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Messung des Zerfallsratenverhältnisses B(B0
s → J/ψf ′2(1525))/B(B0

s → J/ψφ)
des Zerfallskanals B0

s → J/ψf ′2(1525) in Bezug zum Kanal B0
s → J/ψφ:

Der Zerfall eines B0
s Mesons in den Endzustand J/ψ(µ+µ−)K+K− wird mit-

tels Daten die einer Luminosität von 1fb−1 entsprechen untersucht. Die Daten
wurden im Jahre 2011 am LHCb-Experiment aufgezeichnet. Zusätzlich zu nicht-
resonanten Dreikörperzerfällen B0

s → J/ψK+K− werden die zwei Zerfallskanäle
B0
s → J/ψφ und B0

s → J/ψf ′2(1525) beobachtet. In der vorliegenden Anal-
yse werden Nf ′2

= 2187 ± 111 und Nφ = 13519 ± 149 Zerfälle dieser Art se-
lektiert. Um von diesem Ergebnis auf die Zahl der tatsächlich produzierten
Ereignisse zu schließen muss mit einer Effizienz korrigiert werden. Diese wird
anhand simulierter Daten berechnet und unterscheidet sich leicht für die bei-
den betrachteten Kanäle. Die gemessenen Werte sind: εf ′2 = (0.93 ± 0.01)%
and εφ = (1.10 ± 0.03)%. Als abschließendes Ergebnis wird die relative Zer-
fallsrate der beiden Kanäle B(B0

s → J/ψf ′2(1525))/B(B0
s → J/ψφ) = (21.07 ±

1.26(stat.)+2.63
−1.54(yields)± 0.58(PDG)) % gemessen.

Measurement of the Relative Branching Fraction
B(B0

s → J/ψf ′2(1525))/B(B0
s → J/ψφ) of the Decay Mode B0

s → J/ψf ′2(1525)
with Respect to the Mode B0

s → J/ψφ:

The decay of a B0
s meson into a J/ψ(µ+µ−)K+K− final state is studied us-

ing data corresponding to 1fb−1 of integrated luminosity. The data was col-
lected at the LHCb experiment in 2011. In addition to non-resonant 3-body
decays B0

s → J/ψK+K−, decays by the two channels B0
s → J/ψf ′2(1525) and

B0
s → J/ψφ are observed. In this analysis Nf ′2

= 2187 ± 111 and Nφ =
13519 ± 149 of those events are selected. To determine the actual number of
decays corresponding to the integrated luminosity those numbers have to be
corrected with an efficiency. The efficiency is calculated from simulated data
and has slightly different values for the two channels: εf ′2 = (0.93 ± 0.01)%
and εφ = (1.10 ± 0.03)%. As a final result the relative branching frac-
tion B(B0

s → J/ψf ′2(1525))/B(B0
s → J/ψφ) = (21.07± 1.26(stat.)+2.63

−1.54(yields)±
0.58(PDG)) % is measured.
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1 Introduction

Particle physics aims to describe the fundamental building blocks of matter and
their interactions. Our current knowledge culminates in the Standard Model of
particle physics. It provides a framework of particles and interactions and has been
successfully used to describe many of the observed phenomena.

However, many questions remain unanswered by the Standard Model. It cannot
explain the dominance of matter over antimatter [1] or the nature of dark matter
and dark energy that make up the largest part of the universe [2]. Also, the Higgs
mechanism [3], which is widely used to describe the origin of the masses of particles,
lacks a final experimental proof.

The Large Hadron Collider (LHC) at CERN was built to study those phenomena
and to find evidence for new and advanced theories. In the high energy proton-
proton collisions in the LHC all kinds of fundamental particles are created. These
particles, as well as their interactions, can be studied with various highly sensitive
detectors.

The analysis of this thesis is using data of the LHCb-experiment situated at the
LHC. The main focus of the experiment is the precise study of particle-antiparticle
asymmetry (CP violation1) for B and D mesons. The Standard Model already
includes CP violation in the weak interaction but in order to explain the excess of
matter it would have to be much larger than predicted. At LHCb, the properties of
B and D mesons are measured with high accuracy in order to find discrepancies to
the Standard Model predictions [4].

In this thesis the decay of a B0
s meson into a J/ψ(µ+µ−)K+K− final state is inves-

tigated. CP violation in the B0
s system has been studied on the basis of the decay

mode B0
s → J/ψφ(K+K−) for quite some time [4]. In addition the newly discovered

channel B0
s → J/ψf ′2(1525), which has the same final state, might be a candidate

for similar analyses [5]. In this thesis the relative branching fraction of the decays
B0
s → J/ψf ′2(1525) and B0

s → J/ψφ is measured as a first step of analyzing the
B0
s → J/ψf ′2(1525) channel.

The relative branching fraction predominantly depends on the relative event yields
of the decays B0

s → J/ψf ′2(1525) and B0
s → J/ψφ. Those yields are measured in

Section 5. This is done by fitting the invariant mass distributions of be B0
s and

the combined K+K−. The applied fitting methods are discussed in Section 2. In
addition, a brief summary of the Standard Model of physics is given in that section
to help better understand the considered decays. Section 3 gives a brief overview
of the LHCb-detector. The data sample used for the analysis is introduced in Sec-
tion 4. The event yields have to be corrected with an efficiency that is calculated in
Section 6. For the calculation simulated data of the considered decays is used. This
data is also discussed in Section 4.

1C is the quantum mechanical operator inverting charge, P, the parity operator, inverts space.
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2 Theory

This section aims to give a short and phenomenological overview of the Standard
Model of particle physics. It focuses mainly on the properties of hadrons. For more
detailed information it is referred to the academic literature [6]. In addition a short
introduction to maximum-likelihood fitting methods is given.

2.1 The Standard Model

The Standard Model of particle physics is the theory used to describe the building
blocks of matter and their interactions. It is a relativistic quantum field theory
combining both the Quantum Chromo Dynamics (QCD) [7] and the Glashow-Salam-
Weinberg theory [8] [9] [10]. The QCD describe the strong interaction, whereas
the Glashow-Salam-Weinberg theory gives a description of the unified weak and
electromagnetic interaction. The Standard Model includes 12 spin-1

2
fermions, which

are the matter particles, and 12 spin-1 gauge bosons that carry the fundamental
forces. The fermions are divided into leptons and quarks that again are classified
into three generations listed in Table 2.1. The interactions are compared in Table 2.2.

Table 2.1: Properties of the matter particles in the Standard Model [11].
Gen. Flavor Charge Mass (MeV/c2) Particle Charge Mass (MeV/c2)

1st
(
u
)

+2
3

2.3+0.7
−0.5

(
e−
)

-1 0.511
d −1

3
4.8+0.7
−0.3 νe 0 < 2 10−6

2nd
(
c
)

+2
3

1.28± 0.03 103
(
µ−
)

-1 105.7
s −1

3
95± 5 νµ 0 <0.19

3rd
(
t
)

+2
3

160− 173.5 103
(
τ−
)

-1 1776.8± 0.2
b −1

3
4.18− 4.65 103 ντ 0 <18.2

Quarks Leptons

Table 2.2: Properties of the interactions known to the Standard Model and the
according gauge bosons [11].
Interaction (Gauge) Boson Mass Relative Strength Range
strong 8 gluons 0 1 < 1 fm
electromagnetic photon (γ) 0 O(10−2) ∞
weak W±, Z0 80, 91 GeV/c2 O(10−7) 10−3fm

All particles from Table 2.1 undergo the weak interaction and all except for the neu-
trinos ν interact electromagnetically. The strong force on the other hand only affects
quarks. It acts on a quantum number called color that is possessed by both quarks
and gluons. There are three colors charges that are commonly called red, green
and blue and their according anti-colors. Quarks can change colors by exchanging
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Figure 2.1: Illustration of hadronization due to confinement.

gluons. A consequence of the gluons carrying color, i.e., strongly interacting with
each other, is the principle of confinement: It states that quarks can only persist
within bound, color-neutral states called hadrons. In fact, trying to separate two
quarks held together by the strong force leads to an increase in the strength of the
potential with increasing distance. At some point it is energetically favorable for a
new quark-antiquark pair to spontaneously appear out of the vacuum and form two
new and color-neutral particles. See also Figure 2.1.
There are two different kinds of hadrons: baryons that have three valence quarks,
i.e., quarks defining their quantum numbers, and mesons that consist of a quark
and antiquark pair. Despite the small number of valence quarks, compared, for
example to a lead atom with more than 200 nucleons, hadrons have to be imagined
as very complex and dynamic objects. The quarks constantly exchange gluons some
of which decay into quark-antiquark pairs. Those can interact with other quarks or
simply annihilate each other again. The results is a “sea” of gluons and (anti-)quarks
of all flavors surrounding the actual valence quarks.
Among the hadrons only protons(u, u, d) and neutrons(d, d, u) are stable and con-
tribute to the matter that we know from our daily experience. All the others have
a rather short lifetime of less than ∼26 ns (π±) [11]. Eventually, they decay into
lighter quarks and leptons. A direct consequence of this is the ambiguity of the
masses of those hadrons. In order to understand this, it is instructive to look at
the time dependent part of the wave function of a particle with mass M0 = E0/c

2

and lifetime τ , which is given in Equation (2.1). Performing a Fourier transform
gives the probability density in energy space, i.e., the probability of having a certain
energy or mass M = E/c2 [12].

ψ(t) = e(iE0·t/h̄−t/2τ) ⇒ |ψ(t)|2 = e−t/τ (2.1)

|ψ(E)|2 = | 1√
2π

∫ ∞
−∞

ei(E0−E)·t/h̄ · e−t/τ dt|2 =
1

2π
· h̄2

(E0 − E)2 + Γ2/4
(2.2)

According to Equation (2.2) this probability density is given by a Breit-Wigner
function with width Γ = h̄/τ . More accurately it can be described by a relativistic
Breit-Wigner function with an energy dependent width. The according formula is
given in Equation (2.9) in Section 2.2 and will be used to describe the mass spectra
of hadrons in this thesis.
Hadrons can be generated in particle collisions, such as those produced by the LHC.
In the inelastic scattering of two high-energy protons, for example, a sea quark and
antiquark from the two protons can annihilate. This can break the color neutrality
of the protons and lead to their dissociation. The freed quarks scatter in all direc-
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tions forcing the creation of new quarks from the vacuum due to the principle of
confinement. At high energies many new quarks are created and jets of hadrons
are formed. Due to their short lifetime most of those cannot be directly observed
but quickly decay into lighter and longer-living hadrons and leptons. However, their
existence and properties can be inferred from the decay products.

In this thesis the decay of a B0
s (b̄s) meson into a J/ψ(cc̄) meson and aK+(us̄)K−(ūs)

meson pair is studied. An important source for B0
s mesons is the annihilation of a

quark-antiquark pair in proton-proton collisions resulting in the emission of a high-
energy gluon. The gluon can decay into a bb̄ pair and the b (b̄) quark can combine
with a s̄ (s) quark to form a B0

s (B̄0
s ). See also Figure 2.2. In the considered final

state the J/ψ decays into a µ+ and µ− lepton. The B0
s can either decay directly

into J/ψK+K− or first decay into a J/ψ and either a φ(ss̄) meson or a f ′2(1525)
resonance that then decay into K+K−. However, muons and kaons are the first
particles in the B0

s decay that actually live long enough to be directly observed.
The presence of all other particles has to be inferred from their properties. The
Feynman graph of lowest order for the B0

s → J/ψφ decay is given in Figure 2.2. It
is a weak decay, i.e., it happens due to the exchange of a W boson. In contrast to
strong decays where quark flavor is conserved, the weak decay can change one quark
into another.

B0
s W+

s

b̄

s

s̄

c

c̄
J/ψ

φ
q

q̄

b

b̄

Figure 2.2: Feynman graph of lowest order for the decay B0
s → J/ψφ (left) and one

example for the production of a bb̄ pair (right).

2.2 Maximum-Likelihood Fitting and Definition of Probability Density
Functions

In the course of the analysis performed in Section 5, it will be necessary to fit
mathematical models to the measured data in order to extract relevant information.
The relevant fitting methods will be briefly described in this section. In addition
the parameterizations of the models used in Section 5 will be given.

In the following, a set D(x1, ..., xN) of N equivalent values, e.g., the measured B0
s

masses of N different events, will be considered. A probability density function
(pdf) P (x,~λ) depending on M parameters ~λ = (λ1, ..., λM) will be used to describe
it. P (x,~λ) is a function of x where, for instance, x can represent a mass value.
It assigns each allowed value a probability, i.e., if a data set was randomly gener-
ated according to the pdf, P (x,~λ)dx% of the data points would lie in the interval
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[x, x+ dx]. Naturally P (x,~λ) has to be normalized over the allowed range, i.e.,∫ xmax

xmin

P (x;~λ) dx = 1 (2.3)

for each possible parameter set ~λ.
As a measure quantifying the agreement between D(x1, ..., xN) and the pdf the
likelihood function can be defined as the product of all the probabilities assigned to
the values in the set.

L(~λ;D(x1, ..., xN)) =
N∏
i=1

P (xi;~λ) (2.4)

It is a function of ~λ and gives the probability to find the measured set D(x1, ..., xN)

under the assumption of the probability distribution P (x,~λ).
In a maximum-likelihood fit the parameters of the pdf are varied in order to find
the values that provide the best agreement between P (x;~λ) and D(x1, ..., xN). The
likelihood function can be used to find those values because they should maxi-
mize it. Equivalently, it can be searched for a maximum in the logarithm of
L(~λ;D(x1, ..., xN)) which is much easier to handle numerically.

lnL(~λ;D(x1, ..., xN)) =
N∑
i=1

lnP (xi;~λ) (2.5)

For technical reasons one searches for a minimum in − lnL(~λ;D(x1, ..., xN)).
Without any limitations this can be extended on multidimensional data sets and
pdfs, e.g., when xi → ~xi is a measure of several quantities like the measured masses
of two different particles in an event.
In the following, the parameterizations of the pdfs used in the mass fits in Section 5
are discussed. They are all functions of x, which represents a mass in Section 5. The
factor 1

N
that appears in Equation (2.6), (2.7), (2.8) and (2.9) is a normalization

factor to make sure that the pdfs are normalized. It is controlled by the fitting
program that computes either the analytical or numerical integral over the fitted
mass range.
Equation (2.6) gives the used parameterization of a polynomial of degree n that
depends on the parameters p0, ...pn.

Pn(x; p0, ..., pn) =
1

N
(p0 + p1 · x+ ...+ pn · xn) (2.6)

It should be noted that due to the normalization condition the polynomial only has
n free parameters (p0 cancels out).
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Equation (2.7) is a standard Gaussian distribution of the quantity x with width σ
and mean µ.

G(x;µ, σ) =
1

N
· e
−

(x− µ)2

2σ2 (2.7)

By combining two Gaussian functions the double Gaussian distribution given in
Equation (2.8) is obtained.

DG(x;µ, σ1, σ2, fG) =
1

N

fG · e−(x− µ)2

2σ2
1 + (1− fG) · e

−
(x− µ)2

2σ2
2

 (2.8)

fG is the relative fraction used to weight one Gaussian with respect to the other.
µ denotes again the mean value and is chosen the same for both parts. The two
widths σ1 and σ2 can be different.

Table 2.3: Blatt-Weisskopf barrier factors used in the mass dependent width of a
relativistic Breit-Wigner resonance [11].

Spin J BJ(z)2 B′J(z, z0)2

0 1 1

1
1

1 + z2

1 + z2
0

1 + z2

2
1

9 + 3z2 + z4

9 + 3z2
0 + z4

0

9 + 3z2 + z4

Equation (2.9) is a relativistic Breit-Wigner function used to describe the resonance
shape of a particle with spin J decaying into two particles with masses ma and
mb [11].

BW(x;m0,Γ0, J, R,ma,mb) =
1

N

m2
0 · Γ(x)2

(x2 −m2
0)2 +m2

0 · Γ(x)2
(2.9)

Γ(x) = Γ0

(
p(x)

p(m0)

)2J+1 (m0

x

)
B′J(R · p(x), R · p(m0))2 (2.10)

The mean value of the distribution is denoted with m0 and Γ0 is the parameter
describing the physical width. The actual width is a function of x, i.e., the invariant
mass of the particle, and is given in Equation (2.10). It depends on a quantity with
the dimension of a length, R, the momentum of the particle, p(x), and a barrier
factor BJ(z, z0). R is commonly called the meson radius. BJ(z, z0) is given in
Table 2.3 and p(x) can be calculated with the masses of the decay products:

p(x) =
x

2

(
1− (ma +mb)

2

x2

)1/2(
1− (ma −mb)

2

x2

)1/2

. (2.11)
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For further details on the the shape of mass resonances it is referred to the particle
physics reviews provided by the PDG2 [11].

3 The LHCb Experiment

The analysis performed in this thesis is based on data measured with the Large
Hadron Collider beauty (LHCb) detector. LHCb [13] is one of the experiments at
the Large Hadron Collider (LHC) [14] and is designed for the special purpose of re-
constructing decays of B-mesons. The physics program focuses on the measurement
of CP violation in B-meson systems and on indirect signs of particles and physics
beyond the Standard Model. The detector design will be briefly discussed in this
section a more detailed description can be found elsewhere [15].

3.1 The LHC

The LHC is at the time of writing the world’s most powerful particle accelerator.
It is operated by the European Organization for Nuclear Research (CERN) [16]

Figure 3.1: Overview over CERN’s accelerator complex with the LHC and the asso-
ciate experiments.3

near Geneva at the border between France and Switzerland. The main accelerator
2http://pdg.lbl.gov/2011/reviews/contents_sports.html (June 2012)
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is circular with a circumference of approximately 27 kilometers and is built into a
tunnel 175 meters below ground. It is designed to collide two oppositely running
beams of either protons or lead ions. Originally, each proton was to be accelerated up
to an energy of 7 TeV resulting in a center of mass energy of

√
s = 14 TeV. However,

this energy has not been reached yet because of current technical limitations of the
superconducting magnets. In 2011, when the data that is used in this thesis was
measured, the LHC ran at

√
s = 7 TeV.

In addition to LHCb there are three other large experiments situated at the LHC.
ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) are two
general purpose detectors designed for the search of the Higgs boson, heavy particles
predicted by supersymmetry theories, the origin of dark matter and new physics in
general. ALICE (A Large Ion Collider Experiment) is specialized on analyzing heavy
ion collisions and on studying the resulting quark–gluon plasma. Figure 3.13 gives
an overview over the LHC and the positions of the experiments.

3.2 The LHCb Detector

The design of the LHCb detector is highly influenced by its purpose of measuring B-
decays [15]. b-b̄-pairs, and consequently B-mesons, are predominantly produced in a
rather narrow forward or backward cone. There is no need for a detector with full 4π
coverage to study them and therefore the LHCb was built as a single arm forward
spectrometer. It covers an angle between 10 to 300 mrad in the horizontal and
between 10 to 250 mrad in the vertical plane. It is thus able to detect approximately
25% of the produced B-mesons. A cut through the detector along the z-y-plane is
shown in Figure 3.24. In the following a right-handed coordinate system is chosen
with the z axis along beam axis and the y axis along the vertical.
The various parts of the detector can be subdivided into two classes pursuing two
tasks:
• Tracking: The Vertex Locator (VELO) around the interaction point, the

Trigger Tracker (TT) in front of the magnet and the 3 tracking stations (T1,T2,
and T3) behind the magnet serve the purpose of measuring primary vertices
and particle tracks. In addition with the magnet they also can be used to
determine the momenta of particles.
• Particle Identification: Two Cherenkov detectors (RICH 1 and RICH 2)

are used for separating pions, kaons and protons, each covering a different
momentum spectrum. The electromagnetic (ECAL) and hadronic calorimeter
(HCAL) help to identify electrons and photons, and the muon chambers (Mi)
at the end of the detector detect muons.

The functionality of both classes of detectors is discussed in the following sections.
In addition a third section describes the functionality of the LHCb trigger system
that is used to reduce the data that is actually stored permanently.

3Picture from: https://cdsweb.cern.ch/record/40525 (June 2012)
4Picture from: https://cdsweb.cern.ch/record/1087860 (June 2012)
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Figure 3.2: Side view of the LHCb detector to give an overview over its major
components.4

Tracking[15, ch. 5]

Due to their short lifetime (∼ 1.5 ps [11]) B-mesons decay before they hit any
part of the detector. The VELO that is built around the collision point is used to
measure their production and decay vertices with high accuracy. It consists of 42
semi-circular silicon microstrip detectors distributed along both sides of the beam
axis. They are used to measure the distance to the z axis, r, and the angle in the
x-y-plane, φ of decayed particles. The outstanding feature of the VELO is that it
can be moved very close around the actual beam. This allows to determine the
proton-proton collision point with an resolution of up to 50 µm. During proton
injection at LHC, when the beams are unfocused, the VELO can be moved out from
the beam axis for protection.
The Trigger Tracker and the T-stations measure particle tracks. Each of the T-
stations consists of two different kinds of detectors. The rectangular inner parts,
called Inner Tracker (IT), as well as the TT consist of two silicon strip detectors.
They are rotated by 5◦ with respect to each other in order to provide a space
resolution along the strips. The Outer Tracker (OT) is formed by the remaining
parts of the T-stations which are drift chambers build from straw tubes. In the
reconstruction process the hits in the tracking detectors are combined to full particle
tracks.
In combination with the dipole magnet the tracking system can be used to measure
momenta of charged particles. The magnet provides a bending strength of the order
of
∫
B dl = 4 Tm [15, ch. 4]. A particle moving along the z axis is bent in the z-x
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plane and the deflection gives information about its momentum.

Particle Identification [15, ch. 6]

Many of the observed B-meson decays at LHCb have kaon and pion final states.
For a proper reconstruction it is important to distinguish these particles, which is
done with two Ring Imaging Cherenkov (RICH) detectors. RICH1 covers the low
momentum spectrum up to ∼60 GeV/c and is placed before the magnet because
slow particles are deflected significantly by the magnetic field. RICH2, which is
situated after the T-stations, covers higher momenta between 15 GeV/c and more
than 100 GeV/c. The functionality of the RICH detectors is based on the Cherenkov
effect: Particles moving through a medium at a speed higher than the phase velocity
of light emit photons. Similar to the Mach cone produced by a supersonic sound
source the photons are emitted in an angle θ depending on the particle’s velocity
β = v/c and the refraction index of the medium, n [17]:

cos(θ) =
1

nβ
. (3.1)

In principle θ can be measured and converted into the velocity. The velocity of a
particle together with its momentum can then be used to determine its mass and,
consequently, to identify it.
In practice, the information provided by the RICH detectors is used to calculate
the probability that a particle is of a certain type. Usually, two probabilities are
compared via the Delta Log Likelihood (DLL) value:

DLL(K − π) = lnL(K)− lnL(π) = ln
L(K)

L(π)
. (3.2)

Where L(K) (L(π)) is the probability that the considered particle is a kaon (pion).
For DLL(K − π) < 0 the particle is more likely a pion and vice versa.
The actual purpose of the calorimeters is to measure energies of electrons and pho-
tons (ECAL) and hadrons (HCAL). But they also can be used for photon and
electron identification.
Finally the muon chambers at the end of the detector are used for identifying and
reconstructing muon tracks. Due to their large mass muons have a large mean free
path and cross other parts of the detector without being measured.

Trigger [15, ch. 7]

At LHC proton bunches cross at a rate of up to 40 MHz and produce way more
signals in the LHCb detector than can be handled and saved. In addition many of
the events are of no interest because, for example, they do not contain B-decays.
That’s why a three level trigger system is used to select relevant events online and
to reduce the data rate to about 2.2kHz.
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B-decays are known to produce particles with relatively large transverse momenta
with respect to the small transverse momenta of particles from “minimum bias”
events. The first trigger level, the hardware based Level-0 (L0) trigger, extracts
such events by applying various criteria to the calorimeters and the muon chamber
signatures. The following High Level Trigger is a software trigger running on a large
server farm. It consists of two stages: The HLT1 partially reconstructs events and
confirms the decision of the L0. The HLT2 then does a full reconstruction similar to
the offline reconstruction procedure. It applies several criteria in order to filter out
uninteresting events and to classify the remaining ones according to various sets of
requirements combined to so-called trigger lines. For this thesis the lines classifying
events with a J/ψ decaying into two muons are of special interest. Further details
are given in Section 4.3.

4 Reconstruction and Selection of the Data Sample

In this analysis the decay B0
s → J/ψK+K− where the J/ψ decays into µ+µ− is

studied. It is thus necessary to obtain a data sample of suitable events from the
recorded LHCb data. Preferably, the sample should be very clean, i.e., it should
contain many signal events and as little background as possible. In order to achieve
this the data is filtered in two stages. First the information of the online LHCb
trigger system is used to get rid of events that are obviously of no interest for the
analysis. Then only events are selected that meet certain requirements in the offline
reconstruction process.

4.1 Data Taking Conditions

The data sample used for this analysis corresponds to approximately 1 fb−1 of inte-
grated luminosity5 and was collected with the LHCb detector in 2011. At the time
the LHC was operated at a center-of-mass energy of the two colliding protons of√
s = 7 TeV.

4.2 Trigger and Selection Requirements

This section gives a more detailed overview of the criteria for selection of the analysis
data sample. The information provided by the LHCb trigger system is used as a
first event filter. The relevant HLT trigger lines for this analysis are discussed in the
following passage. Further below, the selection requirements in the reconstruction
process are presented.
All events that pass any of the several trigger lines of the High Level Trigger (HLT1)
are used. The second stage (HLT2) is then used to filter for events with a J/ψ

5The luminosity is a measure for the performance of the accelerator insofar, as the number of
interactions is proportional to the integrated luminosity.
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Table 4.1: Required trigger lines for the selection of the data sample for the analysis.

Triggerline Hlt1Global &
Hlt2DiMuonDetachedJPsi || Hlt2DiMuonJPsi

Requirements[18]
µ track χ2/ndf < 5
µ+µ− vertex χ2/ndf vtx < 25
µ pt > 500 MeV/c

decaying into µ+µ−. The two used HLT2 trigger lines are listed in Table 4.1. They
require two opposite sign tracks with hits in the muon chambers, a common vertex
of the two muon candidates and an invariant µ+µ− mass within ±120 MeV/c2 of
the J/ψ mass. The fits of the tracks as well as the vertex have to be of good quality
indicated by the χ2/ndf value6. Events with a track χ2/ndf track > 5 and a vertex
χ2/ndf vtx > 25 are cut away. In addition the Hlt2DiMuonDetachedJPsi line makes
an implicit cut on the muon transverse momentum of pt > 500 MeV/c.
In the reconstruction process two opposite sign tracks that are identified as muons in
the muon chambers are combined to a J/ψ. Similarly, it is looked for two opposite
sign kaons with a common vertex. The kaons can be identified using the particle
identification (PID) criteria from the RICH detector. If the J/ψ and the K+K−

system have a common vertex they are reconstructed to a B0
s candidate. For cal-

culating the B0
s mass the J/ψ candidate’s mass is constrained to the Particle Data

Group (PDG) value [11].
From all the reconstructed events only a fraction is selected for the analysis data
sample. Several cuts are applied in the selection process in order to enhance signal
and reject background. They are summarized in Table 4.2. The specific values were
taken from a similar analysis done by the LHCb Collaboration [5] and are known to
provide a good signal to background ratio. This, however, was not analyzed in this
thesis.
First of all, only tracks of good quality are considered, which is characterized by
the χ2/ndf track value of the track fit through the hits in the detector. This sup-
presses random hits being wrongly combined to a particle track. In addition there
are further reconstruction quality requirements and some kinematic cuts. Especially
noteworthy are the cuts on the kaon PID variables DLL(K − π) and DLL(p −K).
The inclusive decays B → J/ψX, where X is anything, contains a lot of pion final
states. In some cases like for B0 → J/ψK?

2 with K?
2 → Kπ misidentifying the π as a

K can shift the B mass into the range of the B0
s mass [5]. Consequently, there is no

way of distinguishing such background events from true B0
s → J/ψK+K− decays.

To reject them, DLL(K − π) > 10 and DLL(p − K) < 3 is required in order to
ensure that the selected kaon canditades are indeed true kaons.

6χ2 is a quantity that describes the goodness of fit of a model used to describe a set of observables.
A good description is characterized by χ2 = ndf where ndf is the number of degrees of freedom.
χ2/ndf >> 1 indicates a bad description and is thus cut away.
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Table 4.2: Selection requirements for the data sample used in the analysis
Quantity Requirement
all tracks χ2/ndf < 4
muon DLL(µ− π) > 0
pt of muon > 500 MeV/c
J/ψ vertex χ2/ndf < 11
J/ψ mass window −48 to +43 MeV/c2

K χ2
IP > 9

K RICH PID DLL(K − π) > 10 & DLL(p−K) < 3
Sum pt of K+ and K− > 900MeV/c
K+K− vertex χ2/ndf < 10
K+K− mass window 990− 2230 MeV/c2

B0
s mass window 5160− 5580 MeV/c2

B0
s χ

2
IP < 25

B0
s flight distance > 1.5mm

B0
s vertex χ2/ndf < 5

B0
s pointing, cosθp > 0.99993

4.3 Analysis Data Sample

As a first check whether a clean B0
s → J/ψK+K− data sample was selected the

mass distributions of the B0
s candidates and the combined K+K− are reviewed.

The masses of the B0
s candidates, m(J/ψK+K−), (or the di-kaon systems) can be

calculated from the four-momenta of the decay products using momentum conser-
vation. For example, for the decay B0

s → J/ψφ with the φ momentum P
φ
and the

J/ψ momentum P
J/ψ

7 the mass of the B0
s , m(B0

s ), is given by8:

m(B0
s )

2 = P µ

B0
s

P
B0
s
µ = (P µ

J/ψ
+ P µ

φ
)(P

J/ψµ + P
φµ) . (4.1)

As explained in Section 2.1 the precise value of m(B0
s ) can vary within a charac-

teristic width because of the finite hadron lifetime. This is what makes looking at
mass distributions, i.e., the masses calculated for many events, so interesting. If the
decay products really come from a common particle and do not just have crossing
paths, this should be visible as a peak in the distribution of the invariant mass.
A histogram of the masses of the selected B0

s candidates, i.e., the invariant masses
of the J/ψ(µ+µ−)K+K− system, is shown in Figure 4.1. Indeed a clear signal peak
is visible at the B0

s mass indicating the presence of a B0
s meson. In addition there is

7It should be noted that also the φ and J/ψ momentum cannot be measured directly but have
to be calculated from their decay products and so forth.

8Note: Einstein notation is used and c=1.
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Figure 4.1: Invariant mass distribution of the B0
s (J/ψK

+K−) candidates. Events
from the signal region marked by the two dashed black lines and the sideband regions
between the red dashed lines are used to create the histograms in Fiugre 4.2. The
black arrow at 5366.77 MeV/c2 indicates the PDG value of the B0

s mass.

some underlying background. Since there is no other visible structure in the mass
distribution it is assumed that the background is purely combinatorial. This means
that some randomly selected kaons and muons were accidentally reconstructed as
a B0

s without really originating from one. As a consequence their masses do not
peak in the true B0

s mass but have a flat, random distribution. In addition also
real decays can be misidentified as B0

s → J/ψK+K− if they are very similar. It’s
quite possible that the small peak below 5300 MeV/c2 originates from such events.
However, this was not investigated in this thesis.

The distribution of the invariant masses of the two kaons in the B0
s signal region

is shown by the black histogram in Figure 4.2. Only events with a B0
s candidate’s

mass between ±20 MeV/c2 of the B0
s mass are considered. There are two clearly

visible peaks at ∼1020 MeV/c2 and ∼1525 MeV/c2 in the mass distribution. The
left peak corresponds to the decay B0

s → J/ψφ where the φ meson decays into
K+K−, whereas the right one corresponds to the f ′2(1525) resonance. The small
mass peak above 1700 MeV/c2 might be due to another resonance but this was not
investigated in this thesis. The red histogram in Figure 4.2 is an approximation
of what the combinatorial background in the mass distribution should look like. It
was created from events in the m(B0

s ) sidebands, that is the B0
s candidates ought

to have a mass between ±40 MeV/c2 and ±60 MeV/c2 of the mass peak. Here,
the assumption was made that in the sidebands there are no signal events left and
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Figure 4.2: Invariant mass distribution of the combinedK+K−. The black histogram
is created from events in the B0

s signal region. The red dots correspond to events
in the B0

s sidebands an thus represent combinatorial background. The peaks come
from the φ meson and f ′2(1525) resonance whose PDG masses are marked by the
two black arrows at 1019.455 MeV/c2 and 1525 MeV/c2.

that the combinatorial background in the signal region is of the same shape as the
background in the sidebands. Comparing both histograms it becomes obvious that
the resonance peaks do not arise directly from the combinatorial background. The
remaining part of the signal events is assumed to come from direct, non-resonant
B0
s → J/ψK+K− decays which are known to also exist [5].

4.4 Simulated Data Sample

In high energy physics simulating the experiment of interest has proven to be a very
powerful tool to check the reliability of analysis methods or make any kind of physical
predictions. In this thesis data created with the Monte-Carlo (MC) method [19] by
the PYTHIA [20] event generator is used. It simulates both the particles emerging
from proton proton collisions and their interaction with the detector. By applying
the same reconstruction algorithms used in the real experiment, data sets of simu-
lated events similar to those of the real measuring data can be created. In addition
to the information on the reconstructed event signatures those MC samples, as they
will be referred to, also provide information on the generator level. In that way
the discrepancy between what is seen and what has really been simulated can be
studied. In this thesis MC simulation is used to determine efficiencies of the LHCb
detector needed for the branching ratio measurement. The procedure is discussed
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in Section 6.

Used MC Samples

In order to estimate the efficiencies for the decays B0
s → J/ψf ′2 and B0

s → J/ψφ
simulations for both types of event are necessary. Unfortunately however, there only
was a B0

s → J/ψφ Monte-Carlo available at the time this analysis was done. To
solve this problem, a MC for non-resonant B0

s → J/ψK+K− decays was used to
determine the values that can be expected for the f ′2 efficiency. Further details are
given in Section 6.
Figure 4.3 shows the mass distributions of the B0

s mesons and the combined K+K−

system in both MC samples. By accessing the MC truth information, i.e., checking
that an event was reconstructed as the event that was truly simulated, it was made
sure that only true B0

s → J/ψK+K− decays are considered. The missing back-
ground in the distributions is a consequence of that procedure. In the m(K+K−)
distribution of the non-resonant Monte-Carlo no resonance peaks are visible as ex-
pected.
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Figure 4.3: (left) Mass distribution of the true B0
s (J/ψK

+K−) for both MC samples.
Hence, no background structure is present. The red histogram corresponds to the
non-resonant B0

s → J/ψK+K− MC, whereas the green one corresponds to the
simulation of the B0

s → J/ψφ decay. (right) Corresponding distributions of the
combinedK+K− masses. The smoothness of the red distribution of the non-resonant
MC sample indicates the expected absence of resonances. The clear peak in the green
histogram corresponds to the φ resonance.

5 Analysis

For this analysis the relative branching fraction of the decay B0
s → J/ψf ′2 with re-

spect to B0
s → J/ψφ is measured. For a particle that can decay by several modes,
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the branching fraction B of one mode is the number of decays by this mode di-
vided by the total number of decays. For the upper decays B can be expressed by
Equation (5.1). Naturally, it has to be taken into account that only the final states
J/ψ → µ+µ− and X → K+K−9 are considered.

B(B0
s → J/ψX) =

NX/εX
2 ·
∫
L dt · σbb̄ · fB0

s
· B(J/ψ → µ+µ−) · B(X → K+K−)

(5.1)

Here, NX describes the measured number of B0
s decays by either the f ′2(1525) or

the φ channel in the data sample. εX is the according efficiency accounting for
event losses. The subscript X takes into account that the efficiency can be a priori
different for both decay modes.

∫
L dt is the time integrated luminosity the data

corresponds to. Multiplied with the production cross section σbb̄ it gives the total
number of produced b and b̄ quarks. The fraction fB0

s
defines how many of those are

actually used for making a B0
s meson. The factor 2 takes into account that always a

bb̄ pair is produced and either of the quarks can be used to create a B0
s (B̄0

s ) meson.
The final state is considered via the explicit branching fractions B(X → K+K−)
and B(J/ψ → µ+µ−).
Equation (5.1) depends on many quantities that have to be measured explicitly in
order to determine the branching fraction. Unfortunately, the luminosity is not
known precisely for the LHCb experiment (5%...10% uncertainty) so that it would
contribute a large error. In addition, the efficiency cannot be measured using real
data but has to be estimated in some other way. Consequently, it also has a large
uncertainty. However, if the relative branching fraction of two decay modes is mea-
sured the luminosity cancels out because it is the same for both. Also, the relative
branching fraction only depends on the ratio of efficiencies. It can be assumed that
some of the uncertainties cancel out there as well. That’s why such a measurement
is much easier to do and provides smaller errors. Since the two considered decays
are very similar further factors cancel out in the ratio. What remains can be seen
in Equation (5.2):

Rf ′2/φ
=
B(B0

s → J/ψf ′2)

B(B0
s → J/ψφ)

=
Nf ′2

Nφ

· εφ
εf ′2
· B(φ→ K+K−)

B(f ′2 → K+K−)
. (5.2)

In order to determine Rf ′2/φ
the event yields for the B0

s → J/ψf ′2 mode, Nf ′2
, and for

the B0
s → J/ψφ mode, Nφ, have to be measured. The measurement procedure will

be discussed in this section. The necessary ratio of efficiencies, εφ/εf ′2 , is calculated
using the simulated data presented in Section 4.4. Details are given in Section 6.
For the explicit branching fractions B(f ′2 → K+K−) and B(φ→ K+K−) the values
from the Particle Data Group (PDG) [11] will be used.

5.1 Measurement of f ′2(1525) and φ Yields

In order to measure how many f ′2(1525)- and φ-mesons are in the data sample
they somehow have to be characterized. The easiest way to characterize a particle

9X = f ′2 or X = φ
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is by its mass. However, when doing this one has to keep in mind three things:
First, a particle’s mass is not uniquely defined but can vary within its natural
width. Secondly, when measuring masses the result is limited by the resolution of
the detector. Thirdly, the data sample usually is not clean but background beneath
the signal distributions has to be considered. In this analysis namely combinatorial
background and background from non-resonant B0

s → J/ψK+K− play a role, as
was discussed in Section 4.3

Fitting Procedure

The yields of f ′2(1525) and φ events are determined by fitting the invariant mass
distributions of the combined kaons and the B0

s candidates simultaneously in a two-
dimensional, unbinned maximum-likelihood fit (see also Section 2.2). The fitting
procedure is described in the following paragraphs, whereas the fit results will be
discussed further below.
The chosen two-dimensional fit of m(K+K−) and m(B0

s ) has the advantage that
also the background due to non-resonant decays can be fitted. It peaks in the
B0
s mass and thus could not be distinguished from the resonant decays if only the

distribution of the B0
s candidates’ masses was considered. However, if also the

m(K+K−) distribution is fitted the fraction of non-resonant decays can be obtained
because they peak neither in the f ′2(1525) nor in the φ mass.
The 2 dimensional pdf given in Equation (5.3) is used to describe the measured
m(K+K−) and m(B0

s ) distributions. It is a function of mB, which represents the B0
s

candidates mass, and of mKK , which represents the mass of the di-kaon system. It
depends on a set of parameters denoted with ~λ. For both f ′2(1525) and φ the same
pdf with different parameters is used.

P totX (mB,mKK ;~λ) = fsig · SB(mB;~λ) · SX(mKK ;~λ) (5.3)

+ (1− fsig) · [fbkg · BGKKB (mB;~λ) · BGKKX (mKK ;~λ)

+ (1− fbgk) · CBGB(mB;~λ) · CBGX(mKK ;~λ)]

P totX (mB,mKK ;~λ) is built from three products of individually normalized, 1-dimensional
pdfs:
• SB(mB;~λ) and SX(mKK ;~λ) describe the signal parts of the mass distributions,
• BGKKB (mB;~λ) and BGKKX (mKK ;~λ) the background due to non-resonant de-

cays, and
• CBGB(mB;~λ) and CBGX(mKK ;~λ) the combinatorial background.

The signal fraction, fsig, and the fraction of the first background component with
respect to the total background, fbkg have to be between 0 and 1 to assure that also
the total pdf is normalized, that is∫

P totX (mB,mKK ;~λ) dmB dmKK = 1
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for all ~λ.
For the individual pdfs the following shapes are used: In Section 2.1 it was discussed
that resonances are well described by a relativistic Breit-Wigner function. However,
the B0

s mass peak is very slim and instead of having a physical shape the visible
signal peak is dominated by the detector resolution. A double Gaussian function
was chosen for SB(mB;~λ) because it describes the resolution well. The correspon-
dent formula as well as the parameterizations of the following shapes are given in
Section 2.2. The two peaks in the invariant m(K+K−) distribution are wider and
detector effects do not influence their shape. That’s why SX(mKK ;~λ) has indeed
the shape of a relativistic Breit-Wigner function. In case of fitting the f ′2(1525)
mass peak the spin-2 version is chosen, in case of the φ mass peak the spin-1 version
according to the physical properties of the particles [11].
The kaons in the non-resonant background come from a true B0

s . Consequently
BGKKB (mB;~λ) has the same shape as SB(mB;~λ): It is a double Gaussian func-
tion with identical parameters. To choose the shape of the according pdf for the
K+K− mass distribution is not as trivial because the two background components
superimpose each other. In the end, a second order polynomial was chosen for
BGKKX (mKK ;~λ). Using real data, it is not possible to motivate this choice. It is,
however, justified by the simulation of the non-resonant decay B0

s → J/ψK+K−:
In the mass ranges of interest the m(K+K−) distribution in the B0

s → J/ψK+K−

MC sample can be described by a polynomial as can be seen from Figure 4.3.
It was already said that the combinatorial background component is built up from
falsely reconstructed events. The lower the momenta of the contributing particles
the higher the probability that an event is mis-reconstructed. That’s why particles
in mis-reconstructed events tend to have a lower invariant mass. The according
distributions decline towards higher mass regions. Usually the background is fitted
with an exponential or a polynomial with negative slope. Here, CBGB(mB;~λ) is
chosen to be a linear function. Looking at the m(K+K−) distribution of events
from the B0

s sidebands in Figure 4.2, it seems reasonable to make CBGX(mKK ;~λ) a
second order polynomial.
To determine the event yields the pdf from Equation 5.2 is extended. That is, it is
multiplied by a factor Nev describing the number of events which is also fitted10:

P totX (mB,mKK ;~λ)→ Nev · P totX (mB,mKK ;~λ) . (5.4)

In order to measure the numbers of both decays B0
s → J/ψf ′2 and B0

s → J/ψφ two
two-dimensional fits are performed in the two mass windows around the f ′2(1252)
and φ resonance. For the f ′2-fit only events with mKK ∈ [1250, 2000] MeV/c2 are
used, for the φ-fit only such with mKK ∈ [1000, 1050] MeV/c2. In addition the fits
are limited to mB ∈ [5290, 5450] MeV/c2

The pdf has one weak spot that has to be born in mind: There is no way for the
fitter to distinguish between the combinatorial and non-resonant background in the
10This procedure is known as an extended maximum-likelihood fit. [21]
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combined K+K− mass because they have similar shapes. To solve this problem,
first CBGX(mKK ;~λ) is fitted independently to events from the B0

s -sidebands, i.e.,
the combinatorial background. Then the parameters of the polynomial are kept
fixed in the actual 2-dimensional fit.

Fit Results

The outcome of the two-dimensional fits can be used to calculate the event yields.
Before this is done at the end of this section it is necessary to evaluate the fit
results. Inconveniently, there is no direct way to quantify the quality of a maximum-
likelihood fit. In the case of a an unbinned and two-dimensional fit it is not even
possible to evaluate graphically whether the pdf describes the fitted data well. To
still evaluate the quality of the fit result, the (binned) mass histograms are compared
to the one-dimensional projections of the pdf. The projection on mKK is given by:

PX(mKK ;~λ) =

∫ mBmax

mBmin

PX(mKK ,mB;~λ)dmB , (5.5)

the one on mB can be defined accordingly. However, even if the data is described
well in one dimension, this does not necessarily have to imply a good fit in two
dimensions.
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The distribution of the invariant K+K− mass in the f ′2 mass window is shown
in Figure 5.1. In addition also the projection of the fitted pdf is plotted. For
visualization the pdf is split up in its individual components. It might be helpful to
keep in mind that the histogram in Figure 5.1 corresponds to Figure 4.2. Naturally,
only the mass range of the f ′2(1525) resonance, i.e., the right mass peak in Figure 4.2,
is shown.
To be able to compare the mass histogram and the pdf better, the bin-wise pull
distribution is given in Figure 5.2. The pull of the i-th bin is defined as the difference
between the pdf value for the bin and the histogram entry divided by the statistical
error of the latter:

h(mi)− P(mi;~λ)

∆h(mi)
. (5.6)

If the pull distribution is distributed symmetrically around 0 according to a Gaussian
function with width 1 this is evidence for agreement within the errors.
Except for some spikes the data points in the f ′2 mass histogram are described well
by the pdf projection. However, there seems to be a small signal peak slightly
above 1700 MeV/c2 that is not considered by the pdf. As was already assumed
in Section 4.3 this could be evidence for another resonance. In the PDG [11] the
f0(1710) is listed with a mass of 1720± 6 MeV/c2 and a width of 135± 8 MeV/c2.
It is known to decay into two opposite sign kaons but the decay B0

s → J/ψf0(1710)
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has not been observed. In Section 5.3 the fit is redone allowing for the presence of
a f0(1710) resonance peak. The result will be used to estimate a systematic error.
Figure 5.3 shows the B0

s candidate’s mass distribution for events with m(K+K−) in
the f ′2 mass window as well as the pdf projection. The corresponding pull distribu-
tion in the mB dimension can be seen in Figure 5.4. Neither of the figures indicate
a systematic discrepancy but they rather show a good agreement between the pdf
and the data points.
The projections of the pdf from the fit in the φ mass window are shown in Fig-
ure 5.5 and Figure 5.7 together with the mass histograms. Again, the histogram in
Figure 5.5 corresponds to Figure 4.2 but shows the left mass peak only. The mass
plots as well as the pull distributions given in Figure 5.6 and 5.8 suggest a good
description of the one-dimensional distributions by the pdf. In comparison to the
f ′2 fit the very low background in the φ region is noteworthy.
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Figure 5.5: Invariant mass of
the combined K+K− and fit
in the φ mass window. The
black line shows the projection
of the total pdf on mKK , the
blue, dashed line its signal part
and the green area the back-
ground. The red data points
and line represent the combina-
torial background and the part
of the pdf describing it.
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Some of the fit parameters for both fits are summarized in Table 5.1. The total
number of events, including signal and both background components, and the signal
fraction are of special interest because the f ′2(1525) and φ yields can be calculated
from them. In addition, some physical parameters of the signal peaks are given even
if it is no goal of this thesis to measure them.
The measured mass values are fairly close to the values given by the PDG. Indeed,
some of the deviations are larger than 3σ but it also has to be assumed that the errors
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determined by the fit are too small. That is because some systematic effects that
would increase them were ignored. First of all, it was not systematically analyzed
whether the double Gaussian function that was chosen to describes the B0

s signal
peak really provides the accurate shape. Secondly, there is still some final calibration
of the 2011 data to be done. Due to inaccuracies in the detector alignment particle
momenta are not calculated correctly, which also affects mass spectra.

Table 5.1: Some fit parameter values with physical meaning for the two fits in the
f ′2(1525) and the φmass window. Also, the corresponding PDG values are given [11].

Parameter f ′2(1525)-Fit Value φ-Fit Value
Nev 7353± 86 12875± 113
fsig 27.87± 1.38 % 95.69± 0.06 %
fbkg 48.85± 1.32 % 60.79± 6.24 %

mX 1520.90± 1.87 MeV/c2 1019.60± 0.03 MeV/c2

ΓX 90.93± 6.19 MeV/c2 4.60± 0.07 MeV/c2

mB0
s

5368.30± 0.13 MeV/c2 5368.20± 0.06 MeV/c2

PDG mX 1525± 5 MeV/c2 1019.455± 0.020 MeV/c2

PDG ΓX 73+6
−5 MeV/c2 4.26± 0.04MeV/c2

PDG mB0
s

5366.77± 0.24 MeV/c2

What is more severe, is the discrepancy of the f ′2(1525) widths. It seems to be larger
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than can be explained by the expected precision of the measurements. One possible
explanation could be that the Breit-Wigner signal pdf is widened by the observed
mass peak above the f ′2(1525) resonance in the m(K+K−) distribution. This will
be further analyzed in Section 5.3.
The number of B0

s → J/ψf ′2(1525), Nf ′2
, and B0

s → J/ψφ decays, Nφ, can now
be calculated from the total numbers of events, Nev, and the signal fractions, fsig,
obtained from the two fits.

NX = Nev · fsig ±
√

(∆Nevfsig)2 + (Nev∆fsig)2 (5.7)

It has yet to be considered that the pdfs are normalized over the fitted mass ranges
only. Consequently, NX · fsig is the number of signal events in those ranges. Look-
ing at Figure 5.1 and 5.5 it becomes obvious that there are also some signal events
outside of the f ′2 and φ mass windows. There’s a significant part of the signal
pdf crossing the borders of the mKK range. Integrating the signal part of the
pdf from Equation (5.3) reveals that there are 93.70% of the total integral in
the f ′2 mass window and 91.12% in the φ mass window. Considering this it is
found that Nf ′2

= 2187± 111 and Nφ = 13519 ± 149. The corresponding ratio is:
Nf ′2

/Nφ = (16.18± 0.84)%.

5.2 Validation of the Fitting Procedure

In addition to the graphical evaluation of the fit results that was discussed in the
previous section it is also necessary to check the quality of the parameter values.
This can be done via a toy study where it is tested how well the fitting algorithm
determines the fit parameters and their errors. In the toy study that was performed
for this analysis the pdf P totX (mB,mKK ;~λ) from Equation (5.3) was used to create
500 data samples. In order to provide enough statistics each sample consisted of
approximately 100, 000 B0

s candidates; the exact number of events fluctuated ran-
domly. The pdf was then fitted to the generated mKK and mB distributions in
an extended maximum-likelihood fit according to the fitting procedure discussed in
Section 5.1. The results of the 500 fits can be used to check whether the fit parame-
ters and their errors are determined well or whether there is some bias. This is done
by looking at the pull distributions of the parameters. Similarly to the definition
above, the pull distribution of a fit parameter λ is defined via the difference of the
original value used in the generation of the sample and the fitted value divided by
the error of the latter:

p(λ) =
λgen − λfit

∆λfit
. (5.8)

For a proper fitting algorithm p(λ) should be distributed according to a Gaussian
with mean µ = 0 and width σ = 1.
The pull distributions of the free fit parameters can be seen in Figure 5.9. They are
each fitted with a Gaussian function whose µ and σ are also displayed in the figure.
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Figure 5.9: Pull distributions of the free fit parameters resulting from the toy study.
Each distribution is fitted with a gaussian function whose mean and width are given
in in the plots.

Most of the parameters do indeed meet the requirements and provide µ = 0 and
σ = 1 within the errors. Only the distributions for a1 and a2, i.e., the parameters of
the free background component BGKKX (mKK ;~λ), are much slimmer than anticipated.
This indicates that the parameter errors are determined too large. However, since
the parameters are not used in the further analysis this is not a serious problem and
thus will be disregarded.
The toy study is taken as an indication that the fitting method works as expected
and does indeed give correct results.
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5.3 Fit Systematics

The parameters resulting from the fit somewhat depend on the chosen probability
density function, which can also affect the measured (relative) event yields. This is
a problem because some parts of the pdf, like the m(B0

s ) signal shape, were chosen
intuitively. Other shapes would have been possible as well and the correct choice is
not known. In order to estimate the influence of the chosen shape on the results,
the pdf is slightly varied and then fitted to the data distributions again. An error
is estimated by looking at the change of the relative event yields. In the end, only
those are relevant for the relative branching fraction. As a default value, the value
measured in Section 5.1 is used.

σ =

(
Nf ′2

/Nφ

)
varied

−
(
Nf ′2

/Nφ

)
default(

Nf ′2
/Nφ

)
default

(5.9)

The variations of the pdf and the errors they cause are summarized in Table 5.2.
The largest error is then taken as an estimate of the systematical error due to the
shape of the pdf.

Table 5.2: Estimation of the systematic error due to the fit model.
Variation σsyst[%]

fix γ of f ′2(1525) to PDG value 73 MeV/c2

−7.3and include f0(1710) resonance into pdf
linear non-resonant m(K+K−) background +12.5
describe m(B0

s ) with Gaussian function +3.1
exponential m(B0

s ) background −0.9

max σsyst
+12.5
−7.3

Of special interest is the first entry in Table 5.2 where a spin-0 Breit-Wigner was
added to the f ′2 background pdf to allow for the presence of a second resonance
peak. As a first approximation a double Gaussian was chosen for the according part
of the pdf in the m(B0

s ) distribution assuming that the resonance does indeed come
from a B0

s decay. The results of the fit, where the f ′2(1525) and f0(1710) widths
were fixed to the PDG values, is shown in Figure 5.10. The fit gives a f0(1710) mass
of (1718± 9) MeV/c2 in agreement with the PDG value of (1720± 6) MeV/c2 [11].
This and the good description of the data as shown in the plots makes the existence
of a f0(1710) or a similar resonance seem likely. This would be a first sign of the
decay B0

s → J/ψf0(1710). Unfortunately, within this thesis it was not possible to
investigate this any further.
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Figure 5.10: Fit in the f ′2 mass window allowing for an additional f0(1710) resonance.
The left plot shows the invariant K+K− mass distribution whereas the right one
the distribution of the B0

s candidate’s mass. The significant difference with respect
to Figure 5.1 and 5.3 is that the total background, shown in green, now includes a
Breit-Wigner part in mKK and an additional double Gaussian in mB. The orange
dashed line shows the fitted f0(1710) resonance by itself.

6 Efficiency Corrections

The event numbers measured in Section 5 have to be corrected due to the finite
efficiency of the LHCb experiment. In several stages events are lost and thus do not
appear in the data sample used for the analysis. Each effect causing event losses can
be assigned an efficiency. The total efficiency ε then is the product of all contributing
efficiencies:

ε = εacc · εrec · εsel · εtrig . (6.1)

εacc takes into account that of the real number of decays, Nreal, only a fraction
Nacc = εacc · Nreal lies within the acceptance of the detector, i.e., within its field of
vision. Even those who indeed produce signals do not have to be reconstructed prop-
erly. This gives rise to εrec = Nrec/Nacc, where Nrec is the number of reconstructed
events. In the selection process not only wrongly reconstructed background events
are discarded by the cuts but also some signal events. The remaining fraction is
given by Nsel = εsel ·Nrec. Finally, also the trigger requirements lead to the rejection
of some signal events which is considered by εtrig = Ntrig/Nsel.
In general ε can depend on the specific decay, which, in the following, will be indi-
cated by a subscript X. In this thesis X can be either f ′2 or φ depending on which
of the two decays B0

s → J/ψf ′2 or B0
s → J/ψφ is studied.

Using real data it is impossible to measure the discussed efficiencies. Therefore,
simulated data of the non-resonant decay B0

s → J/ψK+K−, that was presented in
Section 4.4, is used to estimate the efficiencies for both channels B0

s → J/ψf ′2 and
B0
s → J/ψφ. As it is not obvious that the applied method gives the right values, the
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efficiency for B0
s → J/ψφ is also calculated using simulated data of the B0

s → J/ψφ
decay in order to have some cross-check.

6.1 Comparison Between Fully Simulated Events and Real Data

Before a MC simulation can be used to make predictions for the real experiment
it is essential to compare the simulation with data and make sure that they are
compatible in the quantities of interest. As the non-resonant MC sample is to be
compared to the measured data with the two resonances f ′2(1525) and φ particular
attention has to be paid to the kaon kinematics. The corresponding distributions
have to agree because the total efficiency depends on them. This can be seen in
Figure 6.1.
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Figure 6.1: Efficiencies measured in the non-resonant B0
s → J/ψK+K− Monte-

Carlo. The left plot shows the kaon momentum dependency whereas the right one
shows the dependency of εMC on the pseudorapidity. Further details of measuring
MC efficiencies are discussed in Section 6.2.

The distributions of momentum P, transverse momentum PT and pseudorapidity
η11 of the kaons in data and both MC samples are compared in Figure 6.2, 6.3 and
6.4. No difference is made between negatively and positively charged kaons because
they behave alike.
The comparisons are made for the two mesons separately by looking at two differ-
ent mass windows. Most f ′2(1525) mesons have a mass within [1400, 1650] MeV/c2

whereas most φ mesons can be found in [1000, 1050] MeV/c2. Events are only taken
into account if their combined K+K− mass lies within those windows. To make sure
that only kaons from the resonances are compared, events from the m(K+K−) side-
bands are used to correct the background contribution in the measured data. In the
simulation background is avoided by only taking kaons from truthfully reconstructed
events.
11The pseudorapidity is commonly used in particle physics to describe the angle Θ between the

particle’s momentum and the beam axis of the experiment: η = − ln
(
tan

(
Θ
2

))
.
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Figure 6.2: Kaon momentum P for data and both MC samples. Data is shown in
black, the non-resonant B0

s → J/ψK+K−-MC in red and the B0
s → J/ψφ-MC in

green. The histograms are all normalized by dividing by their number of entries. In
the left plot only events with m(K+K−) in the f ′2 mass window are considered, in
the right plot only such with m(K+K−) in the φ mass window.
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Figure 6.3: Kaon transverse momentum PT for data and both MC samples. For a
more detailed description see Figure 6.2.

In some bins of the compared distributions there are discrepancies larger than the
statistical errors. Especially in the lower momentum regions the simulation does
not agree with the real data. Usually, this problem could be solved by reweighing
the MC distributions. However, this was found to give no considerable improvement
because of the relatively good overall agreement and the low statistics in some of the
distributions. Especially noteworthy is the agreement of the B0

s → J/ψφ simulation
with the non-resonant B0

s → J/ψK+K− simulation in the φ mass window. This
shows that there is no significant difference in the kaon kinematics independent of
whether there is a φ resonance or not. It is assumed that this is also valid for the
f ′2(1525) resonance.
Altogether, it seems to bee a good first approximation to determine efficiencies for
the decays B0

s → J/ψf ′2(1525) and B0
s → J/ψφ with the simulation of the non-
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Figure 6.4: Kaon pseudorapidity η for data and both MC samples. For a more
detailed description see Figure 6.2.

resonant B0
s → J/ψK+K− decay. The efficiency measured for the B0

s → J/ψφ
channel with the corresponding simulation can be used as a cross-check.
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Figure 6.5: Comparison of the DLL(K − π) distributions for kaons of events in the
f ′2 and φ mass window. For a more detailed description see Figure 6.2.

When comparing the measured and simulated data samples another problem can be
noted: There is a significant discrepancy in the DLL(K−π) and DLL(p−K) distri-
butions which can be seen in Figure 6.5 and 6.6. This is a problem because there are
cuts on those variables in the selection which consequently have different efficiencies
in measured data and MC. To avoid a systematic effect on the selection efficiency,
εsel is split up into two parts. The first part gives the efficiency of the selection re-
quirements without the DLL-cuts and is determined with the B0

s → J/ψK+K−-MC
in Section 6.2. The second part is the efficiency of the DLL-cuts, εDLL, which is
measured with a data driven method that is described in Section 6.3.
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Figure 6.6: Comparison of the DLL(p−K) distributions for kaons of events in the
f ′2 and φ mass window. For a more detailed description see Figure 6.2.

6.2 Monte-Carlo Efficiencies

In simulated data efficiencies can be determined very easily because the generator
level information is accessible. This means that it is known what has been generated
and in each step of the measuring, reconstruction and selection process it can be
checked what happens with the generated events. For example, it is known whether
they are reconstructed correctly or whether or not they pass a certain selection re-
quirement. As was seen before an efficiency can be defined as the fraction of events
that passes a certain criterion. In a MC data sample those events can simply be
counted. The total efficiency can then be determined by counting the fraction of the
total number of generated events that is reconstructed correctly and is selected in
the data sample. Similarly, the acceptance efficiency can be calculated by counting
the number of events that are within the detector acceptance, the reconstruction effi-
ciency by counting the the number of reconstructed events and so on. Consequently,
each of the efficiencies given in Equation (6.1) can be determined.
As was said before there was no MC sample for the decay B0

s → J/ψf ′2(1525) avail-
able for this analysis. That is why the efficiencies for both decay modes B0

s → J/ψφ
andB0

s → J/ψf ′2(1525) are determined from the non-resonantB0
s → J/ψK+K−-MC

sample. It should be mentioned again that the MC distributions are not reweighed
with the data distributions. The question remains, how the two modes can be dis-
tinguished in the non-resonant MC. As a first approximation it seems reasonable
to do it by the mass of the combined K+K−. Indeed, Figure 6.1 shows that the
efficiency depends on the kinematics of the kaons but in Section 6.1 it was seen that
the kinematic distributions of data and the B0

s → J/ψK+K−-MC agree for events
with m(K+K−) in the φ and f ′2 mass window. This is taken as a sign that the
kinematic dependency of the efficiency is equivalent to a dependency on the K+K−

mass.
The total efficiency measured in the MC sample, εMC , is plotted against m(K+K−)
in Figure 6.7. It depends on m(K+K−) as was expected. Most φ mesons can be
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Figure 6.7: Efficiency εMC for
the non-resonant MC sam-
ple depending on the com-
bined K+K− mass. The
black histogram shows the
mass dependence for a fine bin-
ning. The red points are the
mean values in the f ′2 and
φ mass window used for the
decays B0

s → J/ψf ′2(1525) and
B0
s → J/ψφ.

found in a relatively small mass range m(K+K−) ∈ [1000, 1050] MeV/c2. Figure 6.7
indicates that fluctuations of the efficiency values are negligible in this range. That
is why the mean efficiency over the range is taken for the decay B0

s → J/ψφ.
For the decay B0

s → J/ψf ′2(1525) the mean efficiency in the K+K− mass range
m(K+K−) ∈ [1000, 1050] MeV/c2 is used. The resulting values are listed in Table 6.1
and also shown in Figure 6.7.

Table 6.1: Efficiencies calculated from the B0
s → J/ψK+K− Monte-Carlo sample in

the f ′2(1525) and φ mass window. All errors are statistical.
Efficiency f ′2 Window φ Window
εacc 23.80± 0.12 % 24.09± 0.46 %
εrec 94.61± 0.59 % 95.72± 2.37 %
εsel 45.73± 0.37 % 49.11± 1.51 %
εtrig 82.36± 0.81 % 80.97± 3.05 %
εMC 8.48± 0.06 % 9.17± 0.27 %

However, it is not obvious that taking the mean value also gives the correct effi-
ciency for B0

s → J/ψf ′2(1525). f ′2 events can be found in a large mass range and
fluctuations in the efficiency might be significant. To check this the efficiency for
B0
s → J/ψf ′2(1525) was also calculated by weighting the values of each K+K− mass

bin with the fraction of B0
s → J/ψf ′2(1525) signal events in this bin. The fraction

can be calculated by computing the integral of the signal part Sf ′2(mKK ;~λ) of the fit-
ted pdf describing the m(K+K−) distribution12 (see also Section 5). The efficiency
is then given by:

εMCf ′2
=
∑
i

∫
i

Sf ′2(mKK ;~λ) dmKK · εMCi . (6.2)

12Note that SX(mKK ;~λ) is already normalized.
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This is done over a relatively large mass range from 1250 MeV/c2 to 2000 MeV/c2.
The resulting efficiency is εMCf ′2

= 8.50± 0.06 % which is compatible with the mean
value considering the statistical error. Consequently, the efficiency value given in
Table 6.1 can be used for the B0

s → J/ψf ′2(1525) mode.

6.3 PID Efficiency

In Section 6.1 the discrepancy of the PID distributions led to the conclusion that the
efficiency εPID of the PID cuts can not be determined with the MC sample. That
is why it is necessary to measure εPID with a data driven method that will be dis-
cussed in this section. Usually, the identification of pions and kaons is done by RICH
detectors. However, there are some special, very clean decays where particles can
be identified from their kinematics alone. Those decays can be used to measure the
performance of the particle identification system. In this analysis, εPID is measured
using the tools and calibration data samples provided by the the PIDCalib Pack-
ages [22]. This data allows to study the efficiency of arbitrary DLL-cuts with the
help of the mode D?(2010)→ D(K−π+)π+

s . In this mode the kaon can be identified
independently from the RICH information and thus the fraction of particles passing
or failing the cuts of interest can be measured. εPID is then given by the fraction of
the passing kaons with respect to the total number of kaons in the sample.
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Figure 6.8: Reweighing of the calibration sample using the number of tracks per event
and the two dimensional distribution of the momentum and pseudorapidity for kaons
from B0

s → J/ψφ. (a) shows the number of tracks, (b) the kaon momentum and (c)
the pseudorapidity distributions. The green and red markers show the un-weighted
and weighted distributions of the calibration sample, the black ones correspond to
the analysis data sample.

However, if the result is to be transferred to other decay modes it has to be born
in mind that the according DLL distributions can depend on the kinematics of the
kaons. If they are different this can result in a different efficiency of the cut. That’s
why the calibration sample has to be reweighed with the distributions from the data
sample for which the efficiency is to be measured.
The DLL distributions depend strongly on the momentum and pseudorapidity of the
considered particle as well as on the number of particle tracks in the event. That
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Figure 6.9: DLL(K−π) (left) and DLL(p−K) distribution (right) of the calibration
sample before (green) and after the reweighing (red) with kaons from B0

s → J/ψφ.
The vertical lines indicate the cuts used in the selection for which εPID is measured.

is why first the distribution of the number of tracks in the calibration sample is
reweighed according to the distribution in the analysis data sample. Then also the
kaon momentum and pseudorapidity distributions are reweighed two-dimensionally.
Those distributions can be seen in Figure 6.8 for the analysis and calibration data
sample. The resulting DLL(K − π) and DLL(p − K) distributions are shown in
Figure 6.9.
εPID has to be measured for both decay modes B0

s → J/ψf ′2(1525) and B0
s → J/ψφ.

That is why it is measured with two differently reweighed calibration samples. The
first sample is reweighed with the distributions of events with a K+K− mass in
the f ′2 window, the second sample with those of events from the φ mass window.
To account for background events, which have different kinematic distributions,
sideband subtraction is applied to correct the data distributions. The plots shown
in Figure 6.8 and 6.9 correspond to the analysis of the B0

s → J/ψφ channel.
The resulting efficiencies of the PID cuts are given in Table 6.2 for both decay modes
B0
s → J/ψf ′2(1525) and B0

s → J/ψφ and will be used in the further analysis.

Table 6.2: Efficiencies of the DLL cuts in the f ′2 and φ mass window.
Decay Mode εPID
B0
s → J/ψf ′2 70.79± 0.76%

B0
s → J/ψφ 77.50± 0.14%

6.4 Real Data Efficiencies

The measured MC efficiencies εMC can be used to estimate the efficiencies of the
real experiment. However, they are not directly transferable because in order to
save computing time only events that decay into a certain solid angle are generated
in the MC simulation. Consequently, event yields in MC have to be corrected with
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a geometric efficiency εgeom. For the non-resonant B0
s → J/ψK+K− MC sample

εgeom = 15.53% [23]. Considering also the efficiency of the PID cuts the total
efficiencies used for the decays B0

s → J/ψf ′2(1525) and B0
s → J/ψφ in measured

data are given by:

εX = εgeom · εMC · εPID. (6.3)

The numerical values of the total efficiency are summarized in Table 6.3.

Table 6.3: Total efficiency for both of the two considered decay modes.
Decay Mode εX
B0
s → J/ψf ′2(1525) 0.93± 0.01 %

B0
s → J/ψφ 1.10± 0.03 %

As a cross-check the efficiency for the B0
s → J/ψφ channel was also calculated

with the B0
s → J/ψφ MC sample. Applying the same procedures this gives εφ =

(1.12± 0.01)% in perfect agreement with the value obtained from the non-resonant
B0
s → J/ψK+K−-MC. It is therefor reasoned that the values in Table 6.3 are indeed

the correct ones also for the B0
s → J/ψf ′2(1525) channel.

Strictly speaking, additional studies concerning systematic differences between the
measured data and the simulation would be necessary. Only that way it could be
made absolutely sure that the efficiency values are indeed transferable. For example,
it is not clear that the detector acceptance is described well by the simulation.
However, the two studied decay modes are kinematically very similar and it can
be assumed that the unconsidered systematic effects are very similar for both, too.
When calculating the relative efficiency they should cancel out for the most part.
Consequently, they do not have a large impact on the relative branching fraction
because it only depends on the relative efficiency.

7 Final Result and Conclusion

From the results that have been discussed so far, the relative branching fraction
Rf ′2/φ

of the decay mode B0
s → J/ψf ′2(1525) with respect to B0

s → J/ψφ can
be calculated. According to Equation (5.2), Rf ′2/φ

depends on the relative event
yields and the relative efficiencies for both decay modes. The number of f ′2(1525)-
events, Nf ′2

= 2187 ± 111, and the number of φ-events, Nφ = 13519 ± 149, were
measured in Section 5. This was done by fitting the distributions of the invariant
K+K− mass and the B0

s candidate’s mass in a two-dimensional fit. The ratio is
Nf ′2

/Nφ = (16.18 ± 0.84(stat.)+2.02
−1.18(fit.)) %, where the second error was estimated

by varying the fit model.
The efficiencies for the decays B0

s → J/ψf ′2(1525) and B0
s → J/ψφ were determined

in Section 6 using a simulation of the non-resonant decay B0
s → J/ψK+K−. The
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total efficiency was found to be εf ′2 = (0.93 ± 0.01) % for B0
s → J/ψf ′2(1525) and

εφ = (1.10± 0.03) % for B0
s → J/ψφ. The errors are purely statistical. Systematic

effects were not analyzed because it is assumed that they cancel out in the ratio
εf ′2/εφ = (0.85± 0.02) for the most part.
Finally the relative branching fraction also depends on the explicit branching frac-
tions for the f ′2(1525) and φ decaying into the considered K+K− final state. Those
branching fractions have not been measured in this analysis and the PDG values are
used: B(f ′2(1525)→ K+K−) = (44.4±1.1) % and B(φ→ K+K−) = (48.9± 0.5) % [11].
Inserting all those values in Equation (5.2) gives:

Rf ′2/φ
= (21.07± 1.26(stat.) +2.63

−1.54(fit)± 0.58(PDG)) % (7.1)

The first error is purely statistical, the second one considers the variation of the
relative event yields due to slight changes in the fit model and the third one contains
the uncertainties of the used PDG values.
The ratio has previously been measured to (26.4±2.7(stat.)±2.4(syst.)) % [5] which
is in agreement within 2σ if only the statistical errors are considered. The difference
in the size of the statistical error is due to different sizes of the data samples used
for the analyses.
From this point on, there are various possibilities to continue with the analysis.
First of all, systematic effects that could contribute an uncertainty to the relative
branching fraction could be studied more deeply. In this thesis only the effect of the
fit model was analyzed. In addition, it could be checked how the chosen mass range
affects the fit results. Also, the background should be analyzed more accurately.
It is known that there are physical background components from inclusive B →
J/ψX decays peaking in the B0

s as well as in either the f ′2(1525) or the φ mass
peak [5]. It was assumed that such background events were rejected by the selection
requirements. This however, was not explicitly tested. Finally, it would be useful
to have a simulation of the B0

s → J/ψf ′2(1525) decay to cross-check the efficiency
determined with the B0

s → J/ψK+K−-MC.
Besides the relative branching fraction, also other properties of theB0

s → J/ψf ′2(1525)
channel, like the angular distributions, could be analyzed. Or, the third mass peak
that was observed in the m(K+K−) distribution could be investigated more deeply.
It would be interesting to see whether it really gives rise to an unobserved decay
mode like B0

s → J/ψf0(1710).
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