Detectors in Nuclear and Particle Physics

Prof. Dr. Johanna Stachel

Department of Physics und Astronomy University of Heidelberg

June 12, 2018

5. Scintillation counters

5 Scintillation counters

- Scintillators
- Photon detection
 - Photomultiplier
 - Photodiodes
- Propagation of light
- Applications of scintillation detectors

5. Scintillation counters

detection of radiation by means of scintillation is among oldest methods of particle detection

historical example: particle impinging on ZnS screen \rightarrow emission of light flash

Principle of scintillation counter:

 dE/dx is converted into visible light and transmitted to an optical receiver sensitivity of human eye quite good: 15 photons in the correct wavelength range within Δt = 0.1 s noticeable by human

scintillators make **multipurpose detectors**; can be used in calorimetry, time-of-flight measurement, tracking detectors, trigger or veto counters

Scintillating materials:

- inorganic crystals
- organic crystals
- polymers (plastic scintillators)

5.1 Scintillators

Inorganic crystals: crystal (electric insulator) doped with activator (color center) e.g. Nal(TI)

- energy loss can promote electron into conduction band → freely movable in crystal
- also possible: electron remains electrostatically bound to the hole → ≡ 'exciton', hydrogenlike quasiparticle, but much more weakly bound and much bigger, energy levels slightly below conduction band
- exciton moves freely through crystal → transition back into valence band under light emission inefficient process
- doping with activator (energy levels in band gap) to which energy is transferred → photon emission can be much more likely

Inorganic crystals

exciton + activator $A \rightarrow A^* \rightarrow A$ + photon or A + lattice vibration

typical decay time of signal: ns - µs depending on material
 example: Nal(Tl)

$$\lambda_{max}$$
 = 410 nm \cong 3 eV
 τ = 0.23 μ s
 X_0 = 2.6 cm

• quality of scintillator: light yield $\varepsilon_{sc} \equiv$ fraction of energy loss going into photons

example: for NaI(TI) 38000 photons with 3 eV per MeV energy loss (deposit in scint.)

$$\varepsilon_{sc} \cong \frac{3.8 \cdot 10^4 \cdot 3 \text{ eV}}{10^6 \text{ eV}} = 11.3\% \quad \leftarrow \text{good}$$

characteristics of different inorganic crystals

type	$\lambda_{max}[nm]$	$ au[\mu s]$	$ au[\mu s]$ photons per		
			MeV		
Nal(TI)	410	0.23	38000	2.6	
CsI(TI)	565	1.0	52000	1.9	
Csl (at 77 K)*	400	0.60	8300	1.85	
	310	0.02	74000	1.85	
BGO (bismuth germanate)	480	0.35	2800	1.1	
BaF_2	310	0.62	6300	2.1	
	220	0.0007	2000	2.1	
CeF ₃	330	0.03	5000	1.7	
PbWO ₄	430	0.01	100	0.9	

 * at roomtemperature more than factor 100 less light

- advantages of inorganic crystals:
 - high light yield
 - high density \rightarrow good energy resolution for compact detector
- disadvantage:
 - complicated crystal growth \rightarrow \$\$\$ (several US\$ per cm³)

application in large particle physics experiments

BaBar (SLAC):

```
6580 Csl(Tl) crystals
depth 17 X_0
total 5.9 m<sup>3</sup>
readout Si photodiode (gain = 1)
noise 0.15 MeV
dynamic range 10<sup>4</sup>
```

CMS (LHC):

```
76150 PbWO<sub>4</sub> crystals
26 X_0
total 11 m<sup>3</sup>
read-out APD (gain = 50)
noise 30 MeV
dynamic range 10<sup>5</sup>
```

PbWO₄: fast, small radiation length, good radiation hardness compared to other scintillators, but comparatively few photons (order of 10 photoelectrons per MeV) always need to consider: match of spectral distribution of light emission, absorption and sensitivity of photosensor

typical spectral distributions:

Organic crystals

aromatic hydrocarbon compoints

scintillation is based on the delocalized π electrons of aromatic rings (see below)

	$\lambda_{max}[nm]$	τ [ns]	light yield
			rel. to Nal
naphthalene $\bigcirc \bigcirc$	348	96	12%
anthracene 000	440	30	50%

advantages: relatively fast, cheap, mechanically strong

disadvantages: mechanically difficult to process, light output anisotropic (due to channeling in crystals)

Scintillators $\lambda_{max}[nm]$ $\tau[ns]$ ε_{sc} p-Terphenyl \bigcirc \bigcirc 440 5 25% PBD \bigcirc \bigcirc \bigcirc 360 1 2-phenyl-5(4-biphenyl)-1,3,4-oxadiazole \checkmark \checkmark \checkmark \checkmark

disadvantages: low light yield: in plastic scintillator typically 10 photons per 1 MeV energy loss, low radiation length $X_0 = 40 - 50$ cm, advantages: fast decay time (order of) ns, cheap, easy to shape, typically also high neutron

advantages: fast decay time (order of) ns, cheap, easy to shape, typically also high neutron detection efficiency via (n,p) reactions

typical organic scintillators and wavelength shifters:

primary	structure	λ_{max}	decay time	light yield			
fluorescent agent		emission	[<i>ns</i>]	rel. to Nal			
		[<i>nm</i>]					
naphtalene	OO	348	96	0.12			
anthracene	OOO	440	30	0.5			
p-terphenyl		440	5	0.25			
PBD		360	1.2				
wavelength shifter							
POPOP		420	1.6				
bis-MSB		420	1.2				

what does wavelength shifter do?

- it absorbs primary scintillation light and reemits at longer wavelength \rightarrow good transparency for emitted light
- adapts wave length to spectral sensitivity of photosensor

and absorption spectrum of wavelength shifter BBQ

principle of operation of organic scintillator:

aromatic molecules with delocalized π -electrons, valence electrons pairwise in π states, level scheme splits into singlet and triplet states

- excitation of π electrons energy absorption $\rightarrow S_1^*$, $S_2^* \rightarrow S_1$ radiationless on time scale 10^{-14} s fluorescence: $S_1 \rightarrow S_0$
- ionization of π electrons followed by recombination populates T states phosphorescence $T_0 \rightarrow S_0$
- excitation of σ -electrons \rightarrow thermal deexcitation, radiationless, collisions and phonons
- \blacksquare other ionization \rightarrow radiation damage

material transparent for radiation with $E_{\gamma} < S_1^0 - S_0^0$

excitation on time scale 10^{-14} s typical vibration time scale 10^{-12} s typical S_1 lifetime 10^{-8} s excitation into higher vibrational state deexcitation from lowest vibrational state

in base material energy deposit \rightarrow excitation generally bad light yield transfer of excitation to primary fluorescent		al energy deposit ight yield tation to primary	primary fluorescent good light yield absorption spectrum needs to be matched excited states in base material	depending on material, a secondary fluorescent (wavelength shifter) is introduced to separate emission and absorption spectrum (transparency)
	base m	naterial A	primary fluorescent agent B	secondary fluorescent agent C
		\sim	excitation	wave length shifter
S _{IA}				
C	E _{IA}	γ_{A}	S_{IB} E_{IB} γ_{B}	S_{IC}
S _{0A}				 5 _{0C}

Scintillating gases

- many gases exhibit some degree of scintillation

	λ_{max} [nm]	$\gamma/$ 4.7 MeV $lpha$	
N_2	390	800	
He	390	1100	
Ar	250	1100	

contributes in gas detector to electric discharge, and be careful in Cherenkov detectors!

Pierre Auger Observatory for cosmic-ray-induced air-showers: employs water Cherenkov detectors and fluorescence detectors to observe UV fluorescence light emitted by atmospheric nitrogen (up to 4 W at maximum of cascade)

- liquid noble gases: IAr, IKr, IXe also scintillate in UV (120-170 nm), good light yield (40 000 photons per MeV), fast (0.003 and 0.022 μ s)

usage in (sampling) calorimeters

5.2 Photon detection

5.2.1 Photomultiplier

i) photo effect in photocathode: γ + atom \rightarrow atom⁺ + e^-

 $T_{e} = h\nu - W$

W: work function, in metals 3 - 4 eV, bad! comparable to energy of scintillation photon

 \Rightarrow specially developed alloys (bialkali, multialkali) with W = 1.5 - 2 eV

Threshold of some photosensitive materials

figure of merit: quantum yield

$$Q = rac{\# photoelectrons}{\# photons} \cong 10 - 30\%$$

typical spectral sensitivity

cut-off at small wavelength: glass window can be replaced by quartz, extending range to smaller wavelengths (see e.g. fast component of light of BaF_2)

also used:

- SbRbCs
- SbCs
- SbNa₂KCs (multialkali)

J. Stachel (Physics University Heidelberg)

working principle of a photomultiplier electrode system mounted in an evacuated glass tube photomultiplier usually surrounded by a μ -metal cylinder (high permeability material) to shield against stray magnetic fields (e.g. the magnetic field of the earth)

- ii) multiplication of photoelectrons by dynodes
 - electrons are accelerated towards dynode
 - knock out further electrons in dynode

secondary emission coefficient $\delta = \frac{\# \text{ leaving } e^-}{\# \text{ incident } e^-}$

$$\begin{array}{ll} \text{typically} & \delta = 2 - 10 \\ \# \text{ dynodes} & n = 8 - 15 \end{array} \right\} \quad G \propto \delta^n = 10^6 - 10^8$$

 δ dependent on dynode potential difference:

$$\delta = k \cdot U_D$$

 $G = a_0 (k U_D)^n$ a_0 : collection efficiency between cathode and first dynode

operational voltage $U_B = nU_D$ dynodes connected via resistive divider chain

$$\frac{dG}{G} = n\frac{dU_D}{U_D} = n\frac{dU_B}{U_B}$$

Limitations in energy measurement

- Inearity of PMT: at high dynode current possibly saturation by space charge effects $I_A \propto n_\gamma$ for 3 orders of magnitude possible
- photoelectron statistics for mean number of photoelectrons n_e given by Poisson distribution

$$P_n(n_e) = \frac{n_e^n \exp\left(-n_e\right)}{n!}$$

with good PMT, observation of single photoelectrons possible

photoelectron statistics for a given energy loss dE/dx respectively E_{γ} defined by

$$n_e = \frac{dE}{dx} \times \frac{\text{photons}}{\text{MeV}} \times \text{ light collection efficiency } \times \text{ quantum efficiency}$$

e.g. in NaI(TI) for 10 MeV incident photon:

$$n_e = 10 \text{ MeV} imes rac{38000}{ ext{MeV}} imes 0.2 imes 0.25 = 15000$$

 $rac{\sqrt{n_e}}{n_e} = 0.8\%$

In fluctuations of secondary electron emission at mean multiplication factor δ (again Poisson)

$$P_n(\delta) = \frac{\delta^n \exp(-\delta)}{(n!)} \qquad \text{for Poisson with mean } \langle n \rangle = \delta$$

variance $\sigma_n^2 = \langle n \rangle = \delta$

contribution to resolution

$$\frac{\sigma_n}{\langle n \rangle} = \frac{1}{\sqrt{\delta}}$$

N stages of dynodes which each amplify by factor δ :

$$\left(\frac{\sigma_n}{\langle n \rangle}\right)^2 = \frac{1}{\delta} + \frac{1}{\delta^2} + \ldots + \frac{1}{\delta^n} = \frac{1 - \delta^{-N}}{\delta - 1} \cong \frac{1}{\delta - 1}$$
$$\frac{\sigma_n}{\langle n \rangle} = \frac{1}{\sqrt{\delta - 1}}$$
quality of PM dominated by first stage

Pulse shape:

ideal current source with parallel resistance R and capacitance C

light incident with decay time of scintillator τ_{sc}

anode current

$$I(t) = \frac{Gn_e e}{\tau_{sc}} \exp\left(-t/\tau_{sc}\right) = I_0 \exp\left(-t/\tau_{sc}\right)$$
$$Q = \int I dt = I_0 \tau_{sc} = Gn_e e$$
$$I(t) = \frac{U(t)}{R} + C \frac{dU(t)}{dt}$$

 \rightarrow voltage signal (with U(t=0)=0)

$$\left| U(t) = \frac{Q \cdot R}{\tau - \tau_{sc}} \left[\exp\left(-\frac{t}{\tau}\right) - \exp\left(-\frac{t}{\tau_{sc}}\right) \right] \right| \qquad \tau = RC$$

 $N_{\gamma} = N_0 \exp\left(-t/ au_{sc}
ight)$

2 possible realizations (limiting cases) optimized for i) pulse height or ii) timing:

$$RC = \tau \gg \tau_{sc}$$

$$U(t) = \frac{Q}{C} \left(\exp\left(-\frac{t}{\tau}\right) - \exp\left(-\frac{t}{\tau_{sc}}\right) \right)$$

$$= \begin{cases} \frac{Q}{C} \left(1 - \exp\left(-\frac{t}{\tau_{sc}}\right)\right) & \tau \gg t \\ \frac{Q}{C} \exp\left(-\frac{t}{\tau}\right) & t \gg \tau_{sc} \end{cases}$$

rising edge of pulse characterized by τ_{sc} linear in t pulse length characterized by $\tau = RC$

$$U_{max} \cong Q/C \propto N_{\gamma} \longrightarrow$$
 energy measurement

$$\begin{array}{lll} \text{ii)} & \mathcal{RC} = \tau \ll \tau_{sc} & \mathcal{U}(t) & = & \frac{\tau}{\tau_{sc}} \frac{Q}{C} \left(\exp\left(-\frac{t}{\tau_{sc}}\right) - \exp\left(-\frac{t}{\tau}\right) \right) \\ & = & \begin{cases} \frac{\tau}{\tau_{sc}} \frac{Q}{C} \left(1 - \exp\left(-\frac{t}{\tau}\right)\right) & t \ll \tau_{sc} \\ \frac{\tau}{\tau_{sc}} \frac{Q}{C} \exp\left(-\frac{t}{\tau_{sc}}\right) & t \gg \tau \end{cases} \end{array}$$

rising edge of pulse given by small RC, again linear in t decay of pulse given by τ_{sc} sensitivity to Q/C weakened by small RC

 \rightarrow time measurement

i)

time resolution given by:

- rise time of signal (order 1-2 ns)
- transit time in photomultiplier (order 30 50 ns)
 respectively, variations in transit time (order 0.1 ns for good PMT)

transit time variations via

- path length differences cathode - first dynode

 $\Delta t \cong 1 \text{ ns}$ for cathode \emptyset 10 cm 5 ns \emptyset 50 cm

hence spherical arrangement for very large PMTs (e.g. 20" in Superkamiokande)

- energy spread of photoelectrons when they leave the photocathode timing difference for photoelectron accelerated from rest $(T_e = 0)$ relative to one with T_e

$$\Delta t = \frac{\sqrt{2mT_e}}{eE}$$

therefore maximize potential difference between cathode and first dynode, e.g.

$$T_e = 1 \; \mathrm{eV} \qquad E = 200 \; \mathrm{V/cm} \quad
ightarrow \Delta t = 0.17 \; \mathrm{ns}$$

strong reduction of pathlength difference: "micro channel plate"

arrangement of $10^4 - 10^7$ parallel channels (glass tubes) of $10-50 \ \mu m$ diameter, $5-10 \ mm$ length

electric field inside by applying voltage to one end $(\sim 1000 \text{ V})$ and coated inside with resistive layer acting as a continuous dynode

realization: holes in lead glass plate

 $G = 10^5 - 10^6$ $\Delta t = 0.1$ ns

further advantage: can be operated inside magnetic field

difficulty: positive ions created by collisions with rest gas inside channel must be prevented from reaching photo cathode (otherwise death of MCP) \rightarrow extremely thin (5 – 10 nm) Al window between channel plate and photocathode

Chromium-nickel Film

Fig. 5.6. Microphotograph of microchannels [384].

Scintillators

characteristics for several commercially available PMTs and microchannel plates

	Amperex	RCA	Hamamatsu	ITT	Hamamatsu
	XP 2020	8854	R 647-01	F 4129	R 1564U
amplification	$> 3 \cdot 10^{7}$	$3.5\cdot 10^8$	$> 10^{6}$	$1.6 \cdot 10^6$	$5\cdot 10^5$
HV anode-cathode (V)	2200	2500	1000		
microchannel voltage (V)				2500	3400
rise time $ au_R$ (ns)	1.5	3.2	2	0.35	0.27
transit time $ au_T$ (ns)	28	70	31.5	2.5	0.58
transit time variation $ au_S$, one PE	0.51	1.55	1.2	0.20	0.09
transit time variation $ au_{S}^{\prime}$, many PEs	0.12		0.40	0.10	
number of PEs for transit time τ_S' meas.	2500		100	800	
quantum yield (%)	26	27	28	20	15
photocathode diameter (mm)	44	114	9	18	18
dynode material	Cu Be	${\sf GaP}/{\sf BeO}$			

time resolution influenced by transit time variation and dimensions of scintillator (timing variation of light collection):

different light paths in scintillator:

affect both time resolution and pulse height typical attenuation length about 1 m attenuation mostly at short wavelengths

 \Rightarrow use of yellow filter reduces dependency

also: read-out of long scintillator at both ends reduces both timing variations and spatial dependence of pulse height

yellow filter in front of cathode

Photomultipliers in magnetic field

B-field disturbs focusing of photoelectrons and secondary electrons typical kinetic energies $T \le 200 \text{ eV}$ in region of dynodes: $B \le 10^{-4} \text{ T}$ needed typical magnitude of effect: $B = 0 \rightarrow 0.15 \cdot 10^{-4} \text{ T}$ means $I_A \rightarrow \frac{1}{2}I_A$

solution: small fields can be shielded by so-called μ -metal

use of mesh-type dynodes (\vec{E} and \vec{B} parallel) use of channel plate, photodiodes, silicon-PM, or hybrid photon-detectors (see journal club for the latter two)

5.2.2 Photodiodes

normal photodiode: PIN type gain = 1, i.e. each photoelectron contributes 1 *e* to final signal (see chapter 4)

avalanche photodiode (APD): typical gain = 30 - 50 (CMS EMCal) amplification of photocurrent through avalanche multiplication of carriers in the junction region (high reverse bias voltage, 100-200 V)

5.3 Propagation of light

in scintillator itself:

- absorption $N_{\gamma} = N_0 \exp(-x/L)$ with L: absorption length
- reflection at the edge, total reflection for $\theta > \theta_{tot} = \arcsin(n_0/n_s)$

in typical scintillator $n \cong 1.4, \ \theta_{tot} \cong 45^{\circ}$

light guide

- the light exiting the scintillator on one end (rectangular cross section) needs to be guided to PMT (normally round cross section) \Rightarrow 'fish tail' shape

Light guide

Liouville theorem is valid also for guiding light:

 $\Delta x \cdot \Delta \theta_x = \text{const.}$

i.e. product of width and divergence is constant

for guiding light $\Delta \theta = \text{const}$, Δx must not decrease, otherwise loss of light, so keep area constant

curvature should only be weak to maintain total reflection for photons captured once (adiabatic light guide)

Wavelength shifter

when enough light: can use 2^{nd} wavelength shifter, e.g. along edge of scintillator plate, wavelength shifter rod absorbs light leaving scintillator and reemits isotropically at (typically) green wavelength, small part (5 – 10%) is guided to PMT **advantage:** can achieve very long attenuation length this way, correction small

5.4 Applications of scintillation detectors

- time-of-flight measurement, 2 scintillation counters (read-out on both ends) at large enough distance
- precise photon energy: crystal calorimeter
- sampling calorimeter for photons and hadrons: alternating layers of absorber (Fe, U, ...) and scintillator with wavelength shifter rods and PMTs
- scintillating fibre hodoscope: layers of fibres, diameter order 1 mm or less, precision tracking, fast vertexing

Sampling calorimeter (see Chapters 8/9)

- typically enough light available and uniformity of response and linearity more important
- light emerging from end of scintillator sheet absorbed by external wavelength shifter rod and reemitted isotropically
- air gap essential for total internal reflection
- only a few % of energy loss in light

photomultiplier

wavelength shifter rods can be replaced by wavelength shifting scintillating fibers embedded into scintillator sheet or directly into absorber

Scintillating fibre hodoscopes

follow track of a charged particle in fine steps but not in gas detector

track in scintillating fibre array, fibre diameter 1 mm

60 μ m fibre in a fibre bundle covered with cladding of lower *n*, single track resolution few tens of μ m

Example: Scintillation fibre hodoscope COMPASS at CERN SPS

cover beam area of a 100 - 200 GeV muon beam, 10^8 Hz or 10^6 Hz per fiber channel

J. Bisplinghoff et al., NIM A490 (2002) 101

to provide enough photoelectrons 4 layers of fibres of 1 mm diameter fibres in each column joined to same PMT pixel of a multianode PMT \rightarrow 30 photoelectrons per muon

fibre configuration for scintillating fibre hodoscope with 3 layers of fibers

SCSF-78MJ scintillating fibers, 1.5 m attenuation length, active area about 10×10 cm², then light guides of clear fibers 1.5 m long (attenuation length 4 m) to PMT

high radiation tolerance (important for beam hodoscope): 100 kGy (10 Mrad) lead to only 15% reduction of signal.

light output of Kuraray SCSF-78MJ scintillating fibers after local irradiation (\approx 100 kGy), as indicated by shaded vertical bars

light attenuation of light guides (clear fibers PSMJ, Kuraray Corp.), as measured before (solid squares) and after (open squares) about 10 kGy of irradiation (more than 10 times what is expected for beam halo), homogeneously applied across the entirely of their length.

attentuation length of lightguide drops from 4 m to 1.2 m

'price' for light-saving use of clear fibers: an additional joint \rightarrow glue

glue not radiation hard (yellows) \rightarrow needed to learn to 'fuse' fibers

Hamamatsu 16-anode PMT was a breakthrough in gain uniformity and cross talk

H6568 MA-PMT: equipped with a common photocathode followed by 16 metal channel dynodes each with 12 stages of mesh type and a multi-anode read-out. They are arranged as a 4×4 block (individual effective photocathode pads with an area of 4 mm \times 4 mm each and a pitch distance of 4.5 mm (see figure).

figure: layout and dimensions of the multi-channel photomultiplier tube H6568. The upper part shows the front view of the cathode grid.

noise only 1/5 of single photoelectron response (SER)

low cross talk (less than 5%)

good gain uniformity (about 20 %)

voltage divider for dynodes needs to be specifically designed to be stable at rates up to 100 MHz

'active base' (use of transistors instead of resistors for last stages) instead of simple voltage divider, otherwise drop of signal with rate due to large currents through last dynodes leading to drop of interstage voltage

achieved time resolution 330 ps

