

- 1. Dirac equation for spin ½ particles
- 2. Feynman rules
- 3. Fermion-fermion scattering
- 4. Higher orders

		Multiplicative Factor	
 External Lines Spin 0 boson (or antiboson) 	11 (11	() 1	
Spin $\frac{1}{2}$ fermion (in, out)	11	и, й	
antifermion (in, out)	11	\bar{v}, v	\sim
Spin 1 photon (in, out)	کمی مم	$\epsilon_{\mu}, \epsilon_{\mu}^{*}$	
Internal Lines—Propagators (need -	+ is prescription)		
Spin 0 boson	••	$\frac{i}{p^2 - m^2}$	
Spin $\frac{1}{2}$ fermion	••	$\frac{i(\not p + m)}{p^2 - m^2}$	
Massive spin 1 boson	•a	$\frac{-i(g_{\mu\nu} - p_{\mu}p_{\nu}/M^2)}{p^2 - M^2}$	
Massless spin 1 photon		- ig	
(Feynman gauge)		p^2	
Vertex Factors P	p'		
Photon—spin 0 (charge $-e$)	5	$ie(p + p')^{\mu}$	
Photon—spin $\frac{1}{2}$ (charge $-e$)		iey"	
	ξ		Halzen, Martin:
	(Quark&Leptons
Loops: $\int d^4k/(2\pi)^4$ over loop momentu associated γ -matrices $\int dentical Fermions: -1$ between diago	um; include -1 if fermion rams which differ only in	a loop and take the trace of n e ⁻ ↔ e ⁻ or initial e ⁻ ↔	

Spin averaged matrix element for $e^{-\mu} \rightarrow e^{-\mu}$ $\boxed{|M|^2} = \frac{1}{(2s_e + 1)(2s_\mu + 1)} \cdot \sum_{s_e,s_\mu} \sum_{s'_e,s'_\mu} |M|^2 = \frac{e^4}{q^4} L_e^{\mu\nu} \cdot L_{muon,\mu\nu} \text{ melectron mass}_{M \text{ muon mass}}$ $= 8 \frac{e^4}{q^4} [(k' \cdot p')(k \cdot p) + (k' \cdot p)(k \cdot p') - m^2 p' \cdot p - M^2 k' \cdot k + 2m^2 M^2]$ $e \text{ exact 1st order result for } e^{-\mu} \rightarrow e^{-\mu}$ Relativistic limit \longrightarrow neglect masses m and M $\boxed{|M|^2} = 8 \frac{e^4}{(k-k')^4} [(k' \cdot p')(k \cdot p) + (k' \cdot p)(k \cdot p')] = 2e^4 \frac{s^2 + u^2}{t^2}}{t^2}$ By using the $s = (k+p)^2 = m^2 + M^2 + 2kp \approx 2kp \approx 2k'p'$ $t = (k-k')^2 = m^2 + M^2 - 2kk' \approx -2kk' \approx -2pp'$ $u = (k-p')^2 = m^2 + M^2 - 2kp' \approx -2kp' \approx -2k'p'$

Differential cross section for
$$e^+e^- \rightarrow \mu^+\mu^-$$
 (CMS)
Reminder:
 $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \cdot \frac{1}{s} \cdot \frac{|\vec{p}_r|}{|\vec{p}_i|} \cdot |M_f|^2$
 $\frac{d\sigma}{d\Omega} = \frac{e^4}{32\pi^2} \cdot \frac{1}{s} \cdot \frac{t^2 + u^2}{s^2}$
 $= \frac{e^4}{64\pi^2} \cdot \frac{1}{s} \cdot (1 + \cos^2\theta)$
 $e^2 = 4\pi\alpha$
 $\frac{d\sigma}{d\Omega}\Big|_{CMS} = \frac{\alpha^2}{4s} \cdot (1 + \cos^2\theta)$
 $\frac{d\sigma}{d\Omega}\Big|_{CMS} = \frac{\alpha^2}{4s} \cdot (1 + \cos^2\theta)$

