Detectors in Nuclear and Particle Physics

Prof. Dr. Johanna Stachel

Department of Physics und Astronomy University of Heidelberg

June 17, 2015

6. Momentum Measurements

6 Momentum Measurements

- Forward Spectrometer
- Solenoidal and Toroidal Fields mostly at Colliders

Momentum Measurements

6. Momentum Measurements

Deflection of track of charged particle in magnetic spectrometer Lorentz force \rightarrow circular orbit of curvature radius ρ in homogeneous magnetic field

$$rac{mv^2}{
ho} = q ec v imes ec B = q v_\perp \cdot |ec B|$$
 v_\perp : component of $ec v \perp$ to $ec B$
 $ho = rac{p^2}{qp_\perp B}$ p_\perp : analogue

and for $\vec{p} \perp B$

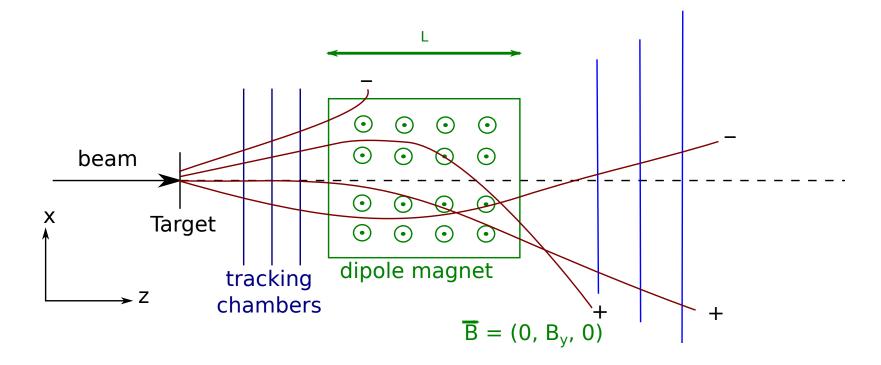
$$\rho = \frac{p}{qB}$$

units: for ρ in m p in GeV/c B in T q in units of e

$$\rho = \frac{p}{0.3 \, qB} \quad \text{or} \quad p = 0.3 \, q\rho B$$

6.1 Forward Spectrometer

Mainly in fixed target experiments (but also LHCb) or ALICE forward muon spectrometer



magnetic field gives (additional) p_{\perp} -kick Δp_{\perp} typically $p \gg p_{\perp}$, $\Delta p_{\perp} \rightarrow$ Lorentz force always approximately in *x*-direction and

$$\Delta p_{\rm X} = 0.3 \, L \, q \, B$$

or for magnetic field not constant over entire path

$$\Delta p_{\rm X} = 0.3 \, q \int_L B {
m d} L$$

Momentum Measuremen

ALICE (Di)-Muon Spectrometer

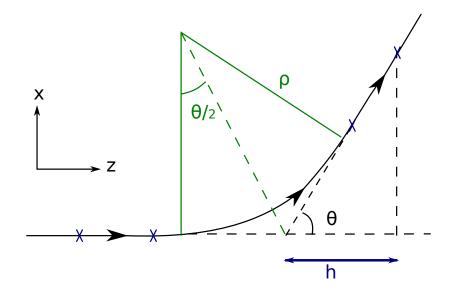
Muon chambers

Dipole magnet

Muon absorber and filter

Example: proton of $p = 10 \text{ GeV/c} \simeq p_z$ $\int BdL = 6 \text{ Tm}$ $\Delta p_x = 1.8 \text{ GeV/c}$ $\Delta \theta_x = 10^{\circ}$

about the limit for this approximation



for $\rho \gg L$

$$heta pprox rac{L}{
ho} = rac{LqB_y}{p}$$
 $\Delta p_x = p\sin\theta pprox p\theta = LqB_y$
or
 $pprox q \int_0^L B_y dL$

Momentum resolution

$$p = q\rho B_{y} = q\frac{L}{\theta}B_{y} \qquad \qquad \frac{dp}{p} = \frac{d\theta}{\theta}$$
$$\frac{dp}{d\theta} = qLB_{y}\frac{1}{\theta^{2}} = \frac{p}{\theta} \qquad \qquad \Rightarrow \qquad \frac{\sigma_{p}}{p} = \frac{\sigma_{\theta}}{\theta}$$

accuracy of angular measurement \equiv accuracy of momentum measurement

minimum: two measured points before and two after deflection

in practice always 3 or more measurements, since detectors need to be aligned relative to each other (best done with straight tracks)

in case all measured points have identical resolution σ_x :

 $\begin{array}{l}n/2 \text{ points before} \\n/2 \text{ points after deflection} \\ \text{lever arm } h \text{ (see Fig. previous page)}\end{array} \Rightarrow \quad \sigma_{\theta} = \sqrt{\frac{8}{n}} \frac{\sigma_{x}}{h}$

$$\left|\frac{\sigma_p}{p} = \frac{\sqrt{8/n}\,\sigma_x}{h}\frac{p}{qLB_y} = \frac{\sqrt{8/n}\,\sigma_x}{h}\frac{p}{\Delta p_x}\right|$$

contribution of space point resolution to momentum resolution

typical form $\frac{\sigma_p}{p} = \text{const} \cdot p$ with $\text{const} = 10^{-2} \dots 10^{-4}$ i.e. 1% - 0.01% **Example:** 6 measurements each with $\sigma_x = 200 \ \mu\text{m}$, $h = 5 \ \text{m}$, deflection 1°

$$\theta_x = \frac{\Delta p_x}{p} = 0.017$$
 deflection) for $p = 10 \ GeV/c$
 $\Rightarrow \frac{\sigma_p}{p} = 3 \cdot 10^{-3} = 3 \cdot 10^{-4} p$

Effect of multiple scattering

multiple Coulomb scattering along particle trajectory of length L contributes to p_{\perp} -broadening perpendicular to direction of propagation

$$\Delta p_{\perp}^{ms} = p \sin heta_{rms} \simeq p heta_{rms} = rac{q \cdot 19.2 \,\, {
m MeV/c}}{eta} \sqrt{rac{L}{X_0}}$$

where X_0 is the radiation length. In the direction of deflection (x) this means:

$$\Delta p_{x}^{ms} = \frac{q \cdot 19.2 \text{ MeV/c}}{\beta \sqrt{2}} \sqrt{\frac{L}{X_{0}}} = \frac{q \cdot 13.6 \text{ MeV/c}}{\beta} \sqrt{\frac{L}{X_{0}}}$$

for sufficiently large momenta independent of p

contribution to momentum resolution:

$$\left(\frac{\sigma_p}{p}\right)_{ms} = \frac{\Delta p_x^{ms}}{\Delta p_x} = \frac{13.6 \text{ MeV/c}\sqrt{L/X_0}}{e \int B_y dL}$$

where Δp_{x} is the deflection due to magnetic field (see above).

Δ p_x^{ms}

total momentum resolution

Example: as above

$$e \int BdL = \Delta p_{X} = 0.17 \text{ GeV/c}$$

$$L = 15 \text{ m}$$
material: air, $X_{0} = 304 \text{ m}$

$$\left(\frac{\sigma_{p}}{p}\right)_{ms} = 1.8\%$$

$$vs. \left(\frac{\sigma_{p}}{p}\right)_{defl} = 0.03\% p \implies \max_{small}$$

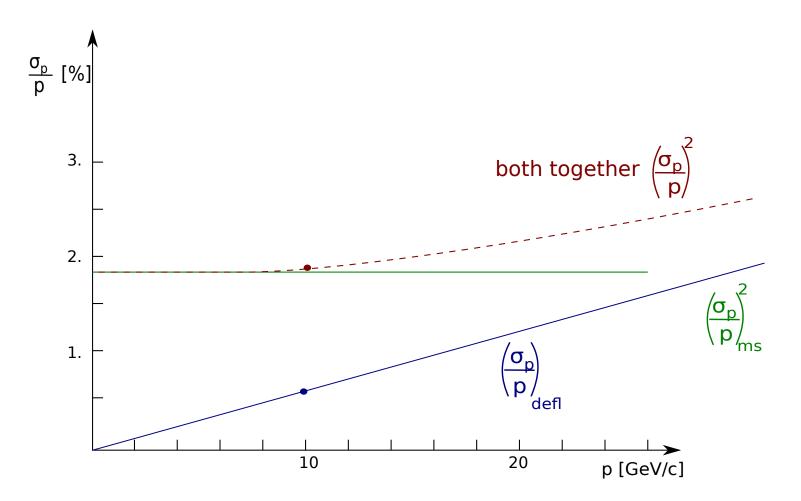
$$\left(\frac{\sigma_p}{p}\right)^2 = \left(\frac{\sigma_p}{p}\right)^2_{ms} + \left(\frac{\sigma_p}{p}\right)^2_{defl}$$

multiple scattering dominates at small momenta

momentum resolution in magnetic spectrometer

Example:

$$\left(\frac{\sigma_p}{p}\right)^2 = (1.8\%)^2 + (0.06\% \cdot p)^2$$



Multiple scattering particularly relevant if **magnetized iron** is used, as frequently done for measurements of muon momentum

- advantage: high *B*-field, stops π , *K* before they decay into μ
- disadvantage: worsens momentum resolution by multiple scattering

$$X_0^{Fe} = 1.76 \text{ cm}, \qquad B = 1.8 \text{ T}, \qquad L = 3 \text{ m}, \qquad \Delta p_x = 1.6 \text{ GeV/c}$$
$$\Rightarrow \qquad \left(\frac{\sigma_p}{p}\right)_{ms} = 11\%$$

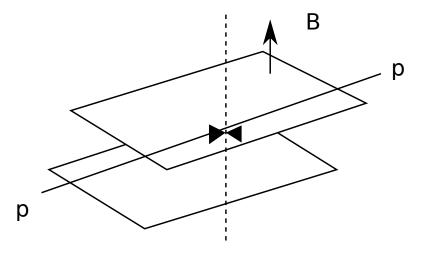
depending on desired momentum range, accuracy of deflection measurement can be chosen accordingly

6.2 Solenoidal and Toroidal Fields - mostly at Colliders

Normally 4π coverage desired, leading to special spectrometer configuration

dipole disfavored

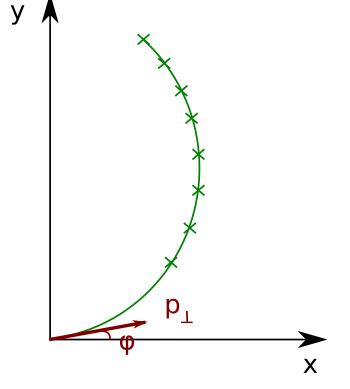
- deflects beam which must be compensated
- not nice symmetry for 4π experiment



Solenoid



measure momentum component p_{\perp} perpendicular to beam



beam and B-field along z-axis

particle produced with momentum \vec{p}

completely characterized by p_x, p_y, p_z , where p_x and p_y can be written as:

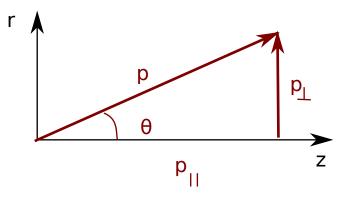
 $egin{aligned} |p_{\perp}|, arphi &: & p_{\chi} = |p_{\perp}| \cos arphi \ p_{y} = |p_{\perp}| \sin arphi \end{aligned}$

need to measure at least 3 points of track circular in xy-plane $\Rightarrow \rho$ (radius of curvature) or p_{\perp}

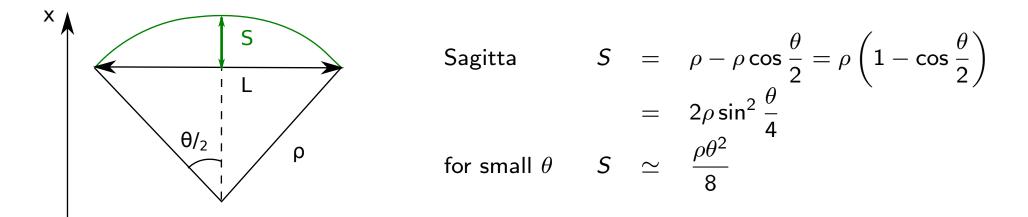
`and arphi

measurement of
$$\theta$$
: $p_{\parallel} = \frac{p_{\perp}}{\tan \theta}$
 $p = \frac{p_{\perp}}{\sin \theta}$

complete measurement of particle momentum



Sagitta Method

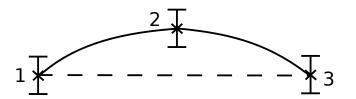


with
$$\theta = rac{qBL}{p_{\perp}}$$
 and $\sin \theta/2 \simeq \theta/2 = rac{L/2}{
ho}$

$$S = \frac{qL^2B}{8p_\perp}$$

B in T, L in m, p_{\perp} in GeV/c, q in e $S(m) = \frac{0.3 q L^2 B}{8 p_{\perp}}$ Measurement of at least 3 points with coordinates x_1 , x_2 , x_3

$$S = x_2 - \frac{x_1 + x_3}{2}$$
$$\sigma_S = \sqrt{\frac{3}{2}} \sigma_X$$
$$\Rightarrow \frac{\sigma_p}{p} = \frac{\sigma_S}{S} = \frac{\sqrt{3/2} \sigma_X 8p}{0.3qBL^2}$$



Measurement of N equally spaced points:

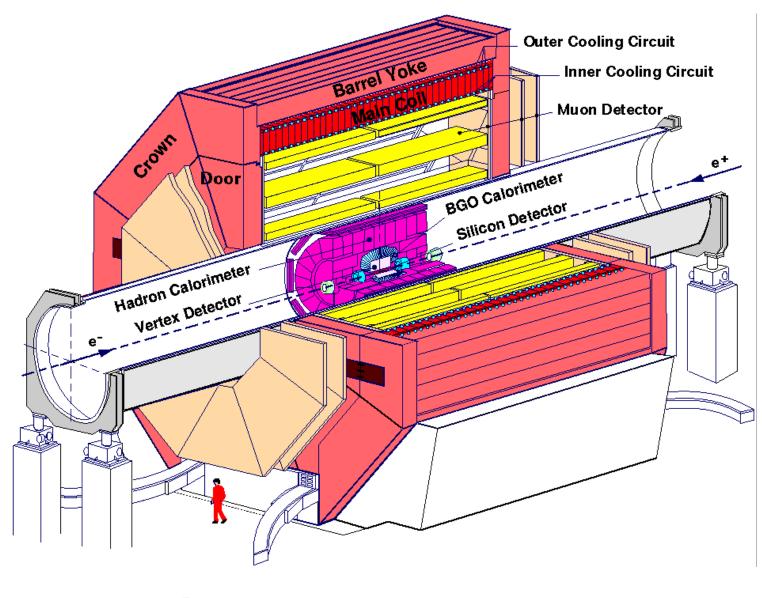
$$\frac{\sigma_p}{p} = \frac{\sigma_x}{0.3qBL^2} \sqrt{\frac{720}{(N+4)}}p$$

NIM 24 (1963) 381

example

$$\begin{cases} B &= 0.5 \text{ T} \\ L &= 2 \text{ m} \\ \sigma_{\chi} &= 400 \text{ }\mu\text{m} \\ N &= 150 \end{cases} \} \frac{\sigma_{p}}{p} \simeq 1.4 \cdot 10^{-3} p$$

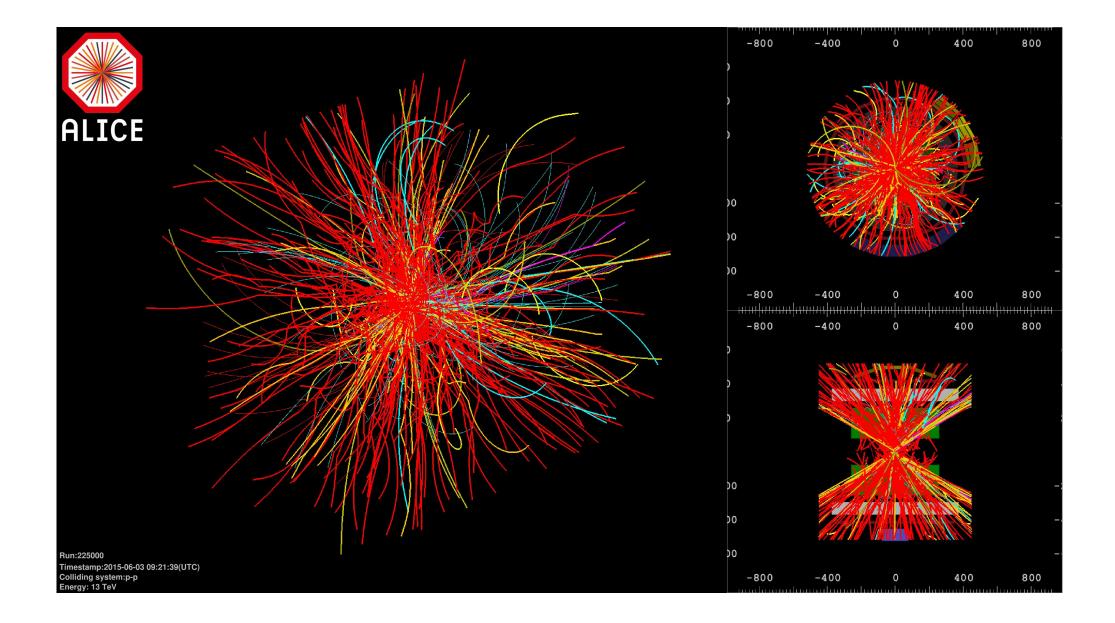
similar to ALICE TPC, usage of former L3 Magnet



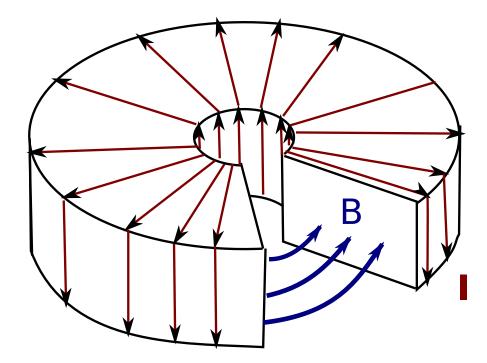
 $\sigma_S = 90 \ \mu m$ $\frac{\sigma_{p_\perp}}{p_\perp} = 2.5\%$ at 45 GeV (typical Z⁰ decay product)

Construction site ALICE 2004 - the solenoid and the iron return yoke

ALICE first 13 TeV pp collisions



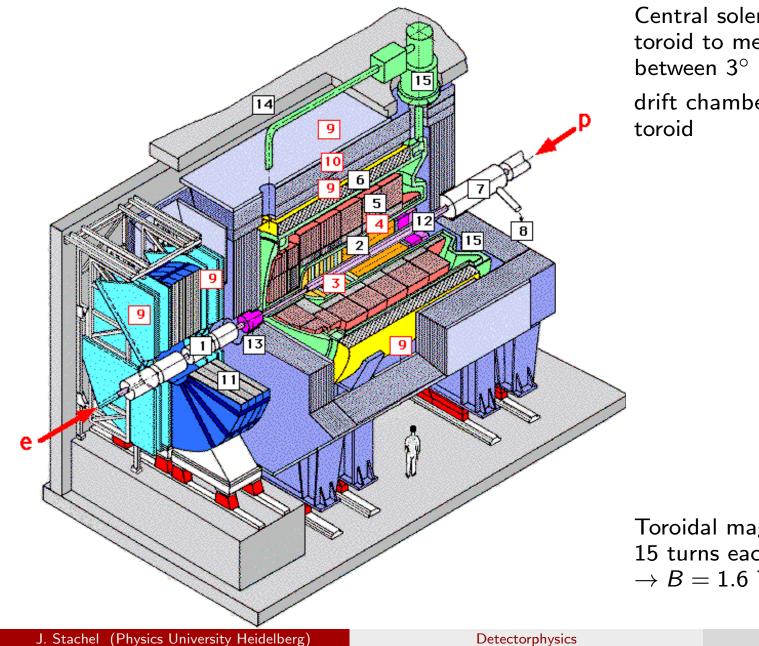
Toroid



- on axis vanishing *B*-field
- no deflection of beam
- fill with iron-core e.g. for muon measurement in end caps

Example: H1 forward muon spectrometer

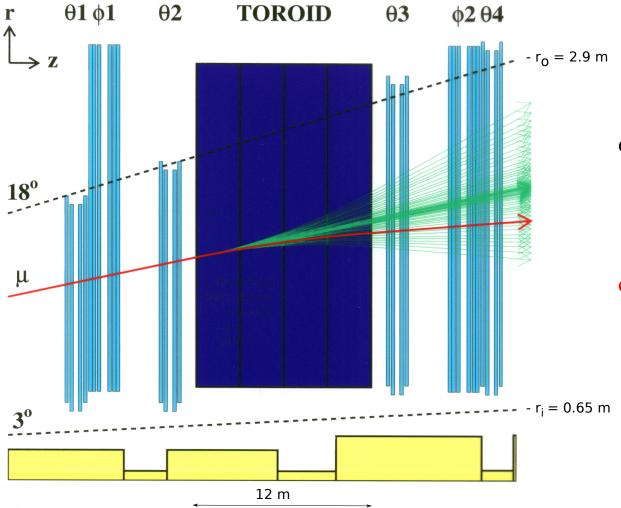
H1 experiment at HERA



Central solenoid plus forward muon toroid to measure high energy muons between 3° and 17°

drift chamber planes before and after toroid

Toroidal magnet: 12 segments with 15 turns each (Cu), 150 A $\rightarrow B = 1.6$ T filled with Fe core



deflection in polar angle \rightarrow momentum

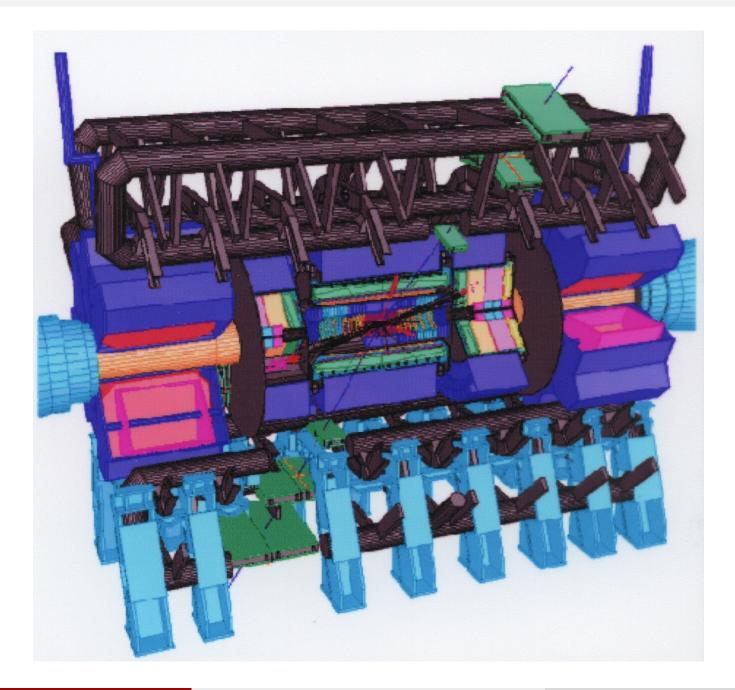
$$\frac{\sigma_p}{p} = 24 - 36\%$$

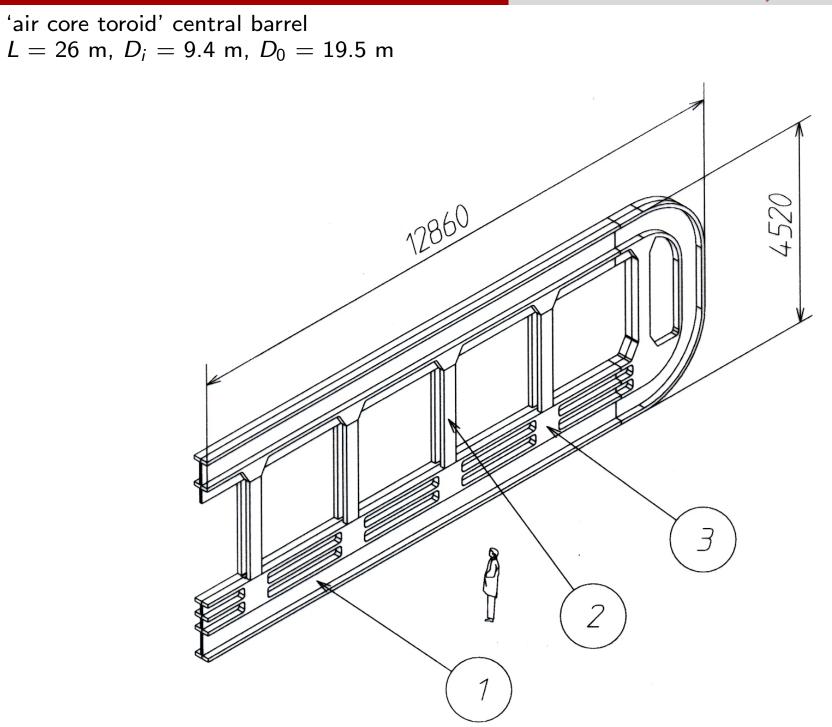
for $p = 5 - 200 \text{ GeV/c}$

dominated by multiple scattering

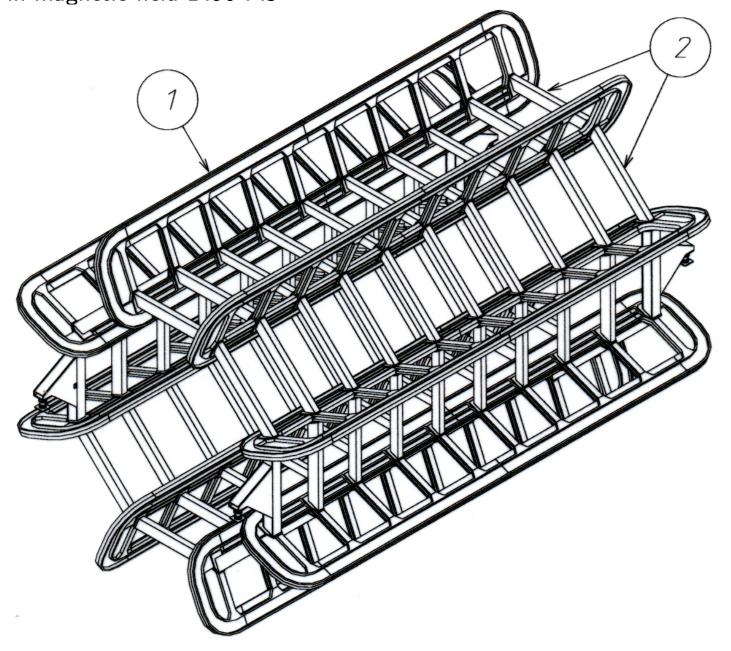
$$\frac{\sigma_p}{p} = 0.24 \oplus 1.3 \cdot 10^{-3} p$$

ATLAS - A Toroidal LHC ApparatuS

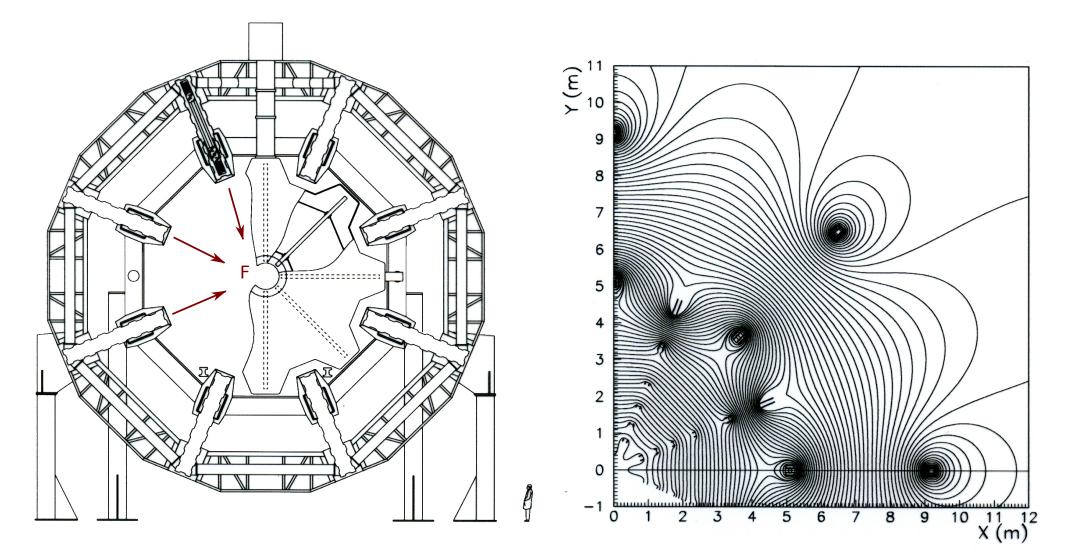




8 flat coils, super-conducting, 70 km super-conducting cable 20 kA, $\int BdL = 3 - 9$ Tm energy stored in magnetic field 1490 MJ

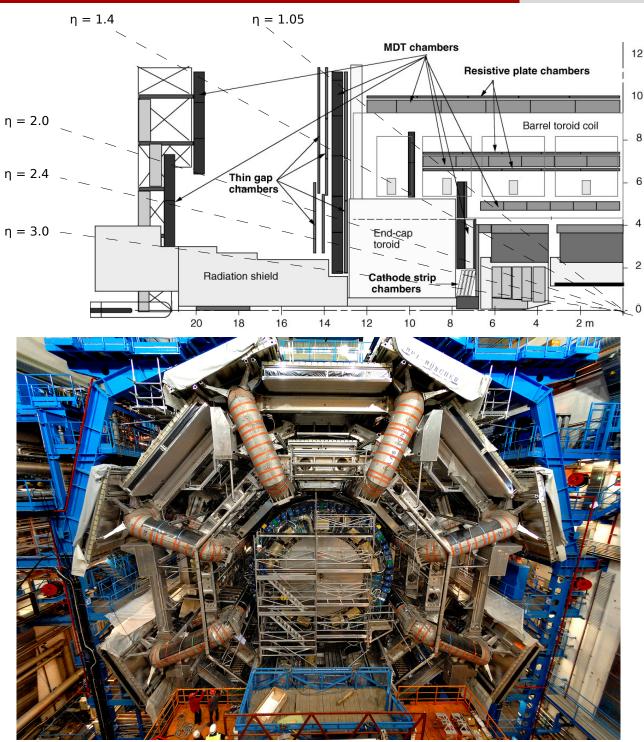


ATLAS cavern



with 'current on' forces on coils radially inward

B-field monitored by 5000 Hall probes attached to muon chambers



- Principle of momentum
 measurement of muon tracks with
 monitored drift-tube array:
 - 3 layers, each consisting of 2 multilayers
 - total 1200 muon chambers of $2\times3.5~\text{m}^2$

total 300000 channels

ATLAS monitored drift tube arrays

drift tubes Al-Mn \varnothing 3 cm

400 μ m wall thickness

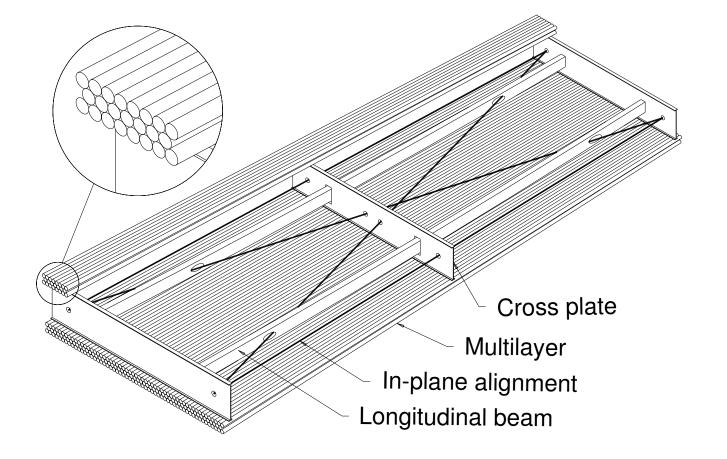
1.4-6.3 m long 50 μ m wire centered in tube to 20 μ m

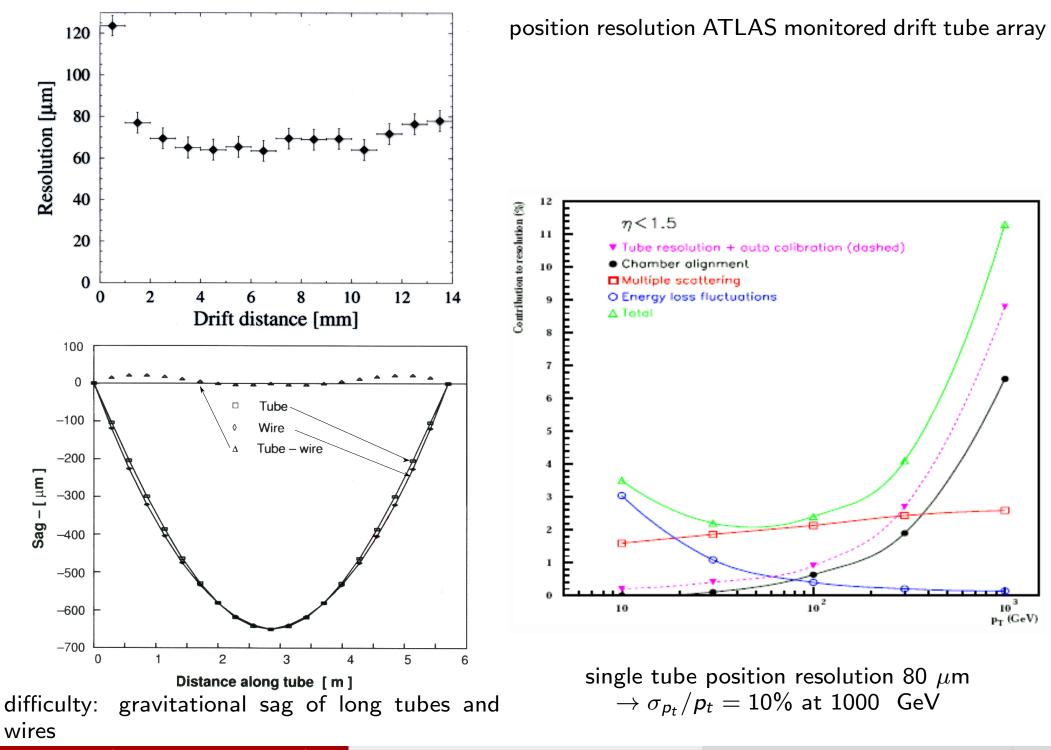
operation at 3 bar

drift time \leq 600 ns

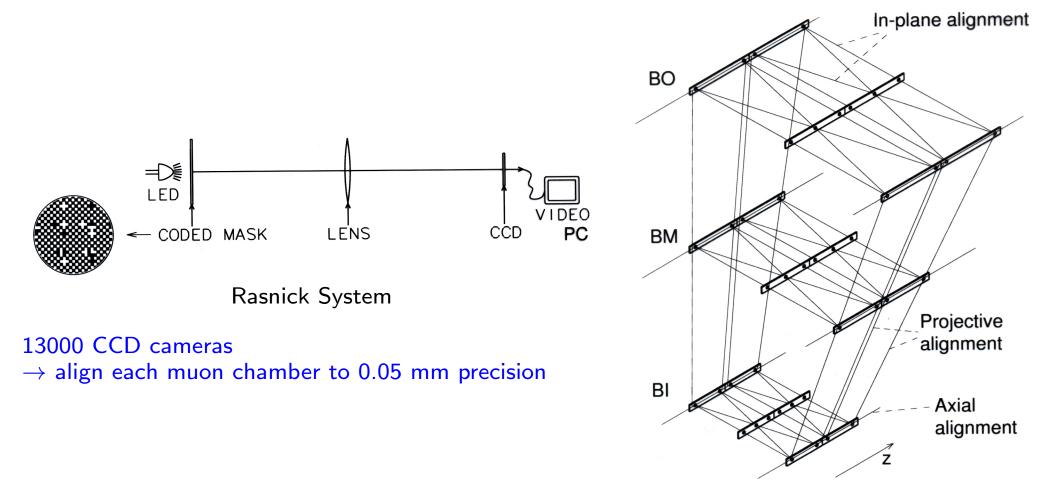
gas gain < 50000(only 'streamers' to avoid \leftrightarrow 'aging')

gas: $Ar/C_2H_6/CO_2/N_2$ 86 : 5 : 4 : 5





Need to know exactly where tubes and wires are!



Alignment system for 3 layers of MDT's