− → (D0* → D
0
π0/γ) K−) which includes the detector

simulation. Since this represents the events that can only be partially reconstructed, the
reconstruction method has to be applied to the given data in order to get a Dalitz plot
like above. In figures 6.2a and 6.2b Λ0

b → Λ+
c (D0* → D

0
π0) K− was simulated while

in figures 6.2c and 6.2d Λ0
b → Λ+

c (D0* → D
0
γ) K− was simulated. Since the γ and π0

would not be registered in real events the reconstruction method needs to be applied on
these two datasets, which can each be done under both hypotheses. This results in four

17



6.4. Generation of a dataset for Λ0
b → Λ+

c D
0*

K−

cases, similar to table 6.1, and four Dalitz plots which are displayed in figure 6.2. In figure
6.2a the missing π was reconstructed as a π whereas in 6.2b the reconstruction assumed
a missing γ. Similarly, in 6.2c the missing γ was assumed to be a γ and in 6.2d it was
treated as a missing π.
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(a) Missing π reconstructed as a π.
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(b) Missing π reconstructed as a γ.
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(c) Missing γ reconstructed as a γ.

18 19 20 21 22 23 24 25 26 27 28
)2m2LcDst(GeV

6

7

8

9

10

11

)
2

m
2D

st
K

(G
eV

m2DstK:m2LcDst

(d) Missing γ reconstructed as a π.

Figure 6.2: Dalitz plots after reconstruction.

In all cases the resonance from the Ds in the D0∗ K− channel is still visible. However, it is
noticable that the reconstruction has a significant impact on the distribution of the events.
Especially in figure 6.2d, it is obvious that at least the reconstruction under the wrong
hypothesis is clearly affecting the edges of the Dalitz plot with some events placing outside
of the boundaries of the Dalitz plot. This is further examined in chapter 7. In chapter 8 a
closer analysis is described which focuses on how the reconstruction affects the distribution
in the Dalitz plot. This is described as the resolution of the Dalitz plot which is crucial in
the analysis of this decay channel.

In the real analysis it is obviously not possible to distinguish between events that include
a missing π and events with a missing γ. Therefore, the dataset that is to be analysed
will contain both kinds of decays. According to the PDG the D*(2007)0 has the two decay
modes D0 π0 and D0 γ with decay fractions of 64.7% and 35.3% [18]. A realistic dataset
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6.4. Generation of a dataset for Λ0
b → Λ+

c D
0*

K−

would therefore consist of 64.7% events with a missing π and 35.3% events with a missing
γ. In figure 6.3 a MC dataset simulating exactly that is displayed in the same Dalitz plot
as above. In figure 6.3a the reconstruction used assumed a missing π and in figure 6.3b
the γ hypothesis was made. Therefore, in both Dalitz plots the correct reconstruction was
used on some of the data while on others the wrong one was applied.

18 19 20 21 22 23 24 25 26 27 28
)2m2LcDst(GeV

6

7

8

9

10

11

)
2

m
2D

st
K

(G
eV

m2DstK:m2LcDst

(a)

18 19 20 21 22 23 24 25 26 27
)2m2LcDst(GeV

6

7

8

9

10

11

)
2

m
2D

st
K

(G
eV

m2DstK:m2LcDst

(b)

Figure 6.3: Dalitz plots of mixed events reconstructed as a π0 (a) and a γ (b).

In addition to the events originating from the decay Λ0
b → Λ+

c D
0(∗)

K− also background
events will have to be considered. In figure 5.1 this is represented by the grey areas. For
this examination background was created from simulation as well. The background was
generated as combinatorial background from the simulation of the Λ0

b → Λ+
c D

0(∗)
K−

decay. This is achieved by combining information about single particles from different
signal events to generate a backround event. This obviously has very little to do with the
actual background, however general studies about the background can still be performed on
this basis. In figure 6.4 the dataset from figure 6.3 was extended with 15% of background
events. Again, figure 6.4a displays the reconstruction with the π hypothesis while 6.4b
assumes a missing γ.
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6.5. Probability density function
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Figure 6.4: Dalitz plots of mixed events with background reconstructed as a π0 (a) and a
γ (b).

A method for dealing with and eliminating the background is examined and discussed in
chapter 9. This forms the final part of what is necessary to analyze this decay channel.
With the information gathered in the steps above, it is now possible to create probablity
density functions (PDF) describing the Dalitz plots for decays of this kind.

6.5 Probability density function

The goal of the analysis is to create and model PDFs by analyzing reconstructed Dalitz
plots in the variables m2

Λ+
c D

0∗ and m2
D

0∗
K−

. These PDFs would then be used to determine

whether a pentaquark resonance can be observed in the Λ0
b → Λ+

c (D0∗ → D
0
π0/γ) K−

channel. This would be visible through an interference of the three possible sub-decays:

Λ0
b → D

0∗ (Ξ0
c → Λ+

c K−)

Λ0
b → Λ+

c (D0*
s → D

0∗
K−)

Λ0
b → K− (Pc → D

0∗ Λ+
c )

Since it is not possible to distinguish whether a π0 or a γ needs to be reconstructed, one
will get two Dalitz plots, one for the reconstruction with a π0 and one for the reconstruction
with a γ. As laid out above, both Dalitz plots will be made up of multiple contributions.
Each of the Dalitz plots contain events that included a π0 which was not detected and
events that included a γ which was not detected as well as background events. Since a
different hypothesis is used in the two Dalitz plots, the contributions to the PDFs describing
the distribution in the Dalitz plots will be different as well. Each PDF will therefore consist
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6.5. Probability density function

of three unique terms. This includes one correctly applied hypothesis, one wrongly applied
hypothesis and one background term. The two functions will have the following form:

PDFπ = Nπ ·
∫
Rπ

π ·A2
π + Nγ ·

∫
Rγ

π ·A2
γ + Nbkg · PDF (bkg)1 (6.1)

PDFγ = Nγ ·
∫
Rγ

γ ·A2
γ + Nπ ·

∫
Rπ

γ ·A2
π + Nbkg · PDF (bkg)2 (6.2)

In both cases Aπ/γ = |ADs + AXc + APc | with A... the signal models of the three
possible sub-decays depending on which particles the D0∗ decayed into (π or γ).

Nπ, Nγ and Nbkg are the respective fraction yields of the π signal, γ signal and the
background. Rγ

π, Rπ
π, Rγ

γ and Rπ
γ are the resolutions of the corresponding Dalitz plots.

The lower indices express which reconstruction was used whereas the upper indices mark
which particle resulted from the D0∗ → D

0
π0/γ decay. The resolution takes into account

how the position of an event in the Dalitz plot is changed through the reconstruction of
the missing particle. The resolution is then folded with the above described signal models
since a position in the Dalitz plot is also influenced by the signal model in the area around
it because of the resolution. Depending on the resolution not the whole area of the Dalitz
plot has to be taken into account since the influence of areas that have a certain distance
to an event can be neglected. If this is the case, only the area closest to an event has to be
used for this which is achieved by the integral of the product of R · A2 over the desired
area. This is examined closer in section 8.3.
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Chapter 7

Efficiency of the reconstruction method

The first aspect one can consider for the events that are reconstructed is the mass of the
Λ0

b that the reconstruction yields. The reconstructed mass can be utilized to classify events
before the analysis is performed. The conditions that the reconstructed mass has to fulfill
and their effects are described in this chapter.

The reconstructed Λ0
b mass is obtained from the masses and momenta of the Λ+

c , the K−

and the reconstructed D
0∗. If the reconstruction is accurate and was used correctly, the

mass should always yield 5619.60 ± 0.17 MeV, which is the mass of the Λ0
b as given by the

PDG[18]. By eliminating events that do not yield a reconstructed Λ0
b mass lying within

three standard deviations of the PDG value, unreasonable events can be dropped. This is
one aspect of the efficiency of the reconstruction method because it eradicates events that
are reconstructed inaccurately. With the cut on the Λ0

b mass applied, the reconstruction
was run on five different MC sets, each containing 100000 signal events of one of the signal
species. The results for the efficiency is listed in table 7.1 in the column “Efficiency” with
statistical errors.
A second aspect that can be taken into account is, that when the π0 hypothesis is applied,
the Λ0

b mass of the partially reconstructed channel has to be smaller than the mass of the
Λb by the rest mass of the π0 which is 134.98 MeV according to the PDG [18]. Therefore,
when applying the π0 hypothesis all those events can be ignored, that yield a partially
reconstructed mass that is higher than 5484.62 MeV. There is no lower limit on the partially
reconstructed mass because the π0 can be created with a momentum. This additional cut
was applied to the MC data for the π0 hypothesis and the fractions of events that made
the cut are listed as “π cut” in table 7.1 with statistical errors.

Missing particle Hypothesis π cut Efficiency

γ γ - 0.97 ± 0.01

γ π 0.65 ± 0.02 0.59 ± 0.02

π π 0.97 ± 0.02 0.99 ± 0.01

π γ - 0.99 ± 0.01

Table 7.1: Efficiency of reconstruction method.

In the case of a missing γ reconstructed as a π, the restrictions seem to eliminate 61%
events that are wrongly reconstructed. In those cases only the Dalitz plot using the γ
hypothesis will have to be considered. For the cases where the correct reconstruction
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was used, the efficiency of the reconstruction method is around 97% which means, that
under the correct hypothesis most signal events will be kept. Although three percent of
correctly reconstructed events are eliminated through the cuts, the statistics for the search
for pentaquarks in the Λ+

c D
∗0 channel are still sufficient.

An additional benefit of these two restrictions is, that they help eliminate some of the
background in both Dalitz plots. After applying them to the full MC dataset including the
π0 and γ signal types and background events the Dalitz plots from figure 6.4 now have the
following form:
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Figure 7.1: Dalitz plots of mixed events with background reconstructed as a π0 (a) and a
γ (b).

In both cases, events that previously were outside of the boundaries of the Dalitz plot
do not meet the requirements mentioned above and are therefore not considered. The
analysis can be exclusively performed within the boundaries of the Dalitz plot, because
based on the reconstruction, events that lay outside of the kinematically allowed region are
rejected.
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Chapter 8

Resolution

The two axes of the Dalitz plot, m2
ΛcD

0(*) and m2
D
0(*)

K−
, both involve the mass of the D0∗.

Since the mass of the D0∗ is calculated through a reconstruction method, the accuracy of
the position of an event in the Dalitz plot depends on the performance of the reconstruction.
Examining and quantifying this influence is the subject of this chapter.
The manner in which the position is affected by the reconstruction is henceforth called the
resolution of the reconstruction in the Dalitz plot. The resolution has a large significance
when creating a PDF that describes the distribution of events in the Dalitz plot as
presented in section 6.5. As laid out in chapter 7 the relevant events will be located inside
the boundaries of the Dalitz plot which means that the resolution needs to be determined
only for that area as well.
While in a real dataset only information about the D0 is available, when performed on
MC data the true values for the four vector of the D0∗ can be calculated and used for
testing. The true values from the MC simulation can then be compared to the ones that
the reconstruction yields. For each event the values of the Dalitz plot variables can on the
one hand be calculated with the reconstructed D

0∗, which will yield the values m2
ΛcD

0∗

and m2
D

0∗
K−

. On the other hand they can be calculated with the true values from the
MC simulation, which will yield m2

ΛcD0∗,true and m2
D

0∗
K−,true

. By comparing these values,
the effect of the reconstruction on the Dalitz plot variables can be quantified. Calculating
the difference between the values for each event is the first step towards calculating the
resolution.

∆m2
ΛcD

0∗ = m2
ΛcD

0∗
,true

−m2
ΛcD

0∗ (8.1)

∆m2
K−D

0∗ = m2
K−D

0∗
,true

−m2
K−D

0∗ (8.2)

In order to get the resolution, the area of the Dalitz plot is divided into two-dimensional
bins. The goal is to determine the distribution of the differences ∆m2

ΛcD
0∗ and ∆m2

K−D
0∗

for all bins in the Dalitz plot. Therefore the differences are calculated for each event and
collected in the corresponding bins based on the true values of the variables. This is done
on the whole dataset, after which the data is depicted as two histograms for each available
bin, one for ∆m2

ΛcD
0∗ and one for ∆m2

K−D
0∗ . An example of two such histograms for one

bin containing the described data is given in figure 8.1.
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8.1. Resolution Model

(a) Distribution of m2
Λ+
c D

0(*) .

(b) Distribution of m2
D
0(*)

K−
.

Figure 8.1: The differences m2
Λ+
c D

0(*) (a) and m2
D
0(*)

K−
(b) for one generic bin in the

Dalitz plot displayed as histograms.

8.1 Resolution Model

In order for this information to be used in equations 6.1 and 6.2, the distribution of the
differences in all bins have to be modeled with a function. In the case of figure 8.1 both
histograms can be described by a double gaussian which is defined by the sum of two
gaussians that share the same mean µ but have separate widths σ1 and σ1. It has the
form:

DG(x) = a1 ·G(x;µ, σ1) + a2 ·G(x;µ, σ2) (8.3)

with

G(x;µ, σ) = 1√
2 · π · σ

· e− (x−µ)2

2·σ2 (8.4)

The model is applied to both histograms with unique values for a1, σ1, µ, a2 and σ2 and
added to the data in figure 8.2.
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8.2. Different cases

(a) Model for the resolution of m2
Λ+
c D

0(*) .

(b) Model for the resolution of m2
D
0(*)

K−
.

Figure 8.2: Model for the resolution in a generic bin of the Dalitz plot.

Since the double-gaussian models seem to describe the data in both variables well, the
two-dimensional resolution of a bin can be written as a product of two double gaussians.

R(x, y) =
(
a1 ·G(x;µ1, σ1) + a2G(x;µ1, σ2)

)
·
(
a3 ·G(y;µ2, σ3) + a4 ·G(y;µ2, σ4)

)
(8.5)

with x and y being the two Dalitz plot variables. This yields a two-dimensional model for
a bin in the Dalitz plot that can describe the resolution of events in that bin. This has to
be done separately for every bin in the Dalitz plot by fitting the function 8.5 to the data
in each of them.

8.2 Different cases

The above depicted data was generated from a MC sample that simulated D0* → D
0
γ and

was reconstructed under the hypothesis of a missing γ. Since the choice of the hypothesis
and the occured decay play a significant role for the resolution of the Dalitz plot, the other
cases as mentioned in table 6.1 have to be examined as well. All four possible combinations
will have a unique resolution and are important when trying to describe the distribution of
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8.2. Different cases

events in the Dalitz plot. In the PDFs for the Dalitz plots in formulas 6.1 and 6.2 they
were labeled as Rγ

π, Rπ
π, Rγ

γ and Rπ
γ , where the lower index marks the applied hypothesis

whereas the upper index indicates the particle that was created. The procedure described
in chapter 8 so far has to be conducted for all these cases. The question that arises, is,
whether the proposed model in section 8.1 can appropriately describe all four occuring
combinations of missing particles and hypotheses.
To determine this, all bins that the Dalitz plot is divided into have to be examined. Judging
from figure 7.1, the relevant area of the Dalitz plot ranges from 6 to 11.5 GeV2 in m2

D
0(*)

K−

and from 18 to 27 GeV2 in m2
Λ+
c D

0(*) . The y-axis is divided into twelve bins with the width

0.5 GeV2 while the x-axis is divided into ten bins with a width of 1 GeV2. Not all bins in
this rectangular division of the Dalitz plot will be relevant since some of them cover areas
that lie out of the boundaries of the Dalitz plot. For those bins and the ones that lie on
the edge of the kinematically allowed area, and therefore have too little data to make a
statistically relevant statement, the resolution does not have to be determined.
In the case of the correct hypothesis being used, so for Rπ

π, as can be seen in figure
8.3, and Rγ

γ , as can be seen in figure 8.2, ∆m2
Λ+

c D
0∗ and ∆m2

K−D
0∗ seem to be dis-

tributed according to formula 8.5 in all available bins. By determining the parameters
a1, σ1, µ1, a2, σ2, a3, σ3, µ2, a4, σ4 for these cases the resolutions Rπ

π and Rγ
γ can be defined

for all bins in the Dalitz plot and applied to the PDF of the Dalitz plot.

(a) Model for the resolution of m2
Λ+
c D

0(*)

(b) Model for the resolution of m2
D
0(*)

K−

Figure 8.3: Model for the resolution Rπ
π in a generic bin of the Dalitz plot
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8.3. Range

For the cases in which the wrong hypothesis was used, Rγ
π and Rπ

γ , this does not seem to
be true anymore for all bins, as can be seen in figure 8.4. Although there are a few bins
where the model 8.5 can be described with simple models, similar to 8.5, the data in most
of the bins show very few similarities and the distributions of ∆m2

Λ+
c D

0∗ and ∆m2
K−D

0∗

have no obvious correlations.

(a) Resolution of m2
Λ+
c D

0(*)

(b) Resolution of m2
D
0(*)

K−

Figure 8.4: The differences m2
Λ+
c D

0(*) (a) and m2
D
0(*)

K−
(b) for one generic bin in the

Dalitz plot displayed as histograms for Rγ
π

For these bins individual models have to be determined that can describe the given data
appropriately.

8.3 Range

Because of the limited resolution, the position of an event in the Dalitz plot is inaccurate to
some degree. Events that have been assigned a certain position would have had a different
position if the reconstruction had not been needed. This is why, when calculating the value
of the PDF for a position, the surrounding area has a significant effect. This is represented
by the integral of the product of the resolution and the amplitude model over the relevant
area. The size of the area that needs to be considered depends on the resolution, which
is why only bins within a certain range of a position have to be included. Bins with a
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8.3. Range

greater distance do not have a significant effect. The necessary range of the integral can
be determined from the values resulting from the model fits as described in section 8.2.
The maximal distance ∆m2

Λ+
c D

0∗ or ∆m2
K−D

0∗ that occurs, even for Rγ
π and Rπ

γ , is 0.2
GeV2. This means that for a given position in the Dalitz plot, it will be sufficient to
take the resolution models of only the closest bins surrounding that position into account,
considering the size of the bins.
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Chapter 9

Background

One crucial aspect of the analysis of this channel is the subtraction of the background.
As one can see in figure 5.1, there is a significant amount of background in the decay
channel, mainly being combinatorial background. A common technique for the reduction
of background is the sWeight technique. Whether this method can be applied to the given
dataset in order to reduce the background and enhance the signal quality is the focus of
this chapter.

9.1 sPlot technique

The sPlot technique is designed to deal with datasets with multiple contributions that one
wants to separate as is the case for the given decay. It is used to determine the distribution
of variables whose distribution is unknown for all of the event contributions. This is done
by choosing sets of variables from the data which are then divided into two components.
The first component consists of variables for which the distribution of the events for all
sources is known. These are called discriminating variables. The second conponent, the
control variables, consists of variables for which the distribution is not known for at least
one of the contributions. The distributions for the control variables are then determined
by assigning weights to the events based on the distribution in the discriminating variables.
These weights, the so called sWeights, are calculated for every event source and from those
the distribution in the control variables can be calculated. Since sWeights are calculated
for all contributions, their values can be negative or positive depending on how likely an
event originates from a contribution.
In the case of the Λ0

b → Λ+
c (D0∗ → D

0
π0/γ) K− decay, the sources of events would

be the events that yield a π, the events that yield a γ and background events which
are characterized in figure 5.1. The discriminating variable in this case would be the
partially reconstructed mass of the Λ0

b for which the distribution is known for the involved
contributions. An essential assumption when using the sPlot technique is that the control
variables are uncorrelated to the discriminating variable [16]. However, this is not the case
in the presented analysis. In the reconstruction method that is applied, the mass of the Λ0

b

is used to compute the D0∗. Since the control variables are m2
Λ+
c D

0* and m2
D
0*

K−
and the

D
0∗ is part of them, the control variables in this case are correlated to the discriminating

variable through the reconstruction of the D0∗.
This raises the question whether the sPlot technique can be applied to this decay or not
since one of the assumptions on which it is based is not fulfilled.
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9.2. From sWeights to probabilities

9.2 From sWeights to probabilities

The method of checking whether the sPlot technique can be applied in this case is based
on a machine learning method. When using machine learning methods with sWeighted
data the fact that sWeights are designed to be negative as well as positive becomes an
issue. This concerns loss functions on which machine learning methods are based. When
using negative sWeights, loss functions can become unbounded and therefore the training
of machine learning methods will not converge. This is why the weights obtained from
an sPlot need to be transformed into classical probabilities for them to be used in such a
method. There are different approaches for this depending on the statistics available and
the number of control variables.

9.3 sWeight averaging

One way of transforming the sWeights to probabilities is by calculating the average over
events with the same values for the control variables. If x are the control variables, the
probability of getting a signal event for certain values of x, which are also called features, is
w(x) = psignal(x)

pmix(x) . When using sWeights that were calculated from a discriminating variable
m, the signal probability for an event with certain features x would be the average over
events with those features, E(sWeight(x,m)) = w(x) [17]. This can obviously only be
achieved if there is enough statistics for all features x for the average to be calculated.
Since the Dalitz plot area is divided into bins and there will only be a few thousand events
in the real dataset, this method can not be applied on the real data, because there will
not be enough data to determine the averages correctly. However, with MC data this is
possible, which offers a method of checking whether sWeighting can be used in this context
or not.
This test was done on a MC dataset containing 100000 events of which 20% were simulated
background as described in section 6.4 and 80% were Λ0

b → Λ+
c (D0* → D

0
γ) K− events.

The events were labeled accordingly before being merged into a single dataset. Firstly,
a model was created for describing the distribution of the dataset in the discriminating
variable, the partially reconstructed mass of Λ0

b , which consists of a model of Λ0
b →

Λ+
c (D0* → D

0
γ) K− and a polynomial background contribution. This model was then

fitted to the distribution of the events in the partially reconstructed Λ0
b mass which is

displayed in figure 9.1.
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9.3. sWeight averaging

Figure 9.1: Data (black) and model (blue) of partially reconstructed Λ0
b mass distribution.

From this distribution the sWeights for the events were calculated. The Dalitz plot was
then, once again, divided into bins. Events that are placed in the same bin are treated as
if they had the same features. This way the average of the sWeights can be calculated for
each bin. On the other hand, each event was labeled before being mixed which offers the
opportunity of calculating the classical probability for signal and background events for
each bin. If the sPlot technique is valid for this dataset, although the control variables are
correlated to the discriminating variable, the probabilities generated from the two methods
should be the same. In figure 9.2 the classically calculated probabilities are displayed for
the signal (a) and the background (b).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

19 20 21 22 23 24 25 26
)2m2LcDst(GeV

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11)
2

m
2D

st
K

(G
eV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

19 20 21 22 23 24 25 26
)2m2LcDst(GeV

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11)
2

m
2D

st
K

(G
eV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

(b)

Figure 9.2: Classical probabilities for the bins in the Dalitz plot for signal (a) and
background (b).

In figure 9.3 the averages of the sWeights for each bin are displayed.
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Figure 9.3: For each bin in the Dalitz plot the average of the signal sWeights (a) and the
background sWeights (b) were calculated.

By comparing the two plots for the signal weights it becomes obvious, that the averaged
sWeights do not manage to reproduce the classical probabilities for signal and background
distribution. The whole relevant area of the Dalitz plot basically yields an sWeight average
of 1 which coincides only with the classically calculated probabilities on the lower edge.
Especially for high values of the x-axis and low values of the y-axis the classical probability
and the averaged sWeights do not match.
This means that the proposed method is inadequate for handling the background in this
channel. There are however other methods which can be examined. For example, the
background in the sideband of the partially reconstructed Λ0

b mass distribution (see figure
5.1) could be extrapolated and used to describe the background in the relevant area.
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Chapter 10

Conclusion and Outlook

In the search for pentaquark states, LHCb conducted an analysis of the Λ0
b → Λ+

c D
0
K−

decay because a pentaquark state was predicted in the channel P+
c → D

0(∗)Λ+
c . It was

found, that a considerable amount of data yielded a reconstructed Λ0
b mass that was

between 100 and 200 MeV smaller than the expected value. This is due to the fact that the
Λ0

b mass of the decay Λ0
b → Λ+

c (D0* → D
0
π0/γ) K− is only partially reconstructed. In

order to properly reconstruct these events, a variation of a closed cone method is applied
to the detected final particles. A premise for this method is, that the mass of the missing
particle has to be given. Since it is not possible to distinguish between the missing γ and
the missing π0, the events have to be reconstructed under both hypotheses.
A resonance in the Dalitz plot with the coordinates m2

ΛcD
0(*) and m2

D
0(*)

K−
could indicate

an intermediate pentaquark state [6.2]. Because of this, probability density functions
describing the distribution of the events in the Dalitz plot are needed. Since the data has to
be reconstructed under two hypotheses, two PDFs are needed to describe the reconstructed
data [6.5].
The resolution of the Dalitz plot is an important part of the PDFs and was the focus of
this work [8]. It describes the effect of the reconstruction on the events’ position in the
Dalitz plot. Four different resolutions had to be calculated since there are two possible
missing particles and two hypotheses that can be applied. The resolutions Rπ

π and Rγ
γ were

determined by calculating the distributions of the differences ∆m2
ΛcD

0∗ and ∆m2
K−D

0∗ in
bins of the Dalitz plot and could be modeled with the product of two double Gaussians.
For the resolutions Rπ

γ and Rγ
π the distributions were calculated as well, however there was

no obvious model they could be fitted with [8.2].
In order to minimize the number of events that are wrongly reconstructed, two cuts on the
reconstruction were introduced, concerning the partially and fully reconstructed Λ0

b mass.
By applying the cuts, a large number(fraction) of events that are reconstructed under the
wrong hypothesis can be eliminated, 61.65%. The correctly reconstructed events are barely
affected, of them only 3% are eliminated.[7.1]
Lastly, the sPlot technique was tested on the presented decay [9]. Since the Dalitz plot
variables are not independent of the partially reconstructed Λ0

b mass, one of the premises
of the sPlot technique was disregarded. This was tested by comparing the averages of the
sWeights to classical probabilities in the Dalitz plot. If the sPlot technique was applicable
to the decay, the averaged sWeights should have agreed with the probabilities. This could
then have been used to estimate the background distribution in the Dalitz plot. However,
the sWeights failed to reproduce the probabilities, which is why a different method will
have to be used for the background subtraction. If such a method and a model for Rπ

γ and
Rγ

π can be found, the presented analysis strategy could be applied to the given data.
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