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Abstract
The influence of the light flavour non-strange baryon mass spectrum on the ther-
mal model descriptions of particle densities in heavy-ion collisions has been stud-
ied in this work.
A comparison of densities at a fixed temperature kT = 156 MeV and baryochem-
ical potential µB = 0.1 MeV shows that modifications of the mass spectrum have
a strong effect on the hadron densities. This work shows clearly that a further
study in all hadron sectors is vital in order to draw precise conclusions.
Additionally, fits of the model parameters have been done for different mass spec-
tra. The temperature depends weakly on the employed hadron mass spectrum,
while the baryochemical potential is not influenced. The results are inconclusive
with respect to the improvement of fit quality due to addition of hadron states
to the considered spectrum.

Kurzfassung
Der Einfluss des light-flavour-non-strange-Baryonspektrums auf das thermische
Modell zur Beschreibung von Teilchendichten in Schwerionenkollisionen wurde in
dieser Arbeit untersucht.
Ein Vergleich der Dichten bei einer festen Temperatur kT = 156 MeV und einem
festen baryochemischen Potential µB = 0.1 MeV zeigt einen starken Einfluss von
Modifikationen des Massenspektrums auf die Hadrondichten. Diese Arbeit zeigt
klar, dass weiterführende Studien in allen Hadronsektoren notwendig sind, um
präzisere Schlüsse ziehen zu können.
Zusätzlich wurden Fits der Parameter des thermischen Modells für verschiedene
Massenspektren angefertigt. Die Temperatur hängt schwach vom verwendeten
Hadronspektrum ab, während das baryochemische Potential nicht beeinflusst
wird. Die Ergebnisse ermöglichen keine Rückschlüsse auf die Verbesserung der
Fitqualität durch Hinzufügen von Hadronzuständen zu dem betrachteten Spek-
trum.
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1 Introduction

1.1 Physics at the LHC
On the third of June, 2015, the experiments at the Large Hadron Collider (LHC)
took their first physics data after a shutdown of two years. Located at the Euro-
pean Centre for Nuclear Research (CERN), the LHC has been prepared to reach
now a centre-of-mass energy of 13 TeV in proton-proton (p–p) collisions. This is
close to its design energy of 14 TeV. The previous data taking at 7 TeV and 8
TeV lead to interesting results. With the discovery of a candidate for the Stan-
dard Model Higgs boson [1, 2] by the ATLAS1 and the CMS2 collaborations, one
major goal of the p–p program has been accomplished. It was the last undiscov-
ered component of the Standard Model (SM) of particle physics and has eluded
physicists for almost 50 years. Analogous to the Goldstone theorem for global
symmetries, the Higgs mechanism gives an explanation for the masses of the Z
and W± bosons via spontaneous symmetry breaking of the local SU(2)×U(1)
symmetry of the electroweak interaction [3]. The fundamental fermion masses
can also be explained by interactions with the Higgs field.
Relativistic heavy-ion collisions at the LHC are used to study the many-body
physics of the strong interaction. The lead-lead (Pb-Pb) program is dedicated
to the study of strongly interacting matter at high temperature. Under these
conditions, quantum chromodynamics (QCD), the theory of the strong interac-
tion, predicts a new state of matter, the quark-gluon plasma (QGP). The QGP
is characterized by the deconfinement and thermalization of quarks and gluons
inside. Studying its signatures and properties is the main goal of the ALICE3

collaboration. The multipurpose detectors of ATLAS and CMS also participate
in the investigation of the QGP.
The measured hadron yields in Pb-Pb collisions at the LHC are well described by
the thermal model [4]. This phenomenological model, using statistical mechanics
and conservation laws from particle physics, has succeeded over a broad range of
energies, from the AGS over RHIC to the LHC [5, 6]. In 2012, however, the AL-
ICE collaboration published a measurement [7] of the p/π ratio for central Pb–Pb
collisions at √sNN = 2.76 TeV which was lower by about a factor of 1.5 than the
models predicted, resulting in a deviation of more than 9σ at the time. Although
the deviation has been reduced to about 2.7σ [4], what keeps it interesting is the
fact that it concerns protons, very abundantly produced particles in heavy-ion
collisions. This "proton puzzle" is one motivation for this work. One crucial in-

1ATLAS: A Toroidal LHC ApparatuS
2CMS: Compact Muon Solenoid
3ALICE: A Large Ion Collider Experiment
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CHAPTER 1. INTRODUCTION

put for the model calculations is the spectrum of considered hadron states. In
the following, the influence of a modified hadron spectrum on the behaviour of
particle densities and on the parameters of the thermal model is studied. At first,
the underlying physics of heavy-ion collisions, the QGP, and the technical aspects
of the thermal model are discussed. Afterwards, the numerical implementation
of the model is briefly outlined. In the third part, three hadron spectra used
in this work and their modifications are presented. Next, hadron densities and
ratios of hadron densities for all considered cases are calculated and compared to
each other and to ones calculated with the previously employed spectrum. In the
last part of the analysis, the model temperature and baryochemical potential are
extracted from fits on data from the ALICE collaboration.

1.2 The quark-gluon plasma and heavy-ion
collisions

The strong interaction, one of the four fundamental interactions, exhibits two
characteristic properties: ’confinement’ and ’asymptotic freedom’ [8] . ’Confine-
ment’ states that the quarks and gluons, the fundamental strongly interacting
particles, can never be seen isolated. They are always confined into composite
particles, i.e. hadrons. The hadrons can be divided into mesons, bound states
of a quark and an anti-quark, and baryons, bound states of three quarks. In
order to separate quarks bound in a meson, for example, one needs to spend so
much energy that another quark anti-quark pair is formed and the now separated
quarks are again parts of two new mesons. ’Asymptotic freedom’ describes the
behaviour of the strong interaction and short distances or high momentum ex-
change, which leads to a decrease of the coupling constant αS. In this situation,
it states that quarks and gluons behave like (quasi-)free particles, due to the de-
creased αs. Asymptotic freedom could be seen in deep-inelastic lepton-nucleon
scattering experiments [9], where quarks were found to be point-like constituent
particles of the protons and neutrons.
At very high energies and/or high baryochemical potential µB, QCD predicts a
phase transition [10] from normal hadronic matter into new forms of matter. Fig.
1.1 shows the assumed phase diagram [11]. One of these new high temperature
states is the QGP. It is characterized by the deconfinement of quarks and glu-
ons. In the QGP, they can move freely and are not forced into bound states of
hadrons. Another property of the QGP is the chiral symmetry restoration: the
quarks acquire their ’current’ masses. For the three light quarks, these are much
smaller than their ’constituent’ masses, which can be assigned to bound quarks.
In the case of up- and down-quarks, their current masses of approx. 2 and 5
Mev/c2 are about 100 times smaller than the constituent masses of about 300
MeV/c2 [11].
The QGP is assumed to be formed in ultrarelativistic heavy-ion collisions. At
the LHC, the Pb-Pb collisions have been measured at a centre-of-mass energy
of √sNN = 2.76 TeV. There, a ’fireball’ of very high energy density is created.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Schematical phase diagram of QCD. At low temperatures and low
baryochemical potential µB, normal hadronic matter resides. Increas-
ing µb might lead to a state of colour superconducting matter, while
higher temperatures lead to the QGP. The nucleon chemical potential
at zero temperature µ0 ≈ 938 MeV, as well as the transition temper-
ature at zero chemical potential T0 are also shown. Figure taken
from[11].
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CHAPTER 1. INTRODUCTION

The interactions are assumed to be strong enough to establish a local thermal
equilibrium within a very short time (0.1 to 1 fm/c), such that a QGP is formed.
This picture is strongly supported by the successful application of hydrodynamics
[12].
After the initial collision and the formation, the fireball expands and cools down.
At a critical temperature Tc, the system undergoes a phase transition, where con-
finement is restored and the chiral symmetry is broken. The fireball consists now
of many mesons and baryons, which still interact, for a short time, inelastically.
The particles are assumed to be in chemical equilibrium at this stage, . Having
further cooled down in this time, the particles cease to scatter inelastically at a
certain temperature Tch, below which elastic scattering dominates. This process
is called ’chemical freeze-out’, Tch the ’chemical freeze-out temperature’. After
the chemical freeze-out, the hadron abundancies are assumed to not change any
longer and the particles are assumed to be in chemical equilibrium. In order to
achieve chemical equilibrium after the phase transition, inelastic scattering is nec-
essary. But this interaction becomes less likely since the mean free path increases
of the particles due to the decreasing density during the continuing expansion. It
has been shown that especially for multistrange particles, high particle densities
such as they are present close to the phase transition temperature, are needed
[13]. Therefore, kTc can only be larger than kTch by a few MeV, with k the
Boltzmann constant. After further expansion, elastic scattering processes cease.
Now the momenta of the particles are fixed and the hadrons are measured in the
detectors. This is called the ’kinetic freeze-out’. It is not yet clear how much time
is spent between these two freeze-outs in the hadronic face, or whether there is
any time spend at all [14].
It has to be noted that the theoretical approach to the phase diagram faces many
difficulties. In four-dimensional Minkowski space, the field equations on QCD
cannot be solved analytically. And unlike in quantum electrodynamics, the large
coupling constant αs, which is of the order of unity at low energies, makes per-
turbative approaches unapplicable. Only at high energies does the value of αs
drop below unity, αs(mz) ≈ 0.12, and power series in αs may converge. For low
energy or long range solutions, QCD on a discretized spacetime lattice, or lattice
QCD (LQCD), can be applied as a non-perturbative approach. After calcula-
tion of the desired quantities on the lattice, the limit of vanishing lattice spacing
has to be taken in order to obtain the physical values. LQCD has shown much
promise in predictions of many properties of strongly interacting systems, but is
still struggling with calculations at high µB or low quark masses. In fact, at LHC
energies, the phase diagram of strongly interacting matter is probed at close to
vanishing baryochemical potential and high temperature. Lattice QCD calcula-
tions at vanishing baryochemical potential indicate that the matter created at the
LHC undergoes a rapid smooth crossover from deconfined and chirally restored to
hadronic matter [15, 16]. For lower energies and higher baryochemical potential,
the phase transition is assumed to be of first order [17].
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CHAPTER 1. INTRODUCTION

1.3 Statistical mechanics
The thermal model description of hadron densities in heavy-ion collisions is based
on equilibrium thermodynamics. Equilibrium thermodynamics is usually used to
describe systems with a large amount of degrees of freedom (d.o.f.) - one litre of
gaseous helium for example displays a number of d.o.f of the order of 1022. By
giving up the knowledge about every single d.o.f., i.e. the microstate of the sys-
tem, and rather focussing on a few characteristic parameters, i.e. the macrostate,
one can calculate and predict properties of thermodynamic systems much easier
than solving the associated differential equations for every d.o.f. seperately. This
ensemble theory has shown itself to be very powerful in describing systems with
many d.o.f. by going over to so-called ensemble values. These quantities are for
example the energy of the system, the volume, its entropy or temperature.
Besides the high number of d.o.f., standard thermodynamics needs the concept of
equilibrium to work properly. A system is in equilibrium if its ensemble averages
do not change in time any more. Only in equilibrium are the above-mentioned
quantities properly defined and usable. The theoretical understanding of equili-
bration in heavy-ion collisions is still not complete and under discussion.
There are three different types of ensembles: microcanonical, canonical, and
grand canonical. The construction of these ensembles is based on extremizing
the entropy while at the same time obeying the constraints of known properties
of the systems. In a microcanonical ensemble, the energy E, its volume V and
the number of particles N are exactly known. Every microstate that leads to this
macrostate can be found with the same probability. Thus, these three quantities
are sufficient to describe our system.
In a canonical ensemble, exchange of energy with the environment is allowed,
therefore the knowledge of E is not exact any more. Only the average energy
is known. To extremize the entropy with this constraint, one can introduce a
Lagrange multiplier β. This object is connected to the physical temperature T
by β = 1

kT
, with the Boltzmann constant k. Instead of the energy, one can now

describe the system with T , V , and N .
The grand canonical ensemble is characterized by the exchange of heat and par-
ticles. So now one needs to introduce a second Lagrange multiplier to obey the
constraints on E and N . It turns out that a convenient choice for this multiplier
is β · µ, with µ the so-called chemical potential. The chemical potential µ, which
has the dimension of an energy, can be thought of as the cost of energy to add
one particle to the system. If more than one type of particles are present, one
needs to introduce a chemical potential µi for each type. For this type of system,
the characteristic parameters are T , V , and all µi.
In the following model, the grand canonical formulation is used to describe ther-
modynamic properties of the medium created in heavy-ion collisions. With one
adjustment: When looking at a relativistic system of strongly interacting parti-
cles, the (not conserved) total number of particles is replaced by the conserved
quantities, namely one component of isospin, baryon number, strangeness and
charm. Therefore, we have four chemical potentials, one for each of these quan-
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CHAPTER 1. INTRODUCTION

tum numbers.
For thermodynamic calculations, the partition function is a very useful quantity.
In the grand canonical ensemble, the partition function Z of an ideal relativistic
quantum gas in terms of the canonical partition function Z is given by:

Z(T, V, µ) =
∞∑
N=0

eβµNZ(T, V,N) (1.1)

=
∞∑
N=0

eβµNTr[e−βH ] (1.2)

=
∑
[kl]
e
−β
∑
l

(εl−µ)kl
=
∏
l

∑
kl

e−β(εl−µ)kl (1.3)

=


∏
l

1
1−e−β(εl−µ) , for bosons,∏

l
(1 + e−β(εl−µ)), for fermions, (1.4)

where H is the Hamiltonian of the system, εl =
√

(plc)2 + (mc2)2 its l-th eigen-
value, kl the occupation number of the l-th state, and [kl] one possible combi-
nation of occupation numbers. Again, one has to bear in mind that the N in
this formula is not necessarily the particle number, but rather a representative
conserved quantity. In order to regain the status of particle number, one can
define a chemical potential for each species in the following way:

µi = µBBi + µI3I3i + µSSi + µCCi (1.5)

with the baryon number Bi, the third component of isospin I3i, the strangeness
Si and the charm Ci of the particle species i, and the corresponding chemical
potentials µB, µI3 , µS and µC . To calculate for example the number density ni
of particle species i, one can make use of the Laundau- or grand potential ΦG:

ΦG(T, V, µ) = E − TS − µN = −PV = − 1
β

lnZ (1.6)

with the entropy S and the pressure P . In the thermodynamic limit of infinitely
large volume, one can write:

lim
V→∞

lnZi = lim
V→∞

∑
l

± ln(1± e−β(εl−µi)) (1.7)

= lim
V→∞

gi
∑
p

± ln(1± e−β(ε(p)−µi)) (1.8)

= lim
V→∞

gi
1
∆
∑
p

±∆ ln(1± e−β(ε(p)−µi)) (1.9)

= ±gi
V

(2π~)3

∫
d3p ln(1± e−β(ε(p)−µi)) (1.10)

= ±gi
V

2π2~3

∞∫
0

dp p2 ln(1± e−β(ε(p)−µi)), (1.11)
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CHAPTER 1. INTRODUCTION

with gi being the spin degeneracy factor and ∆ = (2π~
L

)3 the position-space volume
element for a given discrete momentum p. The positive sign applies to fermions,
the negative one to bosons respectively. Now, for the density ni, we get:

ni = − 1
V

(
∂ΦG

∂µi

)
V,T=const

= gi
2π2~3

∞∫
0

dp p2

eβ(ε(p)−µi) ± 1 (1.12)

A more detailed description of thermodynamics can be found in [18].
The number of produced hadrons in central Pb-Pb collisions may be of the order
of ten thousand, but still small compared to other thermodynamical systems. Be-
cause of the small size of the system, the canonical approach for the strangeness
is deemed more accurate. The difference between these two approaches is given
by the implementation of the conservation laws. In the canonical ensemble, the
conservation laws must be obeyed locally and they have to be implemented on an
event-by-event basis. This leads to a major reduction of phase space for strange
particles compared to the grand canonical approach, where conservation laws have
to be obeyed on average. This difference is known as canonical suppression of
strangeness. It has been shown, however, that the difference between calculated
hadron densities in these two approaches depends on the number of participants
in the collisions Npart and the centre-of-mass energy. For a high number of par-
ticipants, the two formulations yield almost equal hadron densities. For example,
at top SPS energies, deviations of about 10% can be seen for moderately central
Pb-Pb collisions, corresponding to Npart ≈ 100. Therefore, the grand canonical
ensemble can be used accurately to describe at least central collisions with a a
large number of participants at high energies [19].

1.4 The Hagedorn spectrum
An important theoretical approach to the phase transition of strongly interact-
ing matter is the Statistical Bootstrap Model (SBM) developed by Hagedorn in
the 1960s [20]. In this model, the produced fireball is said to consist of smaller
fireballs, which consist of smaller fireballs themselves. This is known as the ’Boot-
strap Condition’. Hagedorn predicted, at least for large masses, an exponentially
growing mass spectrum ρ(m) for hadrons,

ρ(m) ∝ 1
ma

em/T0 (1.13)

with a characteristic temperature T0 and a model parameter a [20]. In the SBM,
the partition function Z(T, V ) features a singularity at T0, giving rise to the
interpretation of a limiting temperature for hadronic matter. The nature of the
singularity is given by the parameter a. The hadron spectrum in the 1960s lead to
the values kT0 = 160 MeV and a = 5

2 , displaying an exponential character which
hasn’t been realised before. Hagedorn’s choice for a also lead to a singularity in
the energy density at T = T0, reinforcing the limiting character of T0.
For a larger value of a, namely a > 7

2 , however, a finite value for the energy

8



CHAPTER 1. INTRODUCTION

density could be achieved, making the transition into a phase possible where a
new description of matter would be needed. Today, this temperature is assumed
to be the critical temperature for the phase transition from hadronic matter to
the QGP.
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2 Implementation of the thermal
model

As illustrated in Section 1.3, the thermodynamics of heavy-ion collisions can be
described in the grand canonical formalism by six parameters. Four of these
parameters can be fixed by conservation laws.
The volume can be determined from the conservation of baryon number:

V
∑
i

niBi = Z +N (2.1)

with the number of protons Z and the number of neutrons N that participate in
the collision. Next, the strangeness and charm chemical potentials µS and µC are
determined by their respective conservations, leading to following conditions:∑

i

ni(µs)Si = 0 (2.2)∑
i

ni(µC)Ci = 0 (2.3)

At last, the conservation of the third component of isospin I3 fixes µI3 :

V
∑
i

ni(µI3)I3i = Z −N
2 (2.4)

, leaving a total of two free model parameters: the temperature at the chemical
freeze-out Tch and the baryochemical potential µB. For a more accurate descrip-
tion, interactions between particles have to be introduced to the equations of
section 1.3. It has been argued that the attractive interactions can be imple-
mented by counting the resonance states of every particle separately as a particle
of its own [21]. For the repulsive interactions, the code features an eigenvolume
correction after Rischke, Gorenstein, Stöcker and Greiner [22, 23]. The particles
are assumed to be hard spheres of a certain radius R and are not allowed to come
closer than a distance of 2R. This resembles the Van-der-Waals correction for
classical ideal gases. A common radius for mesons and baryons of R = 0.3 fm is
currently applied. The corrected density formula is now given by:

nexcli (T, µ1, ..., µm) = ni(T, µ̂i)
1 +∑

j v0,jnj(T, µ̂j)
(2.5)

where µ̂i is given by

µ̂i = µi − v0,iP
excl(T, µ1, ..., µm) (2.6)

10



CHAPTER 2. IMPLEMENTATION OF THE THERMAL MODEL

with the pressure P excl and v0,i the eigenvolume of the hadron. The thermal
code calculates the thermodynamic properties and provides data, which can be
compared and fitted to experimental data and can be even used for predictions.
It uses the following procedure: As a first step, the initial1 (primordial) hadron
densities given by equation 2.5, the total charm, strangeness, and third component
of isospin are calculated for a given temperature and baryochemical potential.
Next, in form of several successive loops, the conservation laws2 are checked and,
if not fulfilled, the associated chemical potential is corrected. After correction,
the code runs again from the innermost loop until the deviations become small
enough compared to the output. Following these loops, the entropy and energy
density are calculated. As a last step, the densities after particle decays mediated
by the strong and weak interaction (strong and weak decays) are calculated.
One crucial part of the thermal code is the listing of considered hadron species. It
contains all necessary information about the hadrons, from mass over degeneracy
g due to total angular momentum J to branching ratios of its decay channels.
As of the beginning of 2015, 223 mesonic and 324 baryonic states were included.
This includes 123 nonstrange mesons, 32 strange ones, 40 charmed mesons and
28 bottom mesons. On the baryon side, 48 nonstrange baryons, 48 strange ones,
56 charmed and 14 bottom baryons. Light nuclei such as deuteron or triton,
combinations of mesons and baryons, and even hypernuclei, nuclei containing
hyperons, are also listed as possible collision products. These states and their
antiparticles account for 62 entries. Table 2.1 shows an example of such a state
with the information provided by the list. The width stands for the Breit-Wigner
width of the resonance state. The threshold denotes the lower boundary of the
distribution. Both are used in corrections of the densities [24], which are negligible
at LHC energies. The number of possible decay products is denoted in the seventh
column, the products themselves listed as decay modes in the eight one. In the
next column, the probabilities for these particles to result from decays are listed.
As the code computes the hadron densities after all strong and weak decays, the
individual branching ratios of the decay channels can be added up to get the
cumulative probability of a particle to be produced in the decay of the resonance.
The code does not distinguish between the different decay channels, as one is only
interested in the final overall densities for each species.
Apart from interactions, the measured hadron yields include also the particles

coming from decays of higher mass states. To account for these, information
on the decay properties of each individual state is needed. The implementation
of the decay chains is another important part of the code. In the beginning,
the code creates a quadratic array Rmn, whose diagonal entries are given by the
primordial densities of every state listed in the hadron spectrum. The densities
are calculated as in equation (2.5). This array stores all hadrons of every sort ever
seen in the detector. In the beginning, the code creates a quadratic array Rmn,
whose diagonal entries are given by the primordial densities of every state listed
in the spectrum. The densities are calculated as mentioned above. This array will

1initial meaning before any decays
2still no equations in theory part
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Resonance g Mass in MeV Width/Threshold in MeV I3 charge in e # decmod decay modes decay prob.
p 2 938.3 +1/2 +1 0
n 2 939.6 −1/2 0 0

n 0.483
p 0.267
π+ 0.542

p(1440) 2 1440 300 / 1073 +1/2 +1 8 π0 0.417
π− 0.142

∆++ 0.125
∆+ 0.083
∆0 0.042
n 0.267
p 0.483
π− 0.542

n(1440) 2 1440 300 / 1075 −1/2 0 8 π0 0.417
π+ 0.142
∆− 0.125
∆0 0.083
∆+ 0.042

Table 2.1: Example of 3 hadron states with the information found in the list. De-
tailed explanation of the entries can be found in the second paragraph
of this section.

later store all particles of every sort which are either present in the final state or
which are at least potentially reconstructable from the final state particles. Next,
the decay array Dmn, is worked out. Its entries give the probability of state m to
decay into state n. To now get the resulting densities, one needs to do repetitive
matrix multiplications. The very first two iterations are as follows: The code fills
a decay vector dh with the results of the first decay, i.e.

dh = Dmh ·Rmm, (2.7)

which is then added to the result array,

Rafter
mh = Rbefore

mh + dh, (2.8)

filling the m-th row with the densities of the decay products h. The next step is
composed of calculating the result vector rj,

rj = Dhj · dh, (2.9)

which is just another matrix multplication with the decay array. This result
vector contains the densities after a second round of decays and is also added to
the result array in the same manner as in equation (2.8). And by now making
the result vector the new decay vector, an iterative algorithm is defined that lets
all states decay until there is nothing unstable left.

12



3 Modifications of the Hadron List

3.1 Hadron spectra
As discussed above in formula (1.1), the partition function of the system and
therefore the calculation of particle densities, depend on the spectrum of per-
mitted states kl. The newest experimental results on the hadron spectrum and
particle physics in general are collected by the Particle Data Group (PDG) and
published biennially. The hadron states are rated after the quality and quantity
of evidence for their existence, ranging from poor (*) to certain(****) evidence
for existance. This work will be based on the most recent version [25] from 2014.
In this chapter, three different mass spectra to be used later in the calculations
are presented. These spectra will differ in their respective N and ∆ resonance
sectors.
The N and ∆ resonance states consist of u- and d-quarks. They differ in their
total isospin: the N states have a total isospin of I = 1

2 , the ∆ states have I = 3
2 .

As the lightest baryons, when keeping the quantum numbers constant, they are
produced more abundantly than the heavier ones in heavy-ion collisions. There
are several problems with the identification of these resonances. As one can see in
Fig. 3.1, the total pπ cross section shows one distinctive peak at

√
s ≈ 1200 GeV,

corresponding to the ∆(1232) resonance and three smaller peaks at
√
s ≈ 1700,

2000 and 2500 GeV can be seen. Other distinctive features are not present. The
extraction of the resonant ∆ states is difficult due to the broadness of each of these
resonances and the shadowing of smaller peaks by the ∆(1232). This problem
could be solved by improved statistics. With enough data, eventually all peaks
and their corresponding resonance states could be identified. What hinders the
extraction more is the interference of these states: As they all are produced in
the same process with the same initial and final state, Nπ → N∗ or ∆∗ → Nπ,
the total cross section is proportional the absolute square of the sum of each
amplitude,

σtot ∝ |
∑
i

Mi|2 (3.1)

where i denotes the resonances. This leads to many interference terms which
make the identification highly non-trivial. The experimental method to extract
the non-strange light flavour resonance states from cross sections is a partial
wave analysis. Here, the amplitudesM are expanded in partial waves. There are
different ways and different approximations used by the various groups, leading
to a variation of spectra for the N and ∆ states.
In the following, the three considered spectra are discussed in more detail.

13



CHAPTER 3. MODIFICATIONS OF THE HADRON LIST

Figure 3.1: Total and elastic pπ+ cross section. Most prominent feature is the
∆(1232) peak. Plot taken from [25].

GWU-modified PDG 2014
The first particle spectrum is a variation of the PDG 2014 hadron list. This
spectrum takes the recent partial wave analysis from the George Washington
University (GWU) into consideration, meaning that only states that have rea-
sonable evidence for their existence and that were found by the GWU analysis
are considered and implemented in the code. The PDG states this analysis as the
most recent and most complete. Reasonable evidence is assumed to be given by
a rating of (**). This spectrum contains a total of 20 N states (including proton
and neutron) and 10 ∆ states. Compared to the version of 2008, 8 nucleon and
9 ∆ resonances are removed from the list of considered states, whereas only 5 N
states are added, leading in total to a reduction of the overall number of possible
resonances.

PDG 2014 unmodified
The next spectrum is an unmodified version of the non-strange light-flavour reso-
nance listing put together by the PDG as of 2014. In this version, all states with
a rating of (**) or higher are considered as possible states and therefore listed in
the code, even if they were not found by the GWU analysis. This second version
adds 8 Ns and 1 ∆ compared to the spectrum from the 2008 edition, while only

14
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N states ∆ states
p,n

N(1440) ∆(1232)
N(1520) ∆(1600)
N(1535) ∆(1620)
N(1650) ∆(1700)
N(1675) ∆(1905)
N(1680) ∆(1910)
N(1720) ∆(1930)
N(1860) ∆(1950)
N(1880) ∆(2400)
N(2000) ∆(2420)
N(2040)
N(2120)
N(2190)
N(2220)
N(2250)
N(2300)
N(2570)
N(2600)

Table 3.1: List of light flavour nonstrange baryon states in the GWU-modified
PDG 2014 spectrum

15



CHAPTER 3. MODIFICATIONS OF THE HADRON LIST

N states ∆ states
N(1700) ∆(1900)
N(1710) ∆(1920)
N(1875) ∆(1940)
N(1895) ∆(2000)
N(1900) ∆(2150)
N(1990) ∆(2200)
N(2700) ∆(2300)

∆(2350)
∆(2390)
∆(2750)
∆(2950)

Table 3.2: List of additional states in the unmodified PDG 2014 hadron spectrum.

removing 2 of the nucleon resonances.

PDG 2014 with LQCD spectrum
The third spectrum includes the unmodified PDG 2014 resonances as well as
states that have been taken from LQCD calculations [26]. The baryon excitations
have been calculated at a pion mass of mπ = 396 MeV/c2. The full spectrum
can be seen in Fig 3.2. In order to obtain the masses of the excited states at
the physical pion mass of about 140 MeV/c2, the following scaling procedure
is applied: At first, the masses of the different states are extracted from Fig.
3.2. Afterwards, the known resonances are identified in the lattice spectrum
through their masses, the mass ordering, total angular momentum and parity.
The average difference between the lattice masses and the ones in the PDG for
the identified states are of the order of 10% for both N and ∆ resonances. Then,
for these resonances, the mass ratio between LQCD and PDG is calculated as an
individual scaling factor fi. Next, the average of the fi is determined in order to
obtain an overall scaling factor f . This procedure is separately applied for the
N and ∆ states. For the Ns, the scaling factor fN ≈ 0.7088 and for the ∆s the
factor f∆ ≈ 0.7600 has been calculated. The maximum deviation δf,max between
individual and average factors is approximately δfN ,max

fN
= 15% for the N states

and δf∆,max
f∆

= 18% for the ∆ resonances. Afterwards, these scaling factors are
applied to the masses obtained from [26].
This spectrum contains 23 additionalN and 10 additional ∆ resonances compared
to the version PDG 2014 version.
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Figure 3.2: Light flavour non-strange baryon spectrum calculated from lattice
QCD. The total spin of the states is given on the x-axis. The y-axis
shows the mass of the states in multiples of the Ω mass calculated on
the same lattice, in order to remove explicit scale dependence. Fig.
taken from [26]

N states N states ∆ states
N(1200) N(1779) ∆(1690)
N(1290) N(1813) ∆(1700)
N(1315) N(1849) ∆(1766)
N(1529) N(1896) ∆(1780)
N(1552) N(1908) ∆(1931)
N(1588) N(1909) ∆(2033)
N(1600) N(1920) ∆(2059)
N(1612) N(1967) ∆(2097)
N(1623) N(1973) ∆(2135)
N(1635) N(2074) ∆(2364)
N(1683) N(2169) ∆(2465)
N(1778)

Table 3.3: List of additional states calculated from LQCD.
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3.2 Decay properties
The implementation of new resonance states into the hadron spectrum requires
information about the decay properties of the corresponding states. If the mea-
sured branching ratios differ by less than 20% between the different analyses
quoted by the PDG, the central value is taken. If measurements differ by more
or no branching ratios are stated, the decays are constructed in analogy to states
with similar masses and angular momentum. The masses are deemed similar if
the deviation is less or equal to 100 MeV/c2. In the case that there are no sim-
ilar states, the properties are calculated by hand with the assumption that only
kinematically allowed two-body decays occur. Then, the partial branching Γ is
given by [25]:

dΓ = 1
32π2 |M|

2 |ppp1|
M2 dΩ (3.2)

with M the decay matrix element, M the mass of the mother particle, ppp1 the
momentum, and dΩ the solid angle of one daughter particle. The momentum is
given by:

|ppp1| =
[(M2 − (m1 +m2)2)(M2 − (m1 −m2)2)] 1

2

2M (3.3)

where m1,2 stands for the masses of the daughter particles. To get an estimate
for the quality of this approximation, the partial branchings for established states
have also been calculated in this manner. Again, the difference between the PDG
values and the approximation are of the order of 10%. For example, the PDG
states for the decay channel N(1520)→ Nπ a branching ratio of ≈ 60%, whereas
the calculated branching ratio is ≈ 54%.
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4 Results
The presentation of the results will be split in three parts. In the first part, using
the thermal model, hadron yields for Au-Au-collisions are computed for a tem-
perature of kT = 156 MeV and a baryochemical potential of µB = 0.1 MeV. The
value for the temperature is the same as the one obtained by the most recent fit
on LHC data [4]. The difference in µB is negligible. The densities are calculated
for the three spectra and then compared to the previous hadron spectrum, last
revised in 2008, and to each other.
In the second part, the calculated yields are fitted to LHC data for Pb-Pb colli-
sions in order to extract values for T and µB. The last part shows a comparison of
the three spectra with Hagedorn mass spectra for different critical temperatures.

4.1 Densities and ratios at fixed temperature
The GWU-modified PDG 2014 hadron spectrum lists less baryon resonances than
the already implemented one. This leads to a minor increase of initially produced
hadrons at a fixed temperature compared to the old version. This increase can be
explained by the eigenvolume correction. Equation 2.5 shows that the removal of
states which would contribute to the sum in the denominator leads to an increase
in density. The hadron yields after strong decays show a different trend. The
proton and neutron densities decrease by about 3.2%. The pion densities decrease
also, but only by a factor of 0.4%. The density ratios for a variety of hadrons can
be seen in Fig. 4.1. The decrease in the proton and neutron, as well as in the
pion and the ∆ resonance densities can be explained by the missing resonances
which would decay into these particles.
The unmodified PDG 2014 mass spectrum consists of more hadronic states than
in 2008. Hence, one can observe the contrary effect for the primordial hadron
yields. As more hadron states are included in the list, more terms contribute to
the sum in the eigenvolume correction, leading to a decrease of initial particle
densities. But now there are more possible baryon states than before and the cal-
culations show that the production of baryons is slightly favoured over the meson
sector. The net baryon number stays the same, it is conserved in the collision,
but the total number of baryons, i.e. the number of baryons and antibaryons,
shows an increase.
This increase leads to a complementary situation after the strong decays to the
one above, which can be seen in Fig. 4.2. The additional resonances decay mostly
into nucleons and pions, and their densities show an increase of about 2.3% for
the proton and neutron, and 0.2% for the charged pions. The primordial densi-
ties of the added resonances can account for this effect, resulting in additional
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Figure 4.1: Ratio of hadron densities. In this plot, the ratio is given by the
densities calculated with the GWU-modified version of the PDG 2014
versus the unmodified PDG 2014 version.
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Figure 4.3: Comparison of the PDG 2014 with LQCD mass spectrum to the un-
modified PDG 2014 hadron list

feed-down protons, neutrons and pions.
The third spectrum, the LQCD motivated one, qualitatively shows the same
trends as the unmodified PDG 2014 case. Quantitatively, given the many ad-
ditions seen in Table 3.3, a rise in protons of about 49.9% and in neutrons of
about 50.1% has been calculated. The charged pions again show a rise of about
one tenth of the nucleons, roughly 4.4%. The discrepancy between the pion and
the nucleon boost can be explained by the fact that most pions come from meson
decay and initial production. Comparison of the absolute densities show a greater
absolute increase in pions than in nucleons, but the amount of pions from mesonic
decays is much greater, leading to the smaller relative gain. Fig. 4.3 shows the
ratios of the LQCD spectrum yields versus the yields from the second spectrum.
The small boost of Λ baryons and the significant rise in ∆ baryons can again be
explained by the decay channels of the higher mass nucleon and ∆ states.

4.2 Fit on LHC data
The yields are fitted to data from the ALICE experiment at the LHC. The fit
routine is based on a χ2 minimization. The uncertainties considered in the fit
are the experimental uncertainties of the hadron yields. Fig. 4.4 shows the
experimental values of particle yields for the 10% most central Pb-Pb collisions at
a centre-of-mass energy of

√
s = 2.76 TeV and the fit of the statistical model yields

for the first scenario. The fit in this case leads to a temperature of kT = 157 MeV
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Figure 4.4: Extraction of Tch and µB from fit on yields for the GWU-modified
PDG 2014 spectrum.

and a chemical potential of µB = 0 MeV. The same values are obtained in the most
recent published fit of the LHC parameters [4]. The GWU modified spectrum
leads to a slightly improved fit qualitiy, the χ2/d.o.f. reduces from 34.4/15 to
28.3/15. The proton and antiproton yields still deviate by more than 2.5σ (cf.
fig. 4.5), but except from the K∗, which has not been considered for the fit, the
predicted yields and the measured ones agree.
The fit results for the full PDG 2014 hadron list is shown in Fig. 4.6. This

spectrum, containing several more states, leads to a very similar temperature of
kT = 156 MeV and a vanishing baryochemical potential. But the quality of the
fit degrades, the χ2/d.o.f. rises from 34.4/15 to 37.4/15. The deviations between
predicted and measured yields grow, the values for proton and antiproton are now
almost 3σ apart. The model shows a trend of overestimating the nucleon densities
while underestimating the strange particle yields. Fig. 4.8 shows the fits for the
lattice spectrum. The temperature drops to kT = 150 MeV, and µB = 0 MeV.
The quality of the fit degrades further, the χ2/d.o.f. = 160.5/15 is significantly
higher than in the other cases. Proton deviation now reach a significant value of
above 3σ. The overestimation of proton yields is now much larger. The other
species are also more strongly underestimated, except for the K∗, which leads to
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the deterioration of the χ2/d.o.f.. Despite the large differences in the spectrum
and the worse fit quality, the temperature does not drop as much as one could have
expected. If one were to not consider the protons in the fit, the largest deviation
would be given by the cascades Ξ±,which differ by approximately 5σ. For the
other species, the thermal model yields and the measured ones still roughly agree.
Excluding the protons might therefore lead to a slightly improved fit quality.
The baryochemical potential is not influenced by the hadron spectrum. It depends
on the ratio between baryons and antibaryons, which is not affected by the number
of different species of baryons considered in the spectrum. In the Boltzmann limit,
where quantum statistics are neglected, µB is given by

µB = 1
2Bi

ln n̄i
ni

(4.1)

with the baryon number Bi and the density ni for a non-strange light flavour
baryon. Apart from the pions, this is a rather good approximation [27]. Eq. 4.1
implies that not the number of states, but the ratio of the particle and antiparticle
densities of the state with the highest baryon number gives the biggest constrain
on µB. The observed influence on the hadron densities can be seen as equal in
all three cases for particles and antiparticles since the differences are negligibly
small. Hence, a vanishing µB, which corresponds to equal production of particles
and antiparticles, is obtained for the

4.3 Comparison to exponential growing spectrum
In the last part, the modified mass spectra spectra are compared to an expo-
nentially growing spectrum, the asymptotic form of the Hagedorn proposal from
section 1.4. The mass spectra are shown as histograms with a bin size of 200
MeV/c2. The masses and temperatures in the histograms are given in natural
units, where the speed of light and the Boltzmann constant are set to unity. The
states are counted according to their degeneracy due to total angular momentum
and isospin. The ∆(1232) resonance, for example, carries a total angular momen-
tum of J = 3

2 , which corresponds to a degeneracy of gJ = 4. The total isospin of
this state is I = 3

2 , leading to a degeneracy due to isospin of gI = 4. Counting
the ∆(1232) resonance adds therefore a total of 16 states to the mass bin from
1200 to 1400 MeV, four states with different third components of J for each of
the four different third components of I.
Fig. 4.10 shows the GWU-modified PDG 2014 mass spectrum in the range from
0 to 4 GeV/c2. For comparison, exponential functions of the form

ρ(m) ∝ 1
kT
· e

m
kT (4.2)

are also shown in the figure, one for kT = 200 MeV, 250 MeV and 350 MeV, in the
range from 0 to 2 GeV/c2. For lower masses up to 2 GeV/c2, the histogram seems
to favour a temperature of 350 MeV, more than twice the temperatures obtained
from the fits. This deviation arises from the validity region of the approximation.
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Figure 4.9: Differences between data and fit for the spectrum of PDG 2014 with
LQCD.

The exponential functions are only approximations of equation 1.13, which is an
approximation for large masses itself [20]. For lower masses, the 1

ma
factor is

expected to become more dominating than the exponential factor. Therefore, if
the spectrum has the form of Eq. 1.13, the number of states in the lower mass
region should be smaller than the exponential function. This effect, although very
small, can be seen for the curve of kT = 350 MeV. For smaller temperatures, the
opposite effect can be seen in the figures.
Furthermore, the temperatures from the fits represent the system at chemical
freeze-out, whereas the Hagedorn temperature signals the phase transition. These
two temperatures do not necessarily need to coincide, as discussed in Section 1.2.
For the higher mass region above 2 GeV/c2, the exponential functions, due to
their monotonous behaviour, continue to rise, whereas the mass spectrum shows
a decreasing number of states for the higher mass region. The deviation can be
explained by the experimental challenge of measuring these states. The spectra
mostly rely on experimental information collected by the PDG. The higher the
mass of a particle or resonance, the more difficult its identification becomes. And
therefore the chance of finding evidence for such a state decreases with its mass.
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Figure 4.10: A histogram of the GWU-modified PDG 2014 mass spectrum. Ap-
proximated Hagedorn spectra for three phase transition tempera-
tures are shown for masses up to 2 GeV/c2.

An analogous plot for the unmodified PDG 2014 spectrum can be seen in Fig.
4.11. The histogram looks very similar to the first one. Again, for low masses,
the temperature of 350 MeV seems to approximate the histogram best. In the
moderate mass range, from 1.2 to 2 GeV/c2, however, the purple curve seems
slightly closer to the spectrum, corresponding to a temperature of 250 MeV. The
additional states, 10 of which are in this mass range, can be taken as an expla-
nation. Again, the highly approximative character of these exponential functions
should be kept in mind when discussing their temperatures.
The spectrum of the PDG 2014 with LQCD states is shown in fig. 4.12. This
spectrum exhibits an even broader peak, caused by the many additional states in
the mass region between 1.2 and 2 GeV/c2. Due to this increase, the exponential
function corresponding to 250 MeV as critical temperature seems to be even more
favoured than in the spectrum before. This reflects again the trend shown by the
chemical freeze-out temperatures, where the lattice spectrum lead to the smallest
temperature. The similarity of the spectra despite the many additions results
from the logarithmic scale.
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Figure 4.11: The unmodified PDG 2014 spectrum shows a broader peak and a
different trend for the temperature than the first one.
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Figure 4.12: The PDG 2014 mass spectrum including the lattice states.
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5 Conclusions
The influence of three different hadron spectra on the calculations of particle
densities in the thermal model of heavy-ion collisions has been studied. The
three spectra differ in their light flavour nonstrange baryon content. The chem-
ical freeze-out temperature Tch and the baryochemical potential µB have been
determined through fits to hadron yields measured by the ALICE collaboration
at the LHC. The spectra have also been compared to approximately exponential
spectra as predicted by Hagedorn.
A dependence of final state hadron densities on the employed spectrum has been
seen. Removing resonance states from the spectrum leads to a decrease in the
densities of their decay products, mostly protons, neutrons and pions. Adding
resonances has the opposite effect, increasing the densities due to additional feed-
down from these states. When modifying the light flavour baryon sector, the rela-
tive influence on the baryon densities is much higher than on the meson densities.
This is induced by a shift of balance between the meson and baryon sector. The
addition of many theoretical baryon states, as has been done in the LQCD case,
without adding the theoretical meson states in the same mass range, promotes
creation of baryons because of additional phase space in comparison to the un-
modified case.
By inverting this logic, if one were to accept the thermal model as universally
valid and applicable despite the deviations for protons in these collisions, one
could derive a test for the existence of theoretical states. If the inclusion of such
a state were to improve fit qualities, one might have an indication for its exis-
tence, whereas a poorer fit quality might indicate its absence. But many further
studies are needed to support or reject this rather strong conclusion. Therefore,
no conclusions about the existence of the proposed lattice states can be made yet,
as the modified spectra display an unphysical character. The chemical freeze-out
temperature shows only a weak dependence on the spectrum. The three cases
lead to temperatures kTch = 157 MeV for the first, kTch = 156 MeV for the second
and kTch = 150 MeV for the third one. The addition of 51 resonance states leads
to a drop in temperature of about 5%, implying a weak sensitivity to changes in
and incompleteness of the spectrum. The removal of states shows an improve-
ment of fit quality and a rise in temperature, whereas the addition again causes
the opposite effects. This tendency, as it might be caused by the aforementioned
imbalance, as well as the temperatures have to be treated with caution. But
the amount of stability of the temperature to such unbalanced changes can be
used for an estimation of the systematic uncertainties. A better estimate can be
achieved by expanding this study to other hadron sectors to reduce the imbal-
ance.
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The baryochemical potential in all three cases is determined to be µB = 0 MeV.
A dependence on the spectrum has not been found. This is in agreement with ex-
pectations. The baryochemical potential µB, which describes the ratio of baryons
and antibaryons, is not expected to depend on how many different baryon species
are considered as intermediate states, but rather on the ratio of produced baryons
and antibaryons. This ratio is compatible with unity at the LHC.
For the mass region up to 2 GeV/c2, all three spectra show an approximately
exponential dependence on the mass. No contradiction to a Hagedorn-like mass
spectrum in this region has been found. The critical temperatures in natural
units for the three scenarios in this approximation have been found to be of the
order of 250 MeV. The mass region above 2 GeV/c2 does not show exponential
behaviour. Whether this is caused by states that have yet to be identified or by
an actually non-exponential spectrum, cannot be concluded at this stage.
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6 Outlook
The considered hadron spectrum has an ample influence on the calculable particle
densities in the thermal model. The implementation of the most complete hadron
spectrum is very important for an accurate description of particle yields when
using thermal model methods. The inclusion of theoretical states has to be done
with caution in order to prevent an imbalance between different sections of the
hadron mass spectrum. To further study the influence and to better estimate
the uncertainties due to an incomplete hadron spectrum, equal studies such as
this one in every domain of the spectrum need to be conducted. Already, lattice
results for the strange baryon sector by the same group are available, as well as
for the isoscalar [28] meson and charmed [29] baryon sector. Due to the strong
increase in computing power and the constantly improving numerical methods,
the results from lattice QCD are expected to become more reliable and precise.
And with the data from RUN2 of the LHC, changes in the experimental results
for particle yields and information on additional states can also be expected.
Thermal model calculations might lead, in the end, to a test for these spectra.
This underlines its crucial role in the phenomenology of heavy-ion collisions.
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