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Outline

How to communicate the statistical uncertainty
of a measurement

Interval estimation
● The standard deviation as statistical error
● Classical confidence intervals

● Exact method
● For a parameter with a Gaussian distributed estimator
● For the mean of a Poisson distribution
● Approximate method with maximum likelihood and chi2

● Limits near a physical boundary

Discussion:
● Statistical and systematic errors
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The standard deviation

We have seen methods for estimating properties of probability 
density functions (pdf's) and ways to obtain the variance of the 
estimators.
Suppose the result of an experiment is an estimate of a certain parameter:
     n observations of random variable x
     Hypothesis for the pdf   f(x;θ),  true θ unknown parameter
     From x

1
, ..., x

n
 build the function                         e.g. max. likelihood

     → Determine the estimator        (value actually observed) and its             
          standard deviation

The variance (or equivalently its square root, the standard deviation) of the 
estimator is a measure of how widely the estimates would be distributed if 
the experiment were to be repeated many times with the same number of 
observations per experiment 

Standard deviation σ  → statistical uncertainty or standard error

x1 , .. , xn
obs

 
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Statistical error

In reporting the measurement of θ as:

one means that repeated estimates all based on n observations of x
would be distributed according to a pdf          centered around some true 
value θ and true standard deviation, which are estimated to be
                                                 and 

● For most practical estimators, the sample pdf  g   becomes 
approximately Gaussian in the large sample limit

● If more than one parameter is estimated, the pdf becomes a 
multidimensional Gaussian characterized by a covariance matrix V

● The standard deviation, and in case the covariance matrix, tell 
everything how repeated estimates would be distributed

obs ±  

g 

obs  
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Confidence interval

If the form of the estimator pdf          is not Gaussian, then the 'standard
deviation' definition of  statistical error bars does not hold!

In such cases, one usually reports confidence intervals,
an interval reflecting the statistical uncertainty of the parameter 
(it is an alternative, often equivalent, method)

→ quantitative statement about the fraction of times that such an 
interval would contain the true value of the parameter in a large 
number of repeated experiments 

g 
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Confidence interval

Confidence intervals should:
● communicate objectively the result of the experiment;
● have a given probability of containing the true parameter;
● provide information needed to draw conclusions about the parameter 

possibly incorporating stated prior beliefs.

Very often they lead to asymmetric errors

Special case: estimate limits of parameters near a physically excluded 
region (e.g. an observed event rate consistent with zero)
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Frequentist confidence interval

Consider the estimator       for a parameter θ, and an estimate 
The sampling distribution for θ is

By means of e.g. an analytical
calculation or a Monte Carlo
study, one knows g, which 
contains the true value θ as 
parameter. 

That is, the real value of θ is not
known, but for a given value of θ,
one knows what the pdf of
would be

obs


g  ;



Depends on true θ, which 
remains unknown !! For one 
given value of θ, we have:
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Frequentist confidence interval

From                 one can determine the 
value u

α
 such that there is a fixed

probability α to observe               :

And the value v
β
 such that there is the probability β to observe               :  

G: cumulative distribution of g

g  ;

 ≥ u

 = P  ≥ u 

= ∫u

∞
g ; d 

= 1 − Gu  ;

 ≤ v

 = P  ≤ v  = ∫−∞

v
g  ; d  = Gv ;
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Confidence belt

See how the functions u
α
(θ) and 

v
β
(θ) can be as a function of the 

true value of θ

The region between the two 
curves is called the      
confidence belt

The probability for the estimator 
to be inside the belt, regardless 
of the true value of θ, is:

Pv  ≤  ≤ u  = 1 −  − 
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Confidence belt

As long as u
α
(θ) and v

β
(θ) are monotonically increasing functions of θ 

(they should be, if       is to be a good estimator of θ), then one can 
determine the inverse functions:

Then:

Therefore:



a  = u
−1   b  = v

−1  

 ≥ u  ⇒ a  ≥ 
 ≤ v ⇒ b  ≤ 

Pa  ≥  = 
Pb  ≤  = 

Pa  ≤  ≤ b  = 1−−
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Confidence belt

For the value  of the estimator 
actually found in the experiment

find the points where that intersects 
the confidence belt

this determines the points a and b

The interval [a,b] is called a 
confidence interval at a 
confidence level (or coverage 
probability) of   1 – α - β

obs
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Confidence interval

The interval [a,b] is called a 
confidence interval at a 
confidence level of   1 – α – β

Means that:
If the experiment were repeated many 
times, the interval [a,b] would include 
the true value of the  parameter θ in a 
fraction 1 – α – β of the experiments

Also: 1 – α – β is the probability for the 
interval to cover the true value of the 
parameter

Quote as: 

where                                           

−c
d

c =  − a, d = b −  are usually displayed as error bars
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One-sided and central confidence intervals

● One often chooses α = β = γ/2  giving a so-called central 
confidence interval with probability 1 – γ
A central confidence interval does not necessarily mean that a and b 
are equidistant from the estimated     , but only that the probabilities  α 
and β are equal
In high energy physics, the error convention is to take the 68.3% 
central confidence interval (see later)

● Sometimes ONLY specify α OR β

→ one-sided confidence interval or limit
That is, the value a represents a lower limit on the parameter θ such 
that a ≤ θ with the probability  1 – α
Similarly, b represents an upper limit on θ such that P(θ ≤ b) = 1 – β


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Confidence intervals in practice

Usually we do not construct confidence belts, but solve:

 = ∫u

∞
g  ; d  = ∫obs

∞
g  ;a d 

 = ∫−∞

v
g  ; d  = ∫∞

obs

g  ;b d 

 → a is hypothetical value of θ such that  

 → b is hypothetical value of θ such that  

P  obs = 

P  obs = 
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Confidence interval by inverting a test

Confidence intervals for a parameter θ can be found by defining a test 
of the hypothesized value θ (do this for all θ):

● Specify values of the data that are 'disfavoured' by θ (critical region) 
such that: 
P(data in critical region) ≤ γ    
for a specified γ, e.g. 0.05 or 0.1

● Invert the test to define a confidence interval as:
set of θ values that would NOT be rejected in a test of size γ (the 
confidence level is 1-γ )

The interval will cover the true value of θ with probability ≥ 1 – γ.
Equivalent to a confidence belt construction. The confidence belt is 
acceptance region of a test
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Confidence interval and p-value

Equivalently we can consider a significance test for each hypothesized 
value of θ, resulting in a p-value, p

θ

       If p
θ 
< γ, then reject θ

The confidence interval at CL = 1 – γ consists of those values of θ which 
are not rejected !

E.g. un upper limit on θ is the greatest value for which p
θ 
≥ γ

In practice find by setting p
θ 
= γ  and solve for θ
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Meaning of the confidence interval

NOTE !!! the interval is random, the true θ is an unknown constant

Often report interval [a,b] as 

                                      where

So, what does                                mean?

● It does NOT mean:  P(80.00 < θ < 80.56) = 1 – α – β

● But rather: repeat the experiment many times with the same sample 
size, construct interval according to the same prescription each time, 
in 1 – α – β of experiments, interval will cover θ

In the frequency interpretation, the true parameter θ is not a random variable and is 
assumed to not fluctuate from experiment to experiment. In this sense the probability that 
θ is in the confidence interval is either 0 or 1, but we do not know which. The interval 
itself, however is subject to fluctuations since it is constructed from the data.

−c
d

c =  − a, d = b − 

 = 80.25−0.25
0.31

ERROR BARS
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Confidence interval for Gaussian

Consider a Gaussian distributed estimator:

with mean θ and standard deviation 
It has the cumulative distribution of    : 

This is a commonly occurring situation since, according to the central 
limit theorem, any estimator that is a linear function of a sum of random 
variables becomes Gaussian in the large sample limit.

g  ; = 1

2 
2

exp −  − 2

2 
2 



G  ; ,  = ∫−∞

 1

2 
2

exp −  ' − 2

2 
2  d  '

 
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Confidence interval for Gaussian

To find the confidence interval for θ, solve for a and b:

where G is the cumulative distribution for      and 

                                                    is the cumulative for the standard            
                                                    Gaussian

 = 1 − G obs ;a ,  = 1 −   obs − a

 


 = G obs ;b ,  =   obs − b

 




x = ∫−∞

x 1

2
e−x '2/2 dx '
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Confidence interval for Gaussian

Solving for a and b:

Φ-1 = quantile of standard Gaussian (inverse of cumulative distribution,
          use ROOT)

→                                                  give how many standard deviations      
        a and b are from  

a = obs −   −11 − 

b = obs    −11 − 

−11 −  ,−11 − 

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Quantiles of the standard Gaussian

When we have a Gaussian estimator, to have a central confidence 
interval or a one-sided limit, we need to know the quantiles shown here:

α = β = γ/2
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Quantiles of the standard Gaussian

Typically, take a round number for the quantile (NUMBER OF SIGMAS !!!)

Or a round number for the coverage probability:
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Gaussian estimator: summary

For the conventional 68.3% central confidence interval, one has:

α = β = γ/2
With

i.e. a 1 σ error bar. 
This results in the simple prescription:

The final result of the measurement of θ is then simply reported as:

−11 − /2  = 1

[a,b] = [ obs −   , obs   ]

obs ±  
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Confidence interval for mean of Poisson distr

Suppose n is Poisson distributed, the estimator:       

A single measurement gives                            → construct the confidence 
interval for 

Minor problem: for fixed α, β, the confidence belt does not exist for all
Just solve:

for a and b            

 = n

obs = nobs



Pn; =
n

n!
e− , n = 0,1, ...

 = P  ≥ obs ;a = 1 − ∑
n=0

nobs−1
an

n!
e−a

 = P  ≤ obs ;b = ∑
n=0

nobs
bn

n!
e−b


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Confidence interval for mean of Poisson distr

Use the trick:

where          is the cumulative chi-square distribution for n
d
 degrees of 

freedom.
Find:

where          is the quantile of the chi-square distribution

∑
n=0

nobs n

n!
e− = 1 − F22 ;nd = 2nobs  1

F2

a = 1
2

F2

−1 ;nd = 2nobs

b = 1
2

F2

−11 −  ; nd = 2nobs  1

F2

−1
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Confidence interval for mean of Poisson distr

An important case: n
obs

 = 0

Calculate an upper limit at confidence level (1-β) = 95%

Useful table:

 = ∑
n=0

0
bn e−b

n!
= e−b  b = − log

b = − log0.05 = 2.996 ≈ 3
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Limits near a physical boundary

Often the purpose of an experiment is to search for a new effect, the 
existence of which would imply that a certain parameter is not equal to 
zero. For example, the existence of the Higgs.
If the data yield a value of the parameter significantly different from zero, 
then the new effect has been discovered, and the parameter's value and 
a confidence interval to reflect its error are given as the result.
If, on the other hand, the data result in a fitted value of the parameter that 
is consistent with zero, then the result of the experiment is reported by 
giving an upper limit on the parameter (a similar situation occurs when 
absence of the new effect corresponds to a parameter being large or 
infinite; one then places a lower limit).

The procedure to set limits is very delicate and can present serious 
difficulties (estimators which can take on values in the excluded region, 
negative mass of a particle, negative number of events, etc).



Statistical Methods, Lecture 11, January 7, 2013         28

Setting limits on Poisson parameter

Consider the case of finding n = n
s
 + n

b
 events where

     n
b
 events from known processes (background)

     n
s
 events from a new process (signal)

are Poisson random variables with means s and b.
Therefore  n = n

s
 + n

b
 is also Poisson distributed, with mean s+b

Assume b is known.

Suppose we are searching for evidence of the signal process, but the 
number of events found is roughly equal to the expected number of 
background events, e.g. b = 4.6 and we observe n

obs
 = 5 events.

The evidence for the presence of signal events is not statistically 
significant
                         → set an upper limit on the parameter s
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Upper limit for Poisson parameter

Find the hypothetical value of s such that there is a given small 
probability, say γ=0.05 to find as few events as we did or less:

Solve numerically for s = s
up

This gives an upper limit on s at a confidence level of (1-γ)

Example (see page before):
Suppose b = 0 and we find n

obs
 = 0. For (1-γ) = 0.95, s

up
 ≈ 3

 = Pn ≤ nobs ; s,b = ∑
n=0

nobs sbn

n!
e−sb
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Calculating Poisson parameter limits

To solve for s
lo
, s

up
, we can exploit the relation to the     distribution        

(see page 22)

For low fluctuation of n, this can 
give negative result for s

up

i.e. confidence interval is empty

2

slo = 1
2

F2

−1 ;2n − b

sup = 1
2

F2

−11 −  ;2n  1 − b
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Limits near a physical boundary

Suppose for example b = 2.5 and we observe n = 0.
If we choose CL = 0.9, we find from the formula for s

up
:

           s
up

 = - 0.197    (CL = 0.90)

Physicist:
   We already knew s ≥ 0 before we started; cannot use negative upper 
   limit to report a result!
Statistician:
   The interval is designed to cover the true value only 90% of the time: 
   This was clearly not one of those times.

Not uncommon dilemma when limit of parameter is close to a physical 
boundary!
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Expected limit for s = 0

Physicist: I should have used CL = 0.95  →  then  s
up

 = 0.496

Even “better”: for CL = 0.917923 we get  s
up

 = 10-4 !

Reality check: with b = 2.5, typical 
Poisson fluctuation in n is at least 
√2.5 = 1.6
How can the limit be so low?

Look at the mean limit for the no-signal
hypothesis (s=0) (sensitivity)
Distribution of 95% CL limits with
b = 2.5 and s = 0. Mean upper limit
is 4.44

Forget it !
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Limits: the Bayesian approach

In Bayesian statistics we need to start with “prior pdf” π(θ): this reflects 
the degree of belief about θ before doing the experiment

Bayes' theorem tells how our beliefs should be updated in light of the 
data x:

We will integrate the posterior pdf p(θ|x) to give interval with any desired 
probability content.
E.g. for Poisson parameter: 95% CL upper limit from

p∣x =
Lx∣ 

∫Lx∣ '  ' d '
∝ Lx∣ 

0.95 = ∫−∞

sup ps∣nds



Statistical Methods, Lecture 11, January 7, 2013         34

Bayesian prior for Poisson parameter

Include knowledge that s≥0, by setting prior π(s) = 0 for s<0.
Often try to reflect the 'prior ignorance' with e.g.

Not normalized, but this is OK as long as L(s) dies off for large s.
Not invariant under change of parameter – if we had used instead a flat 
prior for, say, the mass of the Higgs boson, this would imply a non-flat 
prior for the expected number of Higgs events.

Does not really reflect a reasonable degree of belief, but often used as a 
point of reference,
Or viewed of as a recipe for producing an interval whose frequentist 
properties can be studies (coverage will depend on true s)

s = {1, s≥0
0,otherwise
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Bayesian interval with flat prior for s

Solve numerically to find limit s
up

For special case b=0, Bayesian upper limit with flat prior numerically 
same as classical case (only a coincidence!)

Otherwise Bayesian limit is
everywhere greater than
classical ('conservative').
Never goes negative.
Does not depend on b if n=0
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Approximate confidence intervals from lnL or chi2

Recall the trick to estimate         if  ln L(θ) is parabolic:

CLAIM: this still works even if  ln L  is not parabolic, as an approximation 
for the confidence interval. 
i.e. use

where 
is the quantile of the standard Gaussian corresponding to the CL  1-γ.
For example:      N = 1  →  1-γ = 0.683

 

lnL  ± N   = lnLmax − N2

2

lnL  −c
d = lnLmax − N2

2

2  −c
d = chi2min  N2

N = −11 − /2
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Approximate confidence intervals from lnL or chi2

Exponential example (see lecture 10): take interval where ln L is within
1/2 of the maximum → approximation of 68.3% confidence interval
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For the non classical cases ...

In many practical applications, estimators are Gaussian distributed (at 
least approximately). In this case the confidence interval can be 
determined easily.
Similarly is for estimators with a Poisson distribution.

But even in the other cases, a simple approximate technique can be 
applied using the likelihood function (or equivalently the      function).
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Statistical uncertainty or random error

Random errors are errors in measurement that lead to measurable 
values being inconsistent when repeated measures of a constant 
attribute or quantity are taken. The word random indicates that they are 
inherently unpredictable, and have null expected value, namely, they are 
scattered about the true value, and tend to have null arithmetic mean 
when a measurement is repeated several times with the same 
instrument. All measurements are prone to random error.

Random error is caused by unpredictable fluctuations in the readings of a 
measurement apparatus, or in the experimenter's interpretation of the 
instrumental reading; these fluctuations may be in part due to 
interference of the environment with the measurement process.

The concept of random error is closely related to the concept of 
precision. The higher the precision of a measurement instrument, the 
smaller the variability (standard deviation) of the fluctuations in its 
readings.
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Systematic uncertainties

Systematic errors are biases in measurement which lead to the situation 
where the mean of many separate measurements differs significantly 
from the actual value of the measured attribute. All measurements are 
prone to systematic errors, often of several different types. Sources of 
systematic error may be:
● imperfect calibration of measurement instruments (zero error),
● changes in the environment which interfere with the measurement 

process and 
● sometimes imperfect methods of observation can be either zero error 

or percentage error. 
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Systematic uncertainties - 2

For example: consider an experimenter taking a reading of the time 
period of a pendulum swinging past a fiducial mark: If their stop-watch or 
timer starts with 1 second on the clock then all of their results will be off 
by 1 second (zero error). If the experimenter repeats this experiment 
twenty times (starting at 1 second each time), then there will be a 
percentage error in the calculated average of their results; the final result 
will be slightly larger than the true period. Distance measured by radar 
will be systematically overestimated if the slight slowing down of the 
waves in air is not accounted for. Incorrect zeroing of an instrument 
leading to a zero error is an example of systematic error in 
instrumentation.

Systematic errors may also be present in the result of an estimate based 
on a mathematical model or physical law. For instance, the estimated 
oscillation frequency of a pendulum will be systematically in error if slight 
movement of the support is not accounted for.
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Systematic uncertainties - 3

Systematic errors can be either constant, or be related (e.g. 
proportional or a percentage) to the actual value of the measured 
quantity, or even to the value of a different quantity (the reading of a 
ruler can be affected by environment temperature). When they are 
constant, they are simply due to incorrect zeroing of the instrument. 
When they are not constant, they can change sign. For instance, if a 
thermometer is affected by a proportional systematic error equal to 2% of 
the actual temperature, and the actual temperature is 200°, 0°, or −100°, 
the measured temperature will be 204° (systematic error = +4°), 0° (null 
systematic error) or −102° (systematic error = −2°), respectively. Thus, 
the temperature will be overestimated when it will be above zero, and 
underestimated when it will be below zero.
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Systematic uncertainties - 4

Constant systematic errors are very difficult to deal with, because their 
effects are only observable if they can be removed. Such errors cannot 
be removed by repeating measurements or averaging large numbers of 
results. A common method to remove systematic error is through 
calibration of the measurement instrument.

In a statistical context, the term systematic error usually arises where 
the sizes and directions of possible errors are unknown.
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