

The N	obel Prize in Physics 1984
Carlo Rubbia	Simon van der Meer
Carlo Rubbia	Simon van der Meer Simon van der Meer ntributions to the large project, which led to the particles W and Z, communicators of weak interaction
Carlo Rubbia	Simon van der Meer Simon van der Meer Atributions to the large project, which led to the particles W and Z, communicators of weak interaction

One finds for the differential cross section:

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2}{2s} \left[F_{\gamma}(\cos\theta) + F_{\gamma Z}(\cos\theta) \frac{s(s-M_Z^2)}{(s-M_Z^2)^2 + M_Z^2\Gamma_Z^2} + F_Z(\cos\theta) \frac{s^2}{(s-M_Z^2)^2 + M_Z^2\Gamma_Z^2} \right] \frac{\gamma}{\gamma/Z \text{ interference}} Z \frac{\gamma}{\sqrt{2 \text{ mishes at } \sqrt{s} \approx M_Z}}$$

$$F_{\gamma}(\cos\theta) = Q_e^2 Q_{\mu}^2 (1 + \cos^2\theta) = (1 + \cos^2\theta)$$

$$F_{\gamma Z}(\cos\theta) = \frac{Q_e Q_{\mu}}{4\sin^2\theta_W \cos^2\theta_W} \left[2g_V^{e}g_V^{\mu}(1 + \cos^2\theta) + 4g_A^{e}g_A^{\mu}\cos\theta \right]$$

$$F_{Z}(\cos\theta) = \frac{1}{16\sin^4\theta_W \cos^4\theta_W} \left[(g_V^{e^2} + g_A^{e^2})(g_V^{\mu^2} + g_A^{\mu^2})(1 + \cos^2\theta) + 8g_V^{e}g_A^{e}g_W^{\mu}g_A^{\mu}\cos\theta \right]$$
Forward-backward asymmetry
$$\frac{d\sigma}{d\cos\theta} \sim (1 + \cos^2\theta) + \frac{8}{3}A_{FB}\cos\theta \quad \text{with} \quad A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

