Masse des Top-Quarks

Julius Förstel

Fakultät für Physik und Astronomie, Ruprecht-Karls-Universität Heidelberg

Seminar Präzisionsexperimente der Teilchenphysik 16. Mai 2014

Überblick

Einleitung

- Das Top-Quark im Standardmodell
- Eigenschaften des Top-Quark
- Top-Masse in der Zeit des Higgs-Bosons

Überblick

) Einleitung

- Das Top-Quark im Standardmodell
- Eigenschaften des Top-Quark
- Top-Masse in der Zeit des Higgs-Bosons
- 2 Messung der Top-Masse
 - Erzeugung von Top-Quarks
 - Nachweis eines Events
 - Bestimmung von *m*top

Überblick

) Einleitung

- Das Top-Quark im Standardmodell
- Eigenschaften des Top-Quark
- Top-Masse in der Zeit des Higgs-Bosons
- 2 Messung der Top-Masse
 - Erzeugung von Top-Quarks
 - Nachweis eines Events
 - Bestimmung von *m*top
- 3 Abschluss
 - Aktueller Stand
 - Ausblick

Das Top-Quark im Standardmodell Eigenschaften des Top-Quark Top-Masse in der Zeit des Higgs-Bosons

Überblick

Einleitung

- Das Top-Quark im Standardmodell
- Eigenschaften des Top-Quark
- Top-Masse in der Zeit des Higgs-Bosons

Messung der Top-Masse

- Erzeugung von Top-Quarks
- Nachweis eines Events
- Bestimmung von *m*top

3

- Abschluss
- Aktueller Stand
- Ausblick

Das Top-Quark im Standardmodell Eigenschaften des Top-Quark Top-Masse in der Zeit des Higgs-Bosons

Das Standardmodell

Wenn es nicht wahr ist, so ist es doch gut erfunden.

Giordano Bruno (16. Jhdt)

Vereinheitlichte Theorie:

- elektroschwache WW
- starke WW

19 freie Parameter

Quellen: S. Willenbrock, 2002, The Standard Model and the Top Quark B. Povh, Teilchen und Kerne, 9. Auflage, 2014 http://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg

Das Top-Quark im Standardmodell Eigenschaften des Top-Quark Top-Masse in der Zeit des Higgs-Bosons

Eigenschaften des Top-Quarks

- Postuliert: 1973
- Entdeckt: 1995
- Spin: $\frac{1}{2}$
- Ladung: $+\frac{2}{3}e$
- Masse: $\sim 173 \, \text{GeV}$
- Durchschnittliche Lebensdauer: $5\cdot 10^{-25}$ s

Quellen: F. Abe et al., 1995, Observation of Top Quark Production in $\bar{p}p$ Collisions with CDF Bogdan Povh, Teilchen und Kerne, 9. Auflage, 2014

Das Top-Quark im Standardmodell Eigenschaften des Top-Quark **Top-Masse in der Zeit des Higgs-Bosons**

Warum ist *m*top wichtig?

- Freier Parameter des Standardmodells
- Bestimmung der Higgs-Masse
- Präzise Messung der Schwachen Wechselwirkung

Das Top-Quark im Standardmodell Eigenschaften des Top-Quark Top-Masse in der Zeit des Higgs-Bosons

Warum ist *m*_{top} wichtig? Die Zukunft des Universums

Quellen: D.Buttazzo et al, 2013, Investigating the near-criticality of the Higgs boson

Julius Förstel

Das Top-Quark im Standardmodell Eigenschaften des Top-Quark Top-Masse in der Zeit des Higgs-Bosons

Warum ist *m*_{top} wichtig? Die Zukunft des Universums

Quellen: D.Buttazzo et al, 2013, Investigating the near-criticality of the Higgs boson

Julius Förstel

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von *m*top

Überblick

) Einleitung

- Das Top-Quark im Standardmodell
- Eigenschaften des Top-Quark
- Top-Masse in der Zeit des Higgs-Bosons
- Messung der Top-Masse
 - Erzeugung von Top-Quarks
 - Nachweis eines Events
 - Bestimmung von *m*top

Abschluss

- Aktueller Stand
- Ausblick

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von *m*top

LHC am CERN

Tevatron und LHC

Tevatron am Fermilab

Quellen: http://commons.wikimedia.org/wiki/File:Fermilab.jpg http://physics.nyu.edu/experimentalparticle/images/atlas/

EinleitungErzeugung von Top-QuarksMessung der Top-Masse
AbschlussNachweis eines Events
Bestimmung von m_{top}

Erzeugung von $t\bar{t}$ -Paaren an Tevatron und LHC

Dominant bei Tevatron			Dominant bei LHC	
Run	Tevatron		LHC	
Betriebszeit	1992 - 96	2001 - 11	2010 - 11	2012 - 13
Kollision	p₽	рp	pp	pp
\sqrt{s} [TeV]	1.8	1.96	7	8
$\sigma_{t\bar{t}}$ [pb]	$6.8^{+3.6}_{-2.4}$	8.2 ± 1.0	164^{+13}_{-10}	238^{+22}_{-24}
\mathcal{L}_{int} [fb $^{-1}$]	0.180	10	5	20
N _t t	1.200	80.000	820.000	4.760.000

http://www.fnal.gov/pub/tevatron/, http://moriond.in2p3.fr/QCD/2013/WednesdayMorning/Aoki.pdf

Julius Förstel

Quellen

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von m_{top}

Erzeugung von $t\bar{t}$ -Paaren Mögliche $p\bar{p}$ - und pp-Kollisionen

Quellen: Bogdan Povh, Teilchen und Kerne, 9. Auflage, 2014

Julius Förstel

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von m_{top}

Zerfallskanäle des $t\bar{t}$ -Paares

Übergangswahrscheinlichkeit $|V_{tb}|^2 \approx 99.83\%$

Quellen: Bogdan Povh, Teilchen und Kerne, 9. Auflage, 2014

Julius Förstel

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von m_{top}

Zerfallskanäle des $t\bar{t}$ -Paares

Quellen: DØ Collaboration, 2004, A precision measurement of the mass of the top quark, Nature Vol. 429 Julius Förstel Masse des Top-Quarks

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von m_{top}

Detektoraufbau und b-tagging

An der Tafel

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von m_{top}

Der DØ-Detektor "Central Tracking Device"

Quellen: http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_dzero_detector.html

Julius Förstel

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von m_{top}

Der DØ-Detektor Kaloriemeter

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von mton

Der DØ-Detektor Überblick

Julius Förstel

Quellen:

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von m_{top}

Zerfallsevent

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von m_{top}

Zerfallsevent

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von m_{top}

Signal im Detektor

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von *m*top

Template Methode

 Quellen:
 CDF Collaboration, 2012, Measurement of the top quark mass in the all-hadronic mode at CDF

 Julius Förstel
 Masse des Top-Quarks

 Einleitung
 Erzeugung von Top-Quarks

 Messung der Top-Masse
 Nachweis eines Events

 Abschluss
 Bestimmung von m_{top}

Template Methode

ueiien: DF Collaboration, 2012, Measurement of the top quark mass in the all-hadronic mode at CDF

Julius Förstel

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von *m*top

Matrix Element Methode

Erzeugung von Top-Quarks Nachweis eines Events Bestimmung von *m*top

Vergleich der beiden Methoden

Template Methode

Vorteile:

- nur wenige Annahmen nötig
- recht direkter Weg

Nachteile:

• nicht die maximale statistische Empfindlichkeit

Matrix Element Methode

Vorteile:

- Nutzung aller 4-er Vektoren
- maximale kinetische und topologische Information
- maximale statistische Empfindlichkeit

Nachteile:

- hohe Rechenleistung
- Theorie muss stimmen

Überblick

) Einleitung

- Das Top-Quark im Standardmodell
- Eigenschaften des Top-Quark
- Top-Masse in der Zeit des Higgs-Bosons
- Messung der Top-Masse
 - Erzeugung von Top-Quarks
 - Nachweis eines Events
 - Bestimmung von *m*top

3 Abschluss

- Aktueller Stand
- Ausblick

Aktueller Stand Ausblick

Überblick über *m*top-Messungen

 $\label{eq:linear} \begin{array}{l} Quellen: \\ http://pdg8.lbl.gov/rpp2013v2/pdgLive/DataBlock.action?node=Q007TP \end{array}$

Julius Förstel

Aktueller Stand Ausblick

Veröffentlichung März 2014

The ATLAS, CDF, CMS and D0 Collaborations, 2014, First combination of Tevatron and LHC measurements of the top-quark mass

Julius Förstel

Quellen:

Aktueller Stand Ausblick

Erzeugung von einzelnen Top-Quarks Kanäle und Wirkungsquerschnitte am LHC bei 8TeV

Quellen:

Masato Aoki (Nagoya University, Japan), 2013, http://moriond.in2p3.fr/QCD/2013/WednesdayMorning/Aoki.pdf

- Weitere Auswertung der Daten
- Ab 2015 neuer Run des LHC:
 - $\sqrt{s}=13~{\rm TeV}$ (angepeilt sind $14{\rm TeV})$
 - berechneter Wirkungsquerschnitt für $14 {\rm TeV}:$ $\sigma_{t\bar{t}}=803 {\rm pb}\pm15\%$
- Besseres Verständnis der Detektoren
 - Genauere Messung der Jet-Ereignisse

 Einleitung Messung der Top-Masse Abschluss
 Aktueller Stand Ausblick

 Ausblick
 Wie lange haben wir dafür noch Zeit?

Julius Förstel

Vielen Dank für Eure Aufmerksamkeit!