7.3 Fermi-Gas-Modell des Kerns

Nukleonen als unabhängige Teilchen in einem effektiven Potential beschrieben:

 \Rightarrow Fermi-Gas: Nukleonen können sich frei innerhalb einer Kugel mit Radius R=1.2 A^{1/3} fm frei bewegen.

- Verschiedene Potentialtöpfe für Neutronen und Protonen
- Wg. Coulomb-Energie haben Potentiale verschiedene Form und Tiefe
- Im Unendlichen sind Potentiale gleich
- Potentiale enthalten eine endliche Zahl von Energiezuständen die je mit max. 2 Nukleonen besetzt werden können (↑↓).
- Entartetes Fermi-Gas: Kern-Temperatur so niedrig, dass Nukleonen alle im niedrigsten Energiezustand. Besetzung bis Energie E_F.

7.4 Schalenmodell *)

Evidenz für eine Schalenstruktur der Kerne:

- Kernspektroskopie zeigt diskrete Anregungszustände der Kerne, die unter i) Aussenden von γ -Quanten zerfallen.
- Nuklide mit magischen Zahlen (2, 8, 20, 28, 50, 82) von Protonen und ii) Neutronen sind besonders stabil, was auf "stabile" abgeschlossene Schalen hindeutet: ${}^{4}_{2}He_{2}$, ${}^{16}_{8}O_{8}$, ${}^{40}_{20}Ca_{20}$, ${}^{48}_{20}Ca_{28}$, ${}^{208}_{82}Pb_{126}$

Um die Schalenstruktur zu verstehen, muß die Schrödinger-Gl. Gelöst werden., wobei man verschiedene Ansätze eines radial-symmetrischen Potentials machen kann: Einzelnes Nukleon befindet sich im effektiven Potential der Rest-Nukleonen

Für radial-symmetrisches Potential kann die Nukleon-Wellenfunktion wie in Atomphysik in Radialteil $\mathbf{R}_{nl}(\mathbf{r})$ und Winkelanteil $\mathbf{Y}^{lm}(\theta, \varphi)$ zerlegt werden.

*) Nobelpreis 1963 für M.Göppert-Mayer und H.Jensen (exp. Beiträge; O. Haxel und H. Suess)

Ansätze für Kernpotential

Aufgrund der sehr kurzreichweitigen Kernkräfte sollte das Potential in etwa der Dichteverteilung der Nukleonen folgen:

Am einfachsten zu berechnen ist das 3-dim harmonische Potential:

$$V(r) = \frac{1}{2} m \omega_0^2 r^2 \quad \text{mit} \quad \hbar \omega_0 \approx 41 \text{MeV} \cdot \text{A}^{1/3}$$

$$= \frac{N_r}{2} = \left(\frac{N}{2} + \frac{3}{2} \right) \hbar \omega_0 \quad \text{mit} \quad N = 2(n_r - 1) + \ell$$

$$= N_x + N_y + N_z \quad n_r = \text{Zahl der Knoten in Radialfkt.}$$

Entartung des 3-dim harmonischen Oszillators: (s. Lit,)

 $g(N) = \frac{1}{2}(N+1)(N+2)$ Zustände für Energie E_N

Wobei jeder Zustand mit je 2 Protonen und 2 Neutronen besetzt werden kann.

"Schalen": 2, 8, 20, 40, 70, 112 \neq magische Zahlen

Auch der alternative Ansatz eines Kasten- oder Woods-Saxon Potentials führt nicht zu den korrekten "magischen Zahlen". Woods-Saxon: 2, 8, 18, 20, 34

Es lassen sich nur die ersten Schalenabschlüsse korrekt erklären.

Bisher wurde allerdings der Nukleon-Spin und die resultierende Spin-Bahnkopplung für die Berechnung der Energieniveaus nicht berücksichtigt. (In der Atomphysik beeinflusst die resultierende Feinstruktur die Schalenabschlüsse nur wenig).

Man führt zusätzlich zum "starken" Kernpotential V_{Kern} (r) auch einen möglichen Spin-Bahn-Kopplungsanteil zum Potential ein

$$V(r) = V_{stark}(r) + V_{\ell s}(r) \frac{\left\langle \vec{\ell} \cdot \vec{r} \right\rangle}{\hbar^2}$$

Dies führt zu einer Aufspaltung der ansonsten entarteten Niveaus:

$$j = \ell \pm \frac{1}{2}$$

Experimentell fand man, dass es sich bei $V_{Is}(r)$ um ein sehr stark attraktives (negatives) Potential handelt.

Energieaufspaltung:

Das Schalenmodell mit adäquater Spin-Bahn Kopplung ist in der Lage die Schalenabschlüsse und die damit verbundenen magischen Zahlen zu beschreiben. Es sagt darüber hinaus auch Kern-Spins und magnetische Momente sowie die Anregungsenergien korrekt vorher.

Vorhersagen des Schalenmodells

- a. In vollständig besetztem j-Niveau koppeln alle magn. Momente m_j der Nukleonen zu Null: Abgeschlossene n/p Niveaus haben Gesamtdrehimpuls 0.
- b. Für Kerne mit einem Nukleon außerhalb einer abgeschlossenen Unterschale: Spin und Parität des Kerns wird durch diese Nukleonen bestimmt.

Beispiel: ${}^{17}_{8}O_9$ Grundzustand: n in $1d_{5/2}$ Schale $\rightarrow J^P = \frac{5}{2}^+$

d. Fehlendes Nukleon (Loch) in einer sonst abgeschlossenen Schale bestimmt ebenfalls Spin und Parität des Kerns:

Beispiel: ${}^{15}_{8}O_7$ Grundzustand: Loch in $1p_{1/2}$ Schale $\rightarrow J^P = \frac{1}{2}^-$

e. Kern-Anregungszustände durch "Leucht-Nukleonen" gut beschrieben.

Beis	pie	le:

Kern	Zustand	JP
¹⁵ N	Proton in 1p _{1/2}	1/2-
¹⁵ O	Neutron in 1p _{1/2}	1/2-
¹⁷ O	Neutron in 1d _{5/2}	5/2+
¹⁷ <i>F</i>	Proton in 1d _{5/2}	5/2+

Fig-TP-7.11

7.5 Elementsynthese

 \Rightarrow Entstehung der Elemente; Urknall vor ~13.7 × 10⁹ Jahren.

a) Primordiale Elementsynthese

In den ersten µsec bestand die Materie aus freien Quarks und Gluonen, Leptonen sowie den anderen Austauschbosonen. Durch die Ausdehnung des Universums fand eine Abkühlung statt.

Bei t \approx 10 µs nach dem Urknall, kT \approx 150 MeV, d.h. T \approx 10¹² K fand die Kondensation von Hadronen aus dem Quark-Gluon-Plasma statt.

Die Hadronen zerfallen und es bleiben am Ende nur noch Protonen und Neutronen bzw. ihre Antiteilchen übrig. Aufgrund eines kleinen Materieüberschusses (~10⁻⁹) blieben die Protonen und Neutronen des heutigen Universums übrig.

Solange T hoch genug ist, befinden sich Protonen und Neutronen im thermischen Gleichgewicht:

 $n + v \leftrightarrow p + e^{-}$ $n + e^{+} \leftrightarrow p + \overline{v}$

Nach t \approx 1s (kT \approx O(1 MeV)) entkoppeln Neutrinos und Reaktion stoppt.

Zu dieser Zeit (t≈1s) gilt für das Neutron/Proton Verhältnis:

$$\frac{N_n}{N_p}\Big|_{t\approx 1s} = \exp\left(-\frac{m_n - m_p}{kT}\right) \approx 0.2$$

Sobald kT < 1 MeV war, bildeten sich die ersten Kerne:

1

$$p + n \rightarrow d + \gamma$$

$$d + p \rightarrow^{3}He + \gamma$$

$$^{3}He + ^{3}He \rightarrow^{4}He + 2p$$

$$^{4}He + ^{3}He \rightarrow^{7}Li \implies \text{Es gibt nur sehr wenig }^{7}\text{Li da Reaktion}$$

$$\text{mit } p + \text{Li} \rightarrow 2 \ ^{4}\text{He konkurriert.}$$

Da es keine A=5 und 8 Kerne gibt, bricht die Elementerzeugung hier ab. Sobald alle Nukleonen aufgebraucht sind, stoppt die Nukleosynthese: t≈300s

$$\frac{N_n}{N_p}\Big|_{t\approx 1s} \approx 20\% \longrightarrow \frac{N_n}{N_p}\Big|_{t\approx 300s} \approx 13.5\%$$

Die so entstandene Elementhäufigkeit läßt sich noch heute nachweisen und wird als primordiale Elementhäufigkeit bezeichnet.

Massenanteile: p	: 76%
⁴ He	: 23%
² H	: 2%
⁷ Li	: 1.5×10 ⁻¹⁰

Das Universum expandierte und kühlte sich weiter ab.

Nach t= 4×10^5 Jahren bei T=3000K (kT ~ eV) werden durch Einfang von Elektronen die neutralen Atome gebildet. Zu diesem Zeitpunkt entkoppeln die Photonen. Sie sind heute als kosmische Hintergrund-Strahlung ("3K") noch immer präsent: Rot-Verschiebung durch Expansion des Univesums.

Elementsynthese in Sternen

Nach ~10⁸ Jahren ist der Gasdruck gering genug, dass Gravitation H und He Gas zu einem prästellaren Nebel verdichten kann.

Aufgrund des gravitativen Zusammenfallens der prästellaren Gaswolken werden hohe Dichten und Temperaturen erreicht. Bei T~10⁷ K zündet der pp-Fusionszyklus: Wasserstoff-Brennen. Strahlungsdruck wirkt dem gravitativen Druck entgegen.

Nach der pp-Brennphase können sich je nach Masse des Stern weitere Brennphasen anschließen:

Fig-TP-7.12

He-Brennen:	^{4}He + ^{4}He \rightarrow ^{8}Be + γ
Be-Brennen:	⁸ Be + ⁴ He \rightarrow ¹² C + γ
C - Brennen:	$^{12}C + ^{12}C \rightarrow ^{23}Na + p$
	12 C (α , γ) 16 O (α , γ) 20 Ne (α , γ) 28 Si
O – Brennen:	^{16}O + $^{16}O \rightarrow ^{28}Si + {}^{4}He$
Si – Brennen:	²⁸ Si + ²⁸ Si \rightarrow ⁵⁶ Fe + γ

Brennphasen : Stern mit M = 25 M_S

Fig-TP-7.13

Fusion of	Time to complete	Core temperature (K)	Core density $(kg m^{-3})$
Н	7×10^6 yr	6×10^{7}	5×10^{4}
Не	5×10^5 yr	2×10^{8}	7×10^{5}
С	600 yr	9×10^{8}	2×10^{8}
Ne	1 yr	1.7×10^{9}	4×10^{9}
0	0.5 yr	2.3×10^{9}	1×10^{10}
Si	1 day	4.1×10^{9}	3×10^{10}

Brenndauern werden mit steigender Temperatur immer kürzer.

Endstadium :

Im Endstadium hat ein massereicher Stern eine Zwiebelschalenstruktur:

Eisenkern und äußere Schalen in denen noch Fusionsprozesse laufen.

Stark aufgebläht: Roter Riesenstern

Durch Fusion in Sternen können alle Elemente bis ⁵⁶Fe/⁵⁶Ni gebildet werden. Alle anderen Elemente werden durch Neutronen-Einfang und nachfolgendem Beta-Zerfall gebildet.

Notwendig: Neutronenreiche Umgebung z.B. Supernova Explosionen.

- Rapid-Neutron Capture (r-Prozesse)
- Slow-Neutron Capture (s-Prozesse)

Rapid/slow bezieht sich auf den Neutroneneinfang, der schneller/langsamer als β- Zerfallszeit ist. (Gegenstand aktueller Forschung)

NGC 1952SST – Überreste einer Supernova

