V. Experimental studies of QCD

1. Test of QCD in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation
2. Structure of the proton
3. Structure functions and quark densities
4. Scaling violation in DIS

1. Test of QCD in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

1.1 Two-jet events and production of colored q \bar{q}

a) clear two-jet event structure in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons ($q \bar{q}$)
b) $\quad R_{\text {had }}=\frac{\sigma(e e \rightarrow \text { hadrons })}{\sigma(e e \rightarrow \mu \mu)}$ indicates fractional charges and $\mathrm{N}_{\mathrm{C}}=3$

Additional indications for $\mathrm{N}_{\mathrm{C}}=3$:

- Δ^{++}statistic problem:

Spin $J\left(\Delta^{++}\right)=3 / 2(L=0)$, quark content |uuu>
$\rightarrow\left|\Delta^{++}\right\rangle=|u \uparrow u \uparrow u \uparrow\rangle \quad$ forbidden by Fermi statistic
Solution is additional quantum number for quarks (color)

$$
\left|\Delta^{++}\right\rangle=\frac{1}{\sqrt{6}} \varepsilon_{i j k}\left|u_{i} \uparrow u_{j} \uparrow u_{k} \uparrow\right\rangle \quad i, j, k=\text { color index }
$$

Additional indications for $\mathrm{N}_{\mathrm{C}}=3$:

- Triangle anomalie

Divergent fermion loops

Divergences cancel if $\mathrm{N}_{\mathrm{C}}=3$:

$$
0=\sum_{f} Q_{f}=(-1)+(-1)+(-1)+N_{c} \cdot\left[\left(\frac{2}{3}-\frac{1}{3}\right) \cdot 3\right]
$$

3 generations of u / d-type quark

1.2 Discovery of the gluon

Discovery of 3-jet events by the TASSO collaboration (PETRA) in 1977:

3-jet events are interpreted as quark pairs with an additional hard gluon.

$$
\frac{\# 3-\text { jet events }}{\# 2-\text { jet events }} \approx 0.15 \sim \alpha_{s} \quad \square \quad \alpha_{s} \text { is large }
$$

at $\sqrt{ } \mathrm{s}=20 \mathrm{GeV}$

Spin of the gluon

Ellis-Karlinger angle

Figure 8: (a) Representation of the momentum vectors in a three jet event, an (b) definition of the Ellis-Karliner angle.

Measure direction of jet-1 in the rest frame of jet-2 and jet-3: θ_{EK}

Figure 9: The Ellis-Karliner angle distribution of three-jet events recorded by TASSO at $Q \sim 30 \mathrm{GeV}[18]$; the data favour spin-1 (vector) gluons.

1.3 Multi-jet events and gluon self coupling

Non Abelian gauge theory (QCD)

$$
\begin{aligned}
& \text { 4-jet cross section: } \\
& \begin{array}{l}
\frac{1}{\sigma_{0}} d \sigma^{4}=\left(\frac{\alpha_{A} C_{F}}{\pi}\right)^{2}\left[F_{A}+\left(1-\frac{1}{2} \frac{N_{C}}{C_{F}}\right) F_{B}+\frac{N_{C}}{C_{F}} F_{C}\right] \\
\quad+\left(\frac{\alpha_{A} C_{F}}{\pi}\right)^{2}\left[\frac{T_{F}}{C_{F}} N_{f} F_{D}+\left(1-\frac{1}{2} \frac{N_{C}}{C_{F}}\right) F_{E}\right] \\
\mathrm{F}_{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}} \text { are kinematic functions }
\end{array}
\end{aligned}
$$

Casimir (color) factors:

Group	N_{C}	C_{F}	T_{F}
$\mathrm{U}(1)$	0	1	1
$\mathrm{U}(1)_{3}$	0	1	3
$\mathrm{SU}(\mathrm{N})$	N	$\left(N^{2}-1\right) / 2 N$	$1 / 2$
$\mathrm{SU}(3)$	3	$4 / 3$	$1 / 2$

Exploiting the angular distribution of 4-jets:

- Bengston-Zerwas angle
$\cos \chi_{B Z} \propto\left(\vec{p}_{1} \times \vec{p}_{2}\right) \cdot\left(\vec{p}_{3} \times \vec{p}_{4}\right)$
- Nachtmann-Reiter angle
$\cos \theta_{N R} \propto\left(\vec{p}_{1}-\vec{p}_{2}\right) \cdot\left(\vec{p}_{3}-\vec{p}_{4}\right)$
Allows to measure the ratios T_{F} / C_{F} and N_{C} / C_{F} $\mathrm{SU}(3)$ predicts: $\mathrm{T}_{\mathrm{F}} / \mathrm{C}_{\mathrm{F}}=0.375$ and $\mathrm{N}_{\mathrm{C}} / \mathrm{C}_{\mathrm{F}}=2.25$
$N_{C} / C_{F} \neq 0 \rightarrow$ contribution from gluon
self-coupling in the 4 -jet events

Confirms QCD prediction
(SU(3))
and gluon self-coupling

1.4 Measurement of strong coupling α_{s}

$\Rightarrow \alpha_{s}$ measurements are done at fixed scale $\mathrm{Q}^{2}: \alpha_{\mathrm{s}}\left(\mathrm{Q}^{2}\right)$
a) α_{s} from total hadronic cross section
$\sigma_{\text {had }}(s)=\sigma_{\text {had }}^{\text {QED }}(s)\left[1+\frac{\alpha_{s}(s)}{\pi}+1.411 \cdot \frac{\alpha_{s}(s)^{2}}{\pi^{2}}+\ldots\right]$
$R_{\text {had }}=\frac{\sigma(e e \rightarrow \text { hadrons })}{\sigma(e e \rightarrow \mu \mu)}=3 \sum Q_{q}^{2}\left\{1+\frac{\alpha_{s}}{\pi}+1.411 \frac{\alpha_{s}^{2}}{\pi^{2}}+\ldots\right\}$
Not very precise.

b) α_{s} from hadronic event shape variables

3-jet rate: $\quad R_{3} \equiv \frac{\sigma_{3-\text { jet }}}{\sigma_{\text {had }}} \quad$ depends on α_{s}
3-jet rate is measured as function of a jet resolution parameter $\mathrm{y}_{\text {cut }}$

Jet Algorithm

Hadronic particles are i and j grouped to a pseudo particle k as long as the invariant mass is smaller than the jet resolution parameter:

$$
\frac{m_{i j}^{2}}{s}<y_{\text {cut }}
$$

$m_{i j}$ is the invariant mass of i and j.
Remaining pseudo particles are jets.

n-jet rate as function of $\mathrm{y}_{\text {cut }}$

QCD calculations provide a theoretical prediction for $R_{3}{ }^{\text {theo }}\left(\alpha_{s}, y_{c u t}\right)$ \rightarrow fit $R_{3}^{\text {theo }}\left(\alpha_{s}, y_{\text {cut }}\right)$ to the data to determine α_{s}

$$
\Rightarrow \alpha_{\mathrm{s}}(\mathrm{~s})
$$

Similarly other event shape variables (sphericity, thrust,...) can be used to obtain a prediction for α_{s}
c) α_{s} from hadronic τ decays

$$
R_{\text {had }}^{\tau}=\frac{\Gamma\left(\tau \rightarrow v_{\tau}+\text { Hadrons }\right)}{\Gamma\left(\tau \rightarrow v_{\tau}+e \bar{v}_{e}\right)} \sim f\left(\alpha_{s}\right)
$$

$$
\Rightarrow \alpha_{s}\left(\mathrm{~m}_{\tau}^{2}\right)
$$

d) α_{s} from DIS (deep inelastic scattering)

e) Running of α_{s}

Similar to QED there are propagator corrections to be taken into account

Effective strong coupling $\alpha_{s}\left(Q^{2}\right)$

$$
\alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{1+\frac{\alpha_{s}\left(\mu^{2}\right)}{12 \pi}\left(33-2 n_{f}\right) \log \frac{Q^{2}}{\mu^{2}}}
$$

$n_{f}=$ active quark flavors
$\mu^{2}=$ the renormalization scale

Conventionally renormalization scale is

$$
\mu^{2}=M_{z}^{2}
$$

For $\mathrm{Q}^{2} \rightarrow \infty \quad \alpha_{\mathrm{s}} \rightarrow 0$:
At large Q^{2} quarks are asymptotically free

Running of α_{s} and asymptotic freedom

The Nobel Prize in Physics 2004

David J. Gross	H. David Politzer	Frank Wilczek

"for the discovery of asymptotic freedom in the theory of the strong interaction"

1.5 Description of hadron production in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

2. Structure of the proton

2.1 Elastic electron-proton scattering

$$
-q^{2}=4 E E^{\prime} \sin ^{4} \frac{\theta}{2}
$$

Size of the proton

Rosenbluth Plot:
$\frac{d \sigma}{d \Omega} /\left.\frac{d \sigma}{d \Omega}\right|_{\text {Mott }}=A\left(q^{2}\right)+B\left(q^{2}\right) \tan ^{2} \frac{\theta}{2}$
$A\left(q^{2}\right)=\frac{\mathrm{G}_{E}^{2}-\tau \mathrm{G}_{M}^{2}}{1-\tau}$ mit $\tau=\frac{q^{2}}{4 \mathrm{M}^{2}}$
$B\left(q^{2}\right)=-2 \tau \mathrm{G}_{M}^{2}$

Allows the determination of electric and magnetic form factors (Sachs form factors)

Electric and magnetic form factors can be described by dipole ansatz:

$$
G\left(q^{2}\right)=\frac{1}{\left(1-\frac{q^{2}}{0.71 \mathrm{GeV}^{2}}\right)^{2}}
$$

Dipole form factor is the Fourier transform of an exponential distribution \rightarrow radius of the charge (magnetic moment) distribution:

$$
\begin{gathered}
\left\langle r^{2}\right\rangle=-\left.6 \frac{d G}{d q^{2}}\right|_{q^{2}=0} \\
\left\langle r_{\text {el }}^{2}\right\rangle^{\frac{1}{2}}=\left\langle r_{\text {mag }}^{2}\right\rangle^{\frac{1}{2}}=0.81 \cdot 10^{-15} \mathrm{~m}
\end{gathered}
$$

Electric and magnetic size of proton and neutron are the same.

Newe is Comparison of the magnetic and deatric foom fertors of neutron and proten. The

2.2 Inelastic ep scattering

Inelastic scattering: $\mathrm{M} \neq \mathrm{W}$
2 independent variables:

- $v=E-E^{\prime}=E_{\text {had }}-M$
- $q^{2}=W^{2}-M^{2}-2 M v=Q^{2}$

Alternative: Bjorken-Variables

$$
x=\frac{Q^{2}}{2 M v} \text { and } y=\frac{v}{\mathrm{E}} \quad \begin{aligned}
& \text { Inelasti } \\
& \text {-city }
\end{aligned}
$$

Observation: Large cross section at large Q^{2} From elastic form factor one expects large suppression at large Q^{2}

Elastic scattering: $\mathrm{W}=\mathrm{M}$
only one free variable

$$
W=M \Rightarrow \frac{Q^{2}}{2 M v}=1
$$

a) Differential cross section and structure functions

Elastic

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \cdot\left(\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right)
$$

$\mathrm{e} \mu \rightarrow \mathrm{e} \mu$

$$
\frac{d \sigma}{d E^{\prime} d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \cdot\left(W_{2}\left(v, q^{2}\right) \cos ^{2} \frac{\theta}{2}+2 W_{1}\left(v, q^{2}\right) \sin ^{2} \frac{\theta}{2}\right)
$$

$e p \rightarrow e X$

$$
\frac{d \sigma}{d q^{2} d v}=\frac{4 \pi \alpha^{2}}{q^{4}} \frac{E^{\prime}}{E} \cdot\left(W_{2}\left(v, q^{2}\right) \cos ^{2} \frac{\theta}{2}+2 W_{1}\left(v, q^{2}\right) \sin ^{2} \frac{\theta}{2}\right)
$$

With structure functions $W_{1}\left(v, q^{2}\right)$ and $W_{2}\left(v, q^{2}\right)$

Scattering at point-like objects:

$$
\begin{aligned}
& 2 W_{1}^{\text {point }}=\frac{-q^{2}}{2 M^{2}} \delta\left(v+\frac{q^{2}}{2 M}\right) \quad W_{2}^{\text {point }}=\delta\left(v+\frac{q^{2}}{2 M}\right) \\
& \mathbf{W}_{1} \text { and } \mathbf{W}_{2} \text { functions of only one variable }
\end{aligned}
$$

b) First measurement of W_{2}

FIG. 1. $\left(d^{2} \sigma / d \Omega d E^{\prime}\right) / \sigma_{\text {Mott }}$, in GeV^{-1}, vs q^{2} for W $=2,3$, and 3.5 GeV . The lines drawn through the data are meant to guide the eye. Also shown is the cross section for elastic $c-p$ scattering divided by $\sigma_{\text {Mott }}$, $(d \sigma / d \Omega) / \sigma_{\text {Mort }}$, calculated for $\theta=10^{\circ}$, using the dipole form factor. The relatively slow variation with q^{2} of the inelastic cross section compared with the elastic cross section is clearly shown.

Structure function vW_{2} does not depend explicitly on Q^{2} but depends only on the dimensionless variable x :

$$
x=\frac{Q^{2}}{2 M v}
$$

\rightarrow Scale invariance: "scaling"

Indicates elastic scattering at point-like constituents of the proton: partons
Real sensation in 1970 ...

Jerome I. Friedman	Henry W. Kendall	Richard E. Taylor

"for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics"

c) Structure functions F_{1} and F_{2}

Instead of W_{1} and W_{2} the structure functions F_{1} and F_{2} are used today:

$$
\begin{gathered}
N W_{2}\left(v, Q^{2}\right) \rightarrow F_{2}(x)=\nu W_{2}\left(x=\frac{Q^{2}}{2 M v}\right) \\
M W_{1}\left(v, Q^{2}\right) \rightarrow \quad F_{1}(x)=M W_{1}\left(x=\frac{Q^{2}}{2 M v}\right) \\
\frac{d \sigma}{d q^{2} d v}=\frac{4 \pi \alpha^{2}}{q^{4}} \frac{E^{\prime}}{E} \cdot\left(W_{2}\left(v, q^{2}\right) \cos ^{2} \frac{\theta}{2}+2 W_{1}\left(v, q^{2}\right) \sin ^{2} \frac{\theta}{2}\right) \\
\frac{d \sigma}{d q^{2} d v}=\frac{4 \pi \alpha^{2}}{q^{4}} \frac{E^{\prime}}{E v} \cdot\left(F_{2}\left(\frac{q^{2}}{2 M v}\right) \cos ^{2} \frac{\theta}{2}+\frac{2 v}{M} F_{1}\left(\frac{q^{2}}{2 M v}\right) \sin ^{2} \frac{\theta}{2}\right) \\
\frac{d \sigma}{d Q^{2} d x}=\frac{4 \pi \alpha^{2}}{Q^{4}} \frac{E^{\prime}}{E} \cdot \frac{F_{2}(x)}{x}\left(\cos ^{2} \frac{\theta}{2}+\frac{2 x F_{1}(x)}{F_{2}(x)} \frac{Q^{2}}{2 M^{2} x^{2}} \sin ^{2} \frac{\theta}{2}\right)
\end{gathered}
$$

2.3 Parton Model for electron-nucleon scattering: ep $\rightarrow \mathrm{eX}$

$\sigma=$ incoherent sum of all possible parton (quark) contributions

1. Nucleon consists of quasi-free point-like constituents (partons)
2. Lepton scatters elastically on free spin $1 / 2$ partons
3. Scattered parton interacts strongly with the other constituents (spectators) to form observable hadrons

Infinite momentum frame - Bjorken x

Infinite momentum frame:

-Proton carries infinite momentum
(transverse mom. + mass of quarks can be neglected)
-4-mom fraction of parton: $p_{p}=x_{p} P$

Infinite momentum frame: Proton rest frame: Consequence of elast.

$$
\begin{array}{rlrl}
p_{p}+q=p_{p}^{\prime} & P=(M, 0) \\
x_{p} P+q=p_{p}^{\prime} & q=(v, \vec{q}) \\
p_{p}^{2}+2 x_{p} P q+q^{2}=p_{p}^{\prime 2} & P q=M v \\
\Rightarrow q^{2}=-2 x_{p} P q \\
=-2 x_{p} M v & x_{p}=\frac{-q^{2}}{2 M v}=\frac{Q^{2}}{2 M v} \equiv X
\end{array}
$$

scattering
$1=\frac{-q^{2}}{2 x_{p} M v}=\frac{-q^{2}}{2 m_{p} v}$
if formally $m_{p}=x_{p} M$

Bjorken variable $x=$ momentum fraction of parton

