Detectors in Nuclear and Particle Physics

Prof. Dr. Johanna Stachel

Department of Physics und Astronomy University of Heidelberg

July 11, 2018

8. Electromagnetic Calorimeters

1 Electromagnetic Calorimeters

- General considerations Calorimeter
- Electromagnetic shower
- Electromagnetic calorimeter

8.1 General considerations - calorimeter

energy vs. momentum measurement

resolution:

calorimeter:
$$\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E}}$$

tracking detectors:
$$\frac{\sigma_p}{p} \propto p$$

e.g.: at $E \simeq p = 100$ GeV: $\frac{\sigma_E}{E} \simeq 3.5\%$ (ZEUS), $\frac{\sigma_p}{p} \simeq 6\%$ (ALEPH)

- at very high energies eventually have to switch to calorimeter because resolution improves with energy, while magnetic spectrometer resolution decreases
- depth of shower $L \propto \ln \frac{E}{E_0}$
- magnetic spectrometer (see chapter 6) $\frac{\sigma_p}{p} \propto \frac{p}{L^2}$ → length would have to grow quadratically to keep resolution const. at high momenta
- calorimeter can cover full solid angle, for tracking in magnetic field anisotropy
- fast timing signal from calorimeter \rightarrow trigger
- identification of hadronic vs. electromagnetic shower by segmentation in depth

8.2 Electromagnetic shower

alternating generations of pair formation and bremsstrahlung

reminder: electrons loose energy by excitation/ionization of atoms and by bremsstrahlung

for bremsstrahlung:
$$\frac{dE}{dx} = -\frac{E}{X_0}$$
 with $X_0 \equiv$ radiation length
 $E = E_0 \exp(-x/X_0)$

for sufficiently high energies: since $(dE/dx)_{ion} \propto 1/\beta^2$ falls until $\beta\gamma \approx 3$ towards high energies and the logarithmic rise is weak

$$\frac{\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{brems}}{\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{ion}} \approx \frac{ZE}{580 \text{ MeV}}$$
critical energy E_c : $\left(\frac{\mathrm{d}E}{\mathrm{d}x}(E=E_c)\right)_{ion} = \left(\frac{\mathrm{d}E}{\mathrm{d}x}(E=E_c)\right)_{brems}$

and for $E > E_c$ bremsstrahlung dominates

will see below that also transverse size is determined by radiation length via the Moliere Radius R_M :

$$R_M = \frac{21.2 \ MeV}{E_c} \cdot X_0$$

Relevant parameters for electromagnetic shower

material	Ζ	$X_0 [{ m gcm^{-2}}]$	<i>X</i> ₀ [cm]	E_c [MeV]	R_M [cm]
plastic scint.			34.7	80	9.1
Ar (liquid)	18	19.55	13.9	35	9.5
Fe	26	13.84	1.76	21	1.77
BGO		7.98	1.12	10	2.33
Pb	82	6.37	0.56	7.4	1.60
U	92	6.00	0.32	6.8	1.00
Pb glass (SF5)			2.4	11.8	4.3

Analytic shower Model

a high energy electron enters matter

electron looses energy by bremsstrahlung

photon is absorbed by pair production

Monte-Carlo simulation of electromagnetic shower

- γ + nucleus \rightarrow $e^+ + e^- +$ nucleus
- e + nucleus $\rightarrow e + \gamma +$ nucleus

approximate model for electromagnetic shower

- over distance X_0 electron reduces via bremsstrahlung its energy to one half $E_1 = E_0/2$
- photon materializes as e^+e^- after X_0 , energy of electron and positron $E_{\pm} \simeq E_0/2$ (precisely : $\mu_p = \frac{7}{9}X_0$ or pair creation probability in $X_0 \rightarrow P = 1 - \exp(-\frac{7}{9}) = 0.54$)

assume:

- for $E > E_c$ no energy loss by ionization/excitation
- for $E < E_c$ electrons loose energy only via ionization/excitation

important quantities to characterize the em. shower

number of particles in shower location of shower maximum longitudinal shower distribution transverse shower distribution (width)

introduce longitudinal variable $t = x/X_0$ number of shower particles after traversing depth t: each particle has energy

total number of charged particles with energy E_1 number of particles at shower maximum

shower maximum located at

$$N(t) = 2^{t}$$

$$E(t) = \frac{E_{0}}{N(t)} = \frac{E_{0}}{2^{t}} \rightarrow t = \ln \frac{E_{0}}{E} / \ln 2$$

$$N(E_{0}, E_{1}) = 2^{t_{1}} = 2^{\ln(E_{0}/E_{1})/\ln 2} \simeq E_{0}/E_{1}$$

$$N_{max}(E_{0}, E_{c}) \simeq E_{0}/E_{c} \propto E_{0}$$

$$t_{max} \propto \ln \frac{E_{0}}{E_{c}}$$

– numerical values: for $E_0 = 1$ GeV in Fe $\rightarrow N_{max} \simeq 45$ and $t_{max} \simeq 5.5$ or $x_{max} \simeq 10$ cm integrated track length of all charged particles in shower

$$T = X_0 \sum_{\mu=0}^{t_{max}} 2^{\mu} + t_0 X_0 N_{max} \quad \text{with range } t_0 \text{ of electron with energy } E_c \text{ in units of } X_0$$
$$= (2 + t_0) \frac{E_0}{E_c} X_0 \propto E_0 \quad \text{proportional to } E_0!$$

this was for all particles, for practical purposes for charged particles: $T = \frac{E_0}{F_c} X_0 F$ with F < 1

Transverse shower development

- emission of Bremsstrahlung under angle $\langle \theta^2 \rangle \simeq \frac{1}{\gamma^2}$ small
- multiple scattering (in 3d) of electron in Moliere theory $\langle \theta^2 \rangle = (\frac{19.2 MeV}{\beta \ pc})^2 t$

multiple scattering dominates transverse shower development main contrib. from low energy electrons, assuming approximate range of electrons to be X_0

Moliere radius
$$R_M = \sqrt{\langle \theta^2 \rangle_{x=X_0}} X_0 \approx \frac{19.2 \text{ MeV}}{E_c} X_0$$

1201

remember useful relations:

$$X_{0} = \frac{100A}{Z^{2}} (\text{g cm}^{-2})$$

$$E_{c} = \frac{580 \text{ MeV}}{Z}$$

$$t_{max} = \ln \frac{E}{E_{c}} - \begin{cases} 1 & e \text{ induced shower} \\ 0.5 & \gamma \text{ induced shower} \end{cases}$$

95% of energy within

$$L(95\%) = t_{max} + 0.08 \ Z + 9.6 \ in X_0$$

 $R(95\%) = 2 \ R_M$

a 6 GeV electron in lead

Longitudinal shower profile

parametrization (Longo 1975)

$$\frac{dE}{dt} = E_0 t^{\alpha} \exp(-\beta t)$$

first secondaries increase then absorption dominates

Transverse shower profile

parametrization as

$$\frac{dE}{dr} = E_0[\alpha exp(-r/R_M) + \beta exp(-r/\lambda_{min})]$$

with free parameters lpha,eta

 λ_{min} range of low energy photons and electrons central part: multiple Coulomb scattering tail: low energy photons (and electrons) produced in Compton scattering and photo effect

energy deposit [arbitrary unites]

8.3 Electromagnetic calorimeter

(i) homogeneous shower detector

absorbing material \equiv detection material scintillating crystals (see chapter 5)

	Nal(TI)	BGO	CsI(TI)	PbWO ₄
density (g/cm^3)	3.67	7.13	4.53	8.28
<i>X</i> ₀ (cm)	2.59	1.12	1.85	0.89
R_M (cm)	4.5	2.4	3.8	2.2
dE/dx_{mip} (MeV/cm)	4.8	9.2	5.6	13.0
light yield (photons/MeV)	$4\cdot 10^4$	$8\cdot 10^3$	$5\cdot 10^4$	$3\cdot 10^2$
energy resolution σ_E/E	$1\%/\sqrt{E}$	$1\%/\sqrt{E}$	$1.3\%/\sqrt{E}$	$2.5\%/\sqrt{E}$

Energy resolution of homogeneous calorimeters

contributons to the energy resolution σ_E/E :

shower fluctuations (intrinsic)
$$\propto \frac{1}{\sqrt{E}}$$
photon/electron statistics in photon detector $\propto \frac{1}{\sqrt{E}}$ electronic noise (noise) $\propto \frac{1}{E}$ leakage, calibration $\simeq const$

total energy resolution of electromagnetic calorimeter

$$\frac{\sigma_E}{E} = \frac{A}{\sqrt{E}} \oplus \frac{B}{E} \oplus C$$

PHOton Spectrometer (PHOS) in ALICE

array of $22 \times 22 \times 180 \text{ cm}^3 \text{ PbWO}_4$ crystals, depth 20 X_0 in total about 18 000 (same type as CMS) characteristics: dense, fast, relatively radiation hard emission spectrum 420 - 550 nmread out with $5 \times 5 \text{ mm}^2$ avalanche photodiodes, Q = 85%charge-sensitive preamplifier directly mounted on APD

light yield of PbWO₄ relatively low and strongly temperature dependent \rightarrow operate detector at -25° C (triple light yield vs 20° C) but need to stabilize to 0.3° C (monitor with resistive temperature sensors)

crystals cold, electronics warm (liquid coolant, hydrofluoroether)

12.5 t of crystals covering 8 m² at 4 m from intersection point in front: charged-particle veto (MWPC with cathode pad read-out) test beams of pions and electrons at CERN PS and SPS: 0.6 - 150 GeV

electronic noise: 1 ch = 400 e \rightarrow noise about 700 e $rac{\sigma_E}{E} = rac{3.6\%}{\sqrt{E}} \oplus rac{1.3\%}{E} \oplus 1.1\%$

why does resolution matter so much?

when particles are reconstructed by invariant mass, peaks sit on combinatorial background, S/N strongly depends on resolution

invariant-mass spectrum from the inclusive reaction 6 GeV/c $\pi^- + {}^{12}C \rightarrow \pi^0 + X$, measured at a distance of 122 cm. The solid line is a fit of Gaussians plus 3rd order polynomials.

Higgs – CMS crystal calorimeter (PbWO₄)

decay ${\rm H} \to \gamma \gamma$ for CMS the most important discovery channel

Alternative: instead of scintillating material use Cherenkov radiator

electrons and positrons of electromagnetic shower emit Cherenkov light

number of photons N_{ph} proportional to total path length T of electrons and positrons (see Ch. 2)

$$N_{ph} \propto T \propto E_0$$

remember: energy loss by Cherenkov radiation very small

 \rightarrow resolution limited by photoelectron statistics

typical: about 1000 photo electrons per GeV shower energy

mostly used: lead glass, e.g. SF5: n = 1.67 $\beta_{thr} = 0.6$ or $E_{thr} = 0.62$ MeV for electrons blocks of typical size $14 \times 14 \times 42$ cm \rightarrow diameter: 3.3 R_M and depth: 17.5 X_0 read out with photomultipliers typical performance: $\sigma_E/E = 0.01 + 0.05/t_{max} \simeq 5.5\sqrt{E(GeV)}$

(ii) Sampling calorimeter

signal generated in material different from material where (main) energy loss occurs

shower (energy loss) is only 'sampled'

converter medium: Pb, W, U, Fe \leftarrow energy loss

detection medium: scintillator, liquid Ar ← sampling of shower

often sandwich of absorber and detection medium

longitudinal shower development

transverse shower development

$$t_{max} = t_{max}^{abs} \frac{x+y}{x} \\ R(95\%) = 2R_M \frac{x+y}{x} \\ x = \sum x_i \text{ absorber} \\ y = \sum y_i \text{ detection element}$$

energy loss in absorber and detection medium varies event-by-event 'sampling fluctuations' \rightarrow additional contribution to energy resolution

Sampling fluctuations

energy deposition dominated by electrons at small energies

range of 1 MeV electron in U: $R \simeq 0.4$ mm

for thickness d of absorber layers \geq 0.4 mm: only fraction f of these electrons reaches detection medium

$$f(e, {
m conv}
ightarrow {
m det}) \propto {1 \over d} \propto {1 \over t_{conv}}$$

fraction of electrons generated in detection medium $f(e, det) \propto \frac{t_{det}}{t_{conv}}$ number of charged particles in shower: $N \simeq E_0/E_c$

fluctuations

$$\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{N}} \propto \sqrt{\frac{E_c}{E}} \sqrt{\alpha t_{conv} + (1 - \alpha) \frac{t_{conv}}{t_{det}}}$$
Fe: $(1 - \alpha) \gg \alpha$
Pb: $(1 - \alpha) \ll \alpha$

$$\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E}} \sqrt{\frac{t_{conv}}{t_{det}}}$$
For $\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E}} \sqrt{t_{conv}}$

common parametrization: $\frac{\sigma_E}{E} = 3.2\% \sqrt{\frac{E_c(MeV)}{F}} \sqrt{\frac{t_{conv}}{E(GeV)}}$

good energy resolution for

- E_c small (Z large)
- t_{conv} small ($x < X_0$, fine sampling)

example of modern electromagnetic sampling calorimeter: PHENIX PbScint Calorimeter alternating layers of Pb sheets and plastic scintillator sheets connected to PMT via scintillating fibres

individual towers $5 \times 5 \text{ cm}^2$

38 cm depth (18X₀) 66 sampling cells

in total covering 48 m² in 15552 individual towers

Parameter	Value		
Lateral segmentation	$5.535 \times 5.535 \text{ cm}^2$		
Active cells	66		
Scintillator	4 mm Polystyrene		
	(1.5% PT/0.01% POPOP)		
Absorber	1.5 mm Pb		
Cell thickness	5.6 mm (0.277 X ₀)		
Active depth			
(mm)	375 mm		
(Rad. length)	18		
(Abs. length)	0.85		
WLS Fiber	1mm, BCF-99-29a		
WLS fibers per tower	36		
PMT type	FEU115 M, 30 mm		
Photocathode	Sb-K-Na-Cs		
Rise time (25% - 80%)	\leq 5 ns		

one module of PHENIX EMCal

and entire WestArm

nominal energy resolution: stochastic term $8\%/\sqrt{E}$ and constant term: 2% time resolution: 200 ps

lateral shower profile well understood \rightarrow position resolution in mm range

Liquid-Argon Sampling Calorimeter

instead of scintillator and optical readout: use of liquid noble gas and operation of sampling sections as ionization chamber

for faster readout: interleave electrodes between metal plates and electronics directly on electrodes inside liquid

example: electromagnetic calorimeter of ATLAS