Detectors in Nuclear and Particle Physics

Prof. Dr. Johanna Stachel

Department of Physics und Astronomy
University of Heidelberg

June 26, 2018

7. Particle Identification

7 Particle Identification

- Time of Flight Measurement
- Specific Energy Loss
- Transition Radiation
- Cherenkov Radiation

Particle identification - parameters

in general, momentum of a particle measured in a spectrometer and another observable is used to identify the species

■ velocity

- time-of-flight $\tau \sim 1 / \beta$
- Cherenkov threshold $\beta>1 / n$
- transition radiation $\gamma \gtrsim 1000$ for e / π separation
- energy loss
$--\frac{d E}{d x} \sim \frac{z^{2}}{\beta^{2}} \ln a \beta \gamma$
■ energy measurement
- calorimeter (chap. 8)

$$
\begin{aligned}
E & =\gamma m_{0} c^{2} \\
T & =(\gamma-1) m_{0} c^{2} \quad \text { (deposited for } p, n, \text { nuclei) } \\
E_{d e p} & =\gamma m_{0} c^{2}+m_{0} c^{2} \quad(\text { for } \overline{\mathrm{p}}, \overline{\mathrm{n}}, \ldots)
\end{aligned}
$$

Special signatures

photon

- total energy in crystal or electromagnetic sampling calorimeter + information on neutrality
neutron
- energy in calorimeter or scintillator with Li, B, or ${ }^{3} \mathrm{He}$ + information on neutrality
muon
- only $\mathrm{d} E / \mathrm{d} x$ in thick calorimeter, penetrates thick absorber
$\mathrm{K}^{0}, \Lambda, \equiv, \Omega, \ldots$
- reconstruction of $m_{i n v}$ of weak decay products
neutrino
- only weak interaction with detector material, either as charged or neutral current

7.1 Time of flight τ

time difference between two detectors with good time resolution: 'start' and 'stop'-counter
■ typically scintillator or resistive plate chamber, also calorimeter (neutrons)
■ coincidence set-up or put all signals as stop into TDC (time-to-digital converter) with common start (or stop) from 'beam' or 'interaction'

for known distance L between start and stop counters, time-of-flight difference of two particles with masses $m_{1,2}$ and energies $E_{1,2}$:

$$
\Delta t=\tau_{1}-\tau_{2}=\frac{L}{c}\left(\frac{1}{\beta_{1}}-\frac{1}{\beta_{2}}\right)
$$

$$
\Delta t=\frac{L}{c}\left(\sqrt{\frac{1}{1-\left(m_{1} c^{2} / E_{1}\right)^{2}}}-\sqrt{\frac{1}{1-\left(m_{2} c^{2} / E_{2}\right)^{2}}}\right)
$$

limiting case $\quad E \simeq p c \gg m_{0} c^{2}$

$$
\Delta t=\frac{L c}{2 p^{2}}\left(m_{1}^{2}-m_{2}^{2}\right)
$$

require for clean separation e.g. $\Delta t \geq 4 \sigma_{t}$
\Rightarrow separation K / π at $L=3 \mathrm{~m}$ for $\sigma_{t}=100$ ps possible up to $p=3 \mathrm{GeV} / \mathrm{c}$
Cherenkov counter or RPC's $\sigma_{t} \simeq 40 \mathrm{ps}$ scintillator $+\mathrm{PM} \quad \sigma_{t} \simeq 80 \mathrm{ps}$

Difference in time-of-flight for $L=1 \mathrm{~m}$

but of course distance L can be larger
\$ detector area for a given acceptance
particle identification (PID) via time-of-flight at moderate momenta \rightarrow mass resolution:
$p=\beta \gamma m$ with rest mass $m, \quad \beta=L / \tau \quad$ (here exceptionally $c=1$ for short notation)

$$
\begin{aligned}
\Rightarrow m^{2} & =p^{2}\left(\frac{\tau^{2}}{L^{2}}-1\right) \\
\delta\left(m^{2}\right) & =2 p \delta p \underbrace{\left(\frac{\tau^{2}}{L^{2}}-1\right)}_{m^{2} / p^{2}}+\underbrace{2 \tau \delta \tau \frac{p^{2}}{L^{2}}}_{\text {use } \frac{p^{2} \tau^{2}}{L^{2}}}-\underbrace{2 \frac{\delta L}{L^{3}} p^{2} \tau^{2}}_{m^{2}+p^{2}} \\
& =2 m^{2} \frac{\delta p}{p}+2 E^{2} \frac{\delta \tau}{\tau}-2 E^{2} \frac{\delta L}{L} \\
\sigma\left(m^{2}\right) & =2\left(m^{4}\left(\frac{\sigma_{p}}{p}\right)^{2}+E^{4}\left(\frac{\sigma_{\tau}}{\tau}\right)^{2}+E^{4}\left(\frac{\sigma_{L}}{L}\right)^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

usually $\quad \frac{\sigma_{L}}{L} \ll \frac{\sigma_{p}}{p} \ll \frac{\sigma_{\tau}}{\tau}$

$$
\Rightarrow \quad \sigma\left(m^{2}\right) \simeq 2 E^{2} \frac{\sigma_{\tau}}{\tau} \quad \text { error in time measurement dominates }
$$

7.1.1 Resistive plate chambers: gas detector for precise timing measurement (material taken from talk by C. Williams on ALICE TOF)

how to get a good timing signal from a gas detector? where is the problem?

normally signal generated in vicinity of anode wire, timing determined by drift of primary ionization clusters to this wire, signal consists of a series of avalanches spread over interval of order of $1 \mu \mathrm{~s}$


```
no way to get precision (sub-nanosecond)
timing
```

idea: go to parallel plate chamber (high electric field everywhere in detector) clusters start to avalanche immediately induced signal sum of all simultaneous avalanches

electron avalanche according to Townsend

$$
N=N_{0} e^{\alpha x}
$$

only avalanches that traverse full gas gap will produce detectable signals \Rightarrow only clusters of ionization produced close to cathode important for signal generation.
avalanche only grows large enough close to anode to produce detectable signal on pickup electrodes.
if minimum gas gain at $10^{6}(10 \mathrm{fC}$ signal $)$
and maximum gain at 10^{8} (streamers/sparks produced above this limit), then sensitive region first 25% of gap

$$
\text { time jitter } \approx \text { time to cross gap } \approx \text { gap size/drift velocity }
$$

so
a) only a few ionization clusters take part in signal production
b) gap size matters (small is better)

first example: Pestov chamber (about 1975)

40 years ago Y . Pestov realized importance of size
planar spark chambers with localized discharge - gas gap of $100 \mu \mathrm{~m}$ gives time resolution $\approx 50 \mathrm{ps}$, first example of resistive plate chamber

generally, excellent time resolution ~ 50 ps or better!
but long tail of late events
mechanical constraints (due to high pressure)
non-commercial glass
\rightarrow no large-scale detector ever built
how to make real life detector?
a) need very high gas gain (immediate production of signal)
b) need way of stopping growth of avalanches (otherwise streamers/sparks will occur)

answer: add boundaries that stop avalanche development. These boundaries must be invisible to the fast induced signal - external pickup electrodes sensitive to any of the avalanches
from this idea the Multi-gap Resistive Plate Chamber was born

Multi-gap Resistive-Plate Chamber

Internal plates electrically floating!

in this example: 2 kV across each gap (same E field in each gap)
since the gaps are the same size - on average - each plate has same flow of positive ions and electrons (from opposite sides of plate)
thus zero net charge flow into plate. STABLE STATE

What happens if a plate is at a wrong voltage for some reason?

ALICE TOF prototypes

indeed one gets
sub 50 ps
time resolution

test of pre-production strip: $120 \times 7 \mathrm{~cm}^{2}$
read-out plane segmented into $3.5 \times 3.5 \mathrm{~cm}^{2}$ pads

but how precise do these gaps of $250 \mu \mathrm{~m}$ have to be?
gain not strongly dependent on gap size - actually loose mechanical tolerance - but why?

higher Townsend coefficient - higher gas gain but smaller distance for avalanche - lower gas gain
lower Townsend coefficient - lower gas gain but larger distance for avalanche - higher gas gain
with the gas mixture used $\left(90 \% \mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{H}_{2}, 5 \% \mathrm{SF}_{6}, 5 \%\right.$ isobutane $)$ and with $250 \mu \mathrm{~m}$ gap size these two effects cancel and gap can vary by $\pm 30 \mu \mathrm{~m}$

Cross section of double-stack MRPC - ALICE TOF

double stack
each stack has 5 gaps
(i.e. 10 gaps in total)
$250 \mu \mathrm{~m}$ gap with spacers made from fishing line
resistive plates 'off-the-shelf' soda lime glass
$400 \mu \mathrm{~m}$ internal glass $550 \mu \mathrm{~m}$ external glass
resistive coating $5 \mathrm{M} \Omega /$ square

TOF with very high granularity needed!

array to cover whole ALICE barrel $-160 \mathrm{~m}^{2}$ and $\leq 100 \mathrm{ps}$ time resolution highly segmented - 160,000 channels of size $2.5 \times 3.5 \mathrm{~cm}^{2}$ gas detector is only choice!
modules need to overlap due to dead areas (frames) and noise

Intermediate module

Outer module

ALICE TOF time resolution

for full system
one gets
80 ps
resolution

7.2 Specific energy loss

use drop and relativistic rise of $\mathrm{d} E / \mathrm{d} x$ - easy at low momenta where differences are large

mean energy loss relative to minimum ionization, normally only μ / π separation excluded

energy loss distribution for $600 \mathrm{MeV} / \mathrm{c}$ π and p in Si (3mm)
$p<p_{\text {min.ion }}$ for protons
is separation in region of relativistic rise possible? normally, due to Landau tail, very large overlap of, e.g., pion and kaon

truncated mean method:
many measurements and truncation of the $30-50 \%$ highest $\mathrm{d} E / \mathrm{d} x$ values for each track

Alternative: 'likelihood'-method for several $\frac{d E}{d x}$-measurements

probability that pion produces a signal x : $p_{\pi}^{i}(x)$ for each particle measurements $x_{1} \ldots x_{5}$ probability for pion:

$$
P_{1}=\prod_{i=1}^{5} p_{\pi}^{i}\left(x_{i}\right)
$$

probability for kaon:

$$
\begin{aligned}
P_{2} & =\prod_{i=1}^{5} p_{K}^{i}\left(x_{i}\right) \\
P_{\pi} & =\frac{P_{1}}{P_{1}+P_{2}}
\end{aligned}
$$

$$
\left.\begin{array}{l}
P_{1}=7.1 \cdot 10^{-6} \\
P_{2}=1.5 \cdot 10^{-8}
\end{array}\right\} \quad P_{\pi}=99.8 \%
$$

(see example on the right)

	1	2	3	4	5
p_{K}^{i}	0.123	0.061	0.025	0.013	0.006
p_{π}^{i}	0.031	0.236	0.192	0.108	0.047

multiple energy loss measurement in TPC (TPC/Two-Gamma collaboration, LBNL 1988)

ALICE TPC $\sigma(\mathrm{dE} / \mathrm{dx}) / \mathrm{dE} / \mathrm{d} x=5 \% \quad\left(\mathrm{Ne} / \mathrm{CO}_{2} / \mathrm{N}_{2}\right)$
record: 3% have been reached (NA49 at SPS with $\mathrm{Ar} / \mathrm{CH}_{4}$, larger cells, and PEP-4/9 TPC at 8.5 bar)

7.3 Transition Radiation

effect: see chapter 2, particles with Lorentz factor $\gamma \gtrsim 1000$ emit X-ray photon when crossing from medium with one dielectric constant into another, probability of order α per boundary crossing

mean energy of transition radiation photon as function of electron momentum.

energy loss distribution for 15 GeV e, π in transition radiation detector

Transition radiation detector - TRD (schematic)

principle of separating ionization energy loss from the energy loss from emission of transition radiation photons energy loss (excitation, ionization) plus transition radiation

distribution of number of clusters above some threshold for 15 GeV e, π
e / π separation in a transition radiation detector
traditionally, two methods for electron discrimination

- total energy loss
- cluster counting method
novel type: ALICE TRD
- makes use of spatial information of TR absorption

e / π separation at 15 GeV in a Li-foil radiator.

Application: ALICE TRD

radiator is followed by a gas detector that acts like a mini TPC: ionization and absorption of TR photon in 3 cm drift region, followed by amplification in MWPC with segmented cathode pad read-out, 20-30 time samples

ALICE TRD performance

Combined energy loss by ionization and transition radiation Nucl. Instr. Meth. A881 (2018) 88-127, arXiv:1709.02743 [physics.ins-det]

beyond $\beta \gamma=500$ effect of transition radiation visible

ALICE TRD performance

pion rejection with different algorithms around 1 GeV , pion supressed by 2 - 3 oom

electron/pion identification with TPC, TRD, TOF

7.4. Cherenkov radiation

real photons emitted when $v>c / n$

$$
v<c / n
$$

induced dipoles symmetric, no net dipole moment

$$
v>c / n
$$

induced dipoles not symmetric \rightarrow non-vanishing dipole moment
illustration of the Cherenkov effect

$$
\begin{aligned}
& A B=\Delta t \beta c \\
& A C=\Delta t \frac{c}{n} \\
& \cos \theta_{c}=\frac{1}{\beta n}
\end{aligned}
$$

simple geometric determination of the Cherenkov angle θ_{c}
threshold effect: radiation for $\beta>1 / n$, asymptotic angle $\theta_{c}=\arccos \frac{1}{\beta n}$ number of Cherenkov photons per unit path length in interval $\lambda_{1}-\lambda_{2}$ (see Chapter 2)

$$
\frac{\mathrm{d} N_{\gamma}}{\mathrm{d} x}=2 \pi \alpha z^{2} \int_{\lambda_{1}}^{\lambda_{2}}\left(1-\frac{1}{n^{2} \beta^{2}}\right) \frac{d \lambda}{\lambda^{2}} \quad(z=\text { charge in } \mathrm{e})
$$

in case of no dispersion (n const. in interval)

$$
\frac{\mathrm{d} N_{\gamma}}{\mathrm{d} x}=2 \pi \alpha z^{2} \sin ^{2} \theta_{c} \frac{\lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}
$$

application of Cherenkov radiation for separation of particles with masses m_{1}, m_{2} at constant momentum (say $m_{1}<m_{2}$)
to distinguish: particle 1 above threshold particle 2 at most at threshold

$$
\begin{aligned}
& \beta_{1}>1 / n \\
& \beta_{2}=1 / n \quad \text { or } \quad n^{2}=\frac{\gamma_{2}^{2}}{\gamma_{2}^{2}-1}
\end{aligned}
$$

in $\lambda=400-700 \mathrm{~nm}$ range, lighter particle with $\gamma_{1}^{2} \gg 1$ radiates

$$
\begin{aligned}
\frac{\mathrm{d} N_{\gamma}}{\mathrm{d} x} & =490 \sin ^{2} \theta_{c} \\
& =490 \frac{\left(m_{2} c^{2}\right)^{2}-\left(m_{1} c^{2}\right)^{2}}{p^{2} c^{2}} \text { photons per } \mathrm{cm} \\
\text { use } & \sin ^{2} \theta_{c}=1-\cos ^{2} \theta_{c}=1-\frac{\gamma_{2}^{2}-1}{\beta_{1}^{2} \gamma_{2}^{2}} \approx \frac{1}{\gamma_{2}^{2}}-\frac{1}{\gamma_{1}^{2}}
\end{aligned}
$$

for radiator of length L in cm and quantum efficiency q of photocathode

$$
N=490 \frac{\left(m_{2} c^{2}\right)^{2}-\left(m_{1} c^{2}\right)^{2}}{p^{2} c^{2}} \cdot L \cdot q
$$

and for threshold at N_{0} photoelectrons

$$
L=\frac{N_{0} p^{2} c^{2}}{490\left[\left(m_{2} c^{2}\right)^{2}-\left(m_{1} c^{2}\right)^{2}\right] \cdot q}(\mathrm{~cm})
$$

defines the necessary length of the radiator

required detector length for $N_{0}=10$ and $q=0.25$
$\pi / \mathrm{K} / \mathrm{p}$ separation with Cherenkov detector: use several threshold detectors

$\mathrm{p}[\mathrm{GeV} / \mathrm{c}]$	Particle	γ	$1 / \beta$
10	π	71.9	1.0001
	K	20.3	1.0012
	p	10.6	1.0044

condition for no radiation:

$$
\begin{array}{ll}
\beta & <\frac{1}{n} \\
\frac{1}{\beta} & >n
\end{array}
$$

π : C1.C2 \cdot C3 pion trigger
K : C1. C2. $\overline{C 3}$ kaon trigger
$\mathrm{p}: \mathrm{C} 1 \cdot \overline{\mathrm{C}} \cdot \overline{\mathrm{C}}$ proton trigger
principle of particle identification by threshold Cherenkov counters (\times represents production of Cherenkov photons)

Differential Cherenkov detectors

selection of velocity interval in which then actually velocity is measured accept particles above threshold velocity $\beta_{\text {min }}=1 / n$ detect light for particles between $\beta_{\text {min }}$ and a value β_{t} where light does not anymore propagate into (air) light guide by total reflection

$$
\cos \theta_{c}=\frac{1}{n \beta}
$$

the critical angle for total reflection:

$$
\begin{aligned}
& \quad \sin \theta_{t}=\frac{1}{n} \rightarrow \cos \theta_{t}=\sqrt{1-\frac{1}{n^{2}}} \\
& \Rightarrow \beta \text {-range } \quad \frac{1}{n}<\beta<\frac{1}{\sqrt{n^{2}-1}}
\end{aligned}
$$

working principle of a differential Cherenkov counter
example: diamond $n=2.42 \quad \Rightarrow \quad 0.41<\beta<0.454$, i.e. $\Delta \beta=0.04$ window selected if optics of read-out such that chromatic aberrations corrected \Rightarrow velocity resolution $\Delta \beta / \beta=10^{-7}$ can be reached
principle of DISC (Discriminating Cherenkov counter)

Ring Imaging Cherenkov counter (RICH)

optics: such that photons emitted under certain $\overline{\text { angle } \theta}$ form ring of radius r at image plane where photons are detected.
spherical mirror of radius R_{S} projects light onto spherical detector of radius R_{D}.
focal length of spherical mirror: $f=R_{S} / 2$
place photon detector in focus: $R_{D}=R_{S} / 2$
Cherenkov light emitted under angle θ_{c} radius of Cherenkov ring at detector:

$$
\begin{aligned}
r & =f \cdot \theta_{c}=\frac{R_{s}}{2} \theta_{c} \\
\Rightarrow \beta & =\frac{1}{n \cos \left(2 r / R_{S}\right)}
\end{aligned}
$$

working principle of a RICH counter
photon detection:

- photomultiplier
- multi-wire proportional chamber or parallel-plate avalanche counter filled with gas that is photosensitive, i.e. transforms photons into electrons.
e.g. addition of TMAE vapor $\left.\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right)_{2} \mathrm{C}=\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \quad E_{\text {ion }}=5.4 \mathrm{eV}\right)$
- or Csl coated cathode of MWPC (ALICE HMPID or hadron blind detector HBD in PHENIX)
example: K / π separation at $p=200 \mathrm{GeV} / \mathrm{c}$

photons detected in MWPC filled with He (83%), methane (14\%), TEA (triethyl-amine, 3%), CaF_{2} entrance window (UV transparent)

event displays - CERES RICH

1 electron produces about 10 photons

CERES Electron Identification with TPC and RICH

electron efficiency vs pion rejection

RICH π rejection vs. efficiency

π rejection via TPC $\mathrm{d} E / \mathrm{d} x$
combined rejection-e.g. at $1.5 \mathrm{GeV} / \mathrm{c}$ at 67% e-efficiency $\rightarrow 4 \cdot 10^{4} \pi$ rejection

DIRC - Detection of Internally Reflected Cherenkov Light

collection and imaging of light from total internal reflection (rather than transmitted light) optical material of radiator used in 2 ways simultaneously:

- Cherenkov radiator
- light guide for Cherenkov light trapped in radiator by total int. reflection advantage: photons of ring image can be transported to a detector away from path of radiating particle
intrinsically 3d, position of hit $\rightarrow \theta_{c}, \phi_{c}$ and time \rightarrow long. position
example: BABAR at SLAC
- rectangular radiator from fused silica $\mathrm{n}=1.473$
radiation hard, long attenuation length, low chromatic dispersion, excellent optical finish possible
- surrounded by nitrogen $\mathrm{n} \approx 1.00$
- stand-off box filled with water $n=1.346$ (close to radiator)

NIM A538 (2005) 281

O Water transmission (1.1m)

- Mirror reflectivity
- Internal reflection coeff. (365 bounces)
^ Epotek 301-2 transmission (25 um)
孔 ETL 9125 quantum efficiency (Q.E.)
\square PMT Q.E. \otimes PMT window transmission
\triangle Predicted Total photon detection efficiency

kaons can be separated up to $4 \mathrm{GeV} / \mathrm{c}$
BABAR physics: decays of B^{0} to study CP violation b-tagging (78% of $B^{0} \rightarrow K^{+}+X$) golden channel for $\mathrm{CP}: B^{0} \rightarrow J / \psi+\phi$ and $\phi \rightarrow K^{+}+K^{-}$

Comparision different PID methods for K / π separation

illustration of various particle identification methods for K / π separation along with characteristic momentum ranges.

a detector system for PID combines usually several methods

