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Zusammenfassung
Das Standardmodell der Teilchenphysik ist erstaunlich erfolgreich in der Beschrei-
bung der Eigenschaften der Elementarteilchen und ihrer Interaktionen. Trotzdem
gibt es noch viele offene Fragen und mehrere Modelle für Physik jenseits des
Standardmodells. Das geplante MU3E Experiment soll nach dem Lepton Flavor
verletzenden Zerfall µ→ eee suchen. Dieser Zerfall ist im Standard Modell stark
unterdrückt und eine Beobachtung wäre ein klarer Hinweis auf neue Physik.

Das geplante MU3E Elektronenspektrometer besteht aus vier zylindrischen
Lagen dünner Silizium Pixelsensoren im Feld eines Solenoidmagneten. Aufgrund
des geringen Elektronenimpulses spielt Vielfachstreuung eine große Rolle und
dominiert die Messungenauigkeit. In dieser Arbeit wird ein neuer Spurrekon-
struktionsalgorithmus basierend auf “broken lines” untersucht, der die Winkel
der Vielfachstreuung explizit berücksichtigt. Das Rekonstruktionsverhalten wur-
de mit dem eines konventionellen “fast helix fit” durch Simulationen verglichen.

Der “broken lines” Algorithmus erreicht eine bis zu 50% bessere Spurauflö-
sung, insbesondere in der Position, und eine korrekte Beschreibung der Fehler.
Diese Ergebnisse bestätigen, dass eine Implementierung eines auf “broken lines”
basierenden Algorithmus die Spurrekonstruktion deutlich verbessert und unver-
zichtbar ist, um die geplante Sensitivität eines Verzweigungsverhältnisses von
BR(µ→ eee) < 1× 10−16 zu erreichen.

Abstract
The Standard Model of elementary particle physics has been surprisingly success-
ful in describing the properties of particles and their interactions. However, many
open questions still exist, and there are a number of models for physics beyond
the Standard Model. The MU3E project is a proposed experiment to search for
the lepton flavor changing decay µ→ eee. This decay is highly suppressed in the
SM, thus an observation would be a clear sign of new physics.

The MU3E detector is an electron spectrometer built with four cylindrical
layers of thin silicon pixel sensors in a solenoidal magnetic field. Due to the low
momentum of the electrons, multiple scattering is significant and dominates the
measurement uncertainties. I investigated a new track fitting algorithm based on
broken lines, that directly takes scattering angles into account. Fit performance
was compared to a conventional fast helix fit on the basis of simulations.

The broken lines fit reaches an up to 50%higher parameter resolution,with the
most significant improvement in the track positions. More important, it provides
correct error estimates. These results confirm that an implementation of a broken
lines fit is greatly beneficial for track reconstruction and indispensable to reach
the proposed branching ratio sensitivity of BR(µ→ eee) < 1× 10−16.
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Chapter 1

Introduction

The Standard Model of elementary particle physics (SM) has been sur-
prisingly successful in describing the properties of particles and their
interactions in a unified fashion. However, many open questions still exist,
e.g. the problem of the large mass hierarchy and small neutrino masses
or the missing unification with gravity, for which the SM does not give
a satisfactory answer. Many theories have been proposed to solve these
problems which in turn would give rise to new phenomena that are not
yet described by the SM. Since none of them have been observed thus far,
these possible phenomena, or new physics in general, necessarily need to
come into play only at high mass scales that have not been accessible yet.

The on-going search for new physics is pursued at different frontiers.
The most prominent one is the energy frontier that is investigated at high
energy particle colliders e.g. at the Large Hadron Collider. At very high
energies, signatures for the production of new particles or the appearance
of new processes are searched for directly.

A second frontier is the intensity frontier. Instead of searching directly
for new physics phenomena, very precise measurements of known quan-
tities are performed at lower energies to look for small deviations from
the expected SM values. This comprises the search for very rare or for-
bidden1 decays, precision measurements of particle properties such as
the muon magnetic moment and its gyromagnetic ratio or (heavy) flavor
spectroscopy at specialized storage rings.

Due to their quantum nature, processes at high mass scale also have
an impact on low energy processes. An indirect search for new physics is
possible already at lower energies. To achieve the required high precision,

1In the Standard Model.
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2 CHAPTER 1. INTRODUCTION

often at the parts-per-billion level or below, high statistics and consequently
high intensities are necessary.

The MU3E experiment is a recently proposed precision experiment
[Sch+12] to search for the lepton flavor violating muon decay µ+→ e+e+e-
with a planned branching ratio sensitivity of 1× 10−16 at 90% confidence
level. Depending on the theory, this branching ratio sensitivity translates
to a sensitivity in mass-scale of up to 1× 104 TeV, which is beyond the
reach of current direct searches.

To measure this rare decay, a continuous high-intensity muon beam
is stopped in an extended target. The decay products, i.e. electrons with
a momentum bound by half of the muon mass, are measured in a mag-
netic spectrometer with four cylindrical detector layers built from thin
silicon pixel sensors. Due to the lowmomentum of the electrons, the uncer-
tainty of the track reconstruction is dominated by the effects frommultiple
Coulomb scattering. Special care needs to be taken to handle the resulting
correlations and additional uncertainties in the track reconstruction.

Traditionally, this has been done by treating multiple scattering as
an additional source of random errors in a global fit. This requires the
calculation and inversion of the measurement covariance matrix induced
by multiple scattering. Current particle physics experiments, e.g. ATLAS
or CMS, usually employ iterative track fitting procedures based on the
Kálmán-filter [Fru87]. In these methods, multiple scattering is treated
as additional random noise at each iteration step. The broken lines fit
[Blo06] is a novel approach that takes the possible scattering angles in the
trajectory into account explicitly while allowing a non-iterative solution.
In this thesis, I will investigate the suitability and the performance of this
novel track fitting approach in the context of the MU3E project.

The first part of the thesis in chapter 2 is concerned with a theoretical
discussion of the lepton flavor violating muon decay µ→ eee in the SM
and in new physics models. This discourse is followed by a description of
the experimental design of the proposed MU3E experiment and its key
features in chapter 3. Chapter 4 derives the track model and associated
techniques that form the basis of the subsequent discussion on track fitting
in chapter 5. Two different track fitting algorithms, a fast helix fit and the
broken lines fit, are presented and discussed in detail. The performance
of these different algorithms in the context of the MU3E experiment is
analyzed in chapter 6 and the thesis concludes with a summary and an
outlook into possible future developments in chapter 7.



Chapter 2

Theoretical Background

In the original standard model (SM) formulation the lepton flavor, a quan-
tum number attributed to elementary particles called leptons, should be a
conserved quantity. It has already been verified that this is not the case
for neutral leptons, the neutrinos, but no lepton flavor violation has been
found for interactions of charged leptons. Yet, many new physics models
predict lepton flavor violation also in systems involving charged leptons.
In this chapter I will introduce the SM and subsequently concentrate on
lepton flavor violation in rare muon decays.

2.1 The Standard Model
The SM is a quantumfield theory that describes the known elementary par-
ticles and their interactions. It contains twelve elementary matter particles,
their respective antiparticles and six particles that mediate the interactions.
The SM describes only three of the four known fundamental interactions:
the strong, the weak and the electro-magnetic interactions. Gravitational
effects are negligible at the energy scales of particle interactions and gravi-
tation is not part of the SM.

Matter particles in the SM are defined by their mass and their quantum
numbers: spin, electric charge (usually given in units of the elementary
charge e), weak hypercharge, color charge and flavor quantum number.
All the matter particles are fermions with spin 1/2 whereas all the gauge
interactions are mediated by bosons with spin 1. The additional Higgs
particle is a scalar boson with spin 0. It is somewhat separated because it is
neither a matter particle nor does it mediate a gauge interaction. Figure 2.1
shows an overview over all the particles.

3



4 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: The experimentally verified Standard Model particles and their
measured properties. The Higgs boson is missing because it has not been
found yet. [Wik]

2.1.1 Fermions
Fermions can be divided into two groups of six particles each, quarks and
leptons, based on their quantum numbers. Both groups can be arranged
into three generations or families ordered by increasing mass (see e.g.
[Per00]).

Quarks are the only fermions that have a color charge and thus are
the only elementary particles that interact strongly. The up-type quarks
up, charm and top have a charge of 2/3 and the down-type quarks down,
strange and bottom have a charge of −1/3. One up-type and one down-
type quark together form one quark generation in the way shown in Fig-
ure 2.1. They also interact electro-magnetically and weakly. Quarks do not
exists as free particles in nature. They are only found in so-called hadrons,
strongly-bound, color-neutral states of multiple quarks, a property unique
to quarks known as confinement.

Leptons do not have a color charge and cannot interact strongly. The
charged leptons are the electron (e), the muon (µ) and the tau (τ). They
all have a charge of −1 and can interact electro-magnetically and weakly.
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For each charged lepton there is a corresponding neutral lepton called
a neutrino, e.g. the electron-neutrino (νe) for the electron. Together they
form one lepton generation, which is identified by a quantum number
called lepton flavor. For example, the electron and the electron-neutrino
both have a flavor number of le = 1. In contrast to all the other fermions,
neutrinos are massless in the SM.

However, with the experimental discovery of neutrino oscillations it
became clear that neutrinos must have a small, but non-vanishing mass
[Fuk+98; Ahm+01; Egu+03]. An extension of the SM, hereafter referred
to as νSM, accounts for this finding and introduces the Pontecorvo-Maki-
Nakagawa-Sakata matrix (PMNS) [MNS62] that relates the neutrino eigen-
states of the weak interaction with their mass eigenstates.

For every matter particle, there exists a corresponding anti-matter
particle with identical properties, but opposite electrical charge, color
charge or flavour quantum number. For example the positron is the anti-
particle of the electron whereas the anti-muon is the anti-particle of the
muon.

2.1.2 Interactions
All interactions in the SM are mediated trough the exchange of so-called
gauge bosons. The strength and the range of each interaction is determined
by the mass of its gauge boson(s) and its coupling to the fermions given
by a coupling constant that is usually denotedα. All gauge bosons in the
SM have spin 1.

The gauge boson of the electro-magnetic (EM) interaction is the photon
(γ). It couples to all electrically charged particles and is massless. As a
result, the EM interaction has an infinite range. The weak interaction is
mediated by three gauge bosons: two W bosons with a mass of about
80.4GeV and the Z boson with a mass of about 91.2GeV [Nak+10]. The W
bosons have an electric charge of±1 whilst the Z boson is a neutral particle.
The high mass of the gauge bosons limits the range of the interaction and
renders it theweakest interaction in the SM.1 The gauge boson of Quantum
ChromoDynamics (QCD), the theory of strong interactions, is themassless
gluon. It is electrically neutral but, in contrast to the other gauge bosons, it
has a color charge. This allows the interaction of gluons with themselves
and makes the strong interaction a short-range interaction. This effect is

1This is only true for energy scales lower than the mass of the W or Z bosons.
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different from the short-range weak interaction, where the limited range
is due to the high mass of the force carrier.

The electro-magnetic and the weak interactions can be unified into a
single interaction — the electro-weak interaction — with four massless
gauge bosons. The process that breaks the single electro-weak interaction
into two and generates massive gauge bosons for the weak interaction
is called electro-weak symmetry breaking. In the SM this is done using
the so-called Higgs-mechanism which introduces an additional scalar,
neutral particle: the Higgs boson [Hig64; EB64; GHK64]. The Higgs boson
is the only particle in the SM that has not been experimentally detected.
The search for it, e.g. at the Large Hadron Collider (LHC), is on-going
[Aad+11a; CMS11].

2.1.3 Symmetries and Conserved Quantities

Every differentiable symmetry of the action of a physical system is asso-
ciated with a corresponding conservation law. The former statement is
a formulation of the famous Noether theorem [Noe18], which, applied
to the standard model, results amongst others in the conservation of the
flavor quantum number for the strong and electro-magnetic interaction.

One example for a non-conserved quantity is the quark flavor in weak
processes. Theweakly interacting quark states are not identical to the quark
states that interact strongly or electro-magnetically. Instead, the weak
quark eigenstates are mixtures of the strong eigenstates with a mixing
given by the Cabibbo-Kobayashi-Maskawa matrix (CKM). This breaks
the underlying symmetries and makes the quark flavor a non-conserved
quantity.

In the original SM formulation lepton flavor would be a conserved
quantity, i.e. lepton flavor changing processes are forbidden. However,
this is not the case anymore in the νSM where only the more relaxed
condition of lepton number conservation (irrespective of the generation)
is valid. Here, the mixing of the neutrino mass eigenstates via the PMNS
matrix breaks the underlying symmetries and allows for lepton flavor vio-
lation. As a result, measuring these lepton flavor non-conserving processes
can give, courtesy of the Noether-theorem, insight into the fundamental
symmetries of nature.
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2.1.4 Limitations and New Physics
The SM and its extension νSM has been very successful in describing all
known particles and their interactions over a wide range of energy scales.
However, a number of open questions and theoretical problems exist.

A first example is gravity. Although it is the sole important interaction
on astronomical length scales, it does not play any role on the scale of
particle interactions. Second, the matter content in the νSM constitutes
only about 5%of the known energy content of the universe. The remaining
95% are dark matter and dark energy for which no theoretical explanation
has been found so far. Third, the particles observed so far show a very
unique mass hierarchy. The process by which the neutrinos acquire a non-
vanishing mass is unknown and the fact that its values are many orders of
magnitudes lower than any other particle is quite startling. In addition,
the resulting mixing of leptons is fundamentally different from the flavor
mixing in the quark-sector. The CKMmatrix is nearly diagonal whereas
the PMNS matrix is tribimaximal. This also posesses a problem for the
question of grand unification. The SM describes all the interactions within
a common framework but they are still distinct and only the weak and the
electro-magnetic interactions have been successfully unified.

Although this list of open questions is not fully comprehensive, it is
clear that the SM or the νSM cannot be the unified theory of everything and
that a more complete explanation is needed. A multitude of suggested
theories exists with varying predictions for possible new phenomena.

2.2 Lepton Flavor Violation in Charged Lepton
Decays

2.2.1 In the Standard Model
The original SM contains no lepton flavor violating processes and the
neutrino weak eigenstates are the same as the mass eigenstates. The νSM
allows lepton flavor violation but it has only been observed in the neutral
lepton sector via neutrino oscillations. While charged lepton flavor viola-
tion does not exists on tree-level even in the νSM, the mixing of neutrinos
can produce charged lepton flavor violation on the loop-level.

One possible lepton flavor violating decay is the three electron decay
of the muon (µ→ eee) shown in Figure 2.2. Although allowed, it is greatly
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Figure 2.2: The Standard Model loop-level diagram for the decay µ→ eee.

suppressed by the fourth power of the high mass ratio (∼ ∆mν/mW) of the
particles running in the loop. The W boson has a mass of about 80.4GeV
and themass of the neutrinos has an upper bound of about 2.2 eV [Nak+10].
Therefore, the branching ratio for the decay µ→ eee in the StandardModel
is < 10−50.

Another possible decay is the neutrino-less radiative decay of themuon
(µ→ eγ). It is very similar to the three electron decay described above. The
radiated γ in Figure 2.2 is now a real particle instead of a virtual one that
splits into an electron-positron pair. The branching ratio differs only in
the additional factor ofαem from the pair production vertex and is equally
suppressed.

The very low expected branching ratios make these decays practically
unmeasurable. Any measurement of the aforementioned decay would
therefore be a clear indicator for new physics.

2.2.2 New Physics Models

Many theories for physics beyond the Standard Model include additional
flavor violating processes in the charged lepton sector, e.g. the decay
µ→ eee. The expected branching ratio for those decays depends on the
model parameters and is constrained both by the current experimental
limits for the decay itself, e.g. BR(µ→ eee)< 1× 10−12 [Bel+88], as well as
by other measurements in the charged lepton sector, e.g. limits on µ→ eγ
and µ→ e conversion.
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Figure 2.3: A generic tree level diagram for the decay µ→ eee in a physics
model beyond the Standard Model. The new heavy intermediate particle
could be an additional Higgs boson or a Z’.

On Tree-Level

One way to introduce additional lepton flavor violating processes is by
adding new heavy particles with couplings to both electrons and muons
already at the tree-level. This would lead to contributions from diagrams
like the one shown in Figure 2.3. These contributions occur e.g. for models
with extra dimensions [CN05] or formodels with an extendedHiggs sector
[Bla+07; KOS03]. For thesemodels the high suppression of the lepton flavor
violating decays is due to the high mass of the new intermediates.

On Loop-Level

The other possibility is to introduce new lepton flavor violating physics
only at the loop level [HK85]. One possible family of models are the su-
persymmetric (SUSY) extensions of the Standard Model. In these models,
each SM particle has an additional partner particle, its superpartner, which
has opposing spin statistics. The superpartners of fermions are bosons
and vice versa. The symmetry that generates these additional particles has
to be broken to allow the supersymmetric particles to have a mass that is
different from the normal particles. This is necessary, since supersymmet-
ric particles have not been observed so far (e.g. [Aad+11c; Aad+11b]) and
consequently their production needs to suppressed by their high mass.

The additional contributions, e.g. for the decay µ→ eee, are given e.g.
by the diagram shown in Figure 2.4. This diagram is very similar to the
SM one shown in Figure 2.2. Instead of a W boson and neutrinos, new su-
persymmetric particles are running in the loop. The lepton flavor violation
is produced via slepton mixing instead of neutrino mixing. The supersym-
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Figure 2.4: A possible loop level diagram for the decay µ→ eee in a super-
symmetric extension of the Standard Model. The mixing particles in the
loop are sleptons and the additional neutral particle is a neutralino.

metric particles can have similar mass which reduces the suppression due
to the mass difference.

For models that prefer loop-level diagrams, the two different muon
decay modes µ→ eγ and µ→ eee are essentially generated via the same
loop-level diagram. The only difference is whether the emitted γ, e.g. in
Figure 2.4, is real or virtual. It is virtual for the three electron decay with
an additional vertex to create the electron-positron pair. Consequently, the
expected branching ratio for the three electron decay is suppressed by a
factor ofαem with respect to the neutrino-less radiative decay µ→ eγ.

2.3 An Effective Theory for the Decay µ→ eee
Directly comparing all the different new physics models and their pre-
dictions for the lepton flavor violating charged decays is not a sensible
choice. The number of parameters and their possible combinations is be-
yond measure. However, the possible sensitivity in mass scale and the
discriminating power for different new physics models can be estimated
by using an effective theory. This also allows a comparison of the different
decay modes. The following simplified Lagrangian is used to describe the
three electron decay in different new physics models [KO01].

L =
mµ

(1 +κ)Λ2µRσ
µνeLFµν +

κ

(1 +κ)Λ2 (µLγ
µeL)(eLγµeL) (2.1)

The first term describes a contribution from loop-level diagrams (dipole
coupling). The second term is a contact interaction with left-left vector
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coupling and an example for a possible tree-level contribution. This is one
possible term from a more general expression for the contact interaction.
The effective theory only has two parameters:Λ is the effective mass scale2
of the theory and κ is the amplitude ratio between the two terms. The
loop-level interactions dominate in the low-κ region and the tree-level
interactions dominate in the high-κ region.

Employing a four fermion contact interaction to approximate the con-
tribution from tree-level diagrams, similar to Fermi’s theory for weak
interactions, is well motivated by the expected energy scales. The energy
of the decay is the fixed to themuonmass mµ ≈ 106MeV. The new physics
scale must be beyond the electroweak scale of about 100GeV; orders of
magnitude above the scale of the decay.

Figure 2.5: The expected branching ratios and the current experimental
limits for the decays µ→ eee and µ→ eγ in an effective theory. Λ is the
effective massscale and κ describes the mixing between the contact inter-
action term and the dipole coupling term. [Ber11]

Figure 2.5 shows lines of constant branching ratio as functions of the
two parameters of the effective theory. The blue lines are for the decay

2The scale at which new physics exists assuming that all the couplings are one.
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µ→ eee. The solid areas are parameter spaces already excluded by previ-
ous measurements. The additional red line indicates the expected sensitiv-
ity of the MEG experiment [Ada+11b]. The MEG experiment is searching
for the decay µ→ eγ and is currently running at the Paul Scherrer Institute.

For a given mass scale the value of κ distinguishes between different
types of theories. To constrain the mass scale in the low-κ regime, the
sensitivity for the decayµ→ eee needs to be about two orders ofmagnitude
higher than for the decay µ→ eγ. Here, the SUSY-like models dominate
and the three electron decay is suppressed by the additional photon vertex.
This is different for the high-κ regime.Models with tree-level contributions
dominate and the three electron decay is preferred.

2.4 Comparison and Expected Sensitivity
As seen in Figure 2.5, the accessible effective mass range is about 103 TeV
to 104 TeV. Depending on the model, this equates to a sensitivity to mass
scales far beyond current direct searches e.g. at the LHC. Therefore, a
search for the lepton flavor violating decay µ→ eee is complimentary to
both current precision experiments in other muon decay channels and to
direct new physics searches at high energies.



Chapter 3

The MU3E Experiment

The MU3E project is a proposed experiment to search for the lepton flavor
violating decay µ+→ e+e+e- with a projected branching ratio sensitivity
of 10−16 at the 90% confidence limit [Sch+12]. This would be an increase
in sensitivity of nearly four orders of magnitude compared to the previous
limit of BR( µ+→ e+e+e-) < 1.0× 10−12 from the SINDRUM collaboration.
This requires a high number of measured muon decays and consequently,
a very fast detector for the decay products. To reach this level of sensitivity
it is necessary to have a relative background suppression better than the
branching ratio sensitivity. This requires a very high momentum, vertex
and time resolution. The detector for the MU3E experiment would be
made of thin active silicon pixel sensors and include a scintillating fiber
hodoscope built around an extended target to stop muons. The detector
shall be installed at a high-intensity muon beamline at the Paul Scherrer
Institute (PSI) in Switzerland.

3.1 Current Experimental Situation

3.1.1 The SINDRUM experiment
The current limit on the µ+→ e+e+e- branching ratio was set by the SIN-
DRUM experiment. It was running at running at the Paul Scherrer Institute
in Villingen, Switzerland (PSI) from 1983-86. They found no signal event
for the decay µ+→ e+e+e- and set the limit BR( µ+→ e+e+e-) < 1× 10−12

at 90% confidence limit [Bel+88].
The experiment used a low energy surfacemuonDCbeamwith a nearly

monochromatic energy of about 28MeV/c. The muons were stopped in

13
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a hollow double-cone target. The decay electrons from the muon decays
were measured using five layers of multiwire proportional chambers for
the trackingmeasurement and an additional fibre hodoscope for triggering
and timingmeasurements. The detector was positioned inside a solenoidal
magnetic field of 0.33T.

3.1.2 The MEG experiment
TheMEG experiment is running at the PSI since 2008 and searching for the
lepton flavor violating decay µ+→ e+γ. The current limit for the branching
ratio is BR(µ→ eγ) < 2.4× 10−12 [Ada+11a].

The experiment uses a low energy surface muon DC beam1 but the
beam is stopped on a small thin target. Drift chambers are used to measure
the single electron track and a liquid xenon calorimeter to detect the
photon.

The main limitation comes from the accidental coincidence of high
energy photons and single positrons from regular Michel decays. The
maximum sensitivity is estimated to be on the order of a few 10−13. This
requires a branching ratio sensitivity of 1× 10−15 for the decay µ→ eee to
be competitive in the case of dominating dipole couplings, see section 2.2.

3.2 Muon Decays
Before explaining the proposed experimental realization of this project,
the signal decay and its possible backgrounds will be discussed in detail.

Anti-muons have a very long lifetime of 2.2µs and due to the low
mass and charge conservation can only decay into positrons, neutrinos
and photons. The dominant decay mode is the lepton flavor conserving
decay µ+→ e+νeνµ with a branching ratio of almost a 100% [Nak+10].
The only measurable decay product is a single positron whose energy
spectrum is described by the so-called Michel spectrum.2 The parameter
of the electron spectrum have been most precisely measured by the TWIST
collaboration [Bay+11]. Other known lepton conserving decays are decays
with additional photons or electrons, e.g. µ+→ e+γνeνµ with a branching
ratio3 of 10−2 and µ+→ e+e+e- νeνµ with a branching ratio of 3.4× 10−5

1The muon energy is the same as for the SINDRUM experiment
2As a result, the decay itself is called the Michel decay.
3For photon energies above ∼ 10MeV.
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[Nak+10]. Assuming that the muon is at rest in the lab frame, the energy
of the decay products is limited to half the muon mass, i.e. ∼ 53MeV.

Possible signal decays are very rare, but they have a distinct signature
compared to the dominant decay modes. However, due to low signal
rate it is very important to suppress possible background from accidental
coincidences and mismeasured tracks. This is discussed in the following
sections.

3.2.1 Signal Decay and Topology
The signal decay µ+→ e+e+e- is defined by its final state: twopositrons and
one electron without any additional neutrinos. All the tracks originating
from the decay share a single common vertex and they are coincident
in time. The invariant mass of the three tracks, measured at the vertex
position, is identical to the muon mass.

m2
µ c4 =

(
3

∑
i=1

Pi

)2

(3.1)

Assuming that the muon is stopped in the target, i.e. that it is at rest in the
laboratory frame, the vectorial sum of the momenta must vanish.

∣∣pabs
∣∣ = ∣∣∣∣∣ 3

∑
i=1

pi

∣∣∣∣∣ = 0 (3.2)

For three momentum vectors to fulfill (3.2) they all have to lie in the
same decay plane. A possible decay topology, projected to the transverse
plane, is illustrated in Figure 3.1. The blue tracks correspond to the decay
electrons and the different curvatures represent the different transverse
momenta.

3.2.2 Backgrounds
As shown in section 2.2 the decay µ+→ e+e+e- has no irreducible back-
ground. Any background to the signal therefore comes from processes
that generate fake signals. These reducible backgrounds can be roughly
separated into two groups: accidental and internal conversion background.
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Figure 3.1: The topology of the signal decay in the transverse plane.

(a) Accidental Background (b) Internal Background

Figure 3.2: The topologies of possible backgrounds in the transverse plane.
(a) originates from the accidental coincident of independentMichel-decays.
(b) comes from internal conversion decays with a very small missing
energy.
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Figure 3.3: The Feynman diagram for the internal conversion decay
µ+→ e+e+e- νeνµ.

Accidental Background

Accidental background originates from the random coincidence in phase-
space of three electron tracks that originate from independent processes.
One example of such a combination is shown in figure 3.2a. Here, two
positron tracks come from two independentMichel decays and the electron
track comes from a positron track with a mismeasured charge, e.g. due
to a recurling track. A similar situation can ensue from the overlay of an
electron-positron pair created by photon conversion or Bhabha-scattering
and an additional Michel positron.

In contrast to the signal, accidental background is not coincident in
time or space and the total momentum does not fulfill the requirements
given by (3.1) and (3.2). To suppress these kinds of backgrounds a high
vertex and time resolution is needed.

Internal Conversion Background

The other type of background comes from internal conversion decays.
These are radiative decays where the radiated photon immediately con-
verts to an electron-positron pair as illustrated in Figure 3.3. The resulting
decay µ+→ e+e+e- νeνµ has a branching ratio of BR= 3.4× 10−5 [Nak+10].
In some parts of the phase-space the measurable final state is nearly identi-
cal to the signal. There are three electron tracks, one ofwhich has a negative
charge, they share a common vertex and they are coincident in time. This
arangement is indistinguishable from the signal decay. The topology of
this background is shown in Figure 3.2b.

However, there are two additional neutrinos in the final state and the
three electron tracks do not fulfill the required energy and momentum
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Figure 3.4: The effective branching ratio for the internal conversion decay
µ+→ e+e+e- νeνµ as a function of the energy carried by the neutrinos. The
red arrow indicates the planned branching ratio sensitivity for the signal
decay µ+→ e+e+e-. This plot is adapted from Djilkibaev and Konoplich
[DK09].

relations defined in (3.1) and (3.2). The phase-space region, for which this
background decay is indistinguishable from the signal decay, depends
crucially on the total momentum resolution.4 Figure 3.4 shows the branch-
ing ratio for internal conversion decays as a function of the energy carried
away by the neutrinos. To suppress these backgrounds to an acceptable
level, a momentum resolution for the sum of the three electron momenta
below 1MeV is needed.

3.3 Muon Beam and Target
To reach the planned sensitivity a very high number of stopped muons is
necessary and therefore a very intense muon beam is required. The MU3E
experiment will be run at the Paul Scherrer Institute (PSI) in Switzer-
land, which operates the world’s most powerful proton beam with up to
2.3mA of 590MeV/c protons. In two rotating carbon targets, secondary
particles are produced. Of interest for the MU3E experiment are the so-

4Only electrons with a known and negligible mass are measured. The momentum
and energy measurements are equivalent.
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Figure 3.5: The shape of the extended target in the longitudinal plane and
its position in the muon beam.

called surface muons, which are created from the decays of pions stopped
close to the target surface. In a first low intensity phase, the already ex-
isting PiE5 beamline can be used. It is currently occupied by the MEG
experiment and provides a beam of low momentum surface muons of up
to 2× 108 muons/s. To reach the final sensitivity a muon rate of about
2× 109 muons/s is required. A new beamline capturing the muons pro-
duced in the Swiss Spallation Neutron Source (SINQ) at PSI could provide
such a rate and is currently under study [Sch+12].

The incoming muon beam5 is stopped in an extended hollow double
cone target. The arrangement of the target in the beam is illustrated in
Figure 3.5. The target is made from thin aluminium with a thickness of
∼ 60µm, a length of 10 cm and a radius of 1 cm. Preliminary simulations
with this target geometry show that incoming muons with an energy
of 28MeV/c are almost completely stopped and the stopping positions
are uniformly distributed over the length and the diameter of the target
[Sch+12].

3.4 Electron Tracker
The main detector for the MU3E experiment is a magnetic spectrometer
designed to precisely measure the low momentum electrons from the
muon decays. It measures the positions of electrons moving in a solenoidal
field of ∼ 1T aligned along the beam direction. The total material budget
is reduced to minimize the effects of multiple scattering.

3.4.1 Multiple Scattering
ChargedParticles traversing amediumwill be deflected by electro-magnetic
interactions with the nuclei of the material. This effect is called multiple
Coulomb scattering due to the underlying Coulomb interaction. The over-
all effect on the particle trajectory is illustrated in Figure 3.6. On its way

5This decay target is different from the carbon production target.
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Figure 3.6: The effect of multiple scattering on a particle trajectory. Taken
from [Nak+10].

trough thematerial the particle randomly changes its direction. The overall
effect is a displacement and a kink angle with respect to the undisturbed
initial trajectory. In the classical description of the scattering the particle
momentum is conserved and possible energy losses are neglected. The
distribution of the scattering angle projected onto a plane perpendicular to
the initial track direction is well described by a Gaussian6 with a mean of
zero and a standard deviation given by the following equation [Nak+10]:

θ0 =
13.6MeV
βcp

z
√

x
X0

(
1 + 0.038 log

(
x

X0

))
(3.3)

The spread of the angle distribution is inversely proportional to the
particle momentum p and scales with a square root of the traversed mate-
rial thickness x in units of the radiation length X0. The radiation length is
a material constant. z is the charge of the particle. This means that multi-
ple scattering is enhanced for low momentum particles traversing thick
materials.

3.4.2 Tracker Design
As described in the previous section, the overall material thickness needs
to be reduced as much as possible to minimize the effects of multiple
scattering. This entails to use as few detector layers as possible comprised
of as little material as possible with a high radiation length.

6This is true for small scattering angles up to a few θ0.
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Figure 3.7: A schematic drawing of the MU3E detector baseline design.
The red line represents an typical electron track. The length of the detector
is not to scale.

The chosen baseline design is shown in Figure 3.7. Four layers of sensors
arranged in two double layers are used. This number of measurements
allows the reconstruction of a circle with an additional constraint. The
inner layers are located close to the target to allow a good vertex resolution.
In one doublet, the effects of a scattering angle at the first layer on the
position deviation in the second layer are small due to the small track
length. This simplifies the track finding procedures.

Each layer is made from high-voltage monolithic active pixel sensors
(HV-MAPS) supported by a Kapton® framework. The HV-MAPS allow
a fast digital readout, a high geometric coverage and a small pixel size
of 80µm [Per07; PKF10; PT10]. In addition, they can be thinned down
to less than 50µmwithout compromising their performance. The silicon
sensor and the Kapton® support structure add up to a very low combined
material budget of less than 0.001X0 [Sch+12].

3.5 Timing Measurements
Additional timing information is required to suppress accidental back-
grounds and to allow the identification of coincident signal decay elec-
trons. To this end, scintillating fiber hodoscopes are installed just before
the second double layers as shown in Figure 3.7. The total thickness of the
hodoscope is of the order of 1mm to reduce additional multiple scattering
effects. They should be read out on both sides with a time resolution of
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better than 1 ns [Sch+12].
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Helical Tracks

Track reconstruction methods require a model of the expected particle
motion. The physical parameters (charge, momentum and position) that
normally describe a particle track are often not optimal in the context of
the track reconstruction. Here, the track model for a charged particle in
a solenoidal field is derived. An appropriate set of track parameters and
their relations to the physical parameters are described. Possible deviations
of the particle motion from the idealized track model can be described as
uncertainties of the geometrical parameters.

4.1 Equations of Motion
The assumptions of the idealized track model are as follows. A particle
of charge q is moving with a speed of v in a solenoidal magnetic field
in vacuum. No additional electric field is present. The magnetic field
is, without loss of generality, aligned along the z-direction of a global
cartesian coordinate system, i.e. B = Bêz. The charged particle is subject
to the following Lorentz-force ([Dem04]).1

F = qB(v× êz) (4.1)

Hence, the Lorentz-force is perpendicular to the particle trajectory and
the corresponding equations of motion dp/ dt = F in the laboratory frame
conserve the particle momentum p = mvγ. They yield the track position x
as a function of time. In a tracking environment, only spatial quantities are
well measured and the track model should use only those quantities that

1Unless stated otherwise, equations are expressed in SI-units.

23
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are directly accessible. Using the conserved momentum p =
∥∥p
∥∥ = mγβc

the equations of motion can be rewritten as functions of the path length s
of the track curve[FR00, Chapter 3.3]. With ds/ dt = v = βc the following
substitutions can be derived.

dx
dt = dx

ds
ds
dt = dx

dsβc (4.2)
d2x
dt2 = d

dt
dx
dsβc = d2x

ds2β
2c2 (4.3)

The equations of motion can then be expressed solely in terms of geometric
quantities and form the basis of the idealized track model.

d2x
ds2 =

qB
c

1
p

(
dx
ds × êz

)
(4.4)

Equation 4.4 states three second order partial differential equations. In
general, six integration constants are needed to fully specify the solutions.
Geometrical quantities and the path length can be defined in terms of
the infinitesimal path elements of the track curve. This gives rise to the
following additional constraint.

ds2 = dx2 + dy2 + dz2 ⇐⇒
(

dx
ds

)2
+
(

dy
ds

)2
+
(

dz
ds

)2
= 1 (4.5)

As a result, every solution to the equations of motion can be described by
five parameters.

4.2 Track Curve
The solution to the equations of motion in (4.4) is a helix along the z-
axis. It can be split up into a circular movement in the (x, y)-plane and
a linear movement along the z-direction. The (x, y)-plane is transverse
to the magnetic field and is called the transverse plane. The movement
along the z-axis is normally described as a function of the path length in
the transverse plane. For the sake of simplicity the longitudinal direction
will also be called the longitudinal plane of motion (although it is not a
geometrical plane).

4.2.1 Position and Tangent
The solution to (4.4) can be written using a set of three unit vectors defined
at the initial position at s = 0. They form the basis of a local right-handed
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Figure 4.1: The track unit vectors ϕ̂0 and ρ̂0.

coordinate system. To best reflect the two different planes of motion the
following unit vectors are chosen.2

ρ̂0 =
t̂0 × ẑ∥∥t̂0 × ẑ

∥∥ (4.6)

ϕ̂0 = ẑ× ρ̂0 (4.7)
ẑ0 = ẑ (4.8)

The definition of the unit vectors ρ̂0 and ϕ̂0 is illustrated in Figure 4.1.
These unit vectors are defined using the initial track tangent t̂0 =

p0/
∥∥p0

∥∥ and have the following meaning: ϕ̂0 is the normalized projection
of the track tangent into the global (x, y)-plane, ρ̂0 is the unit vector normal
to the projected tangent in the global (x, y)-plane and ẑ0 is the unit vector
of the global z-axis. ρ̂0 and ϕ̂0 span the transverse plane and ẑ defines
the longitudinal direction. They are also the basis vectors of a cylindrical
coordinate system aligned with the z-axis as the cylinder axis. The track
position x and the track tangent unit vector t̂ = ∂x̂/∂s at the path length s
are defined as follows.3

x = x0 −
α

Q
(1− cosθ) ρ̂0 +

α

Q
sinθ ϕ̂0 +

γ

Q
θ ẑ (4.9)

t̂ = −α sinθ ρ̂0 +α cosθ ϕ̂0 +γ ẑ (4.10)

The path length dependency is given by θ = Qs with Q = −qB/pc being
the signed three dimensional curvature of the track curve. The initial

2A subscript 0 on a quantity indicates that the value at s = 0 is used.
3This is very similar to the definition in [SW06] but with a different set of unit vectors.
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position of the track is x0 and the remaining constants are:

α =
∥∥t̂0 × ẑ

∥∥ (4.11)
γ = t̂0 · ẑ (4.12)

4.2.2 Decoupling the Circular Movement
It is often useful to decouple the two planes of motion as much as possible.
That means that all quantities involved should be defined in only one of
the planes. Thus, the curvature and the path length need to be replaced, be-
cause they are quantities defined in all three dimensions. The substitution
κ = −αQ is used to replace the curvature.4 From equation (4.9) it follows
that κ is the curvature of the track projected in the transverse plane, i.e.
the curvature of the transverse track circle. The path length is replaced by
the projected arc length a of the track circle in the transverse plane using
the substitution a =

√
1−γ2 s. The derivation of this substitution can be

found in the appendix in section A.1. Assuming that s = 0 and a = 0 both
correspond to the same initial track position, the track position expression
in (4.9) changes as follows.

x = x0 +
1
κ
(1− cosθ) ρ̂0 −

1
κ

sinθ ϕ̂0 +
γ

α
a ẑ (4.13)

The expression for the track tangent is identical to the previous one in
(4.10). The dependence on the arc length for both the position and the
track tangent is now given by θ = −κa.

4.3 Karimaeki Parametrization
The five parameters needed to describe the track can be split up into two
sets. Three parameters for the circular motion in the transverse plane and
two parameters to describe the linear motion in the longitudinal plane.
The circular parameters are the ones defined by Karimäki for the circle fit
in [Kar91] as follows.

κ the signed curvature of the track in the (x, y)-plane.
4The extra minus sign is an arbitrary choice to bring the definition in line with the

curvature definition in [Kar91].
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(a) Circular Parameters (b) Linear Parameters

Figure 4.2: The Karimaeki parameters.

φ the angle of inclination in the (x, y)-plane at the position of closest
approach, i.e. the angle between the x-axis and the projected track
tangent.

dca the signed distance of closest approach in the (x, y)-plane.

These parameter definitions are illustrated in Figure 4.2.
The sign of the curvature κ indicates the direction of movement along

the circle. Positive curvature corresponds to a clockwise and a negative
curvature to a counter-clockwise rotation. The sign of dca is indirectly
defined by the sign of the product dcaκ. A negative value of the product
indicates that the origin of the transverse coordinate system is located
inside the track circle and a positive value indicates that it is located outside
of it. An illustration of these sign definitions can be found in Figure 4.3.
This sign definition is equivalent to the one in [Kar91] and κ is identical to
the transverse curvature defined in the previous section.

The parameters of the linear motion define the intercept and the slope
of a straight line in the longitudinal (a, z)-plane.

λ the dip angle between the transverse plane and the longitudinal
direction at the initial position, i.e. the angle between the projected
track tangent in the (x, y)-plane and the track tangent.
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Figure 4.3: The sign definition for dca and κ.

z0 the z-position at the initial position.

Using these parameter definitions, the track curve and the tangent are
rewritten in a form that depends explicitly on the parameters. First, the
initial position x0 is now defined to be the position of closest approach
with respect to the origin of the transverse plane. The position of closest
approach and the track tangent vector at that position expressed in terms
of the Karimaeki parameters are as follows.

x0 =

 dca sinφ
−dca cosφ

z0

 t0 =

cos λ cosφ
cos λ sinφ

sin λ

 (4.14)

Second, the unit vectors defined in section 4.2 and the additional constants
α and γ have the following explicit parametrization.

ρ̂0 =

 sinφ
− cosφ

0

 ϕ̂0 =

cosφ
sinφ

0

 ẑ =

0
0
1

 α = cos λ
γ = sin λ

(4.15)

At last, the track position (4.13) is rewritten. The result can be given
either in terms of the unit vectors defined above or as a vector in the global
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cartesian coordinate system.

x =

 (dca +
1
κ ) sinφ

− 1
κ cosφ

z0

+

 1
κ sin(κa−φ)
1
κ cos(κa−φ)

tan(λ) a

 (4.16)

Note that the parameter λ only appears as tan λ. Consequently, the value
of tan λ is used as the track parameter instead of λ.

4.4 Change of Coordinate System
So far, the track parameters are defined with respect to the origin of the
global coordinate system, i.e. the origin is the implicit reference point.5
The initial position of the track at a = 0 is the position of closest approach
with respect to the origin. Yet, many calculations are greatly simplified if a
specific pivot is chosen. For instance, the effects of multiple scattering are
best described if the pivot is located at the intersection of the track and
the scattering plane. Here, multiple scattering only affects the track angles
φ and λ while leaving the remaining parameters untouched.

A parameter transformation can be done to select a specific point as
the reference point. Figure 4.4 shows the same track and its parameters
with two different pivots. The parameter values differ for the two pivots.
This illustrates that the track is fully defined only by the combination of
its parameters and the chosen reference point.

4.4.1 Parameter Transformation
Whenmoving the track description from a given reference point to another
one, a transformation of the corresponding track parameters is needed.
The position of closest approach, the track angles and the z0 position are
different in the new system. The transformation can be derived in the
following way. Using the track position with the old parameters xp and
α = (κ,φ, dca, tan λ, z0)

T, the track position and the corresponding arc
length a for which the track position is closest to the new pivot x′p in the
transverse plane is derived. For this new position of closest approach the
tangent vector and the two remaining unit vectors are obtained similar
to the original derivation of the Karimaeki parameters in section 4.3. The

5The terms reference point, pivotal point or pivot are used interchangeably.
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Figure 4.4: The same track and its transverse parameters for two different
pivotal points p1 and p2.

new parametersα′ = (κ′,φ′, d′ca, tan λ′, z′0)
T can be derived with respect

to these unit vectors.
The resulting transformation equations for the transverse parameters

can be found in [Kar91] and in [Gro97] for the longitudinal parameters.

κ′ = κ

φ′ = atan2(B, C)

d′ca = (1 + U)−1 A
tan λ′ = tan λ

z′0 = (zp − z′p) + z0 − tan λ
κ (φ′ −φ)

(4.17)

These transformations describe the new parameters (primed) as functions
of the old parameters (unprimed) and the old and new pivotal points
xp and x′p. The two parameter function atan2(y, x) is mostly identical to
the regular inverse tangent with the quotient of y and x as an argument
arctan(y/x). In addition, it also takes into account the quadrant the coordi-
nates lie in and returns the azimuth angle in the full range −π to π or 0 to
2π . The additional constants A, B, C and U depend on the aforementioned
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quantities and are given below.

u = 1 + dcaκ (4.18)

A = 2∆⊥ +κ
(
∆2
⊥ + ∆2

‖

)
(4.19)

B = κ(xp − x′p) + u sinφ (4.20)
C = −κ(yp − y′p) + u cosφ (4.21)

∆⊥ = (xp − x′p) sinφ− (yp − y′p) cosφ+ dca (4.22)
∆‖ = (xp − x′p) cosφ+ (yp − y′p) sinφ (4.23)

U =
√

1 +κA (4.24)

Since the track position in the transverse plane is periodic, φ and φ′
are defined only up until additional terms of multiples of 2π . Hence, the
transformation of z0 has multiple branches that differ by multiples of
2π tan λ/κ.

4.4.2 Covariance Matrix Transformation
The track parameters may have an associated covariance matrix which
needs to be propagated to the new reference point. In the context of error
propagation, the old and new reference points are only arbitrary con-
stants because they do not have an associated error. The new parameters
α′ = (κ′,φ′, d′ca, tan λ′, z′0)

T can therefore be viewed as functions of the
old parameters only, i.e.α′ = α′(α) and the covariance matrix Σ′ of the
transformed parameters can be calculated from the covariance matrix Σ

of the original parameters and the Jacobian matrix J = (∂α′i/∂αi) of the
parameter transformation using the following matrix equation:

Σ′ = JΣJT (4.25)

The expressions for each element can be found in section A.1 in the ap-
pendix.

4.5 Momentum
In the general description of the track curve in section 4.2, the relation
between the track curvature and the track momentum is straightforward:
Q = −qB/cp (where Q is the track curvature in three dimensions). This



32 CHAPTER 4. HELICAL TRACKS

is not the case in the Karimaeki parametrization, because the curvature
parameters κ describes the curvature only in the transverse plane. As a
result, it only contains information about the transverse momentum, i.e.
the length of the momentum vector projected onto the transverse plane. It
can be calculated using the following expression [FR00]:

pT =
qB
c

1
κ

(4.26)

To compute the full momentum, additional parameters are needed. The
full momentum vector is defined by p = pt̂. From this expression and the
definition of the tangent vector in terms of the Karimaeki parameters it
follows that the full momentum is given by:

p = cos(λ) pT =
qB
c

cos λ
κ

(4.27)

In the Karimaeki parametrization, tan λ is used as the track parameter
and cos λ should be expressed in terms of tan λ instead.

p =
qB
c

1√
1 + tan2 λ

1
κ

(4.28)



Chapter 5

Track Fitting

In the previous chapter 4, the track model and its geometrical parame-
ters where derived. Using the track model, the particle position and the
geometrical track parameters can be calculated at each point along the
track curve. For track fitting the sequence is reversed. Starting from a set
of measured particle positions the (geometrical) track parameters that best
describe the measurements should be estimated.

Track fitting algorithms can differ in their treatment of uncertainties
and their correlations as well as computational complexity, e.g. iterative vs.
direct algorithms. In the following chapter two non-iterative procedures,
a fast helix fit based on Karimaeki’s [Kar91] fast circle fit and the broken
lines fit by Volker Blobel [Blo06] are introduced and the mathematical
details of their implementations are explained.

For this to work, I assume that the connected problem of track finding
has already been solved, i.e. the correct subset of detectors hits that belong
to a single track has already been selected.

5.1 Tracking Regimes
Depending on the dominating type of uncertainties, two different regimes
can be identified: the spatial regime and the scattering regime. The first
one is dominated by the spatial uncertainties of the measurements, i.e. by
the resolution of the detector itself, whereas the second one is dominated
by the uncertainties induced from multiple scattering. Other possible
sources of uncertainty, e.g. the energy loss of a particle while traversing
the detector, are neglected in this discussion. This is well motivated by the
very low total radiation length (∼ 10−3 X0) of the MU3E detector.

33
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(a) Spatial Regime (b) Scattering Regime

Figure 5.1: Particle trajectories in different tracking regimes. In (a) the
uncertainty from spatial measurements is dominating and in (b) the dom-
inating uncertainty comes from multiple scattering. Spatial uncertainties
are marked with red bands and scattering angles variances are indicated
as green bands.

To illustrate the two different regimes, Figure 5.1 shows the propagation
of an example track and the associated errors for both regimes. The detector
resolution is marked with red bands and the uncertainties from multiple
scattering as green bands.

For dominating spatial errors ( 5.1a), the resulting measurements are
independent. The position measurements at the last layers is not affected
by the interactionswith the initial ones. This is usually the case for particles
with very largemomenta, e.g at the Large Hadron Collider, or for detectors
with a low spatial resolution.

For the scattering regime, shown in 5.1b, the measurements are heavily
correlated. A high angle scattering event at one of the first layers introduces
additional deviations for all the following measurements. If the track
parameters at the beginning of the tracks are to be determined these
parameters are greatly influenced by the measurements at the last layers.
Low momenta and high spatial resolutions favor this regime, as it is the
case for the MU3E experiment.
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5.2 The Method of Least Squares
Before introducing the track fitting procedures it is necessary to define
a measure of what the best-fit parameters are, i.e. what the output of the
track fit should be. To achieve this, the measured positions are assumed to
be the result of a particle moving according to a track model with addi-
tional statistical noise from the measurement uncertainties. Estimating the
optimal parameters of a statistical model can be done using the principle of
maximum likelihood [Cow04], i.e. the best-fit parameters are the ones that
maximize the likelihood function of the model given the measurements.

In the special case of independent and normally distributed errors max-
imizing the likelihood is equivalent to minimizing the corresponding sum
of squared residuals of the model and the measured data [Cow04]. The
residuals are the differences between measurements yi and corresponding
model predictions fi = fi(α) where the model predictions are functions
of the model parameters αi. Each residual is weighted according to the
measurements. The weights are defined as the inverse of the variance of
each measurement wi = 1/σ2

i . For a set of N measurements the sum of
squared residuals is then defined as follows.

S =
N

∑
i=1

wir2
i =

N

∑
i=1

(yi − f (α)i)
2

σ2
i

(5.1)

The best-fit parameters, those that maximize the original likelihood
function, are the solutions to the following normal equations:

∂S
∂αk

= 2
N

∑
i=1

wiri
∂ri

∂αk
= −2

N

∑
i=1

wiri
∂ fi

∂αk
= 0 (5.2)

Solving this equation for general, i.e. non-linear, models requires an iter-
ative approach. This is computationally expensive and may suffer from
numerical instabilities and convergence problems. A direct, non-iterative
solution can be found if only linear models are considered. In that case,
the residuals can always be written in the following form, where F = (Fi j)
is the coefficient matrix of the model that connects the parameters and the
predictions.

ri = yi −
M

∑
j=1

Fi jα j =⇒ ∂ri

∂αk
= −Fik (5.3)
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As a result, the solution to the normal equations can be found by
solving the following system of linear equations.1

FTWFα − FTW y = 0 ⇐⇒ α = (FTWF)−1FTW y (5.4)

W is the diagonal weight matrix with Wii = wi, which is computed from
the diagonal measurement covariance matrix W = Σ−1 as defined above.
Minimizing the sum of least squares is now reduced to solving a set of
linear equations. This is a problem that can be done quite easily on a
computer and many algorithms are readily available to either invert the
matrix FTWF or solve the equation using matrix factorization (e.g. [LAP]).
The matrix inversion of FTWF (a NxN matrix) has a complexity O(N3),
cubic in the number of measurements. If the matrix is not a full matrix but
a sparse matrix, e.g. banddiagonal, faster solutions are available. Solving
an NxN banddiagonal matrix scales linearly with the number of entries.

In addition to the best-fit parameters, the least-squares method pro-
vides estimates of the parameter errors. At the minimum of the sum of
squared residuals (5.1), the parameters are linear functions of the mea-
surements. This is obvious for the linear case, as can be seen in (5.4). For
the general case the model function can be linearized around the optimal
parameters and a similar expression can be constructed using the Jacobian
instead of the coefficient matrix F. The covariance matrix of the best-fit
parameters can then be calculated using simple propagation of uncertainty.
Due to the relation of the weight matrix and the measurement covariance
this reduces to the following expression in the linear case.2

Σα =
(

FTWF
)−1

(5.5)

5.2.1 Limitations and Generalizations
Using the linear least square method transforms a complex optimization
problem to a linear algebra problem with a significantly reduced compu-
tational complexity. That also means that a linear track model is required
to take full advantage of this transformation. This is not the case for the
helical track model derived in chapter 4. However, as will be shown in
the next section, a clever choice of parameters allows a sufficiently precise
linear approximation over a wide area of the sensible parameter space.

1A full derivation can be found in the appendix Equation A.14
2The full derivation can be found in the appendix Equation A.17



5.3. FAST HELIX FIT 37

In the derivation of the least square method, independent and un-
correlated measurements were assumed. This is not necessarily true, e.g.
for multiple scattering, but it works as a first approximation. To fully ac-
commodate also for correlated measurements, the least-squares method
can be generalized to non-diagonal measurement covariance matrices. In
that case, the weight matrix W = Σ−1 and consequently also the matrix
representing the normal equations FTWF are dense matrices instead of
sparse, diagonal matrices. No optimized algorithms for the solution (in-
version) can be used and the complexity is always O(N3). That means
that by using ordinary linear least square minimization one trades com-
putational complexity at the expense of a correct description of errors and
correlations.

5.3 Fast Helix Fit
The fast helix fit (FH) is a global, non-iterative fit of the full track helix.
It is based on a factorization of the full 3d fit into two 2d fits, namely a
circle fit in the transverse plane and and a straight line fit in the projected
longitudinal plane. It assumes uncorrelated measurements and allows a
very fast fit for a given set of measurements.

5.3.1 Overview
The fast helix fit uses the Karimaeki parametrization of the track model
defined in section 4.3 without consideration of multiple scattering by con-
struction. The selected parameters split up naturally into two groups: three
parameters (κ,φ, dca) to describe the circle and two parameters (tan λ, z0)
to describe the straight line along the z-direction. Both parameter groups
are fitted separately. Possible correlations between them will therefore be
neglected. In general, this results in a degraded resolution. The full fit is
done in the following order:

1. A circle is fitted to the projected measurements in the (x, y)-plane.
2. The arc length a in the transverse plane is calculated from the fitted

circle parameters and the measurements.
3. A straight line is fitted to the measurements in the longitudinal

(a, z)-plane.
4. The resulting fitted parameters and their covariance matrix are com-

bined.
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5.3.2 Karimaeki’s Fast Circle Fit
The circle fit developed by Karimaeki [Kar91] is based on the least squares
method described in section 4.3 above. It uses the Karimaeki parametriza-
tion of the track model and employs additional approximations to allow a
direct calculation of the best-fit parameters. According to the track model,
all track positions in the transverse (x, y)-plane should lie on a single circle.
This allows the residual expression to be defined in terms of differences in
radii, instead of differences in two-dimensional positions as function of
the arc length.

For a circle defined by its center and its radius, the residuals are cal-
culated as the difference between the model radius and the measured
radius in the coordinate system where the circle center is the origin:
ri = Ri,measured − R. Bringing the R term onto the left side, squaring both
sides and multiplying them out, one arrives at the following expression:

ri =
(xi − cx)2 + (yi − cy)2 − R2

−2R
+

r2
i

2R
(5.6)

Here, cx and cy are the circle center positions in the global cartesian coordi-
nate system. The last term can be dropped if we assume that |ri| � R. For
the MU3E experiment the residuals are of the order of a few mm (pixel
size plus multiple scattering) and the circle radii are in the range of 3 cm
to 17 cm. Hence, the former assumption to neglect the second term is well
motivated.

The final residual expression is constructed by replacing the naive
parameters cx, cy and R with the Karimaeki circle parameters κ,φ and dca
defined in section 4.3.

ri =
1
2κ(x2

i + y2
i + d2

ca)− (1 + dcaκ)(xi sinφ+ yi cosφ) + dca (5.7)

Using this expression for the residuals, the sum of squares written in a
slightly different form:

S = (1 + dcaκ)
2S′ = (1 + dcaκ)

N

∑
i=0

wir′i (5.8)

r′i is the remainder of the residual expression after factoring out the (1 +
dcaκ) term. Instead of minimizing the original sum S, the reduced sum
S′ is minimized. According to [Kar91], this only introduces a negligible
additional error on the resulting parameters for hit positions close to
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the origin, i.e. dca is small with respect to κ. This approximation enables
the calculation of an explicit solution to the normal equations that only
requires a fixed set of sums over the single measurements xi and yi and
their combinations. The calculation of the parameter covariance matrix
requires only little additional time because all the information is already
contained in the sums calculated for the fit. The full procedure, the non-
iterative solution for the fitted parameters and the covariance matrix can
be found in [Kar91].

Using the fitted parameters, the arc length ai for each measurement
can be calculated. First, the measured coordinates are transformed into a
system were the origin coincides with the center of the track circle.(

x′i
y′i

)
=

(
sinφ0 − cosφ0
cosφ0 sinφ0

)(
xi
yi

)
−
(

dca +
1
κ

0

)
(5.9)

In this system we can calculate the track angle θi, i.e. the azimuth angle of
(x′i, y′i). We have to take into account that tracks with positive curvature
start at (−r, 0) and tracks with negative curvature at (r, 0) with r =

∣∣1/κ∣∣.
ai = r

atan2(y′i, x′i) κ ≤ 0
atan2(y′i, −x′i) κ > 0

(5.10)

5.3.3 Straight Line Fit
As shown in section 4.2, the position along the z-axis is a linear function
of arc length in the transverse plane. Using the fitted arc length from the
circle fit and the measurements the residual expression can be defined as
follows.

ri = zi − z0 − tan λ ai (5.11)

This is only linearly dependent on the parameters z0 and tan λ. Themethod
of linear least squares can be applied directly as described above. An
explicit solution to the normal equation existswith only a linear complexity
with respect to the number of measurements (see e.g. [Pre92, chapter 15.]).

5.3.4 Weights
For the first fit the initial weights are calculated from the known variances
of the spatial measurements as wi = 1/σ2

i .
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5.4 Broken Lines Fit
The broken lines (BL) fit [Blo06] is a detailed refit of the residuals from
a previous helix track fit ("seed") that takes into account the effects of
multiple scattering. In its original form, the BL is a two dimensional fit.
For the full refit of the three dimensional helix, it has to be used twice
in two different planes. The fit procedure is explained for tracks with or
without curvature.

5.4.1 Straight Tracks
For the simple case we assume tracks that propagate without curvature.
This would be the case, e.g. for the motion of very high momentum parti-
cles in the transverse plane or for the drift motion of a particle along the
magnetic field axis.

Residualsεi are calculated from themeasurements yi and the track seed.
The track seed also provides the travelled distance li for every residual axis.
The points (li,εi) are the transformed measurements in the local system
of the track. For all further calculations it is assumed that movement along
the residual axes is independent of the position on the track, i.e. that the
residual axes are perpendicular to the track.

u1 u2 u3 u4

l{1,2,3,4}

ε1

ε2

ε3

ε4

β2

β3

Figure 5.2: The residual system of the track. It shows the initial residuals
(red dash) with their errors (thick black dashes), the new intersection
points (hollow diamonds) and the resulting track trajectory (blue dashed
line) as a function of the travelled track length.

A new trajectory is defined by a set of intersection points ui between the
track and each residual axis. Figure 5.2 shows an example configuration
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of the new trajectory in the residual system. The new trajectory (marked
with a dashed blue line) is not a single straight track. Instead, we have kink
angles βi at every residual axis. Their values can be calculated from neigh-
boring intersection points except for the first and the last one. Assuming
that these kink angles are small the following linearized expression can
be used.

βi = δi−1ui−1 − (δi−1 + δi)ui + δiui+1 with δi = (li+1 − li)−1 (5.12)

The BL fit calculates the new trajectory by finding the set of intersection
points that minimizes both the distance to the initial residuals and the kink
angles at every residual axis. The objective function for the corresponding
least squares problem can be broken up into to parts. The first one relates
to the detector resolution and the second one to the kink angles. Both parts
are weighted linear least squares problems.

S = Sε + Sβ =
N

∑
i=1

wi(εi − ui)
2 +

N−1

∑
i=2

wβ,iβ
2
i (5.13)

The weights wi are calculated from the known detector resolution
projected to the plane transverse track, i.e. wi = σ

−2
i . The weights wβ,i =

σ−2
β,i for the kink angles can be calculated using the equation (3.3) from

multiple scattering theory [Nak+10, Chapter 27.3.]. Assuming that we
have this scatterer at each measurement axis, the expected scattering angle
variance σ2

β,i can be calculated from the effective detector thickness and
the particle momentum. The detector thickness should be known a priori
and the approximate particle momentum can be calculated from the initial
track seed.

∂Sε
∂ui

+
∂Sβ
∂ui

= 0 (5.14)

The solution to the normal equations (5.14) can be split up and each part
can be solved according to section 5.2 for the same set of parameters
u = (u1, u2, · · · , uN)

T. For the first part Sε this yields the following normal
equations: (

∂Sε
∂ui

)
= Wu−Wε = 0 (5.15)

The normal equations for the second part Sε are:(
∂Sβ
∂ui

)
= (FT

βWβFβ)u = 0 (5.16)
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With the following definition for the matrix Fβ:

Fβ =


0 0

B21 B22 B23
B32 B33 B34

. . . . . . . . .
0 0


Bii−1 = δi−1

Bii = δi−1 + δi

Bii+1 = δi

(5.17)

The combined normal equations from the two parts can be written in
the form Cuu− ru = 0 where ru = Wε is an N-dimensional vector and
Cu = W + FT

βWβFβ is a symmetric band diagonal NxN matrix.

Cu =


C11 C12 C13
C21 C22 C23 C24
C31 C32 C33 C34 C35

C42 C43 C44 C45 C55
. . . . . . . . . . . . . . .


Cu,i j = δi jwi +

N−1

∑
k=2

wβ,kFkiFk j

(5.18)

The band diagonal form allows for a fast solution in linear time using
the Cholesky decomposition of Cu [Blo06].

The parameter covariance matrix can be calculated as defined in sec-
tion 5.2, however special care is required in the calculations. The expected
kink angles are zero and have an associated covariance matrix, the ex-
pected variance frommultiple scattering theory. They have to be treated as
virtual measurements and enter the covariance calculations. If we assume
that the residuals εi and the ’measured’ kink angles are independent and
are weighted according to their measurement variance, i.e. Σε = W−1 and
Σβ0 = W−1

β , the covariance matrix for u simplifies to:

Σu = (W + FT
βWβFβ)−1 = C−1

u (5.19)

5.4.2 Curved Tracks
For a curved track, the fitting procedure needs to be modified. The residu-
als are now calculated in the curvilinear system of the initial track fit and
should again be defined along axes perpendicular to the track. Figure 5.3
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Figure 5.3: A particle trajectory in the presence of multiple scattering (solid
green line), the registered hit positions (red crosses) and the initial global
circle fit (dashed blue line)

shows an example configuration of a curved particle trajectory influenced
by multiple scattering and the initial circle fit. It can be seen that the addi-
tional scattering angles have a strong impact on the fitted track curvature.

In the straight track case it is assumed that the geometrical kink angles
in the residual system in Figure 5.2 originate only frommultiple scattering.
This is not true for the curved track case. A curvature difference between

Figure 5.4: Two different trajectories that result in the same positions in the
residual system. On the left side, the seed correctly estimates the curvature
and the residuals originate only from multiple scattering. On the right
side, no multiple scattering occurred and the residuals are only due to a
mismeasured initial curvature.

the true track and the initial seed would also result in a kink angle in the
curvilinear system. Figure 5.4 shows two possible trajectory configurations
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for a given set of residuals. In the left configuration, the initial estimate
of the track curvature is already correct and the geometric kink angles
originate only from multiple scattering. For the right configuration, the
actual scattering angle vanishes and the measured geometric kink angle
arises only from a mismeasured curvature. The definition of the scattering
angles used in the curved broken lines fit needs to take these two possibil-
ities into account. This is done by adding a global curvature correction ∆κ

to the definition of the fitted scattering angles that modifies the geometric
kink angles calculated from the intersection points ui.

βi = δi−1ui−1 − (δi−1 + δi)ui + δiui+1 +
1
2(ai−1 + ai)∆κ (5.20)

ai =
√
(li+1 − li)2 + (εi+1 −εi)2 (5.21)

There are are now N+1 parameters u = (∆κ, u1, u2, · · · )T. The gen-
eral expression for the objective function in (5.13) does not change but
the resulting normal equations are modified slightly due to the different
defintion of βi.

∂S
∂ui

=


∂Sβ
∂∆κ

i = 0
∂Sβ

∂ui−1
+ ∂Sε

∂ui−1
i ≥ 1

= 0 (5.22)

No changes are introduced to the normal equations derived from Sε except
for additional zeros to correct the shape. For the normal equations derived
from Sβ the matrix Fβ is modified and has a NxN+1 shape.

Fβ =


0 0 0

A2 B21 B22 B23
A3 B32 B33 B34
... . . . . . . . . .
0 0 0

 (5.23)

Bi j are the known values from the straight track case and Ai is defined as:

Ai =
1
2(ai−1 + ai) (5.24)

The combined normal equations can be written in the form Cu− r = 0
where u and r are N+1-dimensional vectors and C = W + FT

βWβFβ 3 is a
3W needs to be padded with one column and one row of zeros to correct its shape

towards a N+1xN+1 matrix.
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symmetric N+1xN+1 matrix with the following contents :(
K kT

k Cu

)(
∆κ

u

)
−
(

0
ru

)
= 0 (5.25)

Cu and ru are defined in the same way as in the straight track case. The
additional scalar K and N-dimensional vector k is defined as:

K =
N−1

∑
k=2

wβ,k A2
k = 1

4

N−1

∑
k=2

wβ,k(ak−1 + ak)
2 (5.26)

ki =
N−1

∑
k=2

wβ,k AkBki =
1
2

N−1

∑
k=2

wβ,k(ak−1 + ak)Bki (5.27)

Even though the matrix C does not have a pure band diagonal shape
anymore, a fast solution in linear time is still possible and can be found
in [Blo06]. The calculation of the covariance matrix is identical to the
calculation in the straight track case and again yields Σ∆κ,u = C−1.

5.4.3 Parameter Corrections
The fit parameters of the broken lines fit are the new trajectory position ui
in the residual system. From these, corrections to the initial track param-
eters can be calculated. Since all the parameters are locally defined, the
parameter corrections are given with respect to one of the intersections.
To accurately determine the initial track parameters, the intersection be-
tween the track and the first layer is chosen. This reduces the effects of
correlations at later measurements as far as possible.

In the transverse plane, the curved broken lines fit is used. The cor-
rection to the curvature is a global parameter and a direct result of the
refit. The distance of closest approach to the chosen intersection is just the
estimated track intersection u1, since the reference point is located on the
track curve itself. The correction to the initial track angleφ is derived from
the slope of the trajectory between the first two positions in the residual
system. The corresponding mathematical expression are:

∆dca = dca = u1

∆φ =
u2 − u1

l2 − l1

(5.28)

The covariance matrix of the corrected parameters can be calculated
using propagation of uncertainties using the covariancematrix Σu of the fit-
ted trajectory positions.However, the derived correction neglects a possible



46 CHAPTER 5. TRACK FITTING

scattering angle at the first layer. To account for this additional uncertainty
the variance of the scattering angle distribution is added to theφ variance.

σ2
φ = σ2

u +σ2
β,1 (5.29)

In the above equation, σ2
u is the result of the propagation of uncertainties

from (5.28) and σ2
β,1 is calculated according to (3.3) using the parameters

from the initial fit.



Chapter 6

Implementation and Results

To test and compare the performance of the track fitting algorithms de-
scribed in the previous chapter, I implemented both algorithms and a
simulation using Python [Fou; J+–]. In this chapter, the details of the imple-
mentation and the resulting performance for different detector geometries
are explained.

6.1 Simulation
Since we are not interested in a detailed study of the detector geometry,
but in a comparison of the different tracking algorithms, a full detector
simulation, e.g. using GEANT4 [Ago+03], is not required. Instead, a spe-
cialized simulation is implemented based on the track parametrization
defined in chapter 4 and a simplified detector geometry. This allows full
control over each step of the simulation and is a specific setup tailored to
test the fit algorithms itself. It also gives access to all the true information
generated at every stage of the process.

6.1.1 Generators
For my studies I only used events containing a single track each, with
different parameter distributions for the initial state. The simulated tracks
are not generated in terms of the physical parameters such as initial posi-
tion and momentum, but already at the level of the geometric parameters
defined in section 4.3. The reference point is set to be the origin of the
coordinate system.

47
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For the initial studies the following track generator is employed. All
generated tracks have the same set of initial parameters and the only
differences come from the simulation of uncertainties. For the final studies
the tracks parameters are drawn from uniform distributions. The limits
for each parameter are setup to mimic the distributions that are expected
from the target shape, i.e. κ = ±5.0m−1 to ±20m−1,φ = 0 to 2π and dca =
−1.0 cm to 1.0 cm.

6.1.2 Geometry
Instead of the geometry defined in chapter 3, a simplified geometry is
used during the simulation. The real detector is build from a set of planar
sensors that form a polygonal shape in the transverse plane as shown in
Figure 3.7. However, the number of sensors is high enough that a purely
cylindrical shape is a sufficient approximation. Hence, each detector layer
is simulated as a cylinder with a fixed radius centered around the z axis
to simplify the simulation. The length of the cylinder is not restricted and
the geometrical acceptance (in terms of the dip angle) is reproduced by
the limits of the initial track parameters.

6.1.3 Track Propagation and Multiple Scattering
The generated particle is assumed to behave according to the ideal track
model defined in chapter 4. This, in combination with the cylindrical de-
tector shape, allows a propagation of the track using an explicit analytical
expression for the hit position. Starting from the initial position, the hit
position at each detector layer is calculated using the intersection of the
helical track with the cylindrical surface. After the calculation of the hit
position, the pivot of the track description is moved to the hit position.

Multiple scattering at the detector layer is then simulated by altering the
track parameters. The detector layer is assumed to act as a thin scatterer, i.e.
only the track angles are influenced. The expected variance of the scattering
angles is calculated according to the known formula (3.3) derived from
multiple scattering theory as defined in chapter 3. The momentum of the
particle is calculated from the momentary track parameters. In addition,
the thickness of the layer is adjusted to match the effective pathlength of
the particle in the detector material. The relevant angles of incidence that
are used to compute the pathlength are given by the track anglesφ and λ at
the hit position. Random scattering angles are then drawn from a normal
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distribution with the calculated scattering angle variance and a mean of
zero and added to the track angles. An illustration of this procedure is
given in 6.1b.

(a) Pixel Size (b) Multiple Scattering

Figure 6.1: The working principles of the uncertainty simulation for errors
originating from the finite pixel size and from multiple scattering.

6.1.4 Pixel Size
The finite pixel size is simulated using gaussian smearing along the detec-
tor plane. At the true hit position, as determined by the track propagation
described above, the detector plane is defined by two unit vectors. The
first one is the unit vector ẑ along the z axis and the second one is the
unit vector ϕ̂ along theϕ direction in cylindrical coordinates. Pixel errors
manifest only along these two directions. Assuming the hit position inside
a real pixel to be uniformly distributed over its area, the variance in each
pixel direction is defined asσ2 = 1

12 s2 with s being the pixel size along one
dimension. To simulate the finite resolution of the hit position, random
numbers are drawn from a normal distribution with the aforementioned
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variance and added to the true hit position along the defined unit vector.
This procedure is illustrated in 6.1a.

6.2 Reconstruction and Performance
Three different algorithms are used to reconstruct each track: the fast helix
fit (fast helix 1), the fast helix fit with a single recalculation of the weights
(fast helix 2) and the broken lines fit.

The fast helix fit is done according to the description in chapter 5. The
weights are calculated using the simulated pixel size (the width of an
equivalent normal distribution to be exact) of the detector. The reweighted
fast helix is an iterative procedure with the first iteration being identical to
the simple fast helix fit. Then, the incident angles of the track are calculated
with respect to the detector layers using the results from the initial fit, and
the initial weights are projected onto the planes perpendicular to the track.
In the second iteration, these recalculated weights are used.

The broken lines fit is performed as described in section 5.4. The spatial
weights are identical to the recalculatedweights of the reweighted fast helix
fit. To compute the weights for the kink angles, the expected scattering
angle variance is calculated according to (3.3) using the track momentum
from the initial helix fit and the thickness of the detector layers.

The quality of the fit is judged by two different quantities, the resolution
and the error description. The resolution is examined using the parame-
ter delta, i.e. the difference between the generated and the reconstructed
parameter. For an example parameter α, the quantity ∆ = αtruth −αreco
is plotted in a histogram. Under the assumption of normal measurement
errors and linear error propagation from the measurements to the recon-
structed parameters, ∆ follows a normal distribution. The mean is zero
for an unbiased estimation and a non-zero mean indicates a bias in the
reconstruction algorithm. The width, i.e. the standard deviation, deter-
mines the parameter resolution. A small resolution value indicates that
the estimated parameter describes the true track well. 1

The error description can be checked by analyzing the so-called pull
distribution. The pull of the reconstruction is the parameter delta divided
by the standard deviation of the reconstructed parameter as given by the
fit algorithm, e.g. (αtruth −αreco)/σα. If the error description is correct, the

1This is only true if the distribution is normal. Otherwise a more robust estimator
needs to be used.
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scale of the parameter errors given by the fit coincides with the parameter
resolution calculated using the parameters’ delta distribution. In this case,
the pull distribution is a standard normal distribution with a mean of zero
and a standard deviation of 1. A pull width lower than 1 is evidence for
an overestimation of the parameter error and a higher width indicates an
underestimation.

6.3 Simple Geometry
Before investigating the fit performance with the MU3E baseline design,
the fitness of my implementations will be tested. To this end, the fit perfor-
mance for both algorithms is analyzed for a simplified detector using the
aforementioned track generator with a fixed parameter set in the different
tracking regimes described in section 5.1. The detector dimensions are
similar to the baseline design, but with four equidistant layers instead of
two double layers. The layers are equidistant cylinders with radii at 2 cm,
4 cm, 6 cm and 8 cm, with the overall dimensions similar to the baseline
design in chapter 3. A sample of 1× 105 tracks is generated using the fixed
track generator with the following initial parameters:

(κ,φ, tan λ, dca, z0)
T = (−7.0, 1

2π ,−0.3, 0.004,−0.02) (6.1)

The reconstructed track parameters are always defined with respect to
the first hit position. The results of the fit performance investigation are
illustrated using the curvature parameter κ as an example. Similar argu-
ments apply also for the other track parameters and the corresponding
performance plots can be found in chapter B in the appendix.

6.3.1 Spatial Regime
As a consistency check, the performance of all fit algorithms is tested in
the purely spatial tracking regime. During the simulation only the pixel
size simulation with a pixel size of 100µm is activated and no multiple
scattering is considered. Therefore, the true track is an ideal helix and all
reconstruction uncertainties should only originate from the uncorrelated
spatial uncertainties. The weights for the fast helix fit are calculated from
the simulated pixel size. For the broken lines fit, the spatial weights are
identical to the ones used for the fast helix fits. Since no multiple scatter-
ing is simulated, the scattering angle variances are calculated using an
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Figure 6.2: The fast helix fit κ delta and pull distributions in the spatial
regime.

0.3 0.2 0.1 0.0 0.1 0.2 0.3
kappa_truth - kappa [1/m]

0

1000

2000

3000

4000

5000

6000

7000
fit:
   = -0.000310787
   = 0.0636191

5 4 3 2 1 0 1 2 3 4
(kappa_truth - kappa) / sigma_kappa

0

1000

2000

3000

4000

5000

6000

7000
fit:
   = -0.00517119
   = 0.999048

Figure 6.3: The reweighted fast helix fit κ delta and pull distributions in
the spatial regime.

arbitrarily low material thickness of 1× 10−6X0. In turn, the associated
weights become accordingly large.

In Figure 6.2, Figure 6.3 and Figure 6.4 the resulting parameter delta
and pull distributions are shown for the fast helix fit, the reweighted fast
helix fit and the broken lines fit, respectively. The normal distribution for
each dataset is plotted in green with the mean and the standard deviation
calculated from the data. All distributions are well modeled by a normal
distribution.

The distribution width for the parameter delta is almost identical for
all fitting algorithms in the case of low κ. This is expected for the fast
helix fits and confirms the working implementation of the broken lines fit.
According to (5.13), increased scattering weights penalize any deviations
from a vanishing scattering angle during reconstruction. The broken lines
fit thus reduces to the initial fast helix fit. Besides, the distribution means
are all very close to zero and indicate that none of the fitting algorithms
are biased.
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Figure 6.4: The broken lines fit κ delta and pull distributions in the spatial
regime.

The pull distribution width for the fast helix fit is very close to one.
The remaining deviations originate from the non-orthogonal angles of
incidence at later detector layers. Hence, these deviations are eliminated
in the reweighted fast helix fit. The broken lines pull width differs from
the fast helix pull widths. Since the broken lines fit also includes the non-
existing scattering angles, the error description contains extra terms that
impair the result. This leads to an error overestimation and thus a pull
distribution width smaller than one.

6.3.2 Scattering Regime
To inspect the effect of pure multiple scattering, the algorithms are also
tested in a simulation without pixel errors. Here, the simulation uses a
layer thickness of 0.001X0 for the multiple scattering effects. The spatial
weights are calculated using an arbitrarily small pixel size of 1× 10−6 µm
and the scattering weights use the simulated thickness.

The resulting delta and pull distributions are displayed in Figure 6.5,
Figure 6.6 and Figure 6.7. The distributions are again well modeled by a
Gaussian and the delta distributions show no sign of bias. Only the pull
distribution for the broken lines fit seems to be slightly skewed. This is
most likely a remnant of the choice of a fixed sign of the initial value of κ.
The width of the delta distributions is now one order of magnitude higher
than in the spatial regime (σspatial ∼ 0.064m−1 vs. σscattering ∼ 0.25m−1).
This confirms that the scattering uncertainties are indeed dominating in
this setup and manifest in the higher delta variance. However, the broken
lines fit does not improve in resolution with respect to the fast helix fits.
An explanation is given in detail in section 6.4.
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Figure 6.5: The fast helix fit κ delta and pull distributions in the scattering
regime.
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Figure 6.6: The reweighted fast helix fit κ delta and pull distributions in
the scattering regime.
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Figure 6.7: The broken lines fit κ delta and pull distributions in the scatter-
ing regime.
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The pull widths for the fast helix fits are orders of magnitude off.
This is not surprising since the influences from multiple scattering on
the measurement variances are not considered. Only the broken lines fit
provides a correct error description.

6.3.3 Full Range
To test the full parameter range, a sample of 1× 105 tracks drawn from
the full parameter range is used. The resulting resolutions depend on the
initial particle momenta and are binned in κ. For each bin, the width of
the delta and the pull distribution is calculated and shown. The displayed
x-error corresponds to the bin width and the y-error reflects the statistical
error of the distribution widths.
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Figure 6.8: The κ resolution and pull distribution widths for all three fit
algorithms in the spatial regime for the simplified geometry. The broken
lines fit in the left plot is completely covered by the fast helix fit results.

In the case of the purely spatial regime, the resulting performance can
be seen in Figure 6.8. The absoluteκ resolution decreases with increasingκ
for all algorithms. The fast helix fits have equal resolution and the broken
lines fit resolution is slightly worse in the high κ regime. This is most
probably an artifact of the chosen finite layer thickness that does not
completely supress multiple scattering.

The pull widths differ for the three fit algorithms. The reweighted fast
helix fit performs best and gives the correct error description over the full
range. The regular fast helix fit slightly overestimates the errors. This effect
is more pronounced for high curvatures where the angles of incidence are
more inclined. The broken lines fit is constantly overestimating the errors
due to the inclusion of the non-existing multiple scattering as described
above.
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Figure 6.9: The κ resolution and pull distribution widths for all three fit
algorithms in the scattering regime for the simplified geometry.

The fit performance in the scattering regime without pixel errors is
shown in Figure 6.9. Here, the behavior is quite different from the spatial
regime. The resolution increases with increasingκ for all fitting algorithms
and only the broken lines fit provides a correct error description.

Simulating both pixel errors and multiple scattering results in similar
performances as in the case with solely multiple scattering. The complete
simulation will be explained in full detail when discussing the results for
the MU3E baseline geometry.

6.4 Baseline Geometry
After showing that the implementations of the two fit algorithms work as
expected, I will proceed to check their performance for the MU3E baseline
geometry defined in chapter 3. The design in the simulation defines two
double layers of sensors. The detector barrels of the first doublet are posi-
tioned at radii 1.58 cm and 2.41 cm and the second double layer is at radii
6.14 cm and 7.03 cm. These values correspond to the median radii of the
physical sensor layers. The sensor pixels are assumed to be quadratic with
a size of 100µm in both directions. Multiple scattering is simulated at each
detector layer assuming a thin scatterer with a thickness of 0.001 in units
of the radiation length X0. An exact knowledge of the composition of the
layers in terms of specific materials is not required, since the simulation
is not using a full scattering simulation. All tracks are generated in the
transverse plane only, i.e. the parameters tan λ and z0 are fixed to zero and
the other parameters are drawn from a uniform distribution as defined
above.
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The chosen values for the pixel size and the detector thickness differ
slightly from the proposed values defined in chapter 3. This is a deliberate
choice. The simplified simulation is missing several effects that will exists
in the real detector such as multiple scattering in the helium atmosphere
or noise hits. Using higher values, e.g. for the detector thickness, can
compensate for these missing effects. In addition, we are interested in
the general feasibility of broken lines track fitting in the context of the
MU3E experiment and not yet in the detailed description of the expected
performance, e.g. as it would be required for a technical design report.
Here, the absolute values for the achievable resolution are not as important
as the differences between the fit algorithms. Therefore, the chosen detector
parameters are reasonable estimates for the task at hand and should be
fit to give insights into the possible performance improvements with the
broken lines fit.

Again, the performance of the following three fit algorithms is com-
pared: the plain fast helix fit (fast helix 1), the fast helix fit with a single
additional iteration to correctly project the spatial uncertainties (fast helix
2) and the broken lines fit. In addition, I will focus on all the transverse
parameters.

6.4.1 Parameter Resolution at the First Hit

Eventually, the parameter resolution needs to be determined at the vertex
position of a possible signal decay. Since at this stage only single tracks
are considered, no associated vertex position exists. Instead, an arbitrary
reference point needs to be chosen. The natural reference points for the
broken lines fit are the intersections of the reference track with the detec-
tor/scattering planes. Here, the intersection with the first detector layer
is chosen. This position is closest to the target and should allow a precise
propagation to a possible vertex position.

Figure 6.10 shows the fit performance for κ. The absolute resolution
plot on the left side shows very little difference between the algorithms.
The overall increasing difference between simulated and reconstructed
parameter for higherκ is due to the increased effects frommultiple scatter-
ing for lower momenta. The fact that all fits perform equally is unexpected
in case of the broken lines fit. However, it can be explained by the defini-
tion of the correction to κ in the broken lines fit. ∆κ is a global correction
that plays a role solely in the definition of the reconstructed kink angles.
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Figure 6.10: κ resolution and pulls for the baseline design. The reconstruc-
tion pivot is set to first hit position.

With just four layers, only two reconstructed kink angles are defined. This
provides not enough constraints to enhance the kappa resolution.

In contrast to the resolution, the pull widths, shown in the right plot,
differ amongst the algorithms. Both fast helix fits underestimate the errors
with increasing margins as the effect of multiple scattering increases. This
is expected since the fast helix fits do not take the additional measurement
uncertainties due to multiple scattering into account. The broken lines fit
does and provides a correct error estimate over the whole simulated κ
range.

The reweighted fast helix fit performsworse than the regular one. In the
second iteration, the variances for the later measurements are reduced to
account for non-orthogonal angles of incidence. This is correct for tracking
in the spatial regime. However, the scattering regime quite the opposite
is true. The effect of multiple scattering on the expected measurement
variance2 is more pronounced for later measurements. Therefore, the vari-
ances should increase. The fact that the reweighted fast helix fit performs
worst and the broken lines fit performs best in error description, indicates
that the baseline design is dominated by multiple scattering uncertainties.

Figure 6.11 shows the resulting performance for theφ parameter. The
resolution increases in general with increasing κ. Again, this can be at-
tributed to the increasing effects of multiple scattering. In contrast to the κ
case, the broken lines fit shows an improvement in resolution forφ. This
improvement of up to approx. 20% is more pronounced with higher κ. In
the broken lines fit, the track angle at the first hit is not a global parameter
anymore. It is essentially determined by the first two hit positions and

2In the case of a global circle/helix fit.
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Figure 6.11:φ resolution and pulls for the baseline design. The reconstruc-
tion pivot is set to first hit position.

the influence from subsequent measurements is greatly diminished. The
behavior of the error description is almost identical to the κ case, i.e. the
broken lines fit describes them correctly and the fast helix fits does not,
and the same explanation applies. Once more, the reweighted fast helix
fit performs worst and the fast helix fit performs best, which can now be
seen in the resolution as well.
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Figure 6.12: dca resolution and pulls for the baseline design. The recon-
struction pivot is set to first hit position.

The performance for the dca parameter can be seen in Figure 6.12. This
parameter exhibits a striking difference of up to approx. 50% in resolution
between the broken lines fit and the fast helix fits. The achievable resolution
from the broken lines fit is almost constant over thewholeκ range, whereas
it increases with κ for the fast helix fits. For the broken lines fit, dca is a
purely local parameter determined by the local offset ui at the first hit
position. It is influenced mostly by the pixel error and almost decoupled of
multiple scattering effects. This is not the case for the fast helix fits where
dca remains a global parameter influenced by multiple scattering. Similar
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to the two previous parameters, the pull widths distribution is flat for the
broken lines fit. However, the underestimation of the errors by the fast
helix fits is less pronounced than in the two previous cases.

Overall, the broken lines fit performs best and the reweighted fast helix
performs worst. This can be seen most clearly in the error description.

6.4.2 Parameter Resolution at the Origin

Based on the definition of the broken lines fit, estimating the parameters
at the first hit is the best case scenario in terms of parameter resolution. At
this position the track parameters have the least correlations. The offset
measurements are mostly determined by the small pixel size and the
reconstructed scattering angles are defined at the hit position itself. No
additional transport of either the parameters or the covariance matrix is
required.

In a more realistic reconstruction scenario, the parameters need to be
reconstructedwith respect to a possible vertex position and the parameters
defined at the first hit need to be transported to the said vertex. The Jacobi
matrix that defines the transformation is non-diagonal (see section 4.4).
This immediately reintroduces correlations among the track parameters
and increases the associated variances. To see how the fit algorithms fare
in this case, the resolution and the pulls can also be calculated with respect
to the origin. After the initial reconstruction, the parameter and their
associated covariances are transported to the origin as a new reference
point using the procedures defined in section 4.4.
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Figure 6.13:φ resolution and pulls for the baseline design. The parameters
are reconstructed at the first hit position and then transported to the origin
of the coordinate system.
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The reconstruction performance for theφ parameter is shown in Fig-
ure 6.13. The overall qualitative picture is quite similar to the initial fit
shown in Figure 6.11. The broken lines fit still gives a higher resolution
but the absolute resolution is slightly increased. This is a result of the
additional errors acquired in the covariance transformation. However, the
error description is still correct for the broken lines fit which implies that
the linear error propagation is sufficient.
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Figure 6.14: dca resolution and pulls for the baseline design.The parameters
are reconstructed at the first hit position and then transported to the origin
of the coordinate system.

Figure 6.14 shows the transported performance plots for dca. Here, the
change with respect to the untransported case in Figure 6.12 is dramatic.
In the former case, the resolution was almost flat for the broken lines
fit whereas in this case the uncertainty increases for higher κ. At the hit
position the dca measurement is almost independent of the scattering
angles, but the following transport depends heavily on the track angle and
its uncertainty. Since the angle uncertainty is dominated by the multiple
scattering uncertainty that depends in turn on the momentum, a decrease
in resolution is seen for lower momentum, i.e. higher values ofκ. However,
the quality of the error description persists.

A plot for κ is not shown because it is invariant under changes of the
reference point. Hence, the performance of the κ fit is independent of the
reference point.

6.4.3 Momentum Resolution
As shown in section 4.5, the transverse momentum pT depends only on the
measurement of the curvature κ as pT = qB

cκ and can be calculated using
the known (simulated) value of the magnetic field. The resulting absolute
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resolution for the transverse momentum is shown in Figure 6.15. Similar
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Figure 6.15: Transverse momentum resolution and pulls as a function of κ.
The tracks were simulated using the baseline design.

to the κ resolution, the broken lines fit does not improve with respect to
the fast helix fit. The error on pt can be calculated from Equation 4.26
using error propagation and the resulting pull plots in Figure 6.15 show
the correct error description for the broken lines fit.

The total momentum resolution also depends on the track angle λ
in the longitudinal plane. Although not presented here, the expected
performance can be estimated from the performance of the broken lines
fit in the transverse plane. Since the broken lines fit for straight tracks, i.e.
the particle motion in the longitudinal plane, is almost identical to the
one for the curved tracks, a similar behavior for the track angle resolution
can be expected. This would entail a resolution increase for λ and, as a
consequence, a resolution increase for the total momentum resolution. The
size of this expected effect and its dependence on κ and λ still need to be
determined.

6.5 Summary
The initial tests of the fit algorithms show that the implementations gener-
ally work as expected. The fast helix fit performs poorly in the presence of
multiple scattering. Its error description is incorrect since the increased
measurement variances due to multiple scattering are not taken into ac-
count. The broken lines fit shows potential for the utilization in the MU3E
experiment, although the missing improvements in terms of κ resolution
are less than what was hoped for. Nevertheless, the error description of
the broken lines fit is correct. Overall, it is clear that the MU3E tracking
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measurements are dominated by multiple scattering and that the effects
due to the finite pixel size are almost negligible.





Chapter 7

Discussion and Outlook

The MU3E experiment is a proposed precision experiment to search for
the lepton flavor violating decay µ+→ e+e+e-. The sensitivity goal is to
measure a branching ratio of BR( µ+→ e+e+e-) < 1× 10−16, four orders of
magnitude below the current experimental limit [Sch+12]. Many theories
for physics beyond the Standard Model predict branching ratios higher
than the proposed sensitivity and below the current experimental limit
of BR( µ+→ e+e+e-) < 1× 10−12. This high precision measurement would
allow a search for new physics at a mass scale beyond what is currently
achievable with direct searches.

To reach the proposed sensitivity a very high reduction of possible
backgrounds is necessary. This entails the need for an extremely pre-
cise measurement of the decay electrons. These electrons have only little
momentum bound by half the muon mass or approx. 53MeV/c. Thus,
multiple scattering effects are the dominating source of measurement
uncertainties.

The MU3E detector is a magnetic spectrometer optimized to measure
the low momentum electrons. It consists of four cylindrical layers of thin
silicon pixel sensors in a strong solenoidal magnetic field. The low number
of sensor layers and its small total material budget are designed to mini-
mize multiple scattering effects. Since the electrons are charged particles,
they move in the solenoidal field along a helix with a curvature dependent
on the particle momentum.

In addition to the required resolution, a high number of stoppedmuons
and their decays need to be analyzed. This requires a high intensity pri-
mary beam. Ultimately, theMU3E experiment intends to use amuon beam
with a muon rate of up to 2× 109 s−1.

65
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Track reconstruction algorithms for this experiment need to be able
to both allow a high precision in the presence of high multiple scattering
and they need to be fast enough to allow the reconstruction of all the
possible decay tracks. In this thesis, a novel track fitting algorithm based
on broken lines was investigated that takesmultiple scattering into account
explicitly [Blo06]. The broken lines fit results were compared with those of
a simple fast helix fit. All studies were performed for the track parameters
describing the motion in the transverse plane.

The fast helix fit is a global least squares fit. It uses the ideal trackmodel
of a helical motion and directly fits it to the measured positions. Each
measurement is weighted according to the pixel resolution. The broken
lines fit is a detailed refit of the residuals from a preceding fast helix fit.
In the residual system, a linearized track model can be used. Scattering
angles are explicitly taken into account using the local offsets and the
kink angles calculated from neighboring positions. The local offsets are
weighted according to the pixel resolution and the kink angle weights
result from multiple scattering theory.

The fast helix fit performs poorly in the presence of multiple scattering.
The error description used for this simple fast helix fit is incorrect since
the additional measurement variances due to multiple scattering are not
taken into account. All estimated parameters depend on all measurements
and are consequently influenced by the correlations induced by multiple
scattering.

The broken lines fit shows improvements in parameter resolution with
respect to the fast helix fit depending on the locality of the estimated quan-
tity. No improvement is seen for the curvature κ as it is a global parameter
in both the fast helix and the broken lines fit and always depends on all
measured positions. The initial track angleφ shows slight improvements
of up to 20% at the maximum simulated curvature. In the broken lines fit,
φ depends only on the first two measurements and is less influenced by
the correlations between later hit positions. The biggest improvement can
be seen for the distance of closest approach dca, with a better parameter
description of up to 50%. It is a purely local parameter and its accuracy
in the broken lines scheme depends almost only on the pixel resolution.
In addition to the improved parameter resolution, the broken lines fit
describes the resulting parameter uncertainties correctly.

An extension to the fast helix fit that uses recalculated weights was also
investigated, but its performance was identical or worse in comparison to
the regular fast helix fit.
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These studies show that for the correct track reconstruction in the
MU3E experiment a correct consideration of multiple scattering is crucial.
Here, the broken lines fit was chosen to treat multiple scattering effects in
the track reconstruction. However, most current particle physics experi-
ments employ iterative track fitting procedures based on the Kálmán-filter
to handle multiple scattering [Fru87]. A comparison of the Kálmán-filter
approach and the broken lines fit was not part of this thesis.

It can be shown that the Kálmán-filter method and the generalized
broken lines fit in three dimensions are mathematically equivalent [Kle12].
Both algorithms are expected to lead to a similar parameter resolution.
However, the former method is an iterative procedure and the latter one
is a non-iterative direct one. Depending on the geometry and the recon-
struction strategy, one of the two methods will be preferred in terms of
computing time. A detailed study of the possible performance differences
in the context of the MU3E experiment remains to be done.

The broken lines fit that was tested here is a two dimensional fit in
the transverse plane. This means that possible correlations between the
transverse and the longitudinal plane are ignored. As mentioned above, it
is possible to generalize the broken lines fit to three dimensions [Kle12]. A
comprehensive analysis of possible improvements with respect to the two
dimensional case would be one of the next steps to consider.

In this study, only single tracks were investigated and a simple simula-
tion was used. For the real experimental situation multiple tracks need
to be reconstructed and common vertices of multiple tracks need to be
reliably determined. The correct error description of the track parameters,
as shown in this study for the broken lines fit in the transverse plane, is a
prerequisite for any possible vertex fit. In addition, a full detector simula-
tion is necessary to allow the selection of a suitable track fitting algorithm
under more realistic conditions.





Appendix A

Derivations

A.1 Helical Tracks

A.1.1 Karimaeki Parametrization
The derivation of the required substitutions to describe the track as a
function of the transverse arc length:

da2 = dx2 + dy2 (A.1)
= ds2 − dz2 (A.2)

=⇒ da
ds

=
√

1− (t̂ · ẑ)2 (A.3)

=
√

1−γ2 (A.4)
α√

1−γ2
=

∥∥t̂0 × ẑ
∥∥√

1− (t̂0 · ẑ)2
(A.5)

=

∥∥t̂0
∥∥‖ẑ‖ sin δ√

1− (
∥∥t̂0
∥∥‖ẑ‖ cos δ)2

(A.6)

=
sin δ√

1− cos δ2
(A.7)

= 1 (A.8)
θ = Qs (A.9)

= − α√
1−γ2

κa (A.10)

= −κa (A.11)
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A.1.2 Covariance Transformation
The Jacobi matrix required for the transformation of the covariance matrix
is given by

J =


1 0 0 0 0
ξ∆‖ ξuν −ξκ2∆‖ 0 0

µζ − τA 2µu∆‖ 2µν 0 0
0 0 0 1 0

ω( 1
κφ
′ −ξ∆‖) ω(1−ξµν) ωξκ2∆‖ (φ−φ′)/κ 1

 (A.12)

with the following additional constants [Kar91; Gro97]:

ν = 1 +κ∆⊥

ξ =
(

B2 + C2
)−1

τ = 1
2 A
(
(1 + U)2U

)−1

µ =
(
U(1 + U)

)−1
+κτ

ζ = ∆2
⊥ + ∆2

‖

ω = tan λ/κ

(A.13)

A.2 Track Fitting

A.2.1 Linear Least Squares Normal Equations

∂S
∂αk

= 2
N

∑
i=1

yi −
M

∑
j=1

Fi jα j

 (−Fik)

= 2
N

∑
i=1

M

∑
j=1

FikFi jα j − 2
N

∑
i=1

Fik yi

= 2
N

∑
i=1

M

∑
j=1

FT
ki Fi jα j − 2

N

∑
i=1

FT
ki yi = 0

(A.14)

A.2.2 Linear Least Squares Parameter Covariance
For linear function of the form y = Fx and a know covariance matrix Σ for
the values of x, propagation of uncertainties yields the covariance matrix
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for the values of y as follows:

Σ = F Σ FT (A.15)

The optimal parameter values are linear functions of themeasurements
in the following form:

α = (FTWF)−1FTW y (A.16)

Using the propagation of uncertainties as defined above and utilizing the
relations W = Σy as well as WT = W, which is due to the diagonality of
W, the parameter covariance matrix can be easily calculated.

Σα =
(

FTWF
)−1

FTWΣyWTF
(

FTWF
)−1

=
(

FTWF
)−1

FTWF
(

FTWF
)−1

=
(

FTWF
)−1

(A.17)
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Performance Plots

B.1 Spatial Regime
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Figure B.1: The fast helix fit parameter delta and pull distributions for the
additional parameters in the transverse plane in the spatial regime.
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Figure B.2: The reweighted fast helix fit parameter delta and pull distribu-
tions for the additional parameters in the transverse plane in the spatial
regime.
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Figure B.3: The broken lines fit parameter delta and pull distributions for
the additional parameters in the transverse plane in the spatial regime.
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B.2 Scattering Regime
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Figure B.4: The additional transverse fast helix fit parameter delta and pull
distributions in the scattering regime.
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Figure B.5: The additional transverse reweighted fast helix fit parameter
delta and pull distributions in the scattering regime.
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Figure B.6: The additional transverse broken lines fit parameter delta and
pull distributions in the scattering regime.
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