
Faculty of Physics and Astronomy
University of Heidelberg

Diploma thesis

in Physics

submitted by

Manuel Tobias Schiller

born in Heidelberg

July 2007

Standalone track reconstruction

for the Outer Tracker of the

LHCb experiment using a cellular

automaton

This diploma thesis has been carried out by Manuel Tobias Schiller at the
Physikalisches Institut

under the supervision of
Prof. Dr. Ulrich Uwer

Kurzfassung

In dieser Diplomarbeit wird die Leistungsfähigkeit der Mustererkennung im
Spursystem studiert. Zuerst wird der gegenwärtige Stand existierender Al-
gorithmen zusammengefasst. Dann werden Zelluläre Automaten und ihre
Anwendung zur Spurfindung detailliert diskutiert. Der Prototyp einer Im-
plementierung eines solchen Algorithmus für das äußere Spurkammersystem
vom LHCb erweist sich als schnelle und effiziente Alternative zu existieren-
den Algorithmen. Seine Leistungsfähigkeit mit über 93 Prozent Effizienz
und einem Anteil von 12 Prozent fehlrekonstruierten Spuren ist vergleich-
bar mit den bereits existierenden Algorithmen. Bei hoher Belegunsdichte im
Detektor erweist er sich aber als deutlich robuster.

Abstract

In this thesis, the performance of the pattern recognition in the LHCb track-
ing system is studied. First, the status of the existing algorithms is sum-
marised. Then, the concept of the cellular automaton and its application
in track reconstruction is discussed in detail. A prototype implementation
of such an algorithm for the LHCb Outer Tracker proves to be a fast and
efficient alternative to existing algorithms. Its performance of above 93 per-
cent efficiency with a fraction of 12 percent wrongly reconstructed tracks is
comparable with existing algorithms. It is significantly more robust with
increasing detector occupancy.

Contents

Introduction 1

1 The LHCb experiment 5

1.1 Vertex Locator . 6

1.2 Trigger Tracker . 6

1.3 Inner Tracker . 8

1.4 Outer Tracker . 8

1.4.1 Spillover . 11

2 Tracking in the LHCb experiment 15

2.1 Introduction . 15

2.2 Track model . 15

2.3 LHCb Track types . 16

2.4 Pattern recognition . 17

2.4.1 Velo tracking . 18

2.4.2 Momentum estimation 19

2.4.3 Forward Tracking . 20

2.4.4 T station seeding . 21

2.4.5 Momentum estimation using the pT -kick method 25

2.4.6 Track Matching algorithm 26

2.5 Tracking performance indicators 26

2.5.1 Reconstruction efficiency 27

2.5.2 Ghost fraction . 27

2.5.3 Clone fraction . 27

2.5.4 Purity . 28

2.5.5 Collection efficiency . 29

2.6 Tracking definitions used in LHCb 29

2.6.1 Matching Monte Carlo particles and tracks 29

2.6.2 Definition of efficiency denominator 30

2.6.3 Event-weighted versus track-weighted quantities 31

i

ii CONTENTS

3 Tracking performance in the LHCb experiment 33
3.1 Track quality monitoring tool 33
3.2 Tracking performance . 33

3.2.1 Performance of Velo tracking 36
3.2.2 Performance of Forward Tracking 36
3.2.3 Performance of T station seeding 39
3.2.4 Performance of Track Matching 39
3.2.5 Overall performance for Long tracks 42

4 Cellular Automaton principles 45
4.1 Introduction to Cellular Automata 45
4.2 Cellular automaton used in tracking 46

4.2.1 Tracklet generation . 48
4.2.2 Neighbour finding . 49
4.2.3 Automaton evolution 50
4.2.4 Forming and selecting candidates 52

5 Cellular automaton based seeding for the LHCb OT 55
5.1 Overview . 55
5.2 Evaluating performance . 57
5.3 Data preparation . 58

5.3.1 Selection of measurements 58
5.3.2 Conversion to working objects 58
5.3.3 Sorting of the measurements 59
5.3.4 Forming clusters . 59

5.4 Tracklet generation . 61
5.4.1 Geometrical cuts . 62
5.4.2 Momentum estimation and optional cut 65
5.4.3 Clustering continued: pitch residuals 66
5.4.4 Efficiency of tracklet generation 70

5.5 Stereo enhancement . 71
5.5.1 Forming pseudo-x clusters 71
5.5.2 Matching pseudo-x clusters and tracklets 73
5.5.3 Stereo enhancement efficiency 77

5.6 Finding neighbours and automaton evolution 79
5.6.1 Cuts on kink angle and q/p 80
5.6.2 Cuts used to check for stereo compatibility 80
5.6.3 Automaton evolution 80
5.6.4 Automaton evolution in stereo layers 83
5.6.5 Performance evaluation 83

5.7 Forming and selecting track candidates 84

CONTENTS iii

5.7.1 Forming track candidates 85
5.7.2 Track selection . 93

6 Overall performance of the algorithm 101
6.1 Efficiencies and ghost fractions 101
6.2 Purity and collection efficiency 102
6.3 Execution time behaviour . 105

7 Summary 111

iv CONTENTS

Introduction

Physics aims at describing our world on scales of very different orders of
magnitude. The observations range from distances as large as the radius
of the universe of about 1026 m down to scales as tiny as 10−18 m which is
the length down to which the electron substructure has been probed to be
point-like.

Particle physics is concerned with observations on the end of extremely
tiny scales, attempting to explain them and derive predictions. Usually,
such observations are made using collisions in particle accelerators which
effectively act as “microscopes” to the sub-atomic world. Models capturing
the present understanding of particle physics are devised and used to predict
future observations, putting them to test. A good model should be as simple
as possible.

The so-called Standard Model of Particle Physics was formulated about
three decades ago and describes the interaction of the constituents of mat-
ter through the electro-magnetic, weak and strong forces on the subatomic
scale. It has proven to withstand scientific scrutiny and experimental evi-
dence collected during these three decades almost unchanged, making it one
of the most widely accepted and long-lived models in the history of particle
physics.

While predictions made by the Standard Model have been found to be in
excellent agreement with experiment, it leaves open a number of questions.
For example, it provides a mechanism to generate an asymmetry between
particles and antiparticles which has been tested at collider experiments.
However, it is unable to explain the amount of matter-antimatter asymmetry
seen in the universe which is several orders of magnitude larger than the
Standard Model prediction.

The fact that the Standard Model describes the data observed in experi-
ments so far, yet leaves unanswered very basic questions is usually interpreted
as evidence that there must be physics beyond the Standard Model, at ener-
gies higher than those probed by past and present experiments. Therefore,
new particle accelerators are being built, colliding elementary particles like

1

electrons or protons with ever-increasing energies. At the same time, the
resolution of the detectors and the statistical size of the data samples are in-
creased to improve measurement precision so that even small deviations from
the Standard Model can be spotted in the search for signs of new physics.

The Large Hadron Collider (LHC), a proton-proton collider currently
being completed in the tunnel of the former Large Electron Positron collider
(LEP) at the Organisation Européen pour la Recherche Nucléaire (CERN)
in Geneva, will be the dominating accelerator at the high-energy frontier in
the next decade. It is due to start operation around the end of the year 2007
and will deliver collisions at a centre-of-mass energy of 14 TeV when fully
operational.

One of the six experiments1 located along the 27 km circumference of the
tunnel is the Large Hadron Collider beauty experiment (LHCb). It seeks to
gain a more thorough understanding of the particle-antiparticle asymmetry
in the B-meson sector by performing precision measurements. Such precision
measurements require the reconstruction of tracks of particles produced in
collisions with high efficiency and very good spatial accuracy. This task,
commonly referred to as tracking, is challenging, especially in the high track
multiplicity environment generated by proton-proton collisions as delivered
by the LHC. Figure 1 shows the reconstructed tracks of a typical simulated
event.

In addition to the issue of the large combinatorial burden, the tracking
has to meet severe timing constraints to make it possible to process the vast
amount of data produced at LHCb. The CPU time available to the tracking
at trigger level is even more restricted. Typically the tracking has to be faster
than 1 ms per subdetector.

For this thesis, a tracking approach based on cellular automata is inves-
tigated, a technique that has been proven to be efficient and fast in previous
experiments. A prototype implementation has been written for the LHCb
Outer Tracker (see Chapter 1 for a description of the detector) which is
presented here.

The remainder of the thesis is structured as follows: Chapter 1 briefly de-
scribes the LHCb experiment. Terms, definitions and some of the techniques
commonly used in tracking are described in Chapter 2. In Chapter 3, the
performance of the LHCb tracking in its present state is presented. Chap-
ter 4 gives a brief introduction to cellular automata in general and outlines
their application in tracking, while Chapter 5 describes the implementation
written for this thesis. Chapter 6 investigates the performance of the algo-
rithm presented and attempts a comparison with the standard package. A

1These six experiments are ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM.

2

Figure 1: Reconstructed tracks of a typical simulated proton-proton colli-
sion in the LHCb detector.

summary of the results of this thesis is given in Chapter 7.

3

4

Chapter 1

The LHCb experiment

The LHCb experiment ([1], [2]) is designed to study properties of B mesons,
with emphasis on precision measurements of CP violating processes and rare
decays. It will run at

√
s = 14 TeV using the p-p collisions provided by the

LHC. To perform precision B physics analysis, it is crucial to reduce the
number of multiple interactions. Therefore, the beam is defocused before
entering the LHCb experiment, reducing the average number of multiple in-
teractions per bunch crossing from 17 to 1.5. The luminosity is also decreased
from 1034 cm−2s−1 to 2 · 1032 cm−2s−1.

CP violating processes are known in the standard model and have been
observed in kaon and beauty systems, although the precision of existing mea-
surements for the beauty system is not as good as what LHCb is expected
to achieve. The CKM mechanism which is the only source of CP violation
in the Standard Model is several orders of magnitude too weak to explain
the imbalance observed in the universe. LHCb will help improve the un-
derstanding of CP asymmetry in the standard model and may be able to
discover evidence of CP-violating contributions from new physics.

As the bb̄ pairs of interest in the experiment are emitted mostly either
in forward or backward direction, LHCb has been designed as a forward
spectrometer. Figure 1.1 shows a side view of the detector. It consists of:

• Velo: The Vertex Locator (Velo) is a silicon microstrip detector de-
signed to identify primary and secondary vertices with good precision.
This is necessary to recognise secondary vertices from B decays.

• RICH1: RICH1 is a Ring Imaging Cherenkov detector designed to
provide particle identification for low-momentum particles. It contains
two radiators covering a momentum range up to 10 GeV and from 10
GeV to 60 GeV, respectively.

5

6 The LHCb experiment

• Trigger Tracker: The Trigger Tracker (TT) is a silicon microstrip
detector located in the fringe field in front of the dipole magnet. It
provides an initial momentum estimate for trigger applications.

• Dipole magnet: The dipole magnet permits access to the momentum
of charged particles by measuring their deflection in its field. Particles
traversing the magnet can see an integrated field of up to 4.2 Tm.

• Tracking system: The main tracking system (T) consists of Inner
and Outer Tracker. The Inner Tracker is a silicon microstrip detector,
the Outer Tracker is based on the drift chamber principle, realised in
modular straw tube technology.

• RICH2: A second Ring Imaging Cherenkov Counter provides particle
identification for high momentum charged particles up to 100 GeV.

• ECAL and HCAL: The Electromagnetic and Hadronic Calorimeters
measure energies of electrons, photons and hadrons.

• Muon stations: The muon stations (M1-M5) identify muons.

The tracking system is considered in more detail, with special emphasis
on the Outer Tracker because it is relevant to the reconstruction algorithm
presented in Chapter 5.

1.1 Vertex Locator

The Velo ([3], [2]) consists of 21 stations which are in turn composed of two
modules enclosing the beam pipe from both sides. Two half-disc-shaped sili-
con sensors mounted back to back form a module. One sensor type measures
the radial distance of particle traversal (called r type sensors), the other the
azimuthal angle (also called φ type sensors). Figure 1.2 contains a drawing
illustrating the two Velo sensor types.

1.2 Trigger Tracker

The Trigger Tracker ([4], [2]) consists of two stations, each of which consists
of two layers. The first layer of the first station and the last of the second one
measure the x coordinate of a passing charged particle, while the two layers
in the middle have their measurement direction rotated by ±5 ◦ around the z
axis with respect to the x axis. These rotated layers are called u and v layers.
The spatial resolution is about 50µm in x, u and v direction. This design

1.2 Trigger Tracker 7

RICH1

M3
M2

M4 M5

RICH2

z

y

5m

10m 15m 20m5m

T1
T2

T3 M1

SPD/PS
ECAL

HCAL

Magnet

TT

Locator
Vertex

Figure 1.1: Side view of the LHCb detector. The positive z axis points in
the direction of the proton beam (to the right in the picture),
the y axis up, and the x axis points into the drawing plane.

R−measuring sensor

384
strips

384
strips

384
strips

384
strips

256 strips 256 strips

92µm outer pitch40µm inner pitch

182 degrees
spread

break at
24.1mm radius

total 2048
strips

40µm pitch

37µm inner pitch

182 degrees
spread

682 inner strips

1366 outer strips

98µm outer pitch

total 048
strips

2

φ−measuring sensor

Figure 1.2: Schematic view of the two types of Velo sensors. The one shown
on the left measures the radial distance of a particle to the
beam, the right one measures the azimuthal angle.

8 The LHCb experiment

permits inferring the y coordinate of a track from the three projections while
maintaining excellent resolution in x direction in which most of the deflection
in the magnetic field happens. Figure 1.3 contains a sketch of the TT layout.

1.3 Inner Tracker

The Inner Tracker (IT, see [4], [2]) is used to obtain position measurements of
charged particles behind the magnet. It covers the area around the beam pipe
where the highest particle fluxes are expected. It consists of three stations.
Each of these stations contains four layers in an xuvx configuration, just like
in the Trigger Tracker. The resolution in x, u and v direction is about 50µm.
Figure 1.4 sketches an x layer.

1.4 Outer Tracker

Just like the Inner Tracker, the Outer Tracker (OT, see [5], [2]) consists of
three stations, each with four layers in a xuvx configuration as shown in
Figure 1.5. The expected resolution is 200µm in x, u and v direction.

Each OT layer consists of so-called straw tube modules. The straw tubes
contained therein are essentially small drift chambers. In the centre of each
straw, a wire is kept at about 1.5 kV positive potential while the conductive-
coated wall of the straw is tied to ground. The straws themselves are filled
with a counting gas1. When a charged particle passes through a straw, it
ionises the counting gas. The primary ionisation electrons are accelerated
towards the wire by the electric field, producing secondary ionisation elec-
trons on their way towards the wire. This is especially true in the strong
field gradient close to the wire, where the arriving electrons cause a charge
avalanche, amplifying the small initial amount of charge produced by the
primary ionisation (gas gain).

The charge pulse travels along the wire towards the read-out where it
is amplified, shaped and discriminated. The time of arrival of such a pulse
above a configurable detection threshold is measured with respect to the
bunch clock of the machine. It can be decomposed into

tmeasured = tTOF + tdrift + tprop

where tTOF is the time of flight of the particle to the straw in question, tdrift

is the time the ionisation electrons drift in the gas, and tprop is the signal
propagation time from the moment the charge avalanche hits the wire to the

1A mixture of 70 % (of the total volume) Argon and 30 % CO2 is used.

1.4 Outer Tracker 9

Figure 1.3: Layout of the TT stations. The two stereo layers in the middle
are called u and v layers.

Figure 1.4: Sketch of an x layer in the IT. It consists of several sensors
located around the beam pipe.

10 The LHCb experiment

11 99 99 11

119911 99

00 11

22 33
xx

zzyy

ST11
ST22

ST33

S1 S2S3FF 00
XX

22
VV

33
XX11

UU

Figure 1.5: Schematic layout of the OT: It consists of three stations, each
of which contains four layers in an xuvx configuration. A layer
can further be subdivided into left and right halves which are
mounted on aluminium frames that can be retracted from the
beam pipe for maintenance. Each half consists of nine mod-
ules. Separate readouts for the top and the bottom half of each
module make it feasible to partition an OT layer into quarters,
as shown in the picture.

1.4 Outer Tracker 11

moment it is registered by the electronics. Correcting for tTOF and tprop, it
is possible to infer the distance which the electrons had to drift in the straw
using a so-called r−t relation which describes the drift radius as a function of
tdrift. While for a simple model, a constant drift velocity is a usable ansatz, it
will have to be determined from data in the experiment because the relation
is not exactly linear, especially near the walls of the straw and near the wire.

There are 128 straw tubes per module, further subdivided into two mono-
layers which have been staggered to compensate for the insensitive area be-
tween two straws. Figure 1.6 shows a cross section of such a module. Most
modules are five metres long, but there are also four short ones in the middle
of each layer to leave space for the beam pipe.

The detector is read out at the top and at the bottom; to do this, the
long modules are electrically subdivided in the middle. The drift times are
measured by the front end electronics attached to the top and bottom of
each module. From there, the data is transmitted in digital form over optical
fibres for further processing.

1.4.1 Spillover

There is one further complication: Bunches delivered by the LHC are only
25 ns apart while the drift time in the gas is about 44 ns for a full straw
radius. Allowing for time of flight and wire propagation time as well, this
means that the data taken during three bunches must be used to retain
all the ionisation pulses from a single event. Drift electrons from different
events can also arrive in this three bunch window, giving rise to so-called
spillover measurements. Figure 1.7 sketches the situation. Figure 1.8 shows
the distribution of drift time measurements in the simulation, the black curve
is for all measurements in the three bunch window, the red one is the part of
the spectrum caused by particles from the bunch crossing one is interested
in.

The reconstruction has to cope with these spillover measurements in ad-
dition to noise and crosstalk.

12 The LHCb experiment

Figure 1.6: Cross section through a module used in the Outer Tracker. A
module consists of two monolayers of straws which are stag-
gered such that the insensitive areas between the straws in two
monolayers do not coincide. The upper part of the drawing
shows a magnified part, illustrating how straws are mounted in
detail, the lower part gives an impression of the overall module
dimensions (all lengths are measured in millimetres). A typical
module is about 5 metres long.

1.4 Outer Tracker 13

time

BX BX BX BX BX

interaction

first ionisation electrons last ionisation electrons

Figure 1.7: Sketch illustrating the arrival of drift electrons at the wires in
the OT with respect to the time when the primary interaction
happened. The corresponding bunch crossing is the first one
shown; the small arrows labelled “BX” below the time axis also
indicate the following ones.

drift time [ns]
-20 0 20 40 60 80 100

nu
m

be
r

of
 e

nt
rie

s

0

5

10

15

20

25

310×

Figure 1.8: Drift time spectra in the simulation: The black curve shows all
measurements inside a three bunch crossing window, the red
one is the part of the spectrum caused by particles from the
bunch crossing one is interested in. A time of flight correction
has been applied to the data. The tail for long times in the
red curve may is due to low momentum particles for which the
time of flight correction is biased.

14 The LHCb experiment

Chapter 2

Tracking in the LHCb
experiment

2.1 Introduction

Like most high energy physics experiments, LHCb relies on reconstructing the
trajectories of particles produced at the interaction point by proton-proton
collisions of the LHC. This is a challenging task, especially in the high track
multiplicity environment generated by p-p collisions. In this section, the
general ideas underlying the tracking algorithms in the LHCb software are
presented.

As usual, there are two distinct stages, pattern recognition and track
fitting. The former provides collections of measurements which are likely to
form tracks while the latter attempts to give the most accurate estimate of
the track parameters.

The focus of this thesis is on pattern recognition, the track fit will only
be mentioned briefly and appropriate references are given.

2.2 Track model

The reconstruction needs a software model to represent particle trajectories
of interest. Such a track model is used in several places, for example to match
a track based on pattern recognition information to RICH rings providing
particle identification information, to calculate invariant masses or to find
primary and secondary vertices during the analysis stage of the experiment.

The direction of most particle trajectories of interest in the LHCb experi-
ment has large components parallel (or antiparallel) to the z axis. Therefore,

15

16 Tracking in the LHCb experiment

this choice resulted in a track model representing a track as a collection of
tangents to the trajectory of a particle at several points along the z axis.

Each of those tangents (and the point in space to which they are attached)
is represented as a vector of five real numbers called a track state (at a given
z):

Track state(z) =

x
y
tx
ty
q/p

Here, tx = ∂x/∂z and ty = ∂y/∂z are the track slopes in xz and yz projection,
and q/p is an estimate of charge divided by momentum for the reconstructed
trajectory. It is introduced in addition to the first four components because
one wants to be able to extrapolate a track through the field of the magnet
if the momentum is known.

To give the most accurate estimate of these parameters along the track, an
iterative fitting procedure called Kalman filtering ([6]) is used which is based
on minimising the χ2-contribution of each measurement on the track, thus
making it equivalent to a least-squares fit. The advantages of the Kalman for-
malism are numerous: The method provides iterative updates of the track pa-
rameters and their estimated uncertainties for each new measurement added
to the fit. This makes it possible to decide to add or not to add a measure-
ment to a track depending on its predicted χ2 contribution1, for example. It
can also account for noise-like effects2 like multiple scattering without great
difficulty.

The reader is referred to the literature for further details (for example,
see [6], [7] or [8]).

2.3 LHCb Track types

It is useful to have names for tracks which satisfy some common criteria, so
a few track types are introduced. The names follow the mode of speech used
by the collaboration. Figure 2.1 gives a graphical impression of the track
types.

1The χ2 contribution of a measurement is the square of the difference between the
measurement and its prediction from the track parameters divided by the measurement
uncertainty squared.

2From the track fit’s point of view, multiple scattering increases the uncertainty in the
track parameters, just like noise would.

2.4 Pattern recognition 17

• Velo tracks: tracks which have measurements in the Velo only (in both
r and φ sensors)

• VeloR tracks: tracks which have measurements in the r sensors of the
Velo only (The Velo reconstruction, described in 2.4.1, reconstructs
tracks using only r sensors first — if the track is not found in the φ
sensors, it remains a VeloR track.)

• T track: tracks with measurements in the T stations only

• Long tracks: tracks which go through the whole detector, from Velo to
T stations

• Upstream tracks: tracks with hits in the Velo and the TT stations only

• Downstream tracks: tracks with hits in the TT and T stations only

2.4 Pattern recognition

It is the task of the pattern recognition to find the set of measurements that
correspond to particles traversing the detector among all measurements.

One very illustrative example of pattern recognition is the tracks to be
seen in a bubble chamber or on a photographic plate used in a particle physics
experiment. The measurements are either little bubbles in a liquid that can

TT

Velo

T1 T2 T3

Velo track

Downstream track

Long track

T track

Upstream track

Figure 2.1: Schematic view of the track types in the LHCb tracking system.

18 Tracking in the LHCb experiment

be observed or metallic silver in very small quantities, rendering the plate
black. The human brain does the pattern recognition and lets us see tracks.

In most modern particle physics experiments, the detectors used are more
complex, so the pattern recognition works differently as well. In this section,
the ideas behind the algorithms which are designed to find Long tracks are
described to give an impression how the pattern recognition code works inter-
nally. While Long tracks are only a subset of all tracks expected to be found
in the experiment, they are the most useful tracks for physics analysis (these
are the ones about which one has the most precise information because they
leave most measurements in the detector). The techniques used for other
track types are similar.

There are two concepts implemented in the LHCb reconstruction soft-
ware to find Long tracks: One is to start in the Velo, propagating the Velo
seeds obtained to the T stations to find Long tracks there, the other is to
reconstruct Velo and T stations separately and match the resulting tracks
on one side of the magnet to those on the other side. Both have their ad-
vantages and their disadvantages, thus complementing each other. In fact,
there are several reconstruction algorithms, each implementing one of the
two concepts, so that at the moment, there is a wealth of complementarity
in the reconstruction software.

In this thesis, the Forward tracking (PatForward, see [9]) will be intro-
duced as an example of a strategy starting in the Velo, extending tracks
found there to the T stations. The combination of a seeding algorithm
(TsaSeeding, see [10]) and a track matching algorithm will serve as an ex-
ample for the second concept mentioned above.

Usually, both strategies will find a track for a given particle. Therefore,
it becomes necessary to choose among the two alternatives. It is the task
of the CloneKiller to recognise such a situation and suppress redundant
tracks (see [11] for details).

To introduce the different algorithms, we start with the Velo close to the
interaction point and follow the particles through the detector, respecting
the dependencies of the algorithms on each other.

2.4.1 Velo tracking

Velo tracking proceeds in two stages: first, tracks are searched for in rz
projection (r being distance measured perpendicular to the z axis), then, in
a second step, angular information is added using the φ sensors and the 2D
tracks found in the previous stage (the angle φ describes a rotation around
the z axis here).

The Velo consists of half-disc shaped sensors (cf. Figure 1.2). Half the

2.4 Pattern recognition 19

sensors are on the right side of the beam pipe, the other half is on the left
side. Each r type sensor is divided into four sectors with each sector covering
about 45◦ of azimuthal angle. By using pairs of r type sensors on the same
side of the beam pipe with one or two sensors between them, straight line
segments are constructed by combining a cluster in the first sensor with one
in the second sensor of the pair. Cluster pairs must be in the same sector
to be considered. A line segment is kept if there is a confirming cluster in
the intermediate r sensor(s) within a certain search window around that line
segment. These line segments are extended, adding additional clusters in
other sensors close to the projected position, thus forming tracks in rz space.

The second stage takes these tracks in rz space and attempts to find the
corresponding φ clusters. This is done by taking all clusters in φ sensors
compatible with the φ range of the rz track. Once again, line segments
are formed, this time in φz space, from two sensors as far away from the
interaction point as possible. These segments are used to add compatible φ
clusters in the other sensors, just as in the xz case.

In the end, there may be several 3D track candidates for an rz track
because of the possibility to have several φz tracks in the sector of the rz
track. Therefore, one has to choose. This is done by using a “longest track
wins” logic (here, “longest” means most φ clusters). If one still has to decide
among several tracks, the χ2 (from a straight line fit in 3D) is used to find
the best one.

For further details on this method, please see [12].

2.4.2 Momentum estimation

A Velo track does not provide a momentum estimate because there is insuf-
ficient magnetic field in the Velo. Information from other detector systems
has to be used for this purpose. There are two ways to do this: Either mea-
surements in the Trigger Tracker (TT) located right in front of the magnet
are used (tracks have seen a

∫

Bdℓ of 0.15 Tm), or tracks in the T stations
after the magnet are reconstructed and matched to the corresponding Velo
part.

As it is difficult to pick TT clusters belonging to a particle based on
its Velo track alone3, the offline reconstruction mainly relies on matching
Velo and T parts of a track, adding TT clusters in a second step to improve
momentum resolution. The use of Velo and TT alone is still interesting for

3 Low momentum particles may have scattered in RICH 1 and the amount of their
deflection in the fringe field is not precisely known without a momentum estimate. More-
over, there is not much redundancy in the trigger tracker which might help to confirm or
reject the TT clusters selected for addition to a Velo track.

20 Tracking in the LHCb experiment

application in the trigger where high pT tracks are of interest and time does
not permit to decode the T stations.

There are two strategies which use Velo and T measurements of a par-
ticle to get a momentum estimate, Forward Tracking and Track Matching.
The former will be described next while the latter, needing tracks in the T
stations, will be postponed a little until it has been described how to obtain
the tracks behind the magnet.

2.4.3 Forward Tracking

The Forward Tracking algorithm employs a Hough transform: Basically, one
seeks a method to transform the space of observables (i.e. measurements) to
a more abstract space, the Hough space. The transformation is picked such
that the mutual distances of measurements from the same particle are small
in the transformed space4. The concept will be illustrated using the Forward
Tracking as example.

The idea behind the Forward Tracking is that in the absence of scattering
and energy loss, the trajectory of a particle in a magnetic field is completely
determined by the equation of the Lorentz force. Only the direction of the
particle at one position along its trajectory and its momentum need to be
known, or, alternatively, the direction at a position in front the magnet of
and a second position behind the magnet. Once these quantities are known,
the position and heading of a particle can be calculated at any point along
its trajectory.

Given the dipole field of the LHCb magnet, one observes that the linear
extrapolations of a Velo track and a T track intersect in xz projection at
z ≈ 5300 mm. This plane is called the bending plane of the magnet.

The algorithm exploits these facts by calculating the x position of the tra-
jectory defined by a Velo track and a T station measurement in the bending
plane of the magnet. If the Velo track and a T measurement were produced
by the same particle, the x position calculated will be close to the true x posi-
tion of that particle in the bending plane, if not, the result of the calculation
is more random. Thus, the method will group close together the calculated
bending plane x positions for T measurements belonging to the same particle,
provided that the correct Velo track was used for the calculation.

Hence, T measurements belonging to a particle with a Velo track may
be found by selecting the T measurements which produced a cluster of x
positions in the bending plane5.

4Depending on the problem at hand, the Hough space and the notion of a distance in
that space can be virtually anything.

5 This is often accomplished by histogramming the data in Hough space and identifying

2.4 Pattern recognition 21

One can focus on the x component of the trajectory because the main
part of the deflection is in that direction. The field acting on the y component
is negligible for this discussion.

An effective parametrisation is derived which takes track parameters of
a Velo seed and the x and z positions of a measurement in one of the T
stations, giving the x position in the bending plane of the magnet. Details
on how such an effective parametrisation is obtained and how the algorithm
proceeds in detail can be found in [9], for example.

A parametrisation is used instead of starting from first principles because
the additional complexity would slow down the algorithm considerably: To
obtain the x position in the bending plane from first principles, one needs to
integrate numerically the set of equations:

d~p

dt
= q~v × ~B

d~x

dt
=

~p

γm

Here, ~x, ~v and ~p are position, three-velocity and three-momentum of a hypo-
thetical test particle starting from the coordinates and direction of the Velo
track, and γ = 1√

1−~v2/c2
. From the Velo track alone, only the direction of

the momentum of the test particle and not the momentum itself is apparent.
Therefore, the integration must be done several times, varying a momentum
assumption until the coordinates of the x measurement in the T stations are
reproduced.

2.4.4 T station seeding

T station seeding is a strategy to find tracks in the T stations without relying
on information from the Velo6. These tracks can be extrapolated to other
detector components to pick up additional information, e.g. to match them
to Velo tracks or to look for particle identification and other information
in RICH2, the calorimeters or the muon stations. The algorithm looks for
tracks first in xz projection and then in yz projection.

For the description, we focus on the case of the OT because it is more
challenging in terms of reconstruction: The cell size is relatively big, an OT

peaks. The algorithm described uses a list of bending plane x positions instead because
the histogram based approach can cause problems when the positions calculated for a
single particle are in different bins.

6There are two algorithms implementing this strategy, TsaSeeding and PatSeeding.
The former will be discussed.

22 Tracking in the LHCb experiment

straw is 5 mm in diameter and about 2.5 metres long, the occupancy is high
due to spillover7, and each measurement still has a drift time ambiguity8.

Searching for tracks in xz projection proceeds as follows: First, one con-
structs lines between two x measurements in stations T1 and T3. To reduce
combinatorics, only pairs of measurements are considered which pass selec-
tion cuts, e.g. on the slope tx of the line (for details, see [10]).

All x measurements in a window around such a line are selected; the size
of the window is on the order of the OT cell size as drift times are not taken
into account (cf. Figure 2.2). Inside this window, a measurement in T2 is
chosen. The measurements chosen in T1, T2 and T3 define a parabola in
xz space 9. There are eight possibilities to resolve ambiguities for the three
hits forming the parabola. For each of these combinations, the number of
measurements falling into a tighter window around the parabola are counted,
this time resolving ambiguities of the remaining measurements towards the
parabola. The ambiguity combination which gives most measurements in the
second, tighter window is kept (cf. Figure 2.3).

A refit is done during which ambiguities can change if it improves the fit.
The point having the largest χ2 contribution is removed if it is more than 3σ
away. The candidates obtained with this procedure have to pass another set
of cuts (e.g. on the number of measurements, the slope and the curvature)
before they are passed on to the stereo search.

The stereo search uses the track candidate in xz to make a collection of
compatible stereo hits (only straws can contribute which are close enough to
the candidate in xz, see Figure 2.4). y estimates are calculated for each stereo
measurement from the stereo coordinates and the candidate in xz. The stereo
search continues in a very similar manner to the x search. The main difference
is that the trajectory in yz projection is modelled with a straight line because
the effects of the magnetic field in that direction are much weaker. This makes
it possible to have more stringent requirements for the hits from which such
a straight line is formed: Good combinations still point roughly into the
direction of the primary vertex. Of course one has to take into account
that the conversion from u/v coordinates to y introduces some additional
uncertainty, therefore wider search windows have to be chosen. Ambiguities
are resolved just like above, the combination with most measurements in the
search window is retained.

Again, some cuts have to be satisfied (e.g. a certain minimum number of

7cf Section 1.4.1
8It is not clear from the point of view of a measurement on which side of the wire the

particle passed.
9A parabola was chosen due to the non-negligible fringe field within the T stations,

deflecting particles in the xz plane.

2.4 Pattern recognition 23

u vx x u vx x u vx x
T1 T2 T3

Figure 2.2: Forming search windows. Wires are indicated with a solid red
dot, the red circles are the corresponding drift circles. Using
two x measurements, one in T1 and one in T3, a straight line is
constructed. All measurements inside a window around the line
(dashed lines) are examined further by the algorithm. (Only
measurement in x layers are shown. Not to scale.)

u vx x u vx x u vx x
T1 T2 T3

Figure 2.3: Selecting an x measurement in T2 in addition to those selected
in T1 and T3, eight parabolas are constructed, one for each
combination of ambiguities of the three selected measurements.
One such parabola is shown, the ambiguities chosen are symbol-
ised by black dots. The measurements inside a tighter window
around the parabola (dashed lines) are counted. (Only mea-
surement in x layers are shown. Not to scale.)

24 Tracking in the LHCb experiment

y

x

compatible not compatible

Figure 2.4: Straws in x and stereo layers are compatible if they overlap
in xy projection (left) and incompatible if they do not (right).
Since x and stereo layers are separated by a small distance in
z, the change in x coordinate of tracks over that distance needs
to be taken into account as well.

stereo hits), otherwise the candidate is not kept.

From the way the algorithm proceeded so far, it is apparent that it may
find several candidates for the same particle. There will also be a certain
amount of candidates which do not match any physical particle. To elimi-
nate these, an additional selection phase is needed. For this purpose, each
track candidate is assigned a likelihood into which several quantities enter,
such as the χ2 probability of the fit and if the candidate was built from all the
measurements it should have produced in the detector (based on the assump-
tion that each straw touched by the trajectory defined by the fit parameters
also produced a measurement).

The details are a bit more involved; the authors of [10] account for the
dependence of the detection efficiency on the drift radius and introduce a
weighting of the contributions to the likelihood which improves performance.
For details, please refer to that note.

The candidates are sorted by decreasing combined likelihood. The algo-
rithm selects the most likely one, checks that the candidate does not share
too many measurements with candidates already selected, and flags its mea-
surements as used. The algorithm continues with candidates with lower
likelihood. Candidates failing the cut on the shared measurement fraction or
falling below a likelihood threshold are dropped.

2.4 Pattern recognition 25

2.4.5 Momentum estimation using the pT -kick method

Assuming that a track in the T stations comes from the primary vertex, it is
possible to obtain a momentum estimate from slope change (“kick”) in the
dipole magnet of the experiment. Figure 2.5 depicts the situation.

The momentum change in a magnetic field is given by

d~p

dt
= q ~v × ~B

Integrating this along the trajectory of a particle (arc length along the tra-
jectory is denoted by s), one obtains

d~p = q

∫ s2

s1

~v(s) × ~B(s)
dt

ds
ds

Except for very low momentum particles, the initial and final direction of ~v
can be estimated using the T track and the line connecting the origin with
the extrapolation of the T track into the bending plane of the magnet. The
particles of interest are relativistic, so v ≈ c is assumed. As x is the main
deflection direction of the magnet, one obtains the best accuracy by using
the slope change in x direction. Thus,

∆px = p

((

tx
√

1 + t2x + t2y

)

T

−
(

tx
√

1 + t2x + t2y

)

V elo

)

=

q

∫ s2

s1

(~v(s) × ~B(s)) · ~ex
dt

ds
ds

p∆ x

x

z

T track

T stations

Velo track

true trajectory

Velo

bending plane
of the magnet

Figure 2.5: It is possible to obtain a momentum estimate from the “kick”
that a particle receives in the field of the magnet.

26 Tracking in the LHCb experiment

where ~ex is the unit vector in x direction. Solving for p, one obtains

p =
q
∫ s2

s1

(~v(s) × ~B(s)) · ~ex
dt
ds
ds

(

tx√
1+t2x+t2y

)

T

−
(

tx√
1+t2x+t2y

)

V elo

Details can be found in [13].

2.4.6 Track Matching algorithm

Once tracks in the T stations have been reconstructed, a momentum estimate
can be obtained either from the track curvature in the T stations due to the
fringe field of the magnet or with the pT -kick method described above.

Having obtained a momentum estimate, the track is propagated through
the magnet using numerical integration. It is matched to a Velo track in a
matching plane at z = 830 mm. This matching is done using a quantity
called χ2

match:

χ2

match = (xV elo − xT)T (CV elo + CT)−1(xV elo − xT)

Here, xV elo and xT are the track parameters of the Velo track and the ex-
trapolation of the T track into the matching plane, CV elo and CT are the
corresponding covariance matrices. The T station part of the track is fitted
using the Kalman Fitter before the Matching algorithm runs, so xT and CT

are available. For xV elo and CV elo, one has to rely on estimates provided by
the Velo pattern recognition. So in principle, χ2

match just measures how well
the two sets of track parameters agree in the matching plane. If the pair
passes selection cuts, a single Long track is formed from the two tracks. A
search for compatible TT clusters follows. Details can be found in [14].

2.5 Tracking performance indicators

To assess the quality of the pattern recognition and tracking algorithms used
in the experiment, there are several performance indicators which can be
studied10. This section gives the general ideas and concepts, Section 2.6 will
give exact definitions as used in the experiment.

10This is usually done in a Monte Carlo simulation where the “correct” solution to the
pattern recognition problem is known.

2.5 Tracking performance indicators 27

2.5.1 Reconstruction efficiency

An important question in track reconstruction is clearly how many particle
tracks are reconstructed for particles in the detector acceptance.

Let F be the set of particles which was actually reconstructed (or "found")
and let R be the set of particles that is reconstructible, i.e. the set of particles
which is expected to be reconstructed. Then the reconstruction efficiency is
defined as

ε =
#(F ∩R)

#R

Here and in the following text, the symbol # denotes the operator which
returns the number of elements in the set following it, i.e. # {17, 42, 78} = 3.
The exact definitions of “reconstructible” and “reconstructed” will be given
below (c.f. Section 2.6), for now, only the general idea matters.

2.5.2 Ghost fraction

Apart from tracks that originate from particles travelling through the detec-
tor, tracks may be reconstructed which have no connection to a particle in
the detector. These so-called ghost tracks may consist of measurements from
several different particles, noise and spillover measurements11 which happen
to look like a track to the pattern recognition.

The ghost fraction is the fraction of such tracks among all reconstructed
tracks:

ghost fraction =
Nghost

Ntotal

Here, Ntotal is the total number of tracks and Nghost is the number of ghost
tracks.

2.5.3 Clone fraction

The clone fraction measures how often you find several tracks for a given
particle. The track containing most correct measurements is considered as
the best, the others are clones.

There are two definitions of a clone, one involves Monte Carlo truth in-
formation, the other does not and is therefore more widely applicable (see
[15] for details):

• A track is a clone if it shares more than 70% of its measurements in
both the Velo and the T stations with another track. If the track in

11cf. Section 1.4.1

28 Tracking in the LHCb experiment

question does not have hits in one of these detectors, the requirement
for that subdetector is dropped.

• A track is a MC-clone if more than one track is matched12 to the same
Monte Carlo particle.

The clone fraction is then defined as

clone fraction =
Nclones

Ntracks

Currently, the reconstruction software runs more than one reconstruction
algorithm for some subdetectors. Therefore, a particle can be found more
than once in a subdetector13 , and a dedicated clone killing algorithm is used
to select the best alternative. As the clone killer will have to work with real
data, the first clone definition has to be used.

This thesis is dealing with the development of an algorithm using a Monte
Carlo simulation, so the MC-clone definition will be used to make plots, but
clone recognition inside the algorithm will be based on criteria similar to
those used in the Monte Carlo-independent definition.

2.5.4 Purity

In the ideal case, a reconstructed track would only consist of measurements
of the particle that produced the track. This is fairly optimistic, especially in
cases of high detector occupancy. A certain amount of measurements has to
be tolerated which do not belong to the particle which produced the track. If
the fraction of measurements belonging to the particle in question is not too
low, it is still possible derive the track parameters with reasonable accuracy,
but the aim is clearly to have tracks as pure as possible.

Thus, the purity of a given track is defined as

purity =
Ncorrect

Ntotal

where Ncorrect is the number of measurements that originate from the particle
which produced the track and Ntotal is the total number of measurements on
that specific track.

12The matching is described in 2.6.1.
13In fact, even when running only one single reconstruction algorithm per subdetector,

clones remain possible: In some cases, an algorithm might still find more than one track
per particle.

2.6 Tracking definitions used in LHCb 29

2.5.5 Collection efficiency

Apart from the considerations above, it is also interesting to ask how effi-
ciently the measurements are used to find a track. An algorithm which only
uses half the measurements produced by a particle to estimate track param-
eters will usually not perform as well as an algorithm which manages to use
all available measurements.

To quantify how much of the available information is captured by a pat-
tern recognition algorithm, the collection efficiency (sometimes also referred
to as hit efficiency) is defined:

εcoll =
Non track

Ntotal

Non track is the number of correct measurements that was used by the re-
construction software to form the track and Ntotal is the total number of
measurements which the particle left in the detector(s).

2.6 Tracking definitions used in LHCb

While the last section focused on the idea of performance indicators, this
section provides the precise definitions used in the LHCb experiment and
throughout this thesis. Unless specified otherwise, these definitions follow
those given in [15].

2.6.1 Matching Monte Carlo particles and tracks

Until now, the question which track goes with which particle has been ne-
glected. In a Monte Carlo simulation, it is known which measurements a
particle leaves in the detector and therefore it should be easy to tell if a
track belongs to a particle or not. In reality, however, the pattern recogni-
tion algorithms will rarely yield tracks which consist only of measurements
from a single particle, therefore some more involved matching is required.
This is accomplished on the measurement level, by introducing a weight w
with which a particle pi contributes to a track tj. This weight is simply

w(pi, tj) =
Nmeasurements on track tj caused by particle pi

Nmeasurements on track tj

If such a weight w(pi, tj) is at least 0.7, the track tj is said to be matched
or associated to the particle pi. So, a track matches a particle if the particle
contributes at least 70 % of the measurements on the track. Note that in

30 Tracking in the LHCb experiment

principle, several particles can hit the same detector channel(s) in a single
event, thus, a measurement may be caused by more than one particle.

Depending on the type of track, this criterion is slightly modified:

• For tracks of types Velo and T, the description above is applied without
changes.

• For Long tracks, both the Velo and the T part must match separately
(and match the same particle). Note that there is no requirement for
measurements in the TT stations.

• For Upstream and Downstream tracks, the Velo (or T, respectively)
part must match, and there must be at least one measurement in one
of the TT stations from the same particle that produced the track in
the Velo (or T, respectively).

A track is said to be reconstructed correctly if it matches a particle ac-
cording to the criteria given above.

2.6.2 Definition of efficiency denominator

For the efficiency definitions in Section 2.5 to make sense, it still needs to
be clarified which particles are reconstructible, i.e. which ones should be
reconstructed by the pattern recognition. For this purpose, the following set
of definitions of reconstructibility has been chosen:

A particle is reconstructible in

• the Velo, if there are at least three r and three φ Velo sensors with
clusters from that particle

• the TT, if there is at least one cluster in the first two TT planes (TT1)
and one cluster in the last two TT planes (TT2)

• the T stations, if there is at least one x and one stereo cluster in each
of the three T stations

A track is said to be reconstructible as

• Velo track, if it is reconstructible in the Velo

• T track, if it is reconstructible in the T stations

• Long track, if it is both reconstructible as Velo and T track

• Upstream track, if it is reconstructible in the Velo and in the TT

2.6 Tracking definitions used in LHCb 31

• Downstream track, if it is reconstructible in the T stations and in the
TT

In addition to these standard definitions, we include a specialised defini-
tion for particles and tracks which are reconstructible in the Outer Tracker
(OT) as these will be of special interest later on:

• A particle or track is reconstructible in the OT, if it has at least one x
and one stereo cluster in each of the three OT stations.

The difference between T station and OT reconstructible particles or tracks
is that the definition for the T stations does not distinguish between the
measurements in the IT and in the OT.

2.6.3 Event-weighted versus track-weighted quantities

While the tracking quality indicators have been defined now, there are still
two weighting procedures which are in common use:

• A quantity can be given as track-averaged quantity which basically
means that each track or particle enters unweighted. The formulae
above are given in that formulation.

• These quantities can also be given as event-averaged quantities. Here,
one calculates a quantity per event and then averages over the per-event
results for that quantity, e.g.:

event-averaged ghost fraction =
1

NEvents

∑

Events

NGhosts in current event

NTracks in current event

The reason to have two weighting methods is that for very hot events, many
more tracks are found by the reconstruction than for events with average
occupancy. These hot events will show increased ghost fractions and tend to
show decreased reconstruction efficiencies due to larger combinatorics. They
also contribute to the track-averaged quantities with increased weight be-
cause they have many more tracks than the average event. Event-averaged
quantities are introduced to give equal weight to events with different occu-
pancies.

Unless specified otherwise, event-averaged quantities will be quoted.

32 Tracking in the LHCb experiment

Chapter 3

Tracking performance in the
LHCb experiment

3.1 Track quality monitoring tool

As part of this thesis, a tool for monitoring the quality of tracking algorithms
on Monte Carlo simulated data was developed, partly because such a tool
was still missing, but also to gain familiarity with the software and defini-
tions. Starting from existing but not very flexible code, an ntuple writing
algorithm was designed which allows to check not only reconstruction and
collection efficiencies, ghost fractions and purities but also track parameters
and properties of individual measurements. Also, Monte Carlo information
of the event is stored in some detail: All Monte Carlo particles, their proper-
ties and information linking measurements and tracks to Monte Carlo truth
are written. This makes it possible to look only at B decay products, or
only at particles one does not reconstruct for some reason. This ntuple can
be read using ROOT[16] macros, producing the plots the user has in mind.
Macros were written to plot efficiencies, ghost fractions, collection efficiencies
and purities versus p, pT or occupancy, for example. Most of the plots in this
thesis showing these quantities have been produced using those ntuple-based
track quality analysis macros.

3.2 Tracking performance

In this section, the performance of the tracking code, especially that of the
algorithms designed to find Long tracks, is presented. Starting from Velo
and T tracks, the performance of Forward Tracking and Track Matching
is studied. These studies have been carried out on a Monte Carlo sample

33

34 Tracking performance in the LHCb experiment

consisting of 15000 J/ψ(µ+µ−)Ks events1. The sample was generated such
that the average number of interactions per event corresponds to the value
expected at a luminosity of 2 · 1032 cm−2s−1.

For a particle to go into the set of reconstructible particles defining the
efficiency denominator, we demand:

• reconstructibility in the applicable subdetector(s):

– Velo track reconstructibility for the Velo tracking

– T track reconstructibility for T station seeding

– Long track reconstructibility for Forward Tracking and Track Match-
ing

• the momentum at the production vertex of the particle is > 1 GeV

• it is produced close to the primary vertex: |zprod.| < 15 cm

• it is not an electron nor a positron

Electrons and positrons are excluded because many of them are secon-
daries produced by a photon converting into an electron-positron pair. Be-
sides, they tend to be more difficult to reconstruct due to their increased
energy loss compared to heavier particles (Bremsstrahlung is much more
pronounced for such light particles).

In the following subsections, plots of reconstruction efficiency and ghost
fraction versus momentum and occupancy will be shown. The first choice has
been made because one expects a momentum-dependence for ghost fraction
and reconstruction efficiency: Due to the increased multiple scattering for
low momentum tracks, the pattern recognition algorithms are more likely to
not pick up all the correct measurements which leads to lower efficiency and,
as a consequence, to a higher ghost fraction. The plots against occupancy
have been made to provide a means of estimating the effect of noise, spillover
or increased luminosity on the performance of the pattern recognition and
tracking (which is likely to be worse in real data due to not simulated effects).
To this end, the occupancy has been defined such that it includes noise and
spillover measurements (where applicable): The occupancy is the fraction of
channels per subdetector which registered a measurement (irrespective if it
is noise, spillover or a real measurement).

1The sample used was produced in the DC’06 environment. The reconstruction software
used was Brunel v30r14.

3.2 Tracking performance 35

Before the performance of the different strategies is described, it is nec-
essary to show momentum and occupancy distribution in the Monte Carlo
sample used so that the plots shown later can be interpreted accordingly.

In Figure 3.1, the left plot shows a normalised momentum spectrum for
particles reconstructible as Long tracks (the cuts described above have been
applied, though), which shows a peak for momenta around 3 GeV and falls
off rapidly for higher momenta. Note that the variable bin widths have been
accounted for, so what is shown is the event-averaged particle density per
unit momentum interval, normalised such that the integral of the histogram
gives unity.

The right plot of Figure 3.1 gives the distribution of Velo occupancies.
Figure 3.2 shows IT (left plot) and OT (right plot) occupancy distributions,
one can see that for the silicon detectors with their high granularity, the
occupancy is much lower than for the OT. Additionally, the OT is affected
by spillover which gives rise to more measurements.

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

fr
ac

tio
n

of
 p

ar
tic

le
s

0

0.01

0.02

0.03

0.04

0.05

0.06

(a)

Velo occupancy
0 0.005 0.01 0.015 0.02 0.025

fr
ac

tio
n

of
 e

ve
nt

s

0

0.02

0.04

0.06

0.08

0.1

0.12

(b)

Figure 3.1: Normalised momentum spectrum for Long reconstructible par-
ticles (a), normalised Velo occupancy distribution (b).

36 Tracking performance in the LHCb experiment

IT occupancy
0 0.005 0.01 0.015 0.02 0.025

fr
ac

tio
n

of
 e

ve
nt

s

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22

(a)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

fr
ac

tio
n

of
 e

ve
nt

s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b)

Figure 3.2: Normalised occupancy distribution for IT (a) and OT (b).

3.2.1 Performance of Velo tracking

The reconstruction efficiency for tracks reconstructible in the Velo is (90.4±
0.1)% with an event-averaged ghost fraction of (4.7± 0.1)%. The behaviour
of the Velo reconstruction with momentum and Velo occupancy is shown in
Figures 3.3 and 3.4. There is no plot of ghost fraction against momentum,
because for ghosts, one would need to plot against reconstructed momentum
(they can not be matched to a Monte Carlo particle by definition) which can
not be determined due to the Velo being practically free of magnetic field.

As expected, low momentum particles are more difficult to reconstruct
due to the larger effect of multiple scattering on their trajectory. The re-
construction efficiency is relatively flat for the occupancies present in the
data sample, meaning that the Velo reconstruction code is relatively robust
with respect to the measurement density. Of course, the ghost fraction in-
creases appreciably with the number of measurements due to the additional
combinatorics.

3.2.2 Performance of Forward Tracking

Forward Tracking is one of the strategies designed to find Long tracks. Its
reconstruction efficiency in the DC’06 framework is (87.0±0.2)%, the event-
averaged ghost fraction is (11.2 ± 0.1)%. Figure 3.5 shows the momentum
dependence of the reconstruction efficiency and ghost fraction. One can see
that for lower momentum tracks (below 10 GeV), the efficiency drops while
the plateau is at around 96%.

Figure 3.6 shows ghost fraction and reconstruction efficiency versus Velo
occupancy (the occupancy in the other detectors correlate with the Velo
occupancy, so only plots against Velo occupancy are shown). The efficiency

3.2 Tracking performance 37

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 3.3: Reconstruction efficiency in the Velo against momentum. The
inlay plot shows the low momentum end in greater detail. Re-
constructed particles with momenta below 1 GeV are not shown
in this and subsequent plots.

Velo occupancy
0 0.005 0.01 0.015 0.02 0.025

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

Velo occupancy
0 0.005 0.01 0.015 0.02 0.025

gh
os

t f
ra

ct
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

(b)

Figure 3.4: Reconstruction efficiency (a) and ghost fraction (b) in the Velo
against Velo occupancy.

38 Tracking performance in the LHCb experiment

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

gh
os

t f
ra

ct
io

n

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22

(b)

Figure 3.5: Reconstruction efficiency (a) and ghost fraction (b) for Long
tracks found by the Forward Tracking against momentum.

Velo occupancy
0 0.005 0.01 0.015 0.02 0.025

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

Velo occupancy
0 0.005 0.01 0.015 0.02 0.025

gh
os

t f
ra

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

(b)

Figure 3.6: Reconstruction efficiency (a) and ghost fraction (b) for Long
tracks found by the Forward Tracking against Velo occupancy.

3.2 Tracking performance 39

degrades only a little for the higher occupancies while the ghost fraction
will probably cause problems for high occupancies — 50% or even more is a
sizeable fraction. Note that a large part of the ghost fraction seen at high
occupancies seems to be inherited from the Velo ghost fraction. Also, the
effects of higher measurement density on the ability to find the correct cluster
in Hough space can be seen.

3.2.3 Performance of T station seeding

The efficiency for finding track seeds has been evaluated using the T sta-
tion seeding algorithm described earlier. The event-averaged reconstruction
efficiency is (91.1 ± 0.1)% while the ghost fraction is at (11.2 ± 0.1)%.

For this algorithm, the plots versus occupancy have been done twice, for
both Inner and Outer Tracker occupancies, to highlight possible differences
between the two detector systems. In Figure 3.7, one observes the expected
behaviour for the reconstruction efficiency (it plateaus for high momenta),
while there are curious features in the ghost fraction plot: The ghost fraction
has a minimum at around 10 GeV and rises quite quickly for momenta lower
than this. This is expected because only few ghosts have low curvature
which corresponds to high reconstructed momenta. The ghost fraction also
rises (more slowly) for higher momenta which is somewhat contrary to the
naive expectation. The reason for this is that the number of ghost tracks
dies out more slowly with rising momenta than the number of reconstructed
particles, see Figure 3.10a.

Looking at the plots in Figures 3.8 and 3.9, it can be seen that both
efficiency and ghost fraction drop dramatically at high occupancies. This
is due to the algorithm ignoring detector modules which show per-module
occupancies above a certain threshold. The fact that efficiency drop looks
different for OT and IT (apart from scaling the occupancy) can be attributed
to spillover events which cause a certain level of “background occupancy” in
the Outer Tracker which is not present in the Inner Tracker. This can be
seen in Figure 3.10b which shows IT versus OT occupancy.

3.2.4 Performance of Track Matching

For Long tracks, Track Matching has an efficiency of (79.2 ± 0.2)% with a
ghost fraction of (13.5±0.1)%. The efficiency is significantly worse than that
of Forward Tracking. The ghost fraction matches roughly the 16% that one
would expect by adding Velo and T seeding ghost fractions (about 5% and
11%, respectively). It is a little better because of the requirement to have
matching tracks in the Velo and the T stations.

40 Tracking performance in the LHCb experiment

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

gh
os

t f
ra

ct
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b)

Figure 3.7: Reconstruction efficiency (a) and ghost fraction (b) for T tracks
found by the T station seeding algorithm against momentum.
The sharp rise in ghost fraction for low momenta can be ex-
plained by the fact that only few arbitrary combinations of
measurements have low curvatures and do thus appear to have
high momenta. The slower rise for high momenta is due to the
number of reconstructed particles decreasing more rapidly with
momentum than the number of ghosts (cf. Fig. 3.10a).

IT occupancy
0 0.005 0.01 0.015 0.02 0.025

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

IT occupancy
0 0.005 0.01 0.015 0.02 0.025

gh
os

t f
ra

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

(b)

Figure 3.8: Reconstruction efficiency (a) and ghost fraction (b) for T tracks
found by the T station seeding against IT occupancy. Both
curves drop at high occupancy (cf. Fig. 3.2a) because of cuts
applied in the algorithm (see text).

3.2 Tracking performance 41

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

gh
os

t f
ra

ct
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

(b)

Figure 3.9: Reconstruction efficiency (a) and ghost fraction (b) for T tracks
found by the T station seeding against OT occupancy. Both
curves drop at high occupancy because of cuts applied in the
algorithm (see text).

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

1

10

210

310

410 reconstructed tracks

ghost tracks

(a) This figure shows the total number of
reconstructed particles and ghosts per
momentum bin. It can be seen that
the number of ghosts diminishes more
slowly with momentum than the num-
ber of particles. (Note the logarithmic
scale.)

0

50

100

150

200

250

300

350

400

IT occupancy
0 0.005 0.01 0.015 0.02 0.025

O
T

 o
cc

up
an

cy

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

(b) Occupancy in the Inner Tracker versus
occupancy in the Outer Tracker. The OT
occupancy does not scale exactly with the
IT occupancy due to spillover which gives
rise to “background occupancy” in the
OT.

Figure 3.10:

42 Tracking performance in the LHCb experiment

The particles found by Forward Tracking and Track Matching are not
identical: It can be seen in the next section that taking tracks from both
algorithms gives better efficiency than either of the two can achieve alone.

Figures 3.11 and 3.12 show the behaviour of the algorithm as function
of momentum and Velo occupancy. Apart from the fact that the efficiency
is lower and the ghost fraction is a little higher than in the Forward Track-
ing case, one notes that the efficiency degrades more quickly for high Velo
occupancies when compared with Forward Tracking (Figure 3.6).

3.2.5 Overall performance for Long tracks

The overall performance for Long tracks after the clone killer has performed
its task is characterised by a reconstruction efficiency of (90.3 ± 0.2)% and
a ghost fraction of (16.7 ± 0.1)%. The plots (see Figures 3.13 and 3.14)
exhibit the expected properties, and it can be seen that one actually gains in
efficiency by combining tracks from Forward Tracking and Track Matching.
Interestingly, not only different good tracks are found by these two strategies,
the ghost fraction is higher as well, suggesting that the ghost tracks found
by the two strategies are different. This might be exploited to improve the
discrimination between ghosts and good tracks: When a track has only been
found by one of the two strategies, it is more likely to be a ghost than one
that has been found by both. Of course, this can not be the only criterion
on which such a decision must be based. Unless one is sure that the decision
taken is correct in the vast majority of cases, it should probably be taken at
the analysis level rather than at the reconstruction level, enabling each user
to choose between high efficiency and a very pure track sample.

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

gh
os

t f
ra

ct
io

n

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24

(b)

Figure 3.11: Reconstruction efficiency (a) and ghost fraction (b) for Long
tracks found by the Matching strategy against momentum.

3.2 Tracking performance 43

Velo occupancy
0 0.005 0.01 0.015 0.02 0.025

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

Velo occupancy
0 0.005 0.01 0.015 0.02 0.025

gh
os

t f
ra

ct
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

Figure 3.12: Reconstruction efficiency (a) and ghost fraction (b) for Long
tracks found by the Matching strategy against Velo occu-
pancy.

Table 3.1 summarises the performance of the different algorithms.

Algorithm Efficiency [%] Ghost fraction [%]

Velo (90.4 ± 0.1) (4.7 ± 0.1)
Forward (87.0 ± 0.2) (11.2 ± 0.1)
T Seeding (91.1 ± 0.1) (11.2 ± 0.1)
Matching (79.1 ± 0.2) (13.5 ± 0.1)
Overall performance for Long tracks (90.3 ± 0.2) (16.7 ± 0.1)

Table 3.1: Summary of the performance of the algorithms investigated in
this chapter.

44 Tracking performance in the LHCb experiment

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

gh
os

t f
ra

ct
io

n

0

0.05

0.1

0.15

0.2

0.25

(b)

Figure 3.13: Reconstruction efficiency (a) and ghost fraction (b) for Long
tracks against momentum.

Velo occupancy
0 0.005 0.01 0.015 0.02 0.025

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

Velo occupancy
0 0.005 0.01 0.015 0.02 0.025

gh
os

t f
ra

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 3.14: Reconstruction efficiency (a) and ghost fraction (b) for Long
tracks against Velo occupancy.

Chapter 4

Cellular Automaton principles

In this chapter, an introduction to the concepts of cellular automata is given.
Then, the use of cellular automata in pattern recognition and track finding
algorithms is introduced with a simplified example. The next chapter will
discuss the implementation of such an algorithm for track finding in the
LHCb Outer Tracker.

4.1 Introduction to Cellular Automata

The concept of cellular automata has been around since the first days of
computing (see e.g. [17]), and has been used for a variety of purposes. Con-
way’s “Game of Life” (see [18]) is a simple example which became more
widely known and acquired some popularity. Therefore, it will be used as an
example to illustrate cellular automaton concepts.

Conway’s “Game of Life” models some aspects of the behaviour of living
cells: It consists of an infinitely extended rectangular two-dimensional grid

Partial view of the
grid of a cellular
automaton. A cell
(black) is shown
together with its
neighbourhood
(grey).

of cells ; each of them is either alive or dead. The neighbourhood of a cell are
the eight cells surrounding it. Time evolves in discrete steps, and the state
(i.e. dead or alive) of each cell in a time step depends only on the states of
its neighbours in the previous time step:

• If a cell has less than two neighbours, it dies of “loneliness” (it can’t
survive alone).

• If there are more than three neighbours, the area is overpopulated and
the cell dies of “starvation” (e.g. due to a limited supply of nutrients
or similar constraints).

• In addition, if a dead cell has three living neighbours, that cell will

45

46 Cellular Automaton principles

become alive in the next time step. (This is a simple model for repli-
cation.)

Figure 4.1 shows the evolution of a simple pattern according to those
rules. One can see that the pattern “glides” across the grid of the cellular
automaton.

In general, cellular automata consist of so-called cells (of which each has
a state), a definition of the neighbourhood of a cell and a rule describing the
evolution of a cell depending on its neighbourhood. Time proceeds in discrete
time steps, and the new state of each cell depends only on the previous state
of its neighbours. All cells change their state simultaneously.

The use of cellular automata for track reconstruction was pioneered by
I. Kisel and used successfully in several experiments (see e.g. [19], [20], [21],
[22]). The idea is to define a cell, called tracklet in the context of cellular au-
tomata used for track finding, as smallest track segment imaginable, namely
a connection between two successive measurements. The neighbourhood of
these tracklets is defined in such a way that only tracklets become neighbours
which might be successive parts of a track. To do this, a physically motivated
local track model is used: The decision if a tracklet is a neighbour of another
tracklet is taken according to that model (e.g. a straight line in the absence
of scattering and magnetic fields). This needs to be done only once for each
tracklet, and only tracklets which are spatially close to the tracklet currently
being considered can influence the decision — that is why the model is called
local.

There is a big advantage to using a local track model in this way: Since
there are not many tracklets spatially close to a given tracklet, and since the
neighbourhood of a tracklet has to be determined only once, the resulting
algorithm will touch each tracklet only once, avoiding the excessive buildup
of combinatorics that many algorithms using global track models show. In
these algorithms, the approach is to take all reasonable combinations of mea-
surements for a given starting and ending measurement and then pick the
best combination. Cellular automaton based algorithms use the local track
model to “distill” the data in such a way that the approach “take all reason-
able combinations and chose the best” usually boils down to “there is only
one alternative to form a combination, so take it”.

4.2 Cellular automaton used in tracking

In this section, an overview of the algorithm is presented; the emphasis will
be on conveying the idea. For illustration purposes, a heavily simplified two-

4.2 Cellular automaton used in tracking 47

cell being borndying celllive cell

Figure 4.1: The evolution of an initial pattern, a so-called “glider”, in Con-
way’s “Game of Life” is shown. The top row shows the evolu-
tion of the state of the cellular automaton with time increasing
from left to right. The bottom row illustrates which cells die
or will be born in the next time step — here, the rules can be
seen at work. The pattern repeats after five time steps, but its
position has changed — it “glides” across the grid.

dimensional detector will be used. An implementation of such an algorithm
for the LHCb Outer Tracker will be described in the next chapter.

For this overview, the simplified detector model consists of a detector
which measures the x position of incident particles in layers perpendicular to
the z direction, completely ignoring the additional degree of freedom in the
y coordinate. Each layer is made of a line of sensors, one positioned after
the other with no gaps in between. Each of these sensors will just measure
if it has been hit by a particle or not. Figure 4.2 shows a sketch of such a
simplified detector.

In principle, a pattern recognition algorithm using a cellular automaton
proceeds through the following stages:

• Tracklet generation

• Neighbour finding

• Automaton evolution

• Forming and selecting of track candidates

These stages are discussed in the following sections.

48 Cellular Automaton principles

Hit detector layers

Figure 4.2: Sketch of the measurements in the detector before the algorithm
has started.

4.2.1 Tracklet generation

During this stage, tracklets are generated between any two adjacent layers of
the detector. Figure 4.2 shows a sketch of how the starting situation might
look like.

To reduce combinatorics as early as possible in the algorithm, only those
measurement combinations are used to form tracklets which are in fact pos-
sible. What “possible” means in a particular implementation can be quite
different. One might have geometrical constraints which limit the slope of
the line between the two measurements, or the requirement that the tracklet
points to the primary vertex, for example.

For the tracklets to become part of a cellular automaton, the tracklets
must also have a state. In our case, it is just a counter, initialised to zero,
which will be used by subsequent stages of the algorithm.

Figure 4.3 illustrates how the result of this stage of the algorithm might
look like.

To obtain a fast algorithm in the end, all knowledge about two measure-
ment combinations produced by the same particle in adjacent layers should
be used already at this stage to reduce combinatorics as much as possible.
Forming only the tracklets which fit into the track model is a first step in
that direction: For example, isolated noise measurements with nothing else
nearby (like the one in the upper right corner of Figure 4.3) should not pro-
duce a tracklet, thus making such noise measurements completely invisible
to subsequent stages. This leads to an algorithm which remains fast and
efficient even in the presence of considerable noise.

4.2 Cellular automaton used in tracking 49

evaluation
direction

Hit detector layersTracklet

0
0

0
0

0

0
0

0

Figure 4.3: Sketch of the detector at the end of the tracklet generation
phase. Tracklets have been drawn between layers. The state of
the tracklets is shown as well. Initially, all tracklets have their
counter at zero. The order in which the algorithm processes
the individual layers is indicated (“evaluation direction”).

4.2.2 Neighbour finding

While the previous stage provided tracklets, the basic working objects of
the algorithm, there is no connection among them — in cellular automaton
terms, the neighbourhood has not yet been defined. For the sake of this
discussion, we will stick to one way to define the neighbourhood and provide
a (necessarily non-exhaustive) list of alternatives for other implementations
near the end.

The aim of this stage is to form a relationship between a combination of
two tracklets which look like they might originate from a particle travelling
through the detector, and not to form relationships among tracklets for which
it is clear that no such connection exists. Again, the reason behind this is
to reduce combinatorics as early as possible in the algorithm. Tracklet B is

A B
Tracklet B is a
neighbour of A.

called a neighbour of tracklet A, if

• the starting measurement of tracklet A is the one in which tracklet B
ends

• the kink angle (the angle at which they intersect) is small enough

The Figure in the margin depicts the situation. The first requirement
simply comes from the assumption that each particle intersects with a detec-
tor layer at a single position. The second requirement is given by the local
track model: In our case, locally, a track should look like a straight line, while
we allow for small deviations (non-vanishing kink angles) which in the real
experiment might come from the deflection in a magnetic field or multiple
scattering.

50 Cellular Automaton principles

Just like the algorithm works in evaluation direction (in the pictures from
right to left), the neighbour relation is directed as well: It permits going from
left to right, i.e. in the opposite direction. This is a convention, but one that
will be useful.

The reason for this is that it is desirable to find tracks which go through
the whole detector first. If particles can leave the detector early, the number
of correct tracklets will be lower at one end of the detector. Starting with
finding neighbours from this side will ensure that dead ends are encountered
early in the process of forming track candidates (which starts from the op-
posite side, following the direction of the neighbour relation). Depending
on the problem at hand, the decision at which end of the detector to start
may affect timing properties, efficiency and ghost fraction of the algorithm
— best is probably to do the experiment and the use the alternative which
works better.

Other possibilities to define the neighbour relation might include

• a χ2 distance between the parameters of a local track fit for each of the
two tracklets; this has been done in [23], for example

• search windows around the projected position of the tracklet into the
next layer(s)

• additional cuts, e.g. if the local curvature (obtained from the three mea-
surements) is consistent with a momentum estimate obtained through
other means

This list is clearly not exhaustive, and for each implementation, an imple-
mentor needs to look for information which can be used at this stage of the
algorithm to keep the combinatorial burden as low as possible.

4.2.3 Automaton evolution

Now that the neighbourhood of a tracklet is defined, the rules of the evolution
of the cellular automaton must be defined. What one would like to have in
the end is a collection of chains of tracklets with each tracklet chain being
a candidate for a track. Long chains should be favoured over short ones
because a track going through the whole detector is more likely to come from
a physical particle than a short one for which no continuation can be found.
In principle, the chains themselves are already formed: The neighbourhood
relation holds the tracklets together, so candidates can be found by starting
with a tracklet and continuing with one of its neighbours. It is the task of
the evolution of the cellular automaton to dig out the long chains before the
shorter ones.

4.2 Cellular automaton used in tracking 51

This is done using the counters which have been initialised to zero in the
tracklet generation phase. During each step of the evolution of the automa-
ton, the counter of each tracklet is incremented if one of its neighbours has a
counter which is at least as high as its own present counter. For example, a
tracklet might have at some step in the evolution a counter of 5 and neigh-
bours with counters 2, 5, 4 and 3. Then, the new counter of the tracklet will
be 6 for the next step. The evolution stops when all counters have stabilised.
Figure 4.4 gives an impression how things may look like afterwards.

After the evolution phase, the tracklets with the highest counter are those
which give the longest tracklet chains. But the algorithm gains more than
that: By following the neighbour relation from a tracklet with the highest
counter, branching to neighbours which lead to short chains can be avoided.
For such branches, the sequence of counters along the chain suddenly “jumps”
by more than one. This will become clearer when looking again at Figure
4.4. There is a “side path” consisting of two tracklets, both of which have a
counter of zero. This means that both tracklets have no neighbours. Even
if the left tracklet of the side path was a neighbour of the tracklet to its left
(the one with counter 3 in the chain of successive counters), the side path
would not be followed because the change in counter when going from one
tracklet to the next does not equal −1.

One must mention here that there is an issue with the algorithm pre-
sented so far: If a measurement is missing in a layer, either due to detector
inefficiency or because the particle passed through a dead region of the the
detector, no tracklets can be generated. A way needs to be found to jump

evaluation
direction

Hit detector layersTracklet

3
2

1
0

4

4

0
0

Figure 4.4: Sketch of the state of the automaton after the evolution phase:
tracklet counters are shown next to each tracklet; the neigh-
bourhood relation itself is not shown because it would need-
lessly obscure the picture. The two tracklets which have a
counter of zero do not have neighbours due to the large kink
angles, therefore, their counter is never incremented.

52 Cellular Automaton principles

over such “holes” in a chain of tracklets. If the detector is reasonably efficient,
this will not occur often, and when it does occur, shortened chains can still
be found which the algorithm can merge afterwards into longer candidates.

4.2.4 Forming and selecting candidates

In principle, the essence of forming candidates has already been described in
the last section. Sorting all tracklets by decreasing counter, candidates can
be “read off”:

Starting with a tracklet with the highest counter, the algorithm follows
the neighbourhood relation while obeying the “counter must decrease by
one“-constraint along the chain. It branches (i.e. makes several candidates
out of a single one) where there is more than one neighbour which satisfies
these criteria. Figure 4.5 shows the situation for our example: There are two
candidates, each starts at one of the tracklets with counter 4, and they differ
only in their first tracklet.

First, all candidates are formed which start with tracklets with highest
counter value. Then, in a procedure similar to the one described in Section
2.4.4, an attempt is made to select the good candidates and reject the ghosts.
In principle, this selection process uses standard pattern recognition tools
and is not strictly part of the cellular automaton. Tracks are sorted by
some quality measure and selected in order of decreasing quality. Their
measurements are marked used. If they have a used measurement fraction
greater than some cut, they are rejected. Also, tracklet reuse is not permitted
because it is extremely unlikely that two different particles will travel through
identical sensors in two different layers. Obviously, this last choice may have
to be reconsidered in scenarios where the track density is very high.

evaluation
direction

Hit detector layersTracklet

3
2

1
0

4

4

0
0

candidate

Figure 4.5: Sketch of the state of the automaton after candidates have been
formed: Two candidates can be seen which only differ in one
tracklet (thick green lines).

4.2 Cellular automaton used in tracking 53

After dealing with the longest candidates, the algorithm continues with
shorter ones. Time is saved by stopping at tracklets already used instead
of following them. Otherwise, the algorithm would find shortened versions
of the tracks already selected. For example, consider a selected track like

4 3 2 1 0

ECA B D
Reusing tracklets
leads to shortened
versions of the chain
starting at tracklet
A.

the one starting with tracklet A in the figure in the margin. If the reuse of
tracklets was permitted, the candidate consisting of tracklets B, C, D and E
would be found when looking for four-tracklet candidates, duplicating work
already done.

This procedure for following tracklets and selecting candidates continues
until the candidates formed are too short to be plausible. It is up to the
implementor to decide when this limit is reached. Once all candidates have
been found, it is possible to “polish” the candidates: One can try to merge
short candidates which are likely to belong to the same particle into a single
longer candidate. It is also possible to add unused measurements to nearby
tracks if they have not been picked up by the cellular automaton for some
reason.

54 Cellular Automaton principles

Chapter 5

Cellular automaton based
seeding for the LHCb Outer
Tracker

In this chapter, an implementation of a seeding algorithm based on the cel-
lular automaton approach introduced in the last chapter is described. For
clarity, an overview is given, highlighting additions to and changes from
the simplified description given in the previous chapter. Then, the different
stages of the algorithm will be discussed in more detail.

5.1 Overview

There are two important details which are relevant for the Outer Tracker but
have been omitted for clarity in the first description of the algorithm. One is
the third degree of freedom in the coordinates: The track parameters y and
ty must be inferred using the measurements in the stereo layers. The other
detail is the inner structure of the Outer Tracker with each layer consisting
of two monolayers of straw tubes, measuring drift times.

The first item is obviously dealt with by using the stereo layers in the
process: In this specific implementation, there are two cellular automata
running in parallel, one for each of the two projections. The one working in
yz projection is tightly coupled to the evolution of the automaton working
in xz direction, enabling the use of the former to confirm the choices made
by the latter.

The second item is accounted for by forming clusters from neighbouring
measurements in different monolayers of the same module.

Thus, the algorithm consists of the following stages:

55

56 Cellular automaton based seeding for the LHCb OT

• Data preparation: In this stage, measurements are retrieved, and
clusters are formed. They are sorted by increasing coordinate value
along the measurement direction.

• Tracklet generation: Tracklets are formed between all adjacent x
layers.

• Stereo enhancement: Clusters from both u and v layers are com-
bined to form a pseudo-x clusters which are then matched to the exist-
ing tracklets. This can be considered as the tracklet generation stage
of the cellular automaton working in yz projection.

• Neighbour finding: The procedure is very similar to what was de-
scribed in the last chapter, the main difference is that the neighbour
relations for the cellular automaton working in yz projection are worked
out as well. The evolution of both cellular automata can be done effi-
ciently at the same time.

• Forming and selecting candidates: During this stage, track can-
didates are formed. For each candidate in xz projection, all possible
candidates in yz projection are formed in parallel. A candidate se-
lection phase follows which brings down ghost and clone fraction to
acceptable levels.

• Track conversion and cleanup: The remaining candidates are con-
verted to standard LHCb::Track objects which can be used by the rest
of the reconstruction software. There are also some cleanup tasks which
the algorithm needs to perform in this phase, for example memory man-
agement. These cleanup tasks are only mentioned here for completeness
and to indicate that they exist, but they will not be discussed further.

These stages are performed once for the lower half and once for the upper
half of the Outer Tracker with no coupling between the two. This is possible
because the number of particles going from the lower half into the upper one
or vice-versa is negligible; the magnet does not cause a noticeable deflection
in the y direction. As has been mentioned in the last chapter, the first four
stages work towards the primary vertex, starting with the layer with the
largest z position in T3. Candidates are formed in the opposite direction,
following tracklets with large counters towards the calorimeters and RICH2.

The chapter starts by stating how performance of the single steps of the
algorithm will be evaluated, then the different stages are described in more
detail, giving figures for the performance of the different stages.

The next chapter discusses the overall performance of the algorithm.

5.2 Evaluating performance 57

5.2 Evaluating performance

Performance of the algorithm is measured using the same sample of events
that was used in Section 3.2. More specifically, a particle is considered to be
reconstructible if it satisfies the following criteria:

• It is reconstructible in the OT, i.e. it must have in each of the three
OT stations at least one x and one stereo measurement.

• Its momentum at the production vertex is greater than 1 GeV.

• It comes from the primary vertex region, i.e. the z coordinate of its
production vertex must satisfy |z| < 15 cm.

• It is neither electron nor positron.

This is very similar to what is used in Section 3.2. In fact, only the
requirement on the number of hits in the T stations has been adapted to suit
an algorithm designed for the OT only.

To evaluate the performance of individual stages of the algorithm, there
are additional criteria which must be met for a particle to be reconstructible
in a given stage. For example, a particle will only allow to form a tracklet
between two given x layers if it has measurements in both of these layers.
The exact definitions are mentioned when the performance of the stage in
question is discussed.

For simplicity in the evaluation of single stages of the algorithm, this
thesis will focus on particles which leave measurements in all six x layers
of the Outer Tracker. The corresponding tracks should be found as chains
of five tracklets. Therefore, reconstruction of shorter chains will be skipped
for the performance evaluation of individual stages. For the evaluation of
the full algorithm in Chapter 6, tracklet chains of lengths five and four are
used. There, figures are presented for both alternatives, reconstructibility in
the OT and reconstructibility in the OT plus the additional requirement of
measurements in all six x layers.

The reason to evaluate the algorithm on this particular subset is that it
currently has no way to cope with interrupted tracklet chains: Whenever a
particle leaves no measurement in one of the inner four x layers, the algorithm
can not find it. As only about 8.8 % of all particles reconstructible in the
OT (in the sense defined above) are affected by this and time was running
out, it was decided that the remaining time for finishing this thesis would be
better spent implementing code to use the stereo layers to bring down the

58 Cellular automaton based seeding for the LHCb OT

ghost fraction1. With some more work, the algorithm can be improved to
handle interrupted tracklet chains.

While the evaluation of the overall performance can be done using the
same Monte Carlo sample and the same tools as in Section 3.2, closer in-
vestigation of the individual stages needs more specialised code, associating
the result of individual stages to Monte Carlo truth. This makes the code
very slow; therefore, only a subsample of 2000 events will be used for this
purpose. However, care has been taken to evaluate the performance of indi-
vidual stages on a different subsample than the one used to derive cuts to
avoid any bias.

5.3 Data preparation

In this section, the data preparation process is described. There is no major
difference between x and stereo layers during this stage of the processing.
The preparation phase consists of the following steps:

5.3.1 Selection of measurements

The first step is to retrieve an array with Outer Tracker measurements. If
their drift radii are not within acceptable limits, the measurements are ig-
nored. This is done because spillover tends to produce measurements corre-
sponding to drift radii which are outside of the physical dimensions of the
straws (see Section 1.4.1).

Figure 5.1 shows the distribution of drift radii for good measurements
and for anything but good measurements (i.e. noise, spillover and crosstalk).
One can see that a drastic reduction in the number of measurements can be
achieved. It has been decided to cut so that only measurements satisfying
−0.3 mm < r < 2.8 mm survive.

5.3.2 Conversion to working objects

From the remaining measurements, working objects (of type CASeedHit) are
created. Their function is to facilitate bookkeeping in the algorithm and to
hide the complex detector geometry. This is achieved by using axes in the
measurement directions x, u and v2. Sine and cosine of the stereo angles of

1Back then, the algorithm did not use the stereo layers at all, and ghost fractions of
50 % and more had to be tolerated if one wanted to keep efficiency on the order of 90 %.

2The term measurement direction will be used to denote the direction of the x, u or v

axis.

5.3 Data preparation 59

drift radius [mm]
-1 0 1 2 3 4 5

nu
m

be
r

of
 e

nt
rie

s

0

5

10

15

20

25

30

35

310×

(a)

drift radius [mm]
-1 0 1 2 3 4 5

nu
m

be
r

of
 e

nt
rie

s

0
2
4
6
8

10
12
14
16
18
20
22

310×

(b)

Figure 5.1: Distribution of drift radii as returned by the reconstruction
software at this stage of the processing; good measurements
are in (a), (b) shows everything else. The structure in the right
plot is a consequence of the spillover contribution from other
bunch crossings. Dashed red lines will from now on indicate
where cuts are performed.

the individual layers and starting and ending points of the wires in question
are also provided. Figure 5.2 sketches the axes used.

5.3.3 Sorting of the measurements

The working objects created during the last stage are sorted by increasing
position in measurement direction. Sorting them makes searching by position
very fast; binary searches3 are used.

5.3.4 Forming clusters

Except for very low momentum particles which curl in the detector, one
expects a particle to produce two measurements per layer in neighbouring
straws from different monolayers. An example of such a situation is shown
in Figure 5.3. There may of course be fewer measurements due to the parti-
cle passing through the insensitive area between two straws or between two
modules, or in case of detector inefficiency.

Using pairs of measurements like the one depicted in Figure 5.3, clusters
are formed starting from one end of each layer, moving in measurement direc-
tion towards the other end. The cluster position is just the arithmetic mean

3Binary searches are based on the same idea as finding a zero of a function by bisection.
Arrays of length N can be searched using O(log N) comparisons with this technique.

60 Cellular automaton based seeding for the LHCb OT

z

y

(0,0,z)

x

(0,0,0)

v

u
x

Figure 5.2: Sketch depicting axes in the three possible measurement direc-
tions x, u and v, all attached to a single point on the z axis.

particle
wire hit

measurement
direction

Figure 5.3: Sketch of a typical cluster formed by a particle travelling
through an OT module (only the straws themselves are drawn).
Drift circles have been added for the straws giving a measure-
ment.

5.4 Tracklet generation 61

of the two wire positions. Clusters may overlap, the second measurement
used to form a cluster may be used to start a new cluster if it has a neigh-
bouring measurement like the first one in Figure 5.3. Pairs of measurements
which were used to form clusters are ignored by the rest of the algorithm,
the generated clusters take their place.

The reason for forming clusters is to group possibly related measurements
— it will be shown in the next section that these clusters do not only reduce
the number of possible combinations the algorithm has to cope with, they
can actively be used to rule out that two clusters have their origin in the
same particle.

For the rest of this thesis, the term cluster will refer to both a cluster in
the sense of a combination of two measurements and a single measurement.
For most aspects of the algorithm it does not matter if the algorithm uses a
real cluster or a single measurement. In the few places where it does matter,
the distinction between a single measurement and a cluster will of course be
made, so it will become clear when the difference is important.

5.4 Tracklet generation

This section will describe the tracklet generation stage which forms tracklets
from clusters in two adjacent4 x layers of the detector.

For simplicity and clarity, it is convenient to introduce three terms which
will be used in the following discussion. These terms are applied to the
tracklets that are or could be generated between two given x layers.

• A good tracklet between two given x layers is a tracklet which has
at both ends measurements from the same particle. There can also
be measurements from other particles, noise and spillover which can
contribute.

• Among all good tracklets for a particle between two given x layers,
there is a best tracklet which is the one containing most measurements
from that particle.

• A bad tracklet between two given x-layers is not a good tracklet. The
terms wrong tracklet and wrong combination are also used interchange-
ably.

4Here, “adjacent” means that tacklet generation happens only between x layers which
have no further x layers between them.

62 Cellular automaton based seeding for the LHCb OT

As the main interest lies in particles satisfying the criteria given in 5.2, the
terms good tracklet and best tracklet will imply in the following text that
the particles in question do indeed satisfy these criteria. Thus, plots and
figures for best or good tracklets imply that the particles which produced
the tracklets have more than 1 GeV momentum at their production vertex,
are neither electrons nor positrons, etc. This is done to keep the wording
simple.

In principle, there are three kinds of cuts applied to select the pairs of
clusters which will be used to form tracklets. These are discussed in the
subsections below. The order in which the cuts are discussed corresponds to
the order in which they are applied, with fast and effective cuts first, more
sophisticated ones requiring more computation time later.

The efficiency of this stage of the algorithm will be defined and discussed
at the end of this section.

5.4.1 Geometrical cuts

This subsection describes cuts for tracklet generation which involve geometric
aspects. They are described below:

Slope cut

Particles coming from the primary vertex region and traversing all stations
of the Outer Tracker give rise to a tracklet slope distribution like the one
shown in Figure 5.4. Therefore, tracklets are generated only if their slope
would fall into the range |tx| < 1.3. On the sample used to produce these
plots, the loss introduced by this cut is less than 0.01 %.

The structure which makes the plots look like being composed of two
curves (most apparent in the right plot) is a binning effect: The slope is given
by tx = dx/dz where dx and dz are the differences in wire or cluster positions
in x and z direction. dx can only take a fixed set of values because the straw
pitch remains constant, and dz is also quantised because the module-module
distances in z do only take a finite number of values. Thus, tx itself will
only take discrete values, which are not equidistant in tx. Filling such a
distribution into a histogram will show binning effects.

Due to the possibility to form wrong combinations with almost arbitrary
slope within the physical dimensions of the detector, there is not much more
to learn from the plot for wrong combinations, except for the large number
of such possibilities.

5.4 Tracklet generation 63

x
tracklet slope t

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

nu
m

be
r

of
 e

nt
rie

s

0

2

4

6

8

10

12

310×

(a)

x
tracklet slope t

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

nu
m

be
r

of
 e

nt
rie

s

0

100

200

300

400

500

310×

(b)

Figure 5.4: Distribution of tracklet slopes for best tracklets (a) and wrong
combinations (b). The dashed lines illustrate the cuts applied;
this form of illustration will be used throughout the rest of the
chapter. The small “jumps” in the two curves which are most
apparent in the right plot are due to binning effects, see text.

Correlation between slope and position

For particles from the primary vertex which traverse the magnet, there is a

zmagn

zmagn

z

x

z

x

correlation between their x position in the T station and their slope tx (the
figure in the margin sketches two such cases, zmagn is the bending plane of
the magnet at z = 5300mm).

Figure 5.5 is a scatter plot showing the slope of the line connecting the
first measurement of a tracklet with the centre of the magnet at zmagn versus
its slope tx. The left plot is for best tracklets, the right one for wrong
combinations. For best tracklets, one observes a diagonal band which is
filled with measurements while the edges remain empty. In the right plot
for wrong combinations, the edges are filled, indicating that only certain
combinations of x position and slope tx are produced by particles of interest.
Note that a similar correlation has also been observed in [10].

This algorithm exploits this fact by requiring that |x/(z − 5300 mm) −
tx| < 0.8 where x and z are the coordinates of the first cluster of the tracklet.
Less than 0.05 % of all best tracklets are lost by this cut.

Figure 5.6 sketches why the slope predictions from the x positions are
not very accurate: For outbending particles, a line from the centre of the
magnet through one of the measurements gives a reasonable idea of the slope
of the particle trajectory. Unfortunately, this estimate is not too good for
particles with very high momenta which do not bend in the magnet, and
it becomes even worse for particles with trajectories bending in the other
direction. Therefore, the window has to remain quite broad. It was tried

64 Cellular automaton based seeding for the LHCb OT

0

200

400

600

800

1000

x/(z - 5300 mm)
-1 -0.5 0 0.5 1

xt

-1

-0.5

0

0.5

1

(a)

0

1000

2000

3000

4000

5000

6000

7000

x/(z - 5300 mm)
-1 -0.5 0 0.5 1

xt

-1

-0.5

0

0.5

1

(b)

Figure 5.5: Scatter plot showing the slope of the line connecting the first
measurement of a tracklet with the centre of the magnet versus
its slope. Best tracklets are in (a), (b) contains only wrong
combinations. One observes that best tracklets only occupy a
small portion of the area shown in the plot.

to improve this by using the curvature estimate obtained from the pT -kick
method (see Section 5.4.2), but there was little improvement. Therefore,
it was decided to skip the additional computation and live with the simple
version described above.

Custom search windows for trigger applications

It is possible to restrict tracklet generation to a narrow range in (x, tx) pa-
rameter space. This range may depend on the z position. One possible
application of such a cut is the confirmation of hardware trigger candidates
in the software trigger: Usually, an estimate of the expected x position and
slope tx of a track can be obtained from the position of the energy deposits
in the calorimeters or muon stations. To check if there is a corresponding
track in the T stations, it is not necessary to reconstruct the whole detector.
A narrow window around the expected track trajectory is sufficient to check
for the presence of a track. This reduces combinatorics drastically and helps
to meet the stringent constraints on algorithm execution time in the software
trigger.

This has not yet been tested, but since the execution time for the offline
case is moderate and the code is not yet optimised for speed, the application
of the algorithm in the software trigger framework seems to be possible.
However, some additional work would still be needed to restrict the data
preparation step and the stereo enhancement to the range of interest to make

5.4 Tracklet generation 65

z magnet

x

z z magnet

x

z z magnet

x

z

Figure 5.6: Sketch illustrating why the correlation between x position and
slope for tracks from the primary vertex region does not al-
low for tighter cuts: For outbending tracks with not very high
momenta (left), the slope of the line joining the centre of the
magnet with a measurement on the track is expected to agree
quite well with the observed track slope in the T stations. If
the track momentum is very high (middle), the agreement is
not so good anymore, and it becomes even worse if the track
curvature has opposite sign (right).

the resulting algorithm fast enough for the trigger.

In the offline version of the algorithm, no cut is applied.

5.4.2 Momentum estimation and optional cut

For this cut, the momentum of the tracklet is estimated using the pT -kick
method described earlier. Since the coordinates and slopes of tracklets in
yz projection are unknown at this stage, y = ty = 0 is assumed. This will
degrade the momentum resolution of the pT -kick method because the field
integral which is calculated will be slightly wrong. On the other hand, having
an estimate of the tracklet momentum is certainly better than having none.
To speed up the process, the result of applying the pT -kick method to a pair
(x, tx) of tracklet coordinates and slopes is saved in a lookup table during
initialisation. The binning is such that the x coordinate is sampled using
bins 2.5 cm wide, and the slope is sampled with bins which are 0.005 wide.

In some applications, it could be convenient to cut away low momen-
tum tracklets, thereby speeding up the algorithm. An example for such an
application might be in the software trigger.

Figure 5.7 shows the momentum resolution obtained using this method
for best tracklets.

The core has been fitted with a single Gaussian; its width corresponds
to a momentum resolution of ∆p/p = p−prec

p
≈ 5.3 %. Here, p is the true

momentum of the particle at its production vertex, and prec is the momentum
reconstructed using the pT -kick method as described above.

66 Cellular automaton based seeding for the LHCb OT

 / ndf 2χ 603.8 / 17

Prob 0

Constant 41± 1.147e+04

Mean 1.640e-04± 3.552e-05

Sigma 0.00018± 0.05294

true
)/p

rec
-p

true
tracklet momentum resolution (p
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 e

nt
rie

s

0

2

4

6

8

10

12

310× / ndf 2χ 603.8 / 17

Prob 0

Constant 41± 1.147e+04

Mean 1.640e-04± 3.552e-05

Sigma 0.00018± 0.05294

Figure 5.7: Momentum resolution ∆p/p obtained during the tracklet gen-
eration stage using the pT -kick method for best tracklets, as-
suming the tracklet is in the y = 0 plane. The fit to the core
of the distribution was done with a single Gaussian.

In the standard configuration, no cut is performed. The momentum esti-
mate is used later in the algorithm.

5.4.3 Clustering continued: pitch residuals

Let us for the moment assume that all particles travelling through the de-
tector were incident perpendicular to the detector layers (or, equivalently,
parallel to the z axis, for this discussion we work only in xz projection).
Then a two-measurement cluster would look like the one shown in Figure
5.8. The two drift radii will be called r1 and r2, and the amount of stagger-
ing between the two monolayers in the module, from now on called pitch, will
be denoted by d. Then the following relation must hold (within the limits
dictated by the detector resolution):

r1 + r2 = d

This means that the algorithm can tell if the two measurements forming the
cluster do actually belong together.

The fact that most particles traverse the detector at an angle can be
corrected for easily by calculating the effective pitch deff which will be seen
by a particle travelling through the detector layer with a slope tx

5. The result
is obtained without difficulty by projecting the vector joining the two wire

5In fact, the only reason why this method is not used earlier in the algorithm is that
an estimate of the slope is needed to calculate the effective pitch.

5.4 Tracklet generation 67

wire with a
measurement

wire

pitch

r2

r1 particle

Figure 5.8: The figure shows a cluster produced for a particle incident per-
pendicular to the detector layer. The amount of staggering
between the two monolayers is called the pitch.

positions of the straws involved, denoted ~a, onto a plane perpendicular to
the trajectory of the particle (cf. Figure 5.9):

deff(tx) = |~a− (~a · ~s(tx)) · ~s(tx)|
Here, ~s(tx) is the unit vector in the direction of the trajectory of the

particle:

~s(tx) =
1

√

1 + t2x

(

1
tx

)

Using the effective pitch deff , one distinguishes two cases: The particle
either passes between the two wires , or it does not (see Figure 5.10). In the
first case, the following relation must hold:

r1 + r2 = deff(tx)

The second case is characterised by this equation:

|r1 − r2| = deff(tx)

So, by checking if one of the two relations is is fulfilled (within the limits
dictated by detector resolution), it can be decided if the slope tx is consis-
tent with the two measurements originating from the same particle. This
is a powerful tool during tracklet generation because it can be used to veto
wrong cluster combinations, both for recognising clusters which do not orig-
inate from a single particle, and for vetoing two (possibly perfectly) good

68 Cellular automaton based seeding for the LHCb OT

particle trajectory
wire hit

s slope directiondeff
a

Figure 5.9: Calculation of effective pitch. ~a is the vector joining the two
wires, ~s is a unit vector in direction of the trajectory of the
particle. Then, the effective pitch ~deff can be obtained by
subtracting from ~a the projection of ~a onto ~s.

wire with a
measurement

wire

pitch

r2

r1 particle

(a)

wire with a
measurement

wire

pitch

r1

r2
particle

(b)

Figure 5.10: For particles passing through the detector with a non-
vanishing slope, there are two situations: the particle passes
either between the two wires (a), or it does not (b).

5.4 Tracklet generation 69

clusters which do not belong together (for these combinations, the slope will
be wrong in most cases). Such a check will also be made in the next stage of
the algorithm, therefore, a quantity needs to be defined which captures this
behaviour — the pitch residual. It can be defined in terms of two quantities
p+ and p−:

p+ = r1 + r2 − deff(tx)

p− = |r1 − r2| − deff(tx)

Using these quantities, the pitch residual can be written down:

pitch residual =

{

p+ if |p+| < |p−|
p− otherwise

Figure 5.11 shows clearly that the pitch residual distributions look different
for best tracklets and wrong combinations. Note that the entries in the plots
are weighted: Tracklets formed from two single measurements do not show
up at all because pitch residuals are not defined for single measurements. For
tracklets consisting of three or four single measurements, the contributions
have been weighted with 1.0 and 0.5, respectively, to account for the fact that
the tracklets with four single measurements contribute two pitch residuals.

For best tracklets, a Gaussian core is observed. The asymmetric shape of
the distribution for wrong combinations is due the way the pitch residual is
defined: deff(tx) is always subtracted.

Note that it is possible to estimate the detector resolution using the left
plot of Figure 5.11. The core should have a width of

√
2σOT where σOT

is the resolution of the Outer Tracker. A simple gaussian fit to the core

pitch residual [mm]
-6 -5 -4 -3 -2 -1 0 1 2 3

nu
m

be
r

of
 e

nt
rie

s

0

5

10

15

20

25

310×

(a)

pitch residual [mm]
-6 -5 -4 -3 -2 -1 0 1 2 3

nu
m

be
r

of
 e

nt
rie

s

0

0.5

1

1.5

2

2.5

3

610×

(b)

Figure 5.11: Distribution of pitch residuals for best tracklets (a) and wrong
combinations (b). The latter shows a different behaviour than
(a).

70 Cellular automaton based seeding for the LHCb OT

(|pitch residual| < 1.0) of the distribution gives σfit = (0.300 ± 0.003) mm;
in the simulation,

√
2σOT = 0.283 mm (the simulation assumes 200 µm

resolution). The remaining difference is due to the relatively broad interval
over which the fit was performed.

This procedure might also be used later in the experiment to estimate
the resolution of the Outer Tracker, preferably using tracks of high purity.
However, one should probably not use an algorithm which cuts hard on the
pitch residual to avoid bias.

In the standard configuration, the algorithm restricts pitch residuals to
the range between −2.25 mm and 1.75 mm. This corresponds to a fraction
of 99.87 % of all pitch residuals that went into the left histogram of Figure
5.11.

5.4.4 Efficiency of tracklet generation

Of course, the interesting question is if the procedure described above does
indeed generate the desired tracklets. One defines the tracklet generation
efficiency between two given x layers as

εTL =
#(F ∩R)

#R

Here, R is the set of reconstructible particles, i.e. those for which a good
tracklet can be formed in principle, and F is the set of particles for which a
good tracklet was generated.

Using this efficiency definition, the average tracklet generation efficiency
between two adjacent x layers turns out to be 99.60 % (tracklet-averaged,
because cut inefficiencies are tracklet-averaged as well), just multiplying the
cut inefficiencies given above (assuming they were independent) gives an
expected efficiency of 99.68 %. The remaining discrepancy might be due to
particles decaying between two layers.

The comparison above was done using tracklet-averaged quantities be-
cause the inefficiencies derived from the plots are tracklet-averaged quantities
as well. The event-averaged efficiency is 98.65 %.

Thus, very few particles are lost at this stage, and the origin of the inef-
ficiency is mostly understood. However, a loss at this stage does not mean a
particle can not be reconstructed by the algorithm. It just means that one
loses a tracklet between two layers, so the tracklet chain for that particle will
be shortened or interrupted.

Table 5.1 again summarises the efficiency figures.

5.5 Stereo enhancement 71

Cut on slope tx loss < 0.01 %
Cut on x/(z − 5300 mm) − tx loss < 0.05 %
Cut on pitch residuals loss < 0.26 %
Combined expected efficiency 99.68 %

Observed inefficiency (tracklet-average) 99.60 %

Observed inefficiency (event-average) 98.65 %

Table 5.1: Origin of losses in the tracklet generation stage, observed effi-
ciency. Expected and observed efficiency agree quite well.

5.5 Stereo enhancement

During this phase of the algorithm, the tracklets in xz projection are en-
hanced by adding compatible stereo hits. This is a two-step process: First,
pseudo-x clusters are formed from all geometrically possible two-cluster com-
binations in two adjacent stereo layers. These are added to compatible track-
lets in a second step. Figure 5.12 contains an illustration of the principle.
The two steps will now be described in more detail.

5.5.1 Forming pseudo-x clusters

Suppose that the trajectory of a particle passing between two stereo layers
can be described by a straight line. Then, the coordinates of the two clusters
that the particle should produce in the u and v planes are given by

u = cosα(xmid + tx(zu − zmid)) + sinα(ymid + ty(zu − zmid))

v = cosα(xmid + tx(zv − zmid)) − sinα(ymid + ty(zv − zmid))

Here, zu and zv are the z coordinates of the u and the v plane, α is
the stereo angle, and xmid and ymid are the coordinates of the particle at
zmid = 1

2
(zu + zv). Assuming that the parameters of the trajectory are

initially unknown, these two relations can be used to get an initial estimate
for xmid:

xmid =
u+ v

2 cosα
− sinα

cosα
ty(zu − zmid)

The fact that zmid is the midpoint between the two stereo planes has
been used above. The last term is small: | sinα| is on the order of 0.1, |ty|
is smaller than 0.4, and any two neighbouring stereo layers are no further
apart than 1 m; so the second term will be smaller than 2 cm in any case;

72 Cellular automaton based seeding for the LHCb OT

u
u
v

u
u

zmid z

x x u v x

Tracklet

Pseudo−x
clusters

z=zmid

Tracklet

y

Pseudo−x
clusters

x

Figure 5.12: Creation of pseudo-x clusters. On the right, some straws in u
and v layers are combined in a yx projection view at z = zmid

to form pseudo-x clusters. The x positions of the combinations
indicated by the red arrows are at the intersection of the u
and v straws (thought infinitely prolonged). The intersection
can appear to have moved past the sensitive area of the straw
in the plane at zmid because the change in x position of the
tracklet between the two stereo layers is not accounted for.
As zmid is in the middle between the two stereo layers, this
effect cancels, and the x coordinate of the intersection point
is relatively accurate. On the left, a view in xz projection
is shown where the matching of a tracklet and the pseudo-x
clusters takes place at z = zmid.

the exact value will of course depend on the slope ty of the particle and the
actual distance between stereo layers. These 2 cm are not much because they
correspond to a window extending for less than four straws to each side.

Thus, neglecting the last term which can not be computed without more
information, one can still obtain a reasonable estimate of xmid. This makes it
feasible to form pairs of stereo measurements from u and v layers and match
them to compatible tracklets using xmid.

To reduce combinatorics, only adjacent stereo layers are used (i.e. pairs
of stereo layers with no further stereo layers in between), and only those
pairs of clusters are considered for which it is geometrically possible that the
corresponding straws have been hit by the same particle. From the cut on
the slope tx, the maximal x distance dxmax can be inferred that a particle
can travel between the two stereo layers. The x distance between the wires
of the stereo straws in question must be smaller than dxmax somewhere along
the straws.

5.5 Stereo enhancement 73

The resulting pseudo-x clusters are sorted by their x position to facilitate
the matching to tracklets.

In this thesis, the term “long pseudo-x cluster” is used to refer to pseudo-
x clusters constructed from stereo layers in different stations (the layers are
separated by about 60 cm in z, hence their name), a “short pseudo-x cluster”
consists of two stereo clusters from the same stations (separated by less than
10 cm in z).

5.5.2 Matching pseudo-x clusters and tracklets

A loop over all tracklets between the two x layers closest to zmid is performed.
If the pseudo cluster is consistent with the tracklet, it is added to the tracklet
as stereo candidate: At the end of this stage, there are about 3.6 pseudo-x
clusters consistent with a good tracklet on average, so it is fair to call them
“stereo candidate”. These stereo candidates will have the role of tracklets
for the cellular automaton running in yz direction.

To check for consistency, a number of criteria are verified. The order
discussed below again corresponds to what is done in the code, with compu-
tationally cheap checks first, the more expensive ones later. The efficiency
of this stage of the algorithm is discussed last.

Matching tracklets and pseudo-x clusters

For an initial matching of tracklet and pseudo-x cluster, the algorithm com-
pares how well the x positions of the two agree at z = zmid (cf. Figure 5.12).
Figure 5.13 shows the difference in x position for best combinations of track-
lets and pseudo-x clusters. The plot on the left contains “long” pseudo-x
clusters, the plot on the right shows the same quantity for “short” pseudo-x
clusters. One can see that the matching is better in the “short” case because
the trajectory of a particle matches the straight line model better over short
distances.

The algorithm accepts a combination of a pseudo-x cluster and a tracklet
if the difference is less than 5 mm in the “short” and 11 mm in the “long”
case. One loses less than 0.01 % of best combinations from this cut.

Restricting y coordinates to sensitive range of straws

Now that a parametrisation of the trajectory in xz projection is known, y

yu

trackletx x

straw
(u type)

y
coordinates yu and yv can be calculated for the stereo clusters forming the
pseudo-x cluster. If they fall into the y range in which the corresponding

74 Cellular automaton based seeding for the LHCb OT

 [mm]pseudo-x - xtrackletx
-20 -15 -10 -5 0 5 10 15 20

nu
m

be
r

of
 e

nt
rie

s

0

2

4

6

8

10

12
310×

(a)

 [mm]pseudo-x - xtrackletx
-20 -15 -10 -5 0 5 10 15 20

nu
m

be
r

of
 e

nt
rie

s

0

5

10

15

20

25

30

310×

(b)

Figure 5.13: Difference in x position of pseudo-x clusters and tracklets for
best combinations, (a) is for “long” pseudo-x clusters, (b) is
for “short” ones formed from clusters in the same station.

straws are sensitive, the combination of this tracklet with the pseudo-x cluster
is investigated further.

Vertexing cut on y coordinate

For all pseudo-x clusters, the y coordinate of the second measurement must

z
δ

y
be within a window δ around the line in yz projection which joins the first
measurement of the pseudo-x cluster with the origin. Effectively, this imposes
the restriction that the pseudo-x cluster points to the primary vertex in yz
projection.

Figure 5.14 shows the difference between the y coordinate of a stereo
cluster and its prediction derived from another stereo cluster under the vertex
assumption. It can be seen that the accuracy of the prediction is slightly
better in the “short” case. A combination of tracklet and pseudo-x cluster is
accepted if this difference is smaller than 130 mm in the “short” or 150 mm
in the “long” case. This cut introduces an inefficiency smaller than 0.09 %
in the “long” case for the Monte Carlo sample studied, for the “short” case
it is even less.

Cut on slope ty (without vertex assumption)

For “long” pseudo-x clusters that were built from stereo layers in different

ty

z

y
OT stations, the lever arm is long enough to obtain an estimate of the slope ty
from yu and yv alone, without assuming anything about the primary vertex.

Figure 5.15 shows the slopes ty derived without the vertex assumption
for both “long” and “short” best combinations, In the first case, the lever

5.5 Stereo enhancement 75

) [mm]
1

, z
1

(y
pred

 - y
2

y
-200 -150 -100 -50 0 50 100 150 200

nu
m

be
r

of
 e

nt
rie

s

0

2

4

6

8

10

310×

(a)

) [mm]
1

, z
1

(y
pred

 - y
2

y
-200 -150 -100 -50 0 50 100 150 200

nu
m

be
r

of
 e

nt
rie

s

0

2

4

6

8

10

12

14

16

310×

(b)

Figure 5.14: Plot showing difference of prediction of y position of second
stereo cluster and prediction of that position from first stereo
cluster and a vertex assumption. (a) is for “long”, (b) is for
“short” best pseudo-x clusters.

arm is long enough to obtain a reasonable estimate of the slope. For “short”
pseudo-x clusters however, the distribution is broadened by the finite spatial
resolution in y direction and the short lever arm. It is still possible to reduce
background in both cases; cuts have been placed such that |ty| < 0.3 or
|ty| < 1.5, respectively, to achieve this goal.

This cut will lose less than 0.07 % of best pseudo-x clusters.

Vertexing cut on slope ty

An additional vertexing cut is applied: The difference between the slope
∆ty

z

y
calculated above (tclus

y) and the slope of the line in yz projection which joins
the first cluster with the origin (tvtx

y) should be small.
Figure 5.16 shows the results for “long” and “short” best pseudo-x clus-

ters. Cuts have been placed such that |∆ty| = |tvtx
y − tclus

y | < 0.2 and
|∆ty| < 1.5, respectively.

The loss in best tracklets introduced by this cut is less than 0.14 %.

Cut on the pitch residuals

If all of the previous conditions were fulfilled, the pitch residuals of the stereo
clusters are checked as discussed in Section 5.4.3, using the slope of the line
connecting the cluster with the primary vertex in yz projection and the
tracklet slope in xz to estimate the slope in measurement direction.6

6The distributions are not shown because they looks exactly like those in Figure 5.11.
In principle, the tracklet slope alone would be sufficient because the admixture of ty to the

76 Cellular automaton based seeding for the LHCb OT

yt
-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

nu
m

be
r

of
 e

nt
rie

s

0

5

10

15

20

25

310×

(a)

yt
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

nu
m

be
r

of
 e

nt
rie

s

0

2

4

6

8

10

310×

(b)

Figure 5.15: Slope ty for best combinations, calculated using stereo cluster
y positions obtained from stereo coordinate and tracklet in
xz projection. (a) is for “long” pseudo-x clusters. (b) for
“short” ones shows the effect of worse spatial resolution in y
and a short lever arm, widening the distribution.

vertex
y-t

pseudo-x
yt

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

nu
m

be
r

of
 e

nt
rie

s

0

2

4

6

8

10

12

14

16

310×

(a)

vertex
y-t

pseudo-x
yt

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

nu
m

be
r

of
 e

nt
rie

s

0

500

1000

1500

2000

2500

3000

(b)

Figure 5.16: Plots showing the difference in slopes ty derived with and
without vertex assumption. (a) is for “long” best pseudo-x
clusters, (b) is for “short” ones.

5.5 Stereo enhancement 77

Given the shape of the pitch residual distribution for best combinations,
it is unlikely that more than one or two of the up to four available pitch
residuals in a combination of tracklet and pseudo-x cluster are far from 0 mm.
To exploit this, the algorithm calculates the product of all pitch residuals in
such a combination.

Figure 5.17 shows the distribution of this product for best and wrong
combinations of tracklets and pseudo-x clusters. Single measurements in a
layer contribute a factor of 1.0 mm to the product; this has been chosen
because multiplying with unity (when calculating in millimetres) does not
affect the value of the product. A combination of a tracklet and a pseudo-x
cluster is accepted if this product is smaller than 0.5 in magnitude.

Less than 0.18 % of best pseudo-x clusters are lost on the sample used to
produce these plots.

5.5.3 Stereo enhancement efficiency

Reconstructible particles are all particles considered reconstructible during
tracklet formation in the corresponding x layers. Additionally, these particles
must have measurements in both stereo layers.

A particle is considered to be reconstructed if a pseudo-x cluster has been
generated with measurements from that particle in both stereo layers, and
the pseudo-x cluster must have been matched to a good tracklet coming from
that same particle. Thus, the stereo enhancement efficiency must be smaller
than the tracklet generation efficiency because the latter is required.

Using the estimates for the cut inefficiencies derived from the plots above
and the observed tracklet generation efficiency from the last section, one
would estimate the combined inefficiency for the stereo enhancement stage to
be 99.10 %. Using the definition given above, one observes 99.08 % efficiency
on the sample that was used to make the plots. In fact, the two numbers
agree quite well. Table 5.2 lists the contributions again.

The loss of a pseudo-x cluster does not imply that a particle can not
be reconstructed, so the algorithm can afford to suppress background more
aggressively than during the tracklet generation stage.

effective slope is small due to the small stereo angle. The algorithm uses the additional
information about the slope in yz only because it has been calculated earlier on.

78 Cellular automaton based seeding for the LHCb OT

]4pitch residual product [mm
-1 -0.5 0 0.5 1

nu
m

be
r

of
 e

nt
rie

s

0

10

20

30

40

50

60

70

80
310×

(a)

]4pitch residual product [mm
-1 -0.5 0 0.5 1

nu
m

be
r

of
 e

nt
rie

s

0

1

2

3

4

5

6
610×

(b)

Figure 5.17: Product of pitch residuals from a tracklet and a pseudo-x
cluster. Single measurements contribute a factor of 1 mm.
(a) is for best combinations, (b) for wrong ones. In (b), the
peak comes from the core of the pitch residual distribution
which has been isolated by cuts, but it is much wider than in
(a) and also has tails.

loss inherited from tracklet generation 0.41 %
matching of tracklets and pseudo-x clusters < 0.01 %
vertexing cut on y < 0.09 %
cut on ty < 0.07 %
vertexing cut on ty < 0.14 %
cut on product of pitch residuals < 0.18 %

expected efficiency 99.10 %

observed efficiency 99.08 %

Table 5.2: Origin of losses during the stereo enhancement phase, expected
and observed efficiency. Expected and observed efficiency agree
quite well.

5.6 Finding neighbours and automaton evolution 79

5.6 Finding neighbours and automaton evo-

lution

This section describes how the algorithm proceeds to find neighbours for each
tracklet. The evolution of the cellular automaton can be done at the same
time.

To decide if a tracklet is a neighbour of another tracklet, the following
checks are made:

• for two tracklets to be neighbours in xz projection, they must share
the cluster in the middle7

• the kink angle (in xz projection) between the two tracklets must be
small enough

• if there is only one single measurement in each of the three x layers
involved, at least one of the two tracklets must have a pseudo-x cluster
confirming it8

• the estimates for q/p of both tracklets obtained during the tracklet
generation phase using the pT -kick method must agree within a certain
tolerance

• if both tracklets have stereo information from the last stage of the
algorithm, there must be at least one combination of pseudo-x hits for
which the two tracklets are compatible in yz projection

The cuts are discussed in more detail in the subsections below. Then, a
description will be given of how the evolution phase of the automaton can
be speeded up compared to the method outlined in the last chapter. The
discussion will focus on tracklets in xz projection first; the pseudo-x hits in
yz direction will be treated in a slightly different way which will be described
last.

7This is due to the fact that a particle trajectory intersects a plane in exactly one point,
as discussed in the last chapter.

8This cut is based on the fact that most particles produce two measurements per layer,
therefore, the fraction of particles having only three x measurements and no pseudo-x
clusters in a total of six layers is negligible. A lot of combinatorics is suppressed, though.

80 Cellular automaton based seeding for the LHCb OT

5.6.1 Cuts on kink angle and q/p

Figure 5.18 shows the kink angle between two tracklets in xz projection.
The left plot is for the best combination9, the right one is for all tracklet
combinations with a shared middle cluster and either at least one bad tracklet
or two good tracklets from different particles.

One can see that the category of best combinations is dominated by small
kink angles; therefore a cut has been placed admitting combinations with a
kink angle smaller than 50 mrad. About 99.43 % of all best combinations
are kept by the cut.

Figure 5.19 shows the difference between the estimates for q/p of two
tracklet combinations. A cut has been placed such that |q1/p1 − q2/p2| <
10−4 MeV−1. This cut will keep 99.80 % of best combinations.

5.6.2 Cuts used to check for stereo compatibility

To decide if two pseudo-x clusters are neighbours in yz projection, three
checks are made:

• The line in yz projection joining the two pseudo-x cluster midpoints
must have a slope of less than 0.4 in magnitude. The midpoint of a
pseudo-x cluster is at y = (yu + yv)/2 and z = (zu + zv)/2.

• The difference in slope between the line just mentioned and the slope of
the “longer” pseudo-x cluster must be less than 0.3 in magnitude. Here,
the slope of a pseudo-x cluster can be defined as (yu − yv)/(zu − zv).

• Finally, the y position of the second midpoint must fall into a window
around the line joining the first midpoint with the primary vertex. This
window extends for 110 mm on both sides of this line.

Figures 5.20a, 5.20b and 5.20c illustrate the distributions and the cuts
made. Less than 0.01 % of best tracklet combinations are lost in each of the
three cases.

5.6.3 Automaton evolution

In the last chapter, the evolution of cellular automata was described in terms
of discrete automaton time steps or generations. While this is adequate
for Conway’s “Game of Life” (where one is interested in the “dynamics”)
and well suited to run on specialised hardware (a dedicated microchip could

9combination of two best tracklets from the same particle

5.6 Finding neighbours and automaton evolution 81

kink angle [rad]
0 0.02 0.04 0.06 0.08 0.1

nu
m

be
r

of
 e

nt
rie

s

0

10

20

30

40

50

60

70

80
310×

(a)

kink angle [rad]
0 0.02 0.04 0.06 0.08 0.1

nu
m

be
r

of
 e

nt
rie

s

0

100

200

300

400

500

600

310×

(b)

Figure 5.18: Kink angle distributions for two tracklet combinations in adja-
cent layers. Best combinations are shown (two best tracklets)
in (a), in (b) shows wrong combinations (at least one bad
tracklet or two good tracklets from different particles). One
demands the kink angle to be less than 50 mrad for a com-
bination to survive. The fact that the curves are not smooth
(most visible for wrong combinations) is again due to a bin-
ning effect caused by a discrete set of tracklet slopes tx (the
effect is explained in 5.4.1).

]-1 [MeV
2

/p
2

-q
1

/p
1

q
-1 -0.5 0 0.5 1

-310×

nu
m

be
r

of
 e

nt
rie

s

0
20
40
60
80

100
120
140
160
180
200

310×

(a)

]-1 [MeV
2

/p
2

-q
1

/p
1

q
-1 -0.5 0 0.5 1

-310×

nu
m

be
r

of
 e

nt
rie

s

0

0.5

1

1.5

2

2.5

610×

(b)

Figure 5.19: Distributions of difference in q/p for two tracklet combinations
in adjacent layers. Best combinations (two best tracklets) are
in (a), in (b), wrong combinations are shown (at least one bad
tracklet or two good tracklets from different particles). One
demands that this difference is smaller than 10−4 MeV−1.

82 Cellular automaton based seeding for the LHCb OT

yt
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

nu
m

be
r

of
 e

nt
rie

s

0

10

20

30

40

50

60

310×

(a) Slope distribution in yz projection
derived from the coordinates of two
pseudo-x cluster midpoints for best
combinations.

clus
y-tmid-mid

y
y

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
nu

m
be

r
of

 e
nt

rie
s

0
10

20
30
40
50
60

70
80
90

310×

(b) Distribution of the difference in slope ty
between the line joining the two pseudo-x
cluster midpoints and the “long” pseudo-
x cluster.

 [mm]
1

 y1/z2 - z
2

y
-500 -400 -300 -200 -100 0 100 200 300 400 500

nu
m

be
r

of
 e

nt
rie

s

0

20

40

60

80

100

310×

(c) Difference between the y position cal-
culated for the midpoint of the sec-
ond pseudo-x cluster and its prediction
from the first pseudo-x cluster and the
vertex assumption.

Figure 5.20:

5.6 Finding neighbours and automaton evolution 83

perform one step of the evolution of a cellular automaton per clock cycle in
parallel for all cells), it is not the optimal solution for a software tracking
algorithm. In fact, the rules of the cellular automaton used in track finding
permit the result of the evolution to be anticipated in a single step layer
after layer, without actually determining the states of the tracklets in each
generation, waiting for them to become stable. The key to this shortcut are
two observations:

1. Due to the fact that the neighbourhood relation is asymmetric (i.e. it
has a direction), the state of a tracklet can only depend on tracklet
states in the previous layer.

2. The counter of each tracklet is incremented during the evolution in such
a way that it is always larger by exactly one than the highest counter
in its neighbourhood.

So the counters in a layer can be set to their final values by looking at
the counters of the neighbours as one finds them (provided that the same
has been done for the neighbours, too).

There is one additional optimisation that can be performed: As has been
described in the last chapter, the algorithm will enforce the “counter must
decrease by one”-constraint along a tracklet chain when looking for track
candidates, so the algorithm can just discard any neighbours for which this
this constraint does not hold. The remaining stages of the algorithm do not
need to check that this constraint is fulfilled, thus saving time.

5.6.4 Automaton evolution in stereo layers

Basically, one would like to have a separate cellular automaton searching
for a track in yz projection for each track candidate that can be produced
in xz projection. To achieve this, each tracklet stores counters and neigh-
bour relations for each pseudo-x cluster that has been added in the stereo
enhancement step.

Pseudo-x clusters found to be compatible in the sense of 5.6.2 are made
neighbours; the evolution works just like in the tracklet case.

5.6.5 Performance evaluation

To evaluate the performance of this stage of the algorithm, particle recon-
structibility and reconstructedness must be defined. A particle is considered
reconstructible inside a layer for the neighbour finding stage if it has pro-
duced two good tracklets, one which starts and one which ends in the layer

84 Cellular automaton based seeding for the LHCb OT

in question. The particle is considered to be reconstructed (correctly) if
there is at least one neighbourhood relation between two good tracklets from
that particle which survived the “counter-must-decrease-by-one” constraint
imposed by the automaton evolution.

Please note that no explicit constraints are imposed on the stereo part.
Such a constraint is imposed implicitly by only considering those tracklets
neighbours which are compatible in stereo, see above.

From the cuts imposed on the xz portion of the two tracklet combina-
tions, one would expect an efficiency of 99.22 %. Using the efficiency defi-
nition above, 96.41 % are observed. The reason for this discrepancy is due
to the requirement of stereo compatibility: Most tracklets do have stereo
information, but in about 3 % of all cases, the correct pseudo-x cluster is
missing while a wrong pseudo-x cluster is present. This can be caused by
detector inefficiencies, measurements that have been lost by the cut on the
drift radius or inefficiencies of the stereo enhancement phase. Not requir-
ing compatibility in stereo will bring the efficiency of the neighbour finding
phase to the expected value, but the increase in combinatorics caused by this
roughly triples the overall execution time of the algorithm. Still, the ghost
fraction stays moderate and overall efficiency improves when not requiring
stereo compatibility at this stage (one finds about 5 % more particles).

At this point, it is interesting to observe that each tracklet has less than
one neighbour on average — this will make the phase forming candidates
quite fast, because there are not many alternatives to follow. Figure 5.21
shows the distribution of the number of neighbours per tracklet. The first
“layer” of tracklets (the one with all counters zero) has not been included in
this plot because these tracklets can not have neighbours by definition.

5.7 Forming and selecting track candidates

In this section, a description of the process used to form and select candidates
will be given. Forming candidates will be described first, then a subsection
on selecting the good ones is to be followed by a short discussion of the overall
performance of this step.

To simplify wording in the following text, it is convenient to state a few
conventions:

A candidate is said to be good if it has been reconstructed, i.e. it can
be associated to a particle and satisfies the requirements stated in 5.2. The
best candidate for a particle is the good candidate with most correct mea-
surements. A bad, wrong or ghost candidate is not a good candidate.

5.7 Forming and selecting track candidates 85

n
0 2 4 6 8 10 12 14 16

nu
m

be
r

of
 e

nt
rie

s

0

1

2

3

4

5

6

7
610×

Figure 5.21: Number of neighbours per tracklet. Note that the first bin
shown is for no neighbours at all.

5.7.1 Forming track candidates

Track candidates, or candidates for short, are formed by following the neigh-
bourhood relation as described in the last chapter. For each tracklet in xz
projection that is added, there may be several track candidates, depending
on the number of pseudo-x clusters that the tracklet in question has. The
clusters that are added to a track candidate in the process are also used to
obtain an estimate of the track parameters using a least squares fit. In the
process, some cuts are applied to make sure that no time is wasted on track
candidates which are of very low quality. The surviving track candidates are
passed on to the selection phase.

The remainder of this section will discuss the stages of following the
neighbourhood relation to form candidates, the fit and the cuts applied in
the process.

Following the neighbourhood relation

The essence of the tracklet following procedure has been described in the last
chapter, what is still missing is a description of the way in which the stereo
measurements are treated. This is done by building a “tree” of candidates:
Starting from one tracklet as the root, each possibility to continue the track
candidate results in a branch of that tree. The paths from the “leaves” to the
root of the tree are the track candidates which are passed on to the selection
phase.

This is realised easily by using a recursive procedure which gives a rule
how to treat a tracklet which is to be added to a candidate.

86 Cellular automaton based seeding for the LHCb OT

Given a candidate and a tracklet to be added to it, the tracklet following
procedure works like this:

1. add the clusters in xz projection to the candidate — this means adding
them to the fit and keeping pointers to the measurements involved

2. for each pseudo-x cluster that the tracklet holds, make a new branch
and add the individual stereo clusters to the resulting candidates

3. check that the resulting candidates still satisfy the quality cuts to be
described in the next section

4. upon arrival at a leaf (i.e. a tracklet without neighbours), do some
final quality cuts, attempt to remove outliers, and pass on the resulting
candidate to the selection phase, breaking the recursion

5. for each of the surviving candidates and each of the neighbours of the
tracklet added in the first step, repeat this procedure

Candidates are formed starting with tracklets with the highest counter
to make sure long tracks are favoured.

The fitting procedure and the cuts applied will be discussed later, but
there is one remark about adding pseudo-x clusters that should be made at
this point.

In section 5.6.4, a description of the neighbourhood relation of pseudo-x
clusters was given. This information can be used to speed up the tracklet
following process by remembering the pseudo-x cluster added previously:

When adding the first pseudo-x cluster, all pseudo-x clusters associated
to the current tracklet are used, as described above. If a pseudo-x cluster
was added during the last step, its neighbours are known, so all others can
be skipped (Figure 5.22a). The advantage of doing this is that time is better
spent elsewhere instead of calculating a χ2 for a candidate only to discard it
immediately because the fit is bad.

As one does not want to suffer from interrupted chains of pseudo-x clus-
ters, the algorithm permits starting over using all pseudo-x clusters in a
tracklet if there was no pseudo-x cluster added during the last step (Figure
5.22b).

However, such a “restart” is only allowed if the algorithm did not run
into a “dead end” (Figure 5.22c). Such “dead ends” arise when a pseudo-x
cluster has no neighbours but the next tracklet does have pseudo-x clusters
in principle. The algorithm discards track candidates which cause it to run
into “dead ends”.

5.7 Forming and selecting track candidates 87

z

x

Tracklet Pseudo−x cluster

xxx

(a) When following tracklets, pseudo-x clus-
ter neighbour relations are obeyed where
available. In the picture, only the two
pseudo-x clusters connected with the ar-
row are neighbours, the other two are
skipped.

z

x

Tracklet Pseudo−x cluster

xxx x

(b) When encountering missing pseudo-x
clusters in a layer, the algorithm restarts
with whatever is available in the next
layer.

z

x

Tracklet Pseudo−x cluster

xxx

(c) A dead end: The tracklet in the middle
of the picture has pseudo-x clusters, but
none is a neighbour of the one on the left.
Candidates which lead into dead ends are
dropped.

Figure 5.22: Following the neighbour relation of pseudo-x clusters.

88 Cellular automaton based seeding for the LHCb OT

This design choice cuts down on execution time drastically (by a factor
on the order of three to four, depending on the event), while not decreasing
performance.

This “dead-end”-recognition may have to be reconsidered in case of much
higher occupancies and/or lower detection efficiencies: Coincidence of one or
more wrong pseudo-x cluster and a missing good one will cause the candidate
for the particle in question to be discarded, so it may become necessary to
find a different strategy there.

Fitting track candidates

Each candidate is fitted to a simple track model: In xz projection, a parabola
is used to account for the track curvature in the fringe field of the magnet,
in yz projection, a straight line is a reasonable approximation.

A simple χ2 fit is used. To obtain the fit parameters, a system of linear
equations needs to be solved. This system is updated incrementally as more
measurements are added. Only x measurements are used for the parabolic
fit, and stereo measurements are used together with x information from the
parabolic fit for the straight line fit in yz projection.

The fit itself is done in several stages:

Initial fit using clusters For the initial fit, clusters are used to obtain fit
parameters rather than using the individual measurements. The advantage
of this approach is that the clusters resolve the ambiguity in many cases. In
section 5.4.3, the pitch residual was introduced as a way to tell if a cluster is
consistent with a slope estimate. In particular, by looking at the quantities
p+ and p− defined there, the algorithm can tell if a track passes between two
wires (|p+| < |p−|) or if it does not (cf. Figure 5.10). In the first case, it is
clear how to resolve ambiguities. In the second case, two pairs of ambiguity
resolved positions on the drift circles are calculated, one for each of the two
remaining possibilities. Then, the algorithm chooses the pair which agrees
better with the slope observed during tracklet generation. Such a pair of
points is shown in Figure 5.23, where the points are labelled P1 and P2.
The midpoint Pfit of the line segment joining P1 and P2 enters the fit. Its
measurement uncertainty is estimated according to the following formula:

σ =
1

2

√

2σ2
OT + d2

1 + d2
2

5.7 Forming and selecting track candidates 89

where σOT is the Outer Tracker cell resolution10 and the distances d1 and d2

are also defined in Figure 5.23.
For single measurements, a measurement uncertainty of

σ =
√

(2r)2 + σ2
OT

is assumed where r is the drift radius observed in that cell11. For single
measurements, the wire position enters the fit.

Refit The refit works on the level of individual single measurements rather
than the cluster level. Using the old fit parameters as starting points, a new
fit is performed. Ambiguities are resolved towards the trajectory defined by
the set of old fit parameters. The old parameters are also used to correct for
the tilt of the Outer Tracker with respect to the LHCb coordinate frame12.

10The cell resolution is taken to be 300 µm. This is a little worse than the design goal
of 200 µm because wire propagation time is not taken into account.

11 Note that no division by
√

12 is performed — the true position will not be distributed
uniformly over the interval from xwire−r to xwire +r. In most cases, the true position will
be concentrated in a small area around these two points because most particles traverse
the detector more or less perpendicular to the detector layers.

12The LHC tunnel is tilted by 3.6 mrad with respect to the horizontal plane defined by
gravity. The Outer Tracker has been mounted onto its support structure in such a way
that the modules hang without bending to avoid excessive stress — unfortunately, this
means that for the Outer Tracker being in the frame defined by gravity and the LHCb x

axis, the y and z axes are tilted with respect to the ones defined in the LHCb coordinate
system.

Pfit

P1

P2

d1

2d

Figure 5.23: Sketch illustrating the position of the points P1, P2, Pfit and
the distances d1 and d2. P1 and P2 are the best guess for
the ambiguity resolved positions on the drift circles obtained
from a cluster (see text). d1 (or d2) is the distance of P1 (or
P2, respectively) to the line through the cluster position with
the slope of the tracklet that is considered (blue line). Pfit it
the midpoint of the line segment joining P1 and P2.

90 Cellular automaton based seeding for the LHCb OT

For the refit, points and distances of closest approach are calculated using
the old fit, linearised around the wire position. Again, an Outer Tracker
resolution of 300µm is assumed.

Outlier removal Outlier removal is rather simple: If a certain threshold
in χ2 contribution is exceeded, the (single) measurement with the largest
χ2 contribution is removed from the fit. Here, the χ2 contribution of a
measurement, denoted χ2

+, is defined as

χ2

+ =

(

m− xfit(z) cosα− yfit(z) sinα

σOT

)2

where the point (m, z) is the point on the drift circle that is closest to the
trajectory defined by the fit parameters. m stands for x, u or v, depending
on the type of measurement considered, and α is the corresponding stereo
angle. xfit(z) and yfit(z) are the coordinates of the parabolic and straight
line fits at the given z.

The resulting set of updated fit parameters is used to re-resolve the am-
biguities of the remaining measurements, and the positions thus obtained
are used for the subsequent refit. This continues until either all measure-
ments are below the threshold or more than a given maximum number of
measurements have been removed.

Candidate quality cuts

The algorithm uses several cuts to suppress bad candidates. There are two
categories: The first one makes sure that combinatorics remains at a manage-
able level during the tracklet following procedure, the second category looks
at the candidates before they are passed on to the selection phase, discarding
bad ones.

Cuts used during tracklet following During the phase in which candi-
dates are formed by following the neighbourhood relation, some very loose
cuts are applied to reject candidates which have little resemblance to the
tracks typically produced by a reconstructible particle. Figure 5.24 shows
the distribution of the variable χ2 for best and ghost candidates. This plot
has been made with no cuts on χ2 applied. Due to the large increase in
combinatorics, only 500 events were used. It can be seen that ghost candi-
dates are the main contribution for high χ2 values, a trend that continues
also for higher χ2 than those shown in the plot. To suppress these ghosts,
the following cuts are applied:

5.7 Forming and selecting track candidates 91

2χ
0 200 400 600 800 100012001400160018002000

nu
m

be
r

of
 e

nt
rie

s

0

50

100

150

200

250

300

350

400

450

(a)

2χ
0 200 400 600 800 100012001400160018002000

nu
m

be
r

of
 e

nt
rie

s

0

500

1000

1500

2000

2500

(b)

Figure 5.24: χ2 distribution before cuts for best (a) and wrong (b) candi-
dates. Only 500 events were used to produce this plot due to
the increased combinatorics.

• One does not want measurements to be more than 1 cm away from the
fit, therefore the overall increase in χ2 per added combination of tracklet
and corresponding pseudo-x cluster must not exceed (1 cm/0.3 mm)2 =
1111 times the number of measurements added. One centimetre was
chosen to allow for outliers and fit parameter fluctuations when adding
the first few measurements.

• As the initial fit takes ambiguities into account, the measurements
should appear on the correct side of the wire, i.e. one does not want
them to be more than a straw radius away from the fit on average.
The algorithm takes advantage of that by enforcing a χ2 budget for
each candidate: The total χ2 must not exceed (2.5 mm/0.3 mm)2 = 70
times the maximal number of measurements that a candidate can have.
One assumes that a candidate starting with a tracklet with counter c
can have at most 4(c + 2) measurements. For chains of five tracklets,
this means cutting at χ2 = 1680.

• Not more than 105 decisions per candidate are allowed. This is counted
by multiplying up the number of neighbours and pseudo-x clusters that
are followed at each step along the path taken to form the candidate.

Figure 5.25 shows the χ2 distribution after the cuts. The tail for ghost
candidates is truncated by the cuts.

The windows defined by the first two cuts are still huge compared to the
detector resolution because outliers have not been removed and ambiguities
may still be wrong before the refit.

92 Cellular automaton based seeding for the LHCb OT

2χ
0 200 400 600 800 100012001400160018002000

nu
m

be
r

of
 e

nt
rie

s

0

200

400

600

800

1000

1200

1400

1600

(a)

2χ
0 200 400 600 800 100012001400160018002000

nu
m

be
r

of
 e

nt
rie

s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(b)

Figure 5.25: χ2 distribution after cuts for best (a) and wrong (b) candi-
dates. The large tail for ghosts is truncated.

The last cut protects the algorithm from high occupancy regions in the
detector which can cause long algorithm execution times and exhaustion of
available virtual memory in very rare cases. This last cut has been found
not to affect the efficiency of the algorithm in any significant way. This
can be understood easily enough: Picking the correct alternative among 105

possibilities is unlikely, even when using sophisticated quality indicators.
From the inefficiency of the tracklet generation stage alone, less than

93.4 % (event-averaged) of all particles with hits in all 6 x layers would
be expected at this stage13. This can be estimated using ε5

TL (the event-
averaged εTL), assuming the losses during tracklet generation in different
layers are independent.

One observes 90.6% on that sub-sample after the cuts. The ghost fraction
is 27.8%.

Thus, only a small fraction of the stereo inefficiency that affects neighbour
finding is seen at this stage. This is not implausible: A neighbouring best
tracklet that was missed does not mean the track is not reconstructed. Any
nearby tracklet that fills such a gap can be used to form a tracklet chain.

Cuts used before the selection phase Before a track candidate is passed
on to the track selection phase, there are a number of additional cuts it has
to pass:

• A candidate with n tracklets must have at least 2n measurements. The

13It makes sense to do the comparison on this subsample because, ultimately, one is
interested in how much is lost by these cuts. The overall performance of the algorithm is
not a very good indicator because the algorithm has no provisions for coping with empty
layers. Thus, the losses seen would be caused only in part by these cuts.

5.7 Forming and selecting track candidates 93

distribution of the number of measurements for best and for wrong can-
didates is shown in Figure 5.26 for the five tracklet chain case. Scaling
the cut with the number of tracklets makes sure that the algorithm
does not become much stricter for shorter chains.

• The candidate must have more than four stereo measurements. This
is just a little more than is required to define a straight line in yz
projection. Again, for chains of five tracklets, the distribution of the
number of stereo measurements is shown in Figure 5.27.

• There must be at least two Outer Tracker stations with stereo mea-
surements to make sure that there is sufficient lever arm to obtain an
accurate description of the track in yz projection.

• The number of missing measurements must be less than 2 (n − 1) for
chains of n tracklets. The number of missing measurements is calcu-
lated as 4 (n + 1) minus the number of measurements that candidate
has, so one assumes that the candidate can have up to two measure-
ments per layer. Figure 5.28 shows the distribution of the number of
missing measurements for best and wrong candidates, both for tracklet
chain lengths of five tracklets.

• After a refit, the outlier removal procedure may not remove more mea-
surements than there are tracklets on the track. A measurement is
considered to be an outlier if the χ2 contribution is greater than 15.
Figure 5.29 shows the number of measurements removed for best and
wrong candidates, again for chains of five tracklets. Figure 5.30 shows
the effect of the outlier removal on the χ2 distribution.

• After the outlier removal, the algorithm verifies that the conditions
imposed before the outlier removal still hold.

The surviving track candidates are passed on to the track selection phase.
90.2 % of all particles with all 6 x layers hit are still present after these cuts,
while the ghost fraction has dropped to 13.9 %.

5.7.2 Track selection

After track candidates of a given length have been found, a track selection
phase is needed to bring down the ghost fraction and suppress clones. This
is done by assigning a quality variable to each candidate. The candidates
are sorted by quality, then the algorithm can pick them in decreasing order,
checking that the fraction of measurements used by candidates that have

94 Cellular automaton based seeding for the LHCb OT

number of measurements
0 5 10 15 20 25

nu
m

be
r

of
 e

nt
rie

s

0
2
4
6
8

10
12
14
16
18
20
22

310×

(a)

number of measurements
0 5 10 15 20 25

nu
m

be
r

of
 e

nt
rie

s

0

100

200

300

400

500

600

700
310×

(b)

Figure 5.26: Number of measurements per candidate. (a) is for best candi-
dates, (b) for wrong ones. While the cut does little for the five
tracklet chains considered here, its effects become stronger for
shorter chains.

number of stereo measurements
0 2 4 6 8 10 12 14

nu
m

be
r

of
 e

nt
rie

s

0

5

10

15

20

25

30

35

310×

(a)

number of stereo measurements
0 2 4 6 8 10 12 14

nu
m

be
r

of
 e

nt
rie

s

0

200

400

600

800

1000

310×

(b)

Figure 5.27: Number of stereo measurements per candidate. (a) is for best
candidates, (b) for wrong ones.

5.7 Forming and selecting track candidates 95

number of missing measurements
0 2 4 6 8 10 12 14

nu
m

be
r

of
 e

nt
rie

s

0
2
4
6
8

10
12
14
16
18
20
22

310×

(a)

number of missing measurements
0 2 4 6 8 10 12 14

nu
m

be
r

of
 e

nt
rie

s
0

100

200

300

400

500

600

700
310×

(b)

Figure 5.28: Number of missing measurements per candidate. (a) is for
best candidates, (b) for wrong ones.

number of measurements removed
0 1 2 3 4 5 6 7 8

nu
m

be
r

of
 e

nt
rie

s

0

5

10

15

20

25

30

35

40

310×

(a)

number of measurements removed
0 1 2 3 4 5 6 7 8

nu
m

be
r

of
 e

nt
rie

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

610×

(b)

Figure 5.29: Number of measurements per candidate removed by the out-
lier removal. (a) is for best candidates, (b) for wrong ones.
The code stops after removing six measurements from a can-
didate to save time.

96 Cellular automaton based seeding for the LHCb OT

2χ
0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 e

nt
rie

s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(a)

2χ
0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 e

nt
rie

s

0

5

10

15
20

25

30

35

40

45

310×

(b)

Figure 5.30: χ2 distribution after the outlier removal took place. The long
tails have disappeared for both best (a) and ghost (b) candi-
dates. χ2 of most ghosts is still higher than that of a typical
best candidate.

already been selected is not greater than some threshold. If the candidate
is good enough, its measurements are marked used, and the candidate is
converted to a standard LHCb::Track object which can be used by the rest
of the reconstruction software.

The next two subsections will describe the quality variable and the cut
on the used hit fraction in more detail. Then the performance of the track
selection will be evaluated on the sample of particles with 6 x layers hit.

Candidate quality estimate

A candidate quality estimate is introduced which combines three variables:

• the χ2 probability for the fit in xz direction

• the χ2 probability for the fit in yz direction

• the probability for the observed number of measurements on the can-
didate (see below for details)

The quality of a candidate is defined as the logarithm of the product of
the three probabilities.

Figure 5.31 shows the distribution of the quality variable for the best
alternative of each reconstructed particle and ghost candidates is shown.
Figures 5.32, 5.33 and 5.34 show the different contributions separately.

The first two items are obvious choices for a quality indicator, and the
idea for the third one has already been introduced in 2.4.4.

5.7 Forming and selecting track candidates 97

In this implementation, the third item is handled as follows: A candi-
date with n tracklets has measurements in n + 1 x layers. Assuming that
a hypothetical particle travelling along the trajectory defined by the candi-
date traverses as many x as stereo layers, one expects the candidate to have
N = 4(n + 1) measurements, one in each monolayer. In a simple binomial
model, the probability to observe only M measurements is given by

(

N

M

)

pM(1 − p)N−M

One needs to use an estimate for the effective monolayer detection effi-
ciency p. For this implementation, this is taken to be 0.95, a little lower than
the single cell efficiency of about 0.98 quoted in [24] to account for the in-
sensitive area between straws or modules. The performance of the algorithm
has not been found to depend critically on the precise value of 0.95, only
when approaching 1.0 does the efficiency go down. This is understandable
because, effectively, one prohibits a track to have less than two measurements
per layer.

Cut on used measurement fraction for clone and ghost suppression

Candidates are selected in order of decreasing quality. When the fraction
of measurements that a candidate shares with candidates selected earlier
stays below 0.25, the candidate is kept, it is dropped otherwise. Selected
candidates have their measurements flagged as used.

Figure 5.35 shows the distribution of used measurements for best alter-
natives of reconstructed particles, clones and ghost candidates. Clones and

quality
-100 -80 -60 -40 -20 0

nu
m

be
r

of
 e

nt
rie

s

0

1000

2000

3000

4000

5000

6000

7000

(a)

quality
-100 -80 -60 -40 -20 0

nu
m

be
r

of
 e

nt
rie

s

0

5

10

15

20

25

30

35

40

310×

(b)

Figure 5.31: Track candidate quality variable for best reconstructed alter-
native for particles (a) and ghost candidates (b).

98 Cellular automaton based seeding for the LHCb OT

quality contribution
-100 -80 -60 -40 -20 0

nu
m

be
r

of
 e

nt
rie

s

0

5

10

15

20

25

30

35

40
310×

(a)

quality contribution
-100 -80 -60 -40 -20 0

nu
m

be
r

of
 e

nt
rie

s

0

10

20

30

40

50

60

310×

(b)

Figure 5.32: Contribution from χ2-probability of fit in xz projection to
track candidate quality variable for best reconstructed alter-
native for particles (a) and ghost candidates (b).

quality contribution
-100 -80 -60 -40 -20 0

nu
m

be
r

of
 e

nt
rie

s

0

5

10

15

20

25

30

35

40
310×

(a)

quality contribution
-100 -80 -60 -40 -20 0

nu
m

be
r

of
 e

nt
rie

s

0

10

20

30

40

50

60

70
310×

(b)

Figure 5.33: Contribution from χ2-probability of fit in yz projection to
track candidate quality variable for best reconstructed alter-
native for particles (a) and ghost candidates (b).

5.7 Forming and selecting track candidates 99

quality contribution
-100 -80 -60 -40 -20 0

nu
m

be
r

of
 e

nt
rie

s

0

2

4

6

8

10

12

14

16

310×

(a)

quality contribution
-100 -80 -60 -40 -20 0

nu
m

be
r

of
 e

nt
rie

s

0
20
40

60
80

100
120
140

160
180

310×

(b)

Figure 5.34: Contribution from missing measurements to track candidate
quality variable for best reconstructed alternative for particles
(a) and ghost candidates (b). One can see the effect of the
cut on the number of missing measurements — there are no
entries below quality contributions of about −25.

ghosts have a many used measurements while the best alternative for a given
particle has typically only few.

Performance of the candidate selection stage

On the sample of particles with measurements in all six x layers that was used
to evaluate performance of individual stages of the algorithm, the observed
efficiency of the algorithm is 88.8 % after the candidate selection phase. The
ghost fraction has dropped to 7.2 %, although this figure will go up once
shorter candidates are also considered.

The fraction of (MC-)Clones in the sample was reduced from 66.0 %
before the candidate selection phase to none. Again, this number will go up
slightly once shorter candidates are treated as well.

100 Cellular automaton based seeding for the LHCb OT

fraction of used measurements
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 e

nt
rie

s

0

10
20

30
40

50
60

70
80

90

310×

(a) best candidates

fraction of used measurements
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 e

nt
rie

s
0

100

200

300

400

500
310×

(b) clones

fraction of used measurements
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 e

nt
rie

s

0
20
40
60
80

100
120
140
160
180
200

310×

(c) ghosts

Figure 5.35: Fraction of used measurements of track candidates immedi-
ately before their selection. Best reconstructed alternative for
particles is shown in (a), clones in (b) and ghost candidates
in (c). During the selection process, the used measurement
fraction of unselected candidates grows as more candidates
are selected. As best tracks have two single measurements
per detector layer in most cases, measurements are usually
flagged used in pairs, so the discontinuity introduced by the
cut is spread out over several bins.

Chapter 6

Overall performance of the
algorithm

The performance of the different stages of the algorithm has been evaluated
in the last chapter on a subsample of all particles to facilitate understanding.
In this chapter, the overall performance of the algorithm is evaluated using
the same data sample that was used in Section 3.2. The algorithm uses
tracklet chains of lengths five and four.

The algorithm will be compared to the one discussed in Section 2.4.4
which had its code for IT reconstruction disabled to make sure that both
algorithms use OT measurements only. In this chapter, the OT disabled
version of this algorithm is referred to as “standard algorithm” for brevity.

As the cellular automaton based algorithm in its current form does not
reconstruct particles which give interrupted tracklet chains, the efficiency of
both algorithms is compared on two samples. One of them is the subsample
used in the last chapter which contains only particles that allow uninterrupted
chains to be formed. This sample is referred to as “6X” because the contained
particles have of measurements in all six x layers of the OT. The other is
the sample of particles which are reconstructible in the OT, defined near the
beginning of Section 5.2. This sample is referred to as “ALL” in the text.
Figures and plots will be shown for both samples.

6.1 Efficiencies and ghost fractions

On the 6X sample, the event-averaged efficiency of the cellular automaton
based algorithm is (93.4 ± 0.2) %. For the ALL sample, (89.8 ± 0.2) % effi-
ciency are obtained. The ghost fraction is at (12.2 ± 0.1) % (for both sam-
ples). Figures 6.1 and 6.2 show the behaviour of the algorithm as a function

101

102 Overall performance of the algorithm

of momentum and Outer Tracker occupancy.

The efficiency curve is essentially flat with momentum, only for very low
momenta in the range below 1.5 GeV does the efficiency drop significantly
below 90 %. The ghost fraction initially drops for increasing momenta into a
minimum at 8 % around momenta of about 9 GeV, rising to a plateau around
15 % for higher momenta. This rise for high momenta is due to the same
effect as the one observed in Section 3.2.3. As can be expected, the ghost
fraction rises with increasing detector occupancy from near-zero at very low
occupancies to around 60 % at 20 % occupancy.

The standard algorithm shows (88.7 ± 0.2) % efficiency on the ALL sam-
ple and (89.9 ± 0.2) % efficiency on the 6X sample. The ghost fraction is at
(11.4 ± 0.1) %. Figures 6.3 and 6.4 show the same quantities for the stan-
dard algorithm. On the 6X sample, both algorithms have about the same
efficiency down to momenta of about 2 GeV. Below, the standard algorithm
performs significantly worse. On the ALL sample, the cellular automaton
based algorithm is slightly worse for high momenta while it keeps its advan-
tage over the other algorithm in the low momentum region. The effects of
the module occupancy cut on the efficiency described in Section 3.2.3 can be
seen in the plots of efficiency against OT occupancy.

Table 6.1 summarises the efficiency and ghost fraction figures for both
algorithms.

6.2 Purity and collection efficiency

Purity and measurement collection efficiency have been investigated for both
algorithms. The tracks of both algorithms were fitted with the Kalman fitter
in the LHCb software. The outlier removal procedure in this fitter may
remove up to two measurements from a track for both algorithms. Table 6.2
summarises the results, Figures 6.5 and 6.6 show the behaviour of these two
quantities with momentum and OT occupancy. As the numbers in Table 6.2
are very similar for both samples and the plots look almost alike as well, only
the plots for the ALL sample are shown.

The cellular automaton based algorithm performs consistently a little

algorithm ε (6X sample) ε (ALL sample) ghost fraction

cellular automaton (93.4 ± 0.2) % (89.8 ± 0.2) % (12.2 ± 0.1) %
standard algorithm (89.9 ± 0.2) % (88.7 ± 0.2) % (11.4 ± 0.1) %

Table 6.1: Summary of efficiency ε and ghost fraction for both algorithms.

6.2 Purity and collection efficiency 103

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b)

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(c)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(d)

Figure 6.1: Event averaged efficiency of the cellular automaton based algo-
rithm, versus momentum (left) and versus Outer Tracker Oc-
cupancy (right). Top row is for the 6X sample, bottom row is
for the ALL sample. On the 6X sample, the algorithm plateaus
around 94 % efficiencies for higher momenta, and performance
degrades gracefully for high detector occupancies.

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

gh
os

t f
ra

ct
io

n

0.08
0.1

0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26
0.28

(a)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

gh
os

t f
ra

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b)

Figure 6.2: Event averaged ghost fraction for the cellular automaton based
reconstruction algorithm versus momentum (a) and versus
Outer Tracker occupancy (b). As can be expected, the ghost
fraction rises with occupancy.

104 Overall performance of the algorithm

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b)

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(c)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ef
fic

ie
nc

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(d)

Figure 6.3: Event averaged efficiency of the standard algorithm recon-
structing only the OT. The top row is for the 6X sample, bot-
tom row for the ALL sample. On the ALL sample, efficiency
is a little better for higher momenta than for the cellular au-
tomaton based algorithm, however, for momenta below 2 GeV
this algorithm performs worse on both samples.

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

gh
os

t f
ra

ct
io

n

0.08

0.1

0.12

0.14

0.16

0.18

(a)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

gh
os

t f
ra

ct
io

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b)

Figure 6.4: Event averaged ghost fraction for the standard algorithm. The
ghost fraction is shown versus momentum in (a), and versus
OT occupancy in (b). The drop at high occupancies is due to
the cuts described in 3.2.3.

6.3 Execution time behaviour 105

better than the standard one. The purity is relatively stable with respect
to momentum and detector occupancy for both algorithms. Collection ef-
ficiencies for both algorithms go down a little for low momentum particles,
but remain stable for high momentum ones. For the standard algorithm,
the collection efficiency goes down faster with occupancy than for the cellu-
lar automaton based ones. This is probably due to the cut on the module
occupancies mentioned in Section 3.2.3.

6.3 Execution time behaviour

In this section, the execution time of the algorithm is investigated as a func-
tion of the number of measurements in the detector. This number includes
everything: noise, spillover, crosstalk and the measurements from the par-
ticles one wants to observe. The machine used to obtain these timing mea-
surements is running Scientific Linux SLC3 and uses an AMD Opteron CPU
with a core clock of 2.4 GHz.

To reconstruct the 15000 events in the sample examined, the cellular
automaton based algorithm took 3941 seconds, while the standard algorithm
only needed 2014 seconds. This is equivalent to 259 ms and, respectively, 134
ms per event on average. The cellular automaton based algorithm is about
a factor of two slower, but the code has not been optimised for speed yet.

Figure 6.7 shows the behaviour of the total execution time with the num-
ber of measurements in the detector. For the cellular automaton based al-
gorithm, one can see that its execution time goes up sharply above 10000
measurements in the detector1. The standard algorithm is more well behaved
there because of the cuts on module occupancy. It also does not reconstruct
events if IT and OT together contain more than 10000 measurements. This
happened in 83 of 15000 events.

1The Outer Tracker has 53760 channels.

standard algorithm cellular automaton

purity (6X sample) 98.0 % 98.5 %
purity (ALL sample) 97.9 % 98.4 %
εcoll (6X sample) 81.2 % 88.7 %
εcoll (ALL sample) 81.0 % 88.3 %

Table 6.2: Comparison of standard algorithm and cellular automaton-based
approach in terms of purity and measurement collection effi-
ciency εcoll.

106 Overall performance of the algorithm

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

pu
rit

y

0

0.2

0.4

0.6

0.8

1

(a)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

pu
rit

y
0

0.2

0.4

0.6

0.8

1

(b)

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

co
lle

ct
io

n
ef

fic
ie

nc
y

0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

(c)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

co
lle

ct
io

n
ef

fic
ie

nc
y

0

0.2

0.4

0.6

0.8

1

(d)

Figure 6.5: Purity (top row) and measurement collection efficiency (bottom
row) for the cellular automaton based algorithm on the ALL
sample. On the left, the plots versus momentum are shown,
those on the right are versus OT occupancy. Purity is stable
with respect to momentum and occupancy. The collection effi-
ciency worsens slightly for low momenta and high occupancies.

6.3 Execution time behaviour 107

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

pu
rit

y

0

0.2

0.4

0.6

0.8

1

(a)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

pu
rit

y

0

0.2

0.4

0.6

0.8

1

(b)

p [GeV]
0 10 20 30 40 50 60 70 80 90 100

co
lle

ct
io

n
ef

fic
ie

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)

OT occupancy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

co
lle

ct
io

n
ef

fic
ie

nc
y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d)

Figure 6.6: Purity (top row) and measurement collection efficiency (bot-
tom row) for the standard algorithm on the ALL sample. On
the left, the plots versus momentum are shown, those on the
right are versus OT occupancy. Purity is stable with respect to
momentum and occupancy. The collection efficiency worsens
slightly for low momenta and high occupancies, but in a more
pronounced way than for the cellular automaton.

108 Overall performance of the algorithm

The function const. · Nα
OT was used to fit the data; NOT denotes the

number of measurements, and the constant factor in front of the expression
and the exponent α were determined to get an estimate of the asymptotic
behaviour of the algorithm. However, the spread of the data is large for high
occupancies, and there is not much statistics in that area. Therefore, the
results of the fit have to be interpreted with care and should not be relied
on too heavily. The plots have logarithm scales on both axes because the
exponent α of NOT then shows up as the slope of a line approximating the
distribution.

The cellular automaton based algorithm spends most of its time in the
tracklet following procedure. Table 6.3 gives the average time per event spent
in the individual stages.

For completeness, Figures 6.8a, 6.8b, 6.8c, 6.8d, 6.8e, 6.8f show execution
time spent in the individual stages versus the number of OT measurements.

While the behaviour of the tracklet generation and stereo enhancement
stages is roughly what is to be expected from the loops that the algorithm per-
forms, especially the timing behaviour of the tracklet following stage should
be improved. This could be done by trying to exclude wrong possibilities
earlier in the algorithm. For example, it may be possible to rule out more
wrong combinations of tracklets during the neighbour finding stage by per-
forming a fit early in the process. Also, some improvements seem to be
possible in the stereo enhancement stage: At the moment, the algorithm will
create pseudo-x clusters over the whole detector, even if there is no tracklet
nearby to match it to.

0

20

40

60

80

100

OTnumber of OT measurements N
310 410

tim
e

[s
]

-110

1

10 Total execution time
 2.74
OTconst. * N

(a)

0

20

40

60

80

100

OTnumber of OT measurements N
310 410

tim
e

[s
]

-110

1

10 Total execution time (OT-only Tsa)

 3.18
OTconst. * N

(b)

Figure 6.7: Total execution time of both algorithm versus number of OT
measurements. The cellular automaton based algorithm is
shown in (a), (b) shows the standard algorithm. The algorithm
shown in (b) does not process events with NOT > 10000.

6.3 Execution time behaviour 109

0

5

10

15

20

25

30

35

40

45

OTnumber of OT measurements N
310 410

tim
e

[s
]

-310

-210

-110

Preparation time

 1.93
OTconst. * N

(a) Time spent in the preparation phase.

0

10

20

30

40

50

60

70

OTnumber of OT measurements N
310 410

tim
e

[s
]

-310

-210

-110

Tracklet generation time

 1.98
OTconst. * N

(b) Execution time spent during tracklet
generation.

0

10

20

30

40

50

60

70

OTnumber of OT measurements N
310 410

tim
e

[s
]

-310

-210

-110

Stereo enhancement time
 2.67
OTconst. * N

(c) Execution time spent during stereo en-
hancement.

0

20

40

60

80

100

120

OTnumber of OT measurements N
310 410

tim
e

[s
]

-310

-210

-110

Neighbour finding time

 3.68
OTconst. * N

(d) Execution time spent during neighbour
finding.

0

10

20

30

40

50

60

70

OTnumber of OT measurements N
310 410

tim
e

[s
]

-210

-110

1

Candidate following and selection time

 2.78
OTconst. * N

(e) Execution time spent forming and se-
lecting candidates.

OTnumber of OT measurements N
310 410

tim
e

[s
]

-610

-510

-410

0

5

10

15

20

25

30

35

40

45
Cleanup time

 2.04
OTconst. * N

(f) Execution time spent during cleanup.

Figure 6.8: Execution time spent in the different phases of the algorithm
versus number of OT measurements.

110 Overall performance of the algorithm

stage average time [ms]

preparation 6.9
tracklet generation 12.8
stereo enhancement 43.3
neighbour finding, automaton evolution 15.3
tracklet following, candidate selection 160.2
cleanup 20.6

Table 6.3: Average time spent in the individual stages of the cellular au-
tomaton based algorithm.

One should also think about creating proper three-dimensional tracklets
instead of adding the information to the tracklets in xz projection. That
way, quite a bit of complexity in the neighbour finding and tracklet following
stages could be eliminated, resulting in potentially faster code.

Unfortunately, time was running out when the stereo path of the algo-
rithm was implemented, therefore it was kept simple.

It may also be possible to perform tighter cuts once the algorithm can
handle interrupted tracklet chains2. This approach seems to have great po-
tential with respect to timing behaviour, especially in the light of the loose
pitch residual cuts applied. Once the algorithm can afford to lose a track-
let occasionally, the cuts can be tightened. This would reduce background
significantly and, more importantly, early in the algorithm instead of defer-
ring the issue, leaving its solution to the tracklet following stage which is
combinatorically expensive in presence of a lot of surviving background.

2These could be dealt with by extrapolating a tracklet to the next layer if no neighbour
could be found, thus creating an “anchor” for tracklet generation in a layer lacking the
expected starting measurement.

Chapter 7

Summary

In the first part of this thesis, an overview of the existing tracking algorithms
of the LHCb experiment has been given. A validation tool has been imple-
mented which was used to study their performance. In the second part, a
new standalone reconstruction algorithm for the LHCb Outer Tracker was
implemented which is based on a cellular automaton. The algorithm and its
performance have been discussed in detail.

This algorithm reconstructs (93.4 ± 0.2) % of particles with measure-
ments in all six x layers of the Outer Tracker and (89.9 ± 0.2) % of particles
which are reconstructible in the OT. (12.2 ± 0.1) % of all reconstructed tracks
can not be associated with any particle in the event and are thus considered
as ghost tracks. The algorithm is comparable to existing algorithms in terms
of efficiency, ghost fraction, purity and measurement collection efficiency. In
the momentum region below 2 GeV, the algorithm yields higher efficiency
than existing implementations. Additionally, the measurements available in
the detector are collected more efficiently over the whole momentum range.
The algorithm based on cellular automaton principles has proven to be more
robust with respect to high occupancies which will be crucial both for higher
luminosity and potentially higher noise levels.

As the code is not yet optimised for speed, it is still about a factor of
two slower than the standard LHCb reconstruction algorithm for the Outer
Tracker.

Summarising, the cellular automaton has proven to be a versatile tool
which can be used to write an efficient and fast implementation of a pattern
recognition algorithm in a short time. While the performance of the algo-
rithm presented in this thesis is already good, there is potential to improve
efficiency and speed, and to reduce the ghost fraction.

111

112 Summary

Bibliography

[1] LHCb: Technical Proposal. Tech. Proposal. CERN, Geneva, 1998.

[2] LHCb Collaboration, R. Antunes-Nobrega et al. LHCb reoptimized de-
tector design and performance Technical Design Report. Technical De-
sign Report LHCb. CERN, Geneva, 2003.

[3] LHCb Collaboration, P. R. Barbosa-Marinho et al. LHCb VELO (VEr-
tex LOcator) Technical Design Report. Technical Design Report LHCb.
CERN, Geneva, 2001.

[4] LHCb Collaboration, P. R. Barbosa-Marinho et al. LHCb Inner Tracker
Technical Design Report. Technical Design Report LHCb. CERN,
Geneva, 2002. revised version number 1 submitted on 2002-11-13
14:14:34.

[5] LHCb Collaboration, P. R. Barbosa-Marinho et al. LHCb Outer Tracker
Technical Design Report. Technical Design Report LHCb. CERN,
Geneva, 2001.

[6] R. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME, Journal of Basic Engineering, D82:35–45,
1960.

[7] Pierre Billoir. Track fitting with multiple scattering: A new method.
Nucl. Instr. Meth., A225:352, 1984.

[8] R. Fruhwirth. Application of kalman filtering to track and vertex fitting.
Nucl. Instrum. Meth., A262:444–450, 1987.

[9] O. Callot and S. Hansmann-Menzemer. The forward tracking algorithm
and performance studies. Technical Report LHCb-2007-015. CERN-
LHCb-2007-015, CERN, Geneva, May 2007.

113

114 BIBLIOGRAPHY

[10] R. W. Forty and M. Needham. Standalone track reconstruction in the
t-stations. Technical Report LHCb-2007-022. CERN-LHCb-2007-022,
CERN, Geneva, Mar 2007.

[11] E. Rodrigues. Dealing with clones in the tracking. Technical Report
LHCb-2006-057. CERN-LHCb-2006-057, CERN, Geneva, Nov 2006.

[12] D. Hutchcroft. Velo pattern recognition. Technical Report LHCb-2007-
013. CERN-LHCb-2007-013, CERN, Geneva, Mar 2007.

[13] J. Van Tilburg and M. Merk. Track simulation and reconstruction
in LHCb. oai:cds.cern.ch:CERN-THESIS-2005-040. PhD thesis, Vrĳe
Univ. Amsterdam, Amsterdam, 2005. Presented on 01 Sep 2005.

[14] M. Needham and J. Van Tilburg. Performance of the track match-
ing. Technical Report LHCb-2007-020. CERN-LHCb-2007-020, CERN,
Geneva, Mar 2007.

[15] E. Rodrigues. Tracking definitions. Technical Report LHCb-2007-006.
CERN-LHCb-2007-006, CERN, Geneva, Feb 2007. revised version sub-
mitted on 2007-03-28 09:34:37.

[16] R. Brun and F. Rademakers. Root — an object oriented data anal-
ysis framework. Nucl. Instr. and Meth., A389:81–86, 1997. See also
http://root.cern.ch/.

[17] J. v. Neumann. The Theory of Self-reproducing Automata. Univ. of
Illinois Press, Urbana, IL, 1966. based on work in the late 1940s, but
published posthumously.

[18] M. Gardner. The fantastic combinations of john conway’s new solitaire
game “life”. Scientific American, 223: 120–123, 1970.

[19] A. Glazov, I. Kisel, E. Konotopskaya, and G. Ososkov. Filtering tracks
in discrete detectors using a cellular automaton. Nucl. Instr. and Meth.,
A329:262–268, 1993.

[20] I. Kisel, V. Kovalenko, F. Laplanche, and others (NEMO Collaboration).
Cellular automaton and elastic net for event reconstruction in the nemo-
2 experiment. Technical report, 1997.

[21] I. Abt, D. Emeliyanov, I. Kisel, and S. Masciocchi. Cats: a cellular
automaton for tracking in silicon for the hera-b vertex detector. Nucl.
Instr. and Meth., A489:389–405, 2002.

BIBLIOGRAPHY 115

[22] I. Abt, D. Emeliyanov, I. Gorbounov, and I. Kisel. Cellular automa-
ton and kalman filter based track search in the hera-b pattern tracker.
Technical report, 2002.

[23] D. Emeliyanov and I. Kisel. Cats track fitting algorithm based on the
discrete kalman filter. Technical Report HERA-B note 00-032, 2000.

[24] G. W. van Apeldoorn, S. Bachmann, T. H. Bauer, E. Bos, Yu Guz,
T. Haas, J. Knopf, J. Nardulli, T. Ketel, A. Pellegrino, T. Sluĳk, N. Tun-
ing, U. Uwer, P. Vankov, and D. Wiedner. Beam tests of final modules
and electronics of the lhcb outer tracker in 2005. Technical Report
LHCb-2005-076. CERN-LHCb-2005-076, CERN, Geneva, Oct 2005.

116 BIBLIOGRAPHY

Danksagung

Viele Menschen haben zum Gelingen dieser Arbeit in vielfältiger Weise mit
beigetragen, denen ich an dieser Stelle danken möchte.

Mein besonderer Dank gilt Herrn Professor Ulrich Uwer, der mir dir Ar-
beit an diesem Thema ermöglicht und mir stets mit Rat und Tat zur Seite
stand. In gleicher Weise möchte ich mich bei Stephanie Hansmann-Menzemer
bedanken, die in sich in genauso aufopfernder Weise um mich gekümmert hat
und der ich vermutlich noch öfter auf die Nerven gefallen bin.

Ich bin Johannes Albrecht, Johan Blouw, Stephanie Hansmann-Menzemer,
Jens Kessler, Markus Moch, Gunther Schiller, Rainer Schwemmer und Ulrich
Uwer dankber für ihre kritischen Anmerkungen.

Ich möchte mich ebenfalls bei der gesamten HE-Gruppe für die schöne
Zeit und nette Atmosphäre bedanken, in der ich arbeiten durfte.

Mein besonderer Dank geht an Tanja Haas, die mich während meiner
Miniforschung aushalten musste und später dann wieder. In gleicher Weise
danke ich meinen (teilweise kurzzeitigen) Zimmernachbarn Johnnes Albrecht,
Iuri Bagaturia, Marc Deissenroth, Jens Kessler, Tanja Haas, Matthias Mozer,
Rainer Schwemmer, Christoph Werner und Roger Wolf, denen ich sicher
gelegentlich auf die Nerven gefallen bin.

Ich danke Ivan Kisel für seine inspirierende Vorlesung “Pattern Recogni-
tion in High Energy Physics” im Sommersemester 2005 und für die hilfreichen
Diskussionen und Vorschläge später.

Ich danke der gesamten LHCb-Kollaboration für die freundlich Aufnahme,
die ein Neuankömmling dort erfährt.

Ich entschuldige mich bei allen, denen ich zu danken vergessen habe, mein
Dank sei ihnen hiermit “nachgericht”.

Zu guter Letzt möchte ich mich bei meiner Familie bedanken, die mir
nicht nur das Studium und diese Diplomarbeit ermöglicht hat.

117

Erklärung

Ich versichere, dass ich diese Arbeit selbständig verfaßt und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 4. Juli 2007

	Introduction
	The LHCb experiment
	Vertex Locator
	Trigger Tracker
	Inner Tracker
	Outer Tracker
	Spillover

	Tracking in the LHCb experiment
	Introduction
	Track model
	LHCb Track types
	Pattern recognition
	Velo tracking
	Momentum estimation
	Forward Tracking
	T station seeding
	Momentum estimation using the pT-kick method
	Track Matching algorithm

	Tracking performance indicators
	Reconstruction efficiency
	Ghost fraction
	Clone fraction
	Purity
	Collection efficiency

	Tracking definitions used in LHCb
	Matching Monte Carlo particles and tracks
	Definition of efficiency denominator
	Event-weighted versus track-weighted quantities

	Tracking performance in the LHCb experiment
	Track quality monitoring tool
	Tracking performance
	Performance of Velo tracking
	Performance of Forward Tracking
	Performance of T station seeding
	Performance of Track Matching
	Overall performance for Long tracks

	Cellular Automaton principles
	Introduction to Cellular Automata
	Cellular automaton used in tracking
	Tracklet generation
	Neighbour finding
	Automaton evolution
	Forming and selecting candidates

	Cellular automaton based seeding for the LHCb OT
	Overview
	Evaluating performance
	Data preparation
	Selection of measurements
	Conversion to working objects
	Sorting of the measurements
	Forming clusters

	Tracklet generation
	Geometrical cuts
	Momentum estimation and optional cut
	Clustering continued: pitch residuals
	Efficiency of tracklet generation

	Stereo enhancement
	Forming pseudo-x clusters
	Matching pseudo-x clusters and tracklets
	Stereo enhancement efficiency

	Finding neighbours and automaton evolution
	Cuts on kink angle and q/p
	Cuts used to check for stereo compatibility
	Automaton evolution
	Automaton evolution in stereo layers
	Performance evaluation

	Forming and selecting track candidates
	Forming track candidates
	Track selection

	Overall performance of the algorithm
	Efficiencies and ghost fractions
	Purity and collection efficiency
	Execution time behaviour

	Summary

